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Leader-follower synchronization of a network of boundary-controlled
parabolic equations with in-domain coupling

A. Kabalan, F. Ferrante, G. Casadei, A. Cristofaro, and C. Prieur

Abstract— In this paper, we study the leader-
synchronization problem for a class of partial differential
equations with boundary control and in-domain coupling.
We describe the problem in an abstract formulation and we
specialize it to a network of parabolic partial differential
equations. We consider a setting in which a subset of the
followers is connected to the leader through a boundary
control, while interconnections among the followers are
enforced by distributed in-domain couplings. Sufficient
conditions in the form of matrix inequalities for the
selection of the control parameters enforcing exponential
synchronization are given. Numerical simulations illustrate
and corroborate the theoretical findings.

Index Terms— Distributed parameter systems; Network
analysis and control; Control of networks.

I. INTRODUCTION

A. Background and contributions

TTHE problem of consensus and synchronization of mul-
tiple agents interacting over a network has been an active

domain of research in the past years due to many important
applications [1], [2]. Several efforts have been made to develop
the theory of synchronization for finite dimensional systems
both in the linear [3] and the nonlinear case [4].

Recently, researchers have started considering the case in
which the agents in the network are infinite-dimensional
systems, e.g., systems modeled via partial differential equa-
tions (PDEs). For these systems, a challenge comes from the
fact that sensing and actuation typically take place at the
boundary of the domain. First results on synchronization of
systems modeled via PDEs can be found in [5], in which the
author considered system modeled by PDEs with in-domain
control and in [6] with the focus on boundary control. More
recently, authors have started considering synchronization with
boundary control for different types of PDEs, as in [7] for
parabolic PDEs and in [8], [9] for wave equations. A first
attempt to consider synchronization for a class of boundary-
actuated semilinear PDEs has been proposed in [10], where
the authors considered incremental nonlinearities.
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In this paper, we consider parabolic PDEs interacting over
a network. The interest behind parabolic PDEs stem from the
fact that they are associated to several physical phenomena
of interest, such as diffusion, social networks [11], and neural
networks [12]. Recently, this class of systems has been used to
model diffusion of epidemics in communities [13], therefore
it is natural to consider how this class of PDEs behave in
networks.

In [14], the authors tackled the problem of synchronization
of a class of boundary controlled parabolic PDEs in which cou-
pling between the agents occurs not only on the boundary but
also in the domain. In this paper, we consider a similar setting
of interconnected systems. However, we restrict the control to
a subset of the agents only so that the synchronization of the
network will occur for the controlled agents connected to the
leader via the boundary control law and for the other agents
via the in-domain couplings.

With respect to the current literature, the contribution of
this paper is threefold: i) we consider a novel class of linear
interconnected dynamical systems with both boundary and
in-domain couplings; ii) sufficient conditions in the form of
matrix inequalities that ensures the synchronization of the
network are provided; iii) the feasibility of the proposed matrix
inequalities is thoroughly studied and sufficient conditions
on the communication graph ensuring synchronization are
established. The latter point in particular constitutes a con-
tribution with respect to the existing literature as it allows
to determine weather or not a certain network can achieve
synchronization and how to find the appropriate coupling to
achieve synchronization.

The remainder of the paper is organized as follows: in
Section II we introduce some preliminaries and the abstract
problem formulation, while in Section III we formalize the
problem in the case of nodes of the network with partially
controlled parabolic dynamics. In Section IV we present the
necessary and sufficient conditions on the control parameters
and the communication graph to achieve synchronization with
respect to the leader. A numerical example is given is Sec-
tion V. We conclude with some final remarks in Section VI.

