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Understanding and quantifying the fundamental physical property of coherence of thermal exci-
tations is a long-standing and general problem in physics. The conventional theory, i.e. the phonon
gas model, fails to describe coherence and its impact on thermal transport. In this letter, we pro-
pose a general heat conduction formalism supported by theoretical arguments and direct atomic
simulations, which takes into account both the conventional phonon gas model and the wave na-
ture of thermal phonons. By naturally introducing wavepackets in the heat flux from fundamental
concepts, we derive an original thermal conductivity expression including coherence times and life-
times. Our theory and simulations reveal two distinct types of coherence, i.e., intrinsic and mutual,
appearing in two different temperature ranges. This contribution establishes a fundamental frame
for understanding and quantifying the coherence of thermal phonons, which should have a general
impact on the estimation of the thermal properties of solids.

Phonons, i.e., quanta of vibrational waves, are com-
monly considered as one of the fundamental quasi-
particles, simultaneously exhibiting wavelike and parti-
clelike characteristics in nanostructured crystals or bulk
materials. The wavelike behavior of phonons impacts
thermal properties via coherence mechanisms, as high-
lighted by several pioneering [1, 2] and recent works [3, 4].
The particlelike behavior has been treated by Boltzmann
transport equation (BTE) and the phonon-gas model in
most solids [5–10]. Experiments [1, 2, 11–13] have re-
vealed, however, that the wave nature of thermal phonons
plays a substantial role in thermal transport, as for ex-
ample, in the observations of coherent thermal transport
in nano-phononic crystals [1, 2, 11, 12]. Later, theoret-
ical and simulation studies [14–18] were devoted to the
understanding of phonon coherence, such as the one pro-
ducing band folding [19–21], but missing the particle be-
havior. Recently, the theoretical study [22] revealed that
the realistic phonon dynamics can only be manifested
if both intrinsic coherence relevant to the extension of
phonon wavepackets and the particlelike behavior of ther-
mal phonons are taken into account.

The conventional BTE also fails in complex crystals,
as a pure particle picture cannot yield a complete de-
scription of thermal conductivity, such as in Tl3VSe4 [23].
Recently, Simoncelli et al. [3] developed a theory for ther-
mal transport in glasses and complex crystals, in which
the coherence between densely packed phonon branches
contributes to thermal transport. A similar approach has
been developed by Isaeva et al. [4] as well at the same
time. This mutual coherence among branches is identi-
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fied as an additional phonon wave-relevant term [24–26].
The picture of this mutual coherence, that might be com-
pared to a hopping process, however remains physically
unclear. Finally, quantifying the full coherence of ther-
mal phonons and its effect on heat conduction remains a
critical issue in transport physics.

In this letter, a general heat conduction theory is pro-
posed to establish an original expression for the ther-
mal conductivity that includes the full coherent nature
of phonon excitations. This expression involves both
phonon lifetimes and coherence times. Those are ob-
tained by tracking the real phonon dynamics and using
a wavelet transform of the atomic trajectories during an
equilibrium molecular dynamic (EMD) simulation. We
show that the predictions of our theory yield significant
differences from those of the conventional phonon-gas
model, as demonstrated in the Tl3VSe4 case (See atomic
structure in Fig. 1(a)). We find that there are two types
of coherence, i.e., intrinsic and mutual, which take a crit-
ical role over different temperature regions. These con-
clusions open unexpected insights on the reality of ther-
mally activated phonon modes and the importance of
the diverse coherence mechanisms when assessing ther-
mal properties.

The thermal conductivity (κ) can be calculated based
on the Green-Kubo approach with the autocorrelation of
the heat flux S (t) as [27]

κ =
V

3kBT 2

∫
〈S (t) · S (0)〉 dt, (1)

where V corresponds to the system volume, kB is the
Boltzmann constant and T the temperature. We now
define the heat flux component Sλ corresponding to the
contribution of mode λ to the total heat flux, i.e., S (t) =∑
λ Sλ (t). λ refers to a specific mode of wavevector k and
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of the branch s, which implies that the correlation can
operate between modes of different wavevectors and of
different branches. Then, the thermal conductivity can
be decomposed as follows

κd =
V

3kBT 2

∑

λ

∫
〈Sλ (t) · Sλ (0)〉 dt. (2)

As discussed before by Gill-Comeau and Lewis [28, 29],
the neglected off-diagonal part corresponds to the collec-

tive excitations of phonons (∼
〈
Sλ (t) · Sλ′ 6=λ (0)

〉
). In

most solids, κd defined in Eq. (2) is predominant and
the off-diagonal terms only become significant in the hy-
drodynamic regime [9, 30–32], for instance in graphene
and graphite. Therefore, the diagonal thermal conduc-
tivity only will be addressed in the following. Based on
the definition of the harmonic heat flux operator [33],
S = 1

