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Abstract

Eugene Fama, Economics Nobel Prize winner, said in 2016 that people have not come up with

ways of statistically identifying bubbles. This paper presents a nonparametric change-point

test to identify the different phases of stock bubbles, and we derive its asymptotic distribu-

tion under the null hypothesis. Using simulation, we obtain the corresponding critical value.

In the empirical analysis, we employ this test and apply the binary segmentation method to

the 1990s Nasdaq bubble and obtain the same result as Phillips et al. (2011). We also apply

this test to the S&P 500 index, the Shanghai stock index, and the Nikkei 225 index, and

successfully identify the bubbles’ different phases in each stock market.
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How to Identify the Different Phases of Stock Market Bubbles

Statistically?

Abstract

Eugene Fama once mentioned in 2016 that people have not come up with ways of identi-

fying bubbles statistically. This paper presents the nonparametric change-point method to

identify different stages of stock bubbles, and we derive its asymptotic distribution under the

null hypothesis. By simulation, we obtain the corresponding critical value. In the empirical

analysis, we employ this test and binary segmentation method to the 1990s Nasdaq bubble

and get the same result as Phillips et al. (2011). We also apply this test to the S&P 500

index, the Shanghai stock index, the Nikkei 225 index, the FTSE 100 index, and the CAC 40

index respectively, and successfully identify the bubbles’ different phases in each stock market.

Keywords: Change-point analysis, Weak-dependence assumption, Phases of stock market

bubbles

JEL classification: C12, G10, G15
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1. Introduction

As theories of bubble develop in various ways, scholars began to pay attention to the

bubble test. Most existing bubble tests are aimed at testing rational bubbles due to their

relatively intuitive statistical characteristics (LeRoy & Porter, 1981; Shiller, 1981; Hamilton

& Whiteman, 1985; Froot & Obstfeld, 1991; Evans, 1991; West, 1987; Diba & Grossman,

1988; Homm & Breitung, 2012; Koustas & Serletis, 2005). Moreover, the bubble tests are

mainly based on the fractionally integration method (Cuñado et al., 2005; Sibbertsen &

Kruse, 2009) and unit root test (Kim, 2000; Demetrescu et al., 2008).

However, academics and practitioners in finance are still no happy with these develop-

ments of bubble tests. Eugene Fama mentioned in 2016 that ”Statistically, people have not

come up with ways of identifying bubbles.”1

Phillips et al. (2011) proposed the sup augmented Dickey-Fuller method (SADF) to de-

tect the start date and end date of an explosive bubble, which proved to be superior to

previous tests to find a single explosive bubble. Further, Phillips et al. (2015) extended the

methodology to the generalized sup augmented Dickey-Fuller method (GSADF) for multiple

explosive bubbles. Harvey et al. (2016) pointed out that non-stationary volatility can have

a serious impact on the performance of the Dickey-Fuller statistics. Several studies provide

tests to detect explosive bubbles under possible heteroscedastic volatility. Homm & Breitung

(2012) investigated several tests to detect rational bubbles using the CUSUM procedure.

Astill et al. (2021) suggested modified CUSUM statistics to account for heteroscedasticity.

Harvey et al. (2017, 2020) utilized a BIC-based approach to improve bubble dating accuracy

in comparison to the SADF and GSADF methods.

Motivated by the change-point analysis in Horváth et al. (2017), this paper employs

change-point analysis to identify various structural breaks of the stock market prices. Based

on weak-dependence assumptions, we apply the nonparametric change-point analysis to the

general bubble model, which is more suitable for financial data. Further, we will verify the

1See Chicago Booth Review , June 30, 2016, available at http://review.chicagobooth.edu/economics/2016/video/are-
markets- efficient.
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accuracy of this nonparametric change-point test in the international stock markets.

This paper is organized as follows. Section 2 illustrates the nonparametric change-point

test with weak-dependence assumptions and derive the asymptotic distribution under the null

hypothesis of “No Change-point” (or “No Bubble”). Section 3 exhibits empirical applications

of the nonparametric change-point test for stock market bubbles identification. Section 4

makes conclusions.