B. Preliminaries

1) Notation: MN (R) denotes the set of square N × N
real matrices, 1N ∈ RN is the all-ones vector, and given a
matrix M , ‖M‖F indicates the Frobenius norm of M . Let
X be a normed linear vector space, the symbol IX (IN ) is
the identity operator in X (matrix in MN (R)). Let a, b be
real numbers, L2(a, b;Rn) denotes the quotient space of the
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Fig. 1. Example of network considered in this paper: black connections
represent the in-domain connection between the systems while red
connections represents the systems who are communicating with the
leader.

space of Lebesgue measurable square integrable functions on
(a, b) with values in Rn with respect to the Lebesgue measure.
The shorthand notation L2(a, b;R) = L2(a, b) is used. The
symbol Hn(a, b) stands for the set of f ∈ L2(a, b) such that
for all i = 1, 2, . . . , n, f i ∈ L2(a, b); where f i stands for the
weak derivative of order i of f . The symbol D(A) stands for
the domain of the operator A. Let X be a real Hilbert space
and A : D(A) ⊂ X → X be a linear operator, the notation
A � 0 indicates that for all x ∈ D(A), 〈x,Ax〉 ≤ 0. For a
symmetric matrix M , M � 0 and M ≺ 0 denote, respectively,
positive and negative definiteness. Given a1, a2, . . . , an, the
symbol diag(a1, a2, . . . , an) stands for the diagonal matrix
having a1, a2, . . . , an as diagonal elements. The Kronecker
(tensor) product ⊗ is used in the sense of [10, Definition 4].
The symbol kerA stands for the kernel of the linear operator
A.

2) Graph theory: A communication graph is described by
an ordered pair G = {V, E} in which V is a set of n nodes
V = {v1, v2, . . . , vn}, E ⊂ V × V is a set of edges εjk that
models the interconnection between two nodes with the flow of
information from node j to node k. We denote by L ∈ RN×N
the Laplacian matrix of the graph, with elements defined as
`kj = −1 if there is an edge between node k and node j

and 0 otherwise for k 6= j, and `kk = −
∑N
i=1,i6=k `ki. + A

path in G is a sequence of alternating vertices and edges W =
v0ε01v1ε12v2....εn−1,nvn such that εij is an edge between vi
and vj . Two vertices a and b in G are called connected if there
exist a path between a and b. The graph is connected if the
exist a path between every pair of vertices in G (see [15]).

II. PROBLEM STATEMENT

We consider a undirected network of N systems together
with a leader, the latter being labeled by the index N + 1.
The graph G associated to such a network can be separated
G = Gl ∪ Gin (Gl ∩ Gin = ∅) where Gl describes the connec-
tion between the leader and the followers and Gin describes
the interconnection among the followers (see Figure 1). We
assume that G is leader-connected.

The N followers are described by abstract dynamical sys-

Fig. 2. Visual representation of the network, with s systems connected
to the leader and the others connected through the in-domain coupling

tems of the form

żi = Azi + gi

N∑
j=1

lijzj + f (1a)

Bzi = ui (1b)

for i = 1, ..., N , with lij elements of the Laplacian matrix L ∈
RN×N associated to the graph Gin which encodes the network
interconnections, and where

A : D(A) −→ X , B : D(B) −→ U
D(A) ⊂ D(B), for all i = 1, ..., N

f : R+ −→ X

the state space X is a separable real Hilbert space. We suppose
that U is a real vector space. The operator A can be thought
as the differential operator that governs the dynamics of the
agents, and the term

∑N
j=1 lijzj(t) represent some in-domain

couplings among the different agents. The scalar gi ∈ R is
a scaling gain to be designed. Equation (1b) is the boundary
condition term, where B is a trace operator, and ui in the
input for each agent. The term f is an external source term.
Furthermore, we define the leader system as

żl = Alzl + f (2a)

with
Al = A, D(Al) = D(A) ∩ kerB (2b)

and accordingly N error coordinate ei = zi − zl, for i =
1, . . . , N , which represents the synchronization error with
respect to the leader. Bearing in mind that

∑N
j=1 lij = 0,

the error dynamics can be written as

ėi = Aei + gi

N∑
j=1

lijej (3a)

Bei = ui, (3b)

We define z = (z1, · · · , zN ), e = (e1, · · · , eN ), and u =
(u1, · · · , uN ), and we assume that the control input is selected
as follows

u = C(M ⊗ IX )e (4)

where

C : D(C) ⊂
N⊕
i=1

X −→
N⊕
i=1

U



is a linear diagonal operator and M ∈ RN×N is a diagonal
matrix associated to the subgraph Gl whose entries are mi = 1
if node zi is connected to the leader zl and mi = 0 otherwise.
Then, the error dynamics can be written in a more compact
form as follows:

ė = Ae+ LGe (5a)

with:

A = IN ⊗ A, (5b)

D(A) =

N⊕
i=1

D(A) ∩ ker((IN ⊗B)− C(M ⊗ IX )) (5c)

LG = GL⊗ IX , G = diag(g1, ..., gN ) (5d)

We consider the following standing assumption.