V

∑
λNλh̄ωλυλ, the thermal conductivity can be

derived as

κ =
1

3kBV T 2

∑

α

∑

λ

h̄2ω2
λυ

2
λ,αN

2
λ

∫
Corλ (t) dt, (3)

here, h̄ denotes the reduced Planck constant, ωλ is the
eigenfrequency, υλ the group velocity of mode λ and α
the Cartesian coordinate. Nλ (t) is the time-dependent

phonon number of mode λ and Corλ (t) = 〈Nλ(t)Nλ(0)〉
〈Nλ(0)Nλ(0)〉

the phonon decay. Considering the classical definition
of the phonon number Nλ = kBT

h̄ωλ
, Eq. (3) reduces to

κ = 1
3

∑
α

∑
λ C

clas
v,λ υ

2
λ,α

∫
Corλ (t) dt, where Cclasv,λ = kB

V
is the classical specific heat per mode. When the particle-
like behavior predominates, Corλ (t) follows an exponen-
tial decay law with the lifetime τpλ according to the con-
ventional single-mode relaxation time (SMRT) approxi-

mation [8, 10], that is Corλ (t) = e
− t

τ
p
λ . After integra-

tion, the classical particlelike thermal conductivity can
be expressed as follows

κp =
1

3

∑

α

∑

λ

Cclasv,λ υ
2
λ,ατ

p
λ . (4)

Equation (4) is analogous to the commonly used
Peierls-Boltzmann formula [6]. However, as the coher-
ence effect increases, a correction should be considered
in the description of the phonon decay by including the
modal coherence time (τλ

c) [22] as follows

Corλ (t) = e
− t

2τ
p
λ e
−4ln2 t2

τλ
c2 . (5)

The second gaussian term originates from the interfer-
ence between different modes, expressing coherence ef-
fects in the phonon dynamics. Consequently, by integrat-
ing Eq. (5), the complete thermal conductivity (κp+w)
including the wavelike behavior can be expressed as

κp+w =
1

3

∑

α

∑

λ

Cclasv,λ υ
2
λ,α

√
π

4ln2
τ cλe

τc2λ

128ln2τ
p2
λ . (6)

When setting τpλ = τ cλ, Eq. (6) reduces to the conven-
tional Peierls-Boltzmann formula with a corrective coef-
ficient ≈ 1.07. This consideration reveals that equality
between coherence time and lifetime [34] is underlying
the traditional phonon gas model.

In realistic systems, the scatterings are diverse and can
also be incorporated into the model of Matthiessen

1

τ totalλ

=
1

τph−phλ

+
1

τ isotopeλ

+
1

τ boundaryλ

. (7)

where, τph−phλ refers to the phonon decay time for τpλ and

√
π

4ln2τ
p
λe

τc2λ

128ln2τ
p2
λ in Eq. (4) and Eq. (6), respectively.

The calculations of the isotope scattering time τ isotopeλ

[35] and of the boundary scattering time τ boundaryλ [36]
follow the reference [37]. Only the isotope scattering
is intrinsically considered in our following calculations.
Quantifying the contribution of coherence as proposed in
Eq. (6) requires the knowledge of lifetimes and coher-
ence times. These quantities are accessible by a wavelet
approach [22, 38].

The developed model is then applied to the complex
crystal Tl3VSe4 (See atomic structure in Fig. 1(a)). In
order to collect accurate phonon information from MD
simulations, a machine learning potential (MLP) [39, 40]
is adopted after being trained by ab initio MD simula-
tions [41–44]. In the Supplementary Materials (SM) [38],
the training process and the verification of the MLP are
described [37, 45–47]. All MD simulations using the MLP
are performed with the LAMMPS package [48], which
is mainly used for calculating MD thermal conductivity
[27, 49] for comparison (See Sec.s2.3 in [38]), and for ex-
tracting the atomic information for subsequent wavelet
transform calculations (See Sec.s3 in [38] for details).

By applying the wavelet transform approach, we can
firstly obtain the evolution time and coherence time de-
pendent phonon number N (t0, τ

c
λ). Increase tempera-

ture usually dephases the correlation of phonon waves
or suppresses the coherent/wavelike behaviour, resulting
in a decrease in coherence time. The coherence time of
the 0.25 THz mode in Tl3VSe4, for example, decreases
when the temperature rises from 100 K to 300 K (See
Fig. S5). This dephasing trend has already been seen
in bulk graphene [22] and superlattices [1, 17, 50] be-
fore which corresponds to a loss of ‘intrinsic’ coherence.
However, for high frequency phonons in Tl3VSe4, e.g.,
at 0.93 THz shown in Fig. 1(c), the coherence time re-
versely increases with temperature, as evidenced by the
expanded ‘clouds’ and their shift into a higher coherence
time regime. These ‘clouds’ can be understood as the
coherence effect between the modes of different branches
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FIG. 1. (a) The conventional lattice of Tl3VSe4. (b) The
phonon dispersion of Tl3VSe4 from lattice dynamic calcu-
lations (white lines) and room-temperature spectral energy
density calculations (contour) for the conventional cell. The
symbols in (b) indicate the instances of modes being analyzed,
0.25 THz (square) and 0.93 THz (circle). (c) Evolution time
and coherence time dependent phonon number of Tl3VSe4 for
the 0.93 THz mode at 100 K and 300 K. (d) Phonon decay
(correlation) versus correlation time in Tl3VSe4 for the 0.25
and 0.93 THz modes at 100 K and 300 K. The dash-dotted
lines (p+w) show the fitting by Eq. (5). The dotted line (p)
shows the fitting by the conventional exponential decay. The
inset of (d) shows the realistic wavepacket of the mode 0.93
THz resulting from the combination of shorter wavepackets
at 300 K.

in the phonon dispersion (Fig. 1(b)), as demonstrated be-
fore by Simoncelli et al. [3] and Isaeva et al. [4]. The
clouds with long coherence times are connected to the
packets with small coherence times, as if the former were
generated by the latter.