2. Basic Model and Statistical Test

The model in Phillips & Yu (2011) and Phillips et al. (2015) describes a period of mildly

explosive bubble, which has been summarized by Linton (2019) as follows:

Pi =


Pi−1 + εi, 1 ≤ i ≤ τ b

δnPi−1 + εi, τ b ≤ i ≤ τ e ,

Pi−1 + εi, i ≥ τ e

(1)

where Pi is the log of stock price, δn = 1 + cn−α for c > 0, 0 < α < 1, n is the fixed sample

size; τ b represents the start date of mildly explosive bubble, and τ e represents the crash time

of mildly explosive bubble.

Our testing model is based on the first-order difference of stock price:

Ri = Pi − Pi−1 =


εi, 1 ≤ i ≤ τ b

BBi + εi, τ b ≤ i ≤ τ e ,

εi, i ≥ τ e

(2)

where Pi is the stock price, BBi indicates the stock bubble, and [τ b, τ e] signifies the period

of the stock bubble.

There are two weak dependence assumptions of εi, which relaxes the i.i.d assumption.

Assumption 2.1. There is a sequence of standard Wiener Processes {W (1)
n (t), 0 ≤ t ≤ 1}
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and E[εi] = 0, E[ε2i ] = σ2 for i = 1, 2, . . . , n such that

max
0<t≤ 1

2

1

btncγ

∣∣∣∣∣∣
btnc∑
i=1

εi − σ
√
nW (1)

n (t)

∣∣∣∣∣∣ = OP (1)

where γ < 1
2
.

Assumption 2.2. There is a sequence of standard Wiener Processes {W (2)
n (1− t) , 0 ≤ t ≤

1}, which is independent of {W (1)
n (t), 0 ≤ t ≤ 1}, and E[εi] = 0, E[ε2i ] = σ2 for i = 1, 2, . . . , n

such that

max
1
2
≤t<1

1

n− btncγ

∣∣∣∣∣∣
n∑

i=btnc+1

εi − σ
√
nW (2)

n (1− t)

∣∣∣∣∣∣ = OP (1)

where γ < 1
2
.

These two assumptions are more widely applicable to the most financial time series, such

as the AR model, the ARMA model, and the GARCH model (see Horváth et al., 2020).

Now, we translate the basic model into the change-point problem:

Ri =

 εi, 1 ≤ i ≤ k∗

BBi + εi, k∗ + 1 ≤ i ≤ n ,
(3)

where k∗ signifies the time of change. Due to our test is the nonstationary test for the fixed

sample testing procedure, it can not only be used to identify the beginning of the bubble,

but also to identify the end of the bubble.

Now, we test the null hypothesis of “No Change-point” (or “No Bubble”)

H0 : BBi = 0

against the alternative hypothesis of “One Change-point” (or “One Bubble”)

HA : BBi 6= 0

4



Let we start with the detector

Tn =

√
n

k(n− k)

[
S(k)− k

n
S(n)

]
(4)

where S(k) =
∑

1≤i≤k Ri. In the continuous situation, Tn can be expressed as Tn(t) =

1√
t(1−t)

√
n
[S(bt(n+ 1)c)− tS(n)].

We will investigate the asymptotic behavior of Tn(t). Based on the weak-dependence

assumptions, we construct a sequence of stochastic processes {Bn(t), 0 ≤ t ≤ 1}:

Bn(t) =


W

(1)
n (t)− t

[
W

(1)
n (1

2
) +W

(2)
n (1

2
)
]
, 0 ≤ t ≤ 1

2

(1− t)
[
W

(1)
n (1

2
) +W

(2)
n (1

2
)
]
−W (2)

n (1− t), 1
2
≤ t ≤ 1 .

(5)

It is easy to check that for each n, {Bn(t), 0 ≤ t ≤ 1} is the Gaussian process with E[Bn(t)] =

0 and E[Bn(t)Bn(s)] = min{t, s} − st. Hence the distribution of Bn(t) does not depend on

n; it is a Brownian bridge for any n. The next theorem is used to derive the asymptotic

distribution of the standardized Tn(t).