Assumption 1 The operators Al in (2) and A in (5) generate
a strongly continuous semigroup, respectively, on X and XN .
4

Now observe that in the coordinates (zl, e) the set wherein
synchronization occur reads:

Sl = {(zl, e) ∈ XN+1 : e = 0} (6)

Thus, the problem of synchronizing equations (1) boils down
to rendering the origin of the error dynamics (5) globally
exponentially stable. Recall now that since the operator A
generates a strongly continuous semigroup, then also A gener-
ates a strongly continuous semigroup. Furthermore, ∀z ∈ XN ,
we have ‖LGz‖XN ≤ ‖GL‖F ‖z‖XN so LG is a bounded
linear operator, then by the perturbation theorem [16, Theo-
rem 3.2.1], we have that A + LG also generates a strongly
continuous semigroup.

Next, we provide sufficient conditions to ensure exponential
synchronization of the family of systems (1)-(2) intercon-
nected via (4). The following result, which is a straightforward
adaption of [16, Theorem 5.1.3, page 217].

Proposition 1 Let Assumption 1 hold. Suppose that there exist
a bounded positive operator P : XN → XN and a positive
real number δ such that P(A+LG+ δ

2I) � 0. Then, the origin
of (5) is globally exponentially stable. This in turn implies
that the set Sl defined in (6) is globally exponentially stable
for (1)-(2) coupled via (4). �

III. PARTIALLY CONTROLLED PARABOLIC SYSTEMS

In this section, we specialize the setting considered in the
previous section to the case of partially controlled parabolic
systems. In particular, we assume that X = L2(0, 1), endowed
with its standard norm, and that the data in (1) is as follows:

A : D(A) =

{
z ∈ H2(0, 1) :

dz

dx
(1) = 0

}
−→ L2(0, 1)

(7a)

Az = β
d2z

dx2
+ αz, β > 0, α ∈ R (7b)

B : H2(0, 1) −→ R (7c)

Bz =
d

dx
z(0) (7d)

Remark 1 Specializing the setup in Section II to the consid-
ered class of parabolic systems enables to come up with a set
of sufficient conditions for synchronization that can be easily
checked. This is the objective of the remainder of this paper.

To define the control inputs, we split the agents into two
sub-groups, i.e., the leader-disconnected which do not have
access to the leader and the leader-connected agents that can
exchange information directly with the leader. Without loss of
generality, we label the latter from i = 1, · · · , s ≤ N and we
define the local control input ui as

ui =

∫ 1

0

kimiei(x)dx. (8)

with mi element of the matrix M introduced in (4) and ki ∈ R
are the controller gain to be designed. It is worth noticing that
the protocol (8) is distributed in the sense that only the local
error ei = zi − zl is available. The relative errors ei − ej =
zi− zj , which contribute to the classic diffusive coupling, are
the terms that drive the in-domain couplings in (1a).

The agents not communicating with the leader can only
exchange information with other agents via the in-domain
coupling, in other words for i = s + 1, · · · , N , we have
ui = 0. Finally, we will say that the network is leader-to-
all connected or fully controlled if s = N and say partially
controlled otherwise. With this choice in mind, the operator C
in (4) specializes into:

D(C) = L2(0, 1;RN ) Ch =

(
K ⊗

∫ 1

0

)
h (9)

where K := diag{ki}i=1,...,N . Observe that the selection
of the data in (7)-(9) ensures that Assumption 1 holds for
the specific class of systems considered henceforth. Indeed,
from (7), Al as defined in (2) turns out to be the operator
associated to the heat equation with Neumann boundary
conditions, which generates a strongly continuous semigroup
on the space L2(0, 1); see [16, Example 2.3.7]. Moreover, a
standard eigenvalue analysis coupled with [16, Theorem 2.3.5,
item c, page 41] enables to show that A generates a strongly
continuous semigroup as well; see also Remark 2.