The abundance of small wavepackets with shorter life-
times is partially originating from the temperature in-
duced phonon-phonon scattering. Since lifetime is re-
versely proportional to the frequency broadening (i.e.
∆ω), the enlarged linewidth of the dispersion curves asso-
ciated with reduced frequency intervals between branches
promote smaller wavepackets as illustrated by Fig. 1(b-c).
In a subsequent stage, due to their large number, those
small wavepackets have higher probability to establish a
phase relation between themselves, which results in the
generation of wavepackets with large coherence times, re-
ferred to as ‘clouds’ above (See the inset of Fig. 1(d)).
This argument does not only support the model of Si-
moncelli et al. [3], but also offers a physical picture of
the mutual coherence for phonons in complex crystals. In
addition, this effect should also be amplified as tempera-
ture further rises due to the increase of branches broad-

ening from phonon-phonon scatterings. Note that these
tendencies are also respectively observed in other low or
high frequency modes.

Coherence is expected to have critical impact on the
phonon decay and its propagation. The phonon decay
can be extracted from the autocorrelation function of the
phonon number N (t0, τ

c
λ), as displayed in Fig. 1(d). The

details of the computations are provided in [38]. When
including the coherence effect, the phonon decay should
follow the generalized law of Eq. (5) as we demonstrated
before [22]. From the fitted particle-related decay (dot-
ted line) to the coherence corrected decay (dash-dotted
line) of Fig. 1(d), the coherence appears as a delay to the
conventional exponential decay. In addition, the phonon
decay of the low frequency 0.25 THz mode shows the
temperature effects on the coherence dephasing and re-
duction of phonon lifetimes. In contrast, for the high
frequency 0.93 THz at which branch density is high, the
increase of temperature contributes to coherence, pro-
ducing a further delay in phonon decay. The inset of
Fig. 1(d) shows how small wavepackets combine into a
large one in this frequency range. By fitting this phonon
decay with the generalized decay law of Eq. (5), we ob-
tain τpλ and τ cλ for different modes as reported in Fig.
S6. The fitting details can be found in [38]. A q-grid of
16 × 16 × 16 is applied to analyze the modes in the full
Brillouin zone, this mesh is yielding converged results in
BTE based estimations. Importantly, τ cλ becomes larger
than τpλ in the region of relatively high frequencies, be-
cause of the coherence effect (See Fig. S6).

Due to the predominance of phonons of low frequen-
cies, the effect of quantum population on the transport
properties of Tl3VSe4 is limited. The thermal conduc-
tivities of Eqs. (4) and (6) are expressed with the clas-
sical population (i.e. κclasp/p+w), which can be quantum

corrected (i.e. κquap/p+w) by replacing Cclasv,λ with the quan-

tum specific heat Cquav,λ , here Cquav,λ = kBexp(x)
V

[
x

exp(x)−1

]2

with x = h̄ωλ
kBT

. At low temperatures, Fig. 2(a) reports
that the delay effect on phonon decay due to the intrinsic
coherence leads to substantial contributions to thermal
conductivity in the full frequency range. The effect of in-
trinsic coherence should be weakened by increasing tem-
perature. The wavelike contributions are still prominent
at 300 K and the additional components are migrating to
the region after 0.25 THz where the dense branches and
mutual coherence emerge. Obviously, coherence can cor-
rect thermal conductivities by incorporating the wavelike
contribution, and coherence behaviors are different at low
temperatures (intrinsic coherence) and at high tempera-
tures (mutual coherence).

The accumulative κ in Fig. 2(b) further evidences the
importance of wavelike contributions to thermal conduc-
tivities in Tl3VSe4. Here, the BTE results are from Jain
[25], in which a temperature dependent effective poten-
tial (TDEP) is considered. As all scatterings and tem-
perature effects are included in MD simulations, our pre-



4

FIG. 2. Modal thermal conductivity of Tl3VSe4. (a) Modal
classical and quantum thermal conductivities of Tl3VSe4 at
50 K and 300 K. (b) Accumulative classical and quantum
thermal conductivities of Tl3VSe4 at 50 K and 300 K. The
symbols refer to experimental results (Exp.) [51], Boltzmann
transport equation results (BTE) [25] and our molecular dy-
namic simulations (MD).

dicted κ
clas/qua
p are quite close to the BTE results, in-

dicating the validity of the particle description in our
model. When including the wavelike behaviour of ther-

mal phonons, the corrected κ
clas/