Theorem 2.1. Under the “No Change-point” null hypothesis, Assumptions 2.1 and 2.2, we

have with some α > 0

1

σ
sup
0<t<1

|Tn(t)| = sup
1/(n+1)≤t≤1−1/(n+1)

|Bn(t)|√
t(1− t)

+ oP
(
(log n)−α

)
,

where {Bn(t), 0 ≤ t ≤ 1} is the Brownian bridge of equation (5).

Theorem 2.1 can be used to derive the asymptotic distribution of sup0<t<1 |Tn(t)|. We

note that according to the law of iterated logarithm,

sup
1/(n+1)≤t≤1−1/(n+1)

|Bn(t)|√
t(1− t)

P−→∞,

but with non-standard normalization sup1/(n+1)≤t≤1−1/(n+1)
|Bn(t)|√
t(1−t)

has a limit distribution.
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Let

a(x) = (2 log x)1/2

and

b(x) = 2 log x+
1

2
log log x− 1

2
log π.

Theorem 2.2. Under the “No Change-point” null hypothesis, Assumptions 2.1 and 2.2, we

have for any x

lim
n→∞

P

{
a(log n)

1

σ
sup
0<t<1

|Tn(t)| ≤ x+ b(log n)

}
= exp(−2e−x).

The application of Theorem 2.2 requires the estimation of σ. In this paper we use

σ̂2
n =

1

n
min
1<k<n

{
k∑
i=1

(
Ri − R̂k

)2
+

n∑
i=k+1

(
Ri − R̃k

)2}
(6)

where R̂k = 1
k

∑k
i=1Ri and R̃k = 1

n−k
∑n

i=k+1Ri. We note that σ̂2
n is an asymptotically

consistent estimator for the variance under the null hypothesis as well as under the one

change-point alternative hypothesis. We need an additional condition:

Assumption 2.3.

∣∣∣∣∣ 1n
n∑
i=1

(Ri − E[Ri])
2 − σ2

∣∣∣∣∣ = oP ((log log n)−1/2)

Theorem 2.3. Under the “No Change-point” null hypothesis, Assumptions 2.1, 2.2, and

2.3, we have ∣∣σ̂2
n − σ2

∣∣ = oP ((log log n)−1/2)

and

lim
n→∞

P

{
a(log n)

1

σ̂n
sup
0<t<1

|Tn(t)| ≤ x+ b(log n)

}
= exp(−2e−x)

for all x.
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Based on Theorems 2.1 - 2.3, the critical region can be constructed by

lim
n→∞

P

{
sup
0<t<1

1

σ̂n
|Tn(t)| > cn(α)

}
= lim

n→∞
P

{
sup

1/(n+1)≤t≤1−1/(n+1)

|B(t)|√
t(1− t)

> cn(α)

}
= α

(7)

for 0 < α < 1, where cn(α) denotes the critical value at the α significance level. Performing

Monte Carlo simulations, we get the critical values shown in Table 1.

Table 1: The critical values cn(α)

Simulation Times 1− α n=20 n=50 n=100 n=200 n=500 n=1000

5000
0.90 2.5527 2.7171 2.8441 2.8925 2.9570 3.0208
0.95 2.8014 2.9913 3.0883 3.1211 3.2174 3.2671
0.99 3.3677 3.5347 3.6038 3.5868 3.6938 3.7523

10000
0.90 2.5489 2.7104 2.8364 2.8934 2.9721 3.0234
0.95 2.8038 2.9766 3.0839 3.1337 3.2383 3.2856
0.99 3.3891 3.4956 3.6038 3.6186 3.7121 3.7792