A visual representation of the control architecture is shown
in Figure 2, with s ≤ N nodes connected to the leader and the
others coupled with in-domain connection. We are now ready
to introduce the main result of this section.

Theorem 1 Let

K̄ = KM (10)
D = −βPK̄ + αP + PGL (11)

Suppose that there exists a positive definite matrix P ∈
MN (R) such that

Ω :=

[
−βπ

2

2 P βPK̄
β(PK̄)T D +DT

]
≺ 0 (12)

Then system (1), (7) with inputs (8) achieve synchronization
towards the leader with respect to the L2-norm.



Proof: Let P = P ⊗ IX and observe that P is a positive
operator. Then, one gets:

2〈P(A+ LG)e, e〉 = 2β

∫ 1

0

eTP
d2

dx2
e+ 2α

∫ 1

0

eTPe

+ 2

∫ 1

0

eTPGLe = 2βeTP
d

dx
e
∣∣∣1
0
− 2β

∫ 1

0

d

dx
eTP

d

dx
e

+ 2α

∫ 1

0

eTPe+ 2

∫ 1

0

eTPGLe

= −2βeT (0)PK̄

∫ 1

0

e− 2β

∫ 1

0

d

dx
eTP

d

dx
e

+ 2α

∫ 1

0

eTPe+ 2

∫ 1

0

eTPGLe

(13)
where, for simplicity, we dropped the independent variable.
Thus, by denoting ê = e− e(0), the following holds:

eT (0)PK̄

∫ 1

0

e = −
∫ 1

0

(êT + e)PK̄e (14)

Moreover, by noticing that

−
∫ 1

0

d

dx
eTP

d

dx
e = −

∫ 1

0

d

dx
êTP

d

dx
ê

and by using the so-called variation of Wirtinger’s inequality;
see [17, Page 17], the latter gives:

−
∫ 1

0

d

dx
eTP

d

dx
e ≤ −π

2

4

∫ 1

0

êTP ê (15)

Combining (13) with (14) and (15), and by defining ẽ = (ê, e),
we get

2〈P(A+ LG)e, e〉 ≤
∫ 1

0

ẽTΩẽ (16)

with Ω and D defined, respectively, in (11) and (12). From
(12), there exists δ > 0 such that Ω + δI2N � 0. Moreover,
notice that since δ〈e, e〉 ≤ δ〈ẽ, ẽ〉, from (16) one gets:

2

〈
P
(
A+ LG +

δ

2
.I
)
e, e

〉
≤
∫ 1

0

ẽT (Ω + δI2N ) ẽ ≤ 0

Thus, by invoking Proposition 1 the results is established.

IV. SUFFICIENT CONDITIONS FOR SYNCHRONIZATION

In the previous section, sufficient conditions in the form of
matrix inequalities for synchronization of a class of parabolic
interconnected PDEs are given. In this section, we analyze
the effect of the control parameters on the synchronization
dynamics both in the fully controlled (s = N ) and partially
controlled (s < N ) case. To do so, in the remainder of the
paper, we consider the following simplifying assumptions:

β = 1, P = IN , G = gIN ,K = kIs (17)

which in particular imply that all the control gains ki = k
and all the in-domain scaling gi = g are identical. The fact of
having a common gain for all agents is ubiquitous in networks
control (see for instance [2], [3] and [4]). Furthermore, note
that, under (17), the matrix inequalities (12) becomes an LMI.

A. Fully controlled case
First, we consider the fully controlled scenario, i.e., s =

N namely all the nodes communicate with the leader. The
following result holds.

Lemma 1 Consider the network of (1), with (7), coupled with
the leader (2) through (8). Let α and k be such that:

ΩN1 :=

[
−π

2

2 IN kIN
kIN 2(α− k)IN

]
≺ 0 (18)

Then, for any g ≤ 0 inequality (12) holds and synchronization
is achieved with respect to the L2-norm.

Proof: In light of (17), (12) reads as

Ω = ΩN2 :=

[
−π

2

2 IN kIN
kIN 2(α− k)IN + gL

]
≺ 0 (19)

Note that (19) can be written as ΩN2 = ΩN1 + Ls where

Ls =

[
0 0
0 gL

]
� 0. Then if (18) holds, this guarantees that

(19) holds too and thus in view of Theorem 1, synchronization
is achieved.