3. Empirical Analysis

We employ the augmented nonparametric change-point test, which is applying the binary

segmentation method (Vostrikova, 1981; Horváth et al., 2017) to detect the multiple change-

points. The augmented nonparametric change-point test can identify different phases of a

bubble (in most case, we can identify three or more change times in the bubble period: the

starting date, the crash date, the end date, and others). The main idea of the augmented

nonparametric change-point test is: in the first step, we test the whole sample and find the

estimator of change time k∗, if rejected H0 : BBi = 0 under the time k∗, then denote k∗ as

the first change time; in the second step, we divide the sample into two subsamples, the first

subsample covers the interval from time 1 to time k∗− 1, and the second subsample includes

the range from time k∗ + 1 to time n, then apply the nonparametric change-point test to

these two subsamples respectively and find the second or even third estimator of change time.

Repeat the second step until we identify all stages of a bubble.
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3.1. The 1990s Nasdaq

Like Phillips et al. (2011), we try to identify the bubble in the 1990s Nasdaq with the

nonparametric change-point test. Figure B.1 plots the Nasdaq Composite price index from

April 1976 to June 2005, containing 351 observations. Table 2 reports the change-point test

results for sample and/or subsample periods with binary segmentation method2. Interesting-

ly, the start point of the 1990s Nasdaq bubble in our test is January 1995, which is six months

earlier than the occurrence date in Phillips et al. (2011), July 1995. Moreover, both the crash

point and end point are the same as the conclusions in Phillips et al. (2011) (details can be

seen in Table 4). Different from Phillips et al. (2011), we have also successfully identified two

rounds of explosive growth in August 1998 and September 1999.

As Phillips et al. (2011), we choose another sample period in the 1990s Nasdaq (from

June 1979 to June 2005 with 313 observations) for the robust test, and results are shown in

Figure B.2 and Table 3. Compared to test period one, the bubble test result with test period

two is roughly the same, except that there was an additional round of explosive rise in March

1997. More encouragingly, all the start date, explosive rising date, crash date, and end date

are robust in our nonparametric change-point test.

Table 2: Augmented nonparametric change-point test for the Nasdaq Composite index between April 1976
and June 2005

No. sample Period Change-point Date Statistic
1 Apr.1976 - Jun.2005 Feb.2000 3.3023**
2 Apr.1976 - Jan.2000 Sept.1999 9.0169***
3 Apr.1976 - Aug.1999 Aug.1998 6.8360***
4 Apr.1976 - Jul.1998 Jan.1995 4.6382***
5 Mar.2000 - Jun.2005 Mar.2001 3.3483**

Note: ***,**,* indicate the significance level of 1%, 5%, 10%, respectively.

Harvey et al. (2016) pointed out that the limit results of Phillips et al. (2011) do not

hold under heteroscedasticity. Harvey et al. (2016) proposed a new test to cover possible

heteroscedasticity and suggested the wild bootstrap to get critical values for their tests. Our

2we only report the subsample periods with change-point, instead of all subsample periods with binary
segmentation method
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Table 3: Augmented nonparametric change-point test for the Nasdaq Composite index between June 1979
and June 2005

No. Subsample Period Change-point Date Statistic
1 Jun.1979 - Jun.2005 Feb.2000 3.2001**
2 Jun.1979 - Jan.2000 Sept.1999 8.3624***
3 Jun.1979 - Aug.1999 Aug.1998 6.2986***
4 Jun.1979 - Jul.1998 Mar.1997 4.2037***
5 Jun.1979 - Feb.1997 Jan.1995 3.4854**
6 Mar.2000 - Jun.2005 Mar.2001 3.3483**

Note: ***,**,* indicate the significance level of 1%, 5%, 10%, respectively.

Table 4: Comparison of the Phillips ADF test and the Nonparametric Change-point test

Test Period Bubble Test Start Date End Date

Apr.1976 Jun.2005
Phillips ADF test Jul.1995 Mar.2001

Nonparametric Change-point test Jan.1995 Mar.2001

Jun.1979 Jun.2005
Phillips ADF test Jul.1995 Sept.2000

Nonparametric Change-point test Jan.1995 Mar.2001
Note: The Phillips ADF test results from Phillips et al. (2011).

results are derived under homoscedasticity. However, the method of Górecki et al. (2017)

can be used to extend our results to cover the case of heteroscedastic observations.

3.2. Further Applications to Other Stock Indices

In this section, we apply the nonparametric change-point test to other stock market

indices. We check for bubbles in the S&P 500 between August 1970 and December 2003 (401

observations in total). Figure B.3 and Table 5 show that the S&P 500 bubble we identified

is also related to the Dot-com bubble. Similarly to the Nasdaq bubble in the 1990s we

identified above, the beginning point of the S&P 500 bubble is December 1994, which is only

one month earlier than the beginning point of the Nasdaq bubble. Since the Federal Reserve

raised interest rates during 1994-1995, the S&P 500 had been rising. From 1999 to early

2000, the economy began to lose control. The Dot-com bubble started to burst in March

2000, but at this time, the market was still optimistic, and some investors believed it was a

short-term correction in the stock market. The S&P 500 bubble started to burst in August

2000 and finished in September 2002.

Figure B.4 and Table 6 display the Shanghai stock index bubble which corresponds to

the 2008 global financial crisis. Since the outbreak of the Sub-prime Mortgage Crisis in 2007,

9



Table 5: Augmented nonparametric change-point test for the S&P 500 index

No. Subsample Period Change-point Date Statistic
1 Aug.1970 - Dec.2003 Aug.2000 3.0867*
2 Aug.1970 - Jul.2000 Dec.1994 4.6196***
3 Sept.2000 - Dec.2003 Sept.2002 2.8732*

Note: ***,**,* indicate the significance level of 1%, 5%, 10%, respectively.

banks and other financial institutions are facing enormous liquidity risks. Even if the central

banks of various countries inject large amounts of funds many times, they can not prevent

the financial crisis. For the Shanghai stock index, the bubble started in October 2006 (it may

be interrelated to the share-trading reform in the Chinese stock market: a large number of

funds poured into the stock market, coupled with the large-scale issuance of open-end funds

and the expectation of RMB appreciation), and came to collapse in October 2007 due to the

global financial crisis, and finally ended after one year (October 2008).

Table 6: Augmented nonparametric change-point test for the Shanghai stock index

No. Subsample Period Change-point Date Statistic
1 Jan.1995 - Dec.2009 Oct.2007 3.0406*
2 Jan.1995 - Sept.2007 Oct.2006 8.7906***
3 Nov.2007 - Dec.2009 Oct.2008 2.7443*

Note: ***,**,* indicate the significance level of 1%, 5%, 10%, respectively.

In addition, we identify the Nikkei bubble in the Japanese stock market (see Figure B.5

and Table 7), which began in September 1982 and crashed in December 1989 according to our

statistical analysis. Under the favorable conditions of both the domestic and international

economic environment, the Japanese stock market began to recover slowly in 1985 and grad-

ually entered the surge stage in January 1986. In December 1989, the Nikkei 225 reached its

peak, and stock prices plunged immediately. The testing result demonstrates that the Nikkei

bubble ended in September 1990.

Our method is also applicable to European stock markets, such as the United Kingdom

and France. Figure B.6 and Table 8 show the test results of the Financial Times Stock

Exchange 100 index (FTSE 100 index) for the period April 2002 to August 2009. We find

that the UK bubble started in October 2002 and crashed in November 2007. Figure B.7

and Table 9 report the French stock bubble based on the Cotation Assistée en Continu 40

10



Table 7: Augmented nonparametric change-point test for the Nikkei 225 index

No. Subsample Period Change-point Date Statistic
1 Jan.1970 - Jan.1995 Dec.1989 3.5239**
2 Jan.1970 - Nov.1989 Jan.1986 5.8222***
3 Jan.1970 - Dec.1985 Sept.1982 3.1194*
4 Jan.1990 - Jan.1995 Sept.1990 3.1470**

Note: ***,**,* indicate the significance level of 1%, 5%, 10%, respectively.

index (CAC 40 index) from March 1990 to May 2004. The results show that our method can

statistically identify the start date (October 2007), the crash date (August 2000), and the

end date (September 2002) for the French stock bubble.