This last result proves that in the fully controlled case,
the in-domain coupling term gL plays no necessary role in
achieving synchronization. Therefore, we shift our attention
to ΩN1 in (18). Notice that ΩN1 = Ω̃⊗ IN where

Ω̃ =

[
−π

2

2 k
k 2(α− k)

]
Thus, (18) holds if Ω̃ is definite negative. Negative definite-

ness of Ω̃ is equivalent to the conditions trace(Ω̃) < 0 and
det(Ω̃) > 0, which lead to

k > α− π2

4
(20)

k2 − π2k + π2α < 0 (21)

In particular, solving (21) with respect to k, it turns out that
(21) is equivalent to

π2

2
− π

2

√
π2 − 4α < k <

π2

2
+
π

2

√
π2 − 4α (22)

π2

4
− α > 0 (23)

Thus, given α satisfying (23), k needs to be selected so that
(20) and (22) hold.

Remark 2 To fully understand the effect of the control action,
consider the open-loop equations, that is k = 0. Then, the
only possibility for the systems to synchronize on the leader
for different initial conditions is to to have the source term
f = 0. Then, solutions to the error dynamics (5a) converge
to zero if and only if the operator A defined in (7) and with
domain redefined, according to k = 0, as

D(A) =

{
z ∈ H2(0, 1) :

dz

dx
(0) =

dz

dx
(1) = 0

}
(24)

It is well-known that exponential stability of the associated
strongly continuous semigroup holds if sup

n≥1
<(λn) < 0, where



{λn, n ≥ 1} are the eigenvalues of A with (24); see [16,
Theorem 2.3.5, items c and d]. Standard computations show
that λj = α − j2π2 for j = 1, 2, . . . . Therefore, global
exponential stability of the error dynamics holds if an only
if α < 0. On the other hand, condition (23) shows that
when 0 ≤ α < π2

4 synchronization is achieved for suitable
selection of k. This shows that the proposed synchronization
policy enables to achieve synchronization even when the local
dynamics are unstable.

B. Partially controlled case
We consider now the case in which s < N , namely not

all the agents communicate with the leader. Thus in order to
achieve synchronization the in-domain coupling will play a
fundamental role. For the sake of simplicity, we introduce the
following notation:

K̄ = k

[
Is 0s×(N−s)

0(N−s)×s 0(N−s)×(N−s)

]
︸ ︷︷ ︸

Ps

(25)

Theorem 2 Consider the network of (1), with (7), coupled
with the leader (2) through (8). Let the graph G = Gl ∪ Gin
be connected. Suppose that the following conditions holds:

α <
sπ2

4N
(26)

π2

2
− π

2

√
π2 − 4

N

s
α < k <

π2

2
+
π

2

√
π2 − 4

N

s
α (27)

Then, there exists a scalar g < 0 such that (12) holds and
thus synchronization is achieved with respect to the L2-norm.

Proof: In light of (17) and s < N , (12) reads as

Ω = Ωs :=

[
−π

2

2 IN kPs
kPs 2αIN − 2kPs + gL

]
≺ 0 (28)

Therefore, from Schur’s complement the following equiva-
lence can be established

−Ωs � 0 ⇐⇒ D := 2kPs − 2αIN − gL− 2
k2

π2
Ps � 0

(29)

Thus, from (28)-(29)

1TND1N = 2ks− 2αN − 2
k2

π2
s > 0 (30)

which, by solving with respect to k ∈ R, leads to (26) and
(27). Let Q := 2αIN − 2kPs + 2k2

π2 Ps and L = UTU , with
U being the incidence matrix. Combining (29) and Finsler’s
lemma (see, e.g., [18]), the following items turn out to be
equivalent:
(i) ∃g ∈ R : Ωs ≺ 0

(ii) xTQx < 0 for all x ∈ ker(U)

We conclude the proof by showing that item (ii) follows from
(30). To this end, notice that since by assumption the graph is
connected, one has that ker(U) = span{1N}. At this stage,
observe that 1TNQ1N = −2ks + 2αN + 2 k

2

π2 s. Thus, from
(30), 1TNQ1N < 0. This shows that item (ii) above holds,
thereby concluding the proof.