Table 8: Augmented nonparametric change-point test for the FTSE 100 index

No. Subsample Period Change-point Date Statistic
1 Apr.2002-Aug.2009 Oct.2002 3.1085**
2 Nov.2002-Aug.2009 Nov.2007 3.0391*

Note: ***,**,* indicate the significance level of 1%, 5%, 10%, respectively.

Table 9: Augmented nonparametric change-point test for the CAC 40 index

No. Subsample Period Change-point Date Statistic
1 Mar.1990 - May.2004 Aug.2000 3.0176*
2 Mar.1990 - Jul.2000 Sept.1998 3.7419***
3 Mar.1990 - Aug.1998 Jul.1998 3.4920**
4 Mar.1990 - Jun.1998 Oct.1997 4.1014***
5 Nov.1997 - May.2004 Sept.2002 2.7498*

Note: ***,**,* indicate the significance level of 1%, 5%, 10%, respectively.

4. Conclusion

Given the fact that financial data are serially dependent, instead of independently and i-

dentically distributed, this paper presents the nonparametric change-point method for bubble

testing and successfully applies it to identify different stages of stock bubbles. We introduce

a new nonparametric test and we derive its asymptotic distribution under the null hypothesis

of “No Bubble”. By simulation, we obtain the corresponding critical value. To detect the

different phases of the bubble, we employ the binary segmentation method.

In the empirical analysis, by using the same test periods in the 1990s Nasdaq, we get the

same collapsing date and end date as Phillips et al. (2011), but the beginning date in our
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bubble test is six months earlier than that in Phillips et al. (2011). We apply the same test

to the S&P 500 index, the Shanghai stock index, the Nikkei 225 index, the FTSE 100 index,

and the CAC 40 index respectively, and successfully find out the start date, the crash date,

and the end date of bubbles in each stock market.
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Appendix A. Proof of Theorem 2.1

Proof. We recall the definition of {Bn(t), 0 ≤ t ≤ 1} in equation (5). Using Assumption 2.1

and 2.2, we get that

sup
1/(n+1)≤t≤1−1/(n+1)

∣∣∣∣∣Tn(t)− σBn(t)√
t(1− t)

∣∣∣∣∣ = OP (1) (A.1)

and

sup
(logn)4/n≤t≤1−(logn)4/n

∣∣∣∣∣Tn(t)− σBn(t)√
t(1− t)

∣∣∣∣∣ = OP

(
(log n)−4(

1
2
−γ)
)
. (A.2)

Lemma 1.3 on page 257 in Csörgő & Horváth (1993) yields

1

(2 log log n)1/2
sup

1/(n+1)≤t≤1−1/(n+1)

|Bn(t)|√
t(1− t)

P−→ 1, (A.3)

sup
1/(n+1)≤t≤(logn)4/n

|Bn(t)|√
t(1− t)

= OP

(
(log log log n)1/2

)
, (A.4)

and

sup
1−(logn)4/n≤t≤1−1/(n+1)

|Bn(t)|√
t(1− t)

= OP

(
(log log log n)1/2

)
. (A.5)

Putting together equations (A.3)-(A.5), we conclude

P

{
sup

1/(n+1)≤t≤1−1/(n+1)

|Bn(t)|√
t(1− t)

= sup
(logn)4/n≤t≤1−(logn)4/n

|Bn(t)|√
t(1− t)

}
→ 1, as n→∞.

(A.6)

Now the weighted approximation in equation (A.1) with equations (A.3)-(A.5) yields

1

(2 log log n)1/2
sup

1/(n+1)≤t≤1−1/(n+1)

|Tn(t)| P−→ σ, (A.7)

sup
1/(n+1)≤t≤(logn)4/n

|Tn(t)| = OP

(
(log log log n)1/2

)
, (A.8)
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and

sup
1−(logn)4/n≤t≤1−1/(n+1)

|Tn(t)| = OP

(
(log log log n)1/2

)
. (A.9)

By the definition of Tn(t) and Assumptions 2.1 and 2.2, we obtain

sup
0<t≤1/(n+1)

|Tn(t)| = OP

(
n−1/2

)
(A.10)

and

sup
1−1/(n+1)≤t<1

|Tn(t)| = OP

(
n−1/2

)
(A.11)

As in equation (A.6), we obtain from equations (A.7)-(A.11) that

P

{
sup
0<t<1

|Tn(t)| = sup
(logn)4/n≤t≤1−(logn)4/n

|Tn(t)|

}
→ 1, as n→∞. (A.12)

The result in Theorem 2.1 follows from equations (A.2), (A.6), and (A.12).

Appendix B. Proof of Theorem 2.2

Proof. We note that the distribution of {Bn(t), 0 ≤ t ≤ 1} does not depend on n; it is a

Brownian bridge for each n. If {B(t), 0 ≤ t ≤ 1} is a Brownian bridge, Lemma 1.3 on page

257 in Csörgő & Horváth (1993) gives

lim
n→∞

P

{
a(log n) sup

1/(n+1)≤t≤1−1/(n+1)

|Bn(t)|√
t(1− t)

≤ x+ b(log n)

}
= exp

(
−2e−x

)
(B.1)

for all x. Hence Theorem 2.1 implies Theorem 2.2.
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Appendix B.1. Proof of Theorem 2.3

Proof. We have that

k∑
i=1

(Ri − R̂k)
2 +

n∑
i=k+1

(Ri − R̃k)
2

=
n∑
i=1

(Ri − E[Ri])
2 + 2

k∑
i=1

(Ri − E[Ri])(E[Ri]− R̂k) +
k∑
i=1

(E[Ri]− R̂k)
2

+ 2
n∑

i=k+1

(Ri − E[Ri])(E[Ri]− R̃k) +
n∑

i=k+1

(E[Ri]− R̃k)
2.

Regardless if we have the null or the alternative hypothesis, according to Assumption 2.3:

∣∣∣∣∣ 1n
n∑
i=1

(Ri − E[Ri])
2 − σ2

∣∣∣∣∣ = oP ((log log n)−1/2).

Under the null hypothesis, E[Ri] = µ does not depend on i and therefore

2
k∑
i=1

(Ri − µ)(µ− R̂k) + k(µ− R̂k)
2 = −1

k

(
k∑
i=1

(Ri = µ)

)2

,

and according to the proof of Theorem 2.1 and Theorem 2.2, we have that

max
1≤k≤n

(
1√
k

k∑
i=1

(Ri − µ)

)2

= OP (log log n).

Similar arguments give

max
1≤k<n

∣∣∣∣∣2
n∑

i=k+1

(Ri − µ)(µ− R̃k) +
n∑

i=k+1

(µ− R̃k)
2

∣∣∣∣∣ = OP (log log n).

Hence the first part of Theorem 2.3 is proven. The second half follows from Theorem 2.2 and

Slutsky’s lemma.
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Figure B.1: Change-point detection in the Nasdaq Composite index between April 1976 and June 2005 (gray
area refers to the detecting bubble period)
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Figure B.2: Change-point detection in the Nasdaq Composite index between June 1979 and June 2005 (gray
area refers to the detecting bubble period)
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Figure B.3: Change-point detection in the S&P 500 index between August 1970 and December 2003 (gray
area refers to the detecting bubble period)
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Figure B.4: Change-point detection in the Shanghai stock index between January 1995 and December 2009
(gray area refers to the detecting bubble period)
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Figure B.5: Change-point detection in the Nikkei 225 index between January 1970 and January 1995 (gray
area refers to the detecting bubble period)

Figure B.6: Change-point detection in the FTSE 100 index between April 2002 and August 2009 (gray area
refers to the detecting bubble period)
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Figure B.7: Change-point detection in the CAC 40 index between March 1990 and May 2004 (gray area
refers to the detecting bubble period)
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