0 1 2 3 4 5

t

-3

-2

-1

0

1

2

3

4

z1t

z2t

z3t

z4t

z5t

zlt

Fig. 3. Synchronization of the followers towards the leader: the
boundary zi(1, t) evolution over time.

0 0.2 0.4 0.6 0.8 1

zs

-0.4

-0.2

0

0.2

0.4

0.6
et01

et05

et1

et2.5

Fig. 4. Time evolution of ē in (31). As we can clearly see, the mean
error converges to 0 with time.

Remark 3 If the graph G is not connected, then we can apply
Theorem 2 for each of its p connected component Gi, ∪pi=1Gi =
G, each with its own Ni and si that should satisfies equation
(26), (27). The only case in which such g does not exist is when
there is an isolated connected component Gi whose nodes do
not communicate with the leader (namely there is an i such
that si = 0).

V. NUMERICAL SIMULATIONS

We consider a group of N = 5 agents of which s = 3
are connected to the leader. The dynamics of each agent
are governed by (1)-(7) with α = 0, and f(t) = (x 7→
(1 + cos(2πx)) sin(πt)). The interconnection topology we
consider is as in Fig. 1. We design k by using (27) and then
seek for a g that verifies (12). In particular, since Theorem 2
guarantees the existence of g, by fixing k = 3 so that (27) is
satisfied, one can easily solve (19) (which is a linear matrix
inequality) in g. Indeed, by selecting g = −2, the inequality
(19) is fulfilled. Fig. 3 shows the evolution of the boundary1

zi(1, t) from the initial condition: z1,0(x) = 0.5+2 cos(5πx)+
cos(πx), z2,0(x) = 1, z3,0(x) = 2 cos(5πx), z4,0(x) =
1.5 − 2 cos(5πx), z5,0(x) = 0.5 cos(7πx) and zl,0(x) = 2 +
cos(πx) + 2 cos(7x).. The picture clearly confirms that the
actual states synchronize. In Fig. 4, we show the evolution of

1Simulations have been performed in Matlab using the finite difference
method.



0 1 2 3 4 5

t

-3

-2

-1

0

1

2

3

4

z1t

z2t

z3t

z4t

z5t

zlt

Fig. 5. The case where k = 0. None of the agents is connected to the
leader, however the agents can communicate with each other. We see
the synchronisation behavior due to the dynamics but not towards the
leader.
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Fig. 6. The case where g = 0. No interconnection between the agents,
however s = 3 agents are connected to the leader. As we can clearly
see, only these agents synchronises to the leader while the other agents
remain isolated.

the average error

e(x, t) =

N∑
i=1

ei(x, t) (31)

at different times. The figure suggests that synchronization
happens In Fig. 5 and Fig. 6, we consider respectively the
case in which the connection to the leader are lost and the case
in which the in-domain coupling is absent. In the former, i.e.,
k = 0, the agents still achieve synchronization among them but
not on the leader’s trajectory. In the latter, i.e., g = 0, only the
s = 3 agents connected to the leader achieve synchronization
on the leader. These results confirm the theoretical findings
presented previously and show that in a general setting, both
the boundary control and the in-domain coupling are necessary
to achieve synchronization of the full network.

VI. CONCLUSION AND FUTURE OUTLOOK

In this paper, we considered the problem of synchronization
of a class of interconnected infinite-dimensional dynamical
systems. The problem is first presented in a general setup and
later is specialized to partially controlled parabolic equations
with interconnections among the agents taking place both at
the boundary and in-domain. Sufficient conditions for synchro-
nization towards the leader in the form of matrix inequalities
have been established. A thorough analysis of the feasibility

of such conditions is carried out. The theoretical results are
supported by numerical examples, where different network
topologies are considered to illustrate the variety of possible
synchronization behaviours for the agents. Future studies will
be focused on a deeper analysis of the role of the network
topology in the synchronization process as well as nonlinear
PDEs. Inspired by epidemics diffusion in communities, an
application to cluster synchronization is part of our ongoing
research. The extension towards more general dynamics, such
as coupled ODE–PDEs, is also under study.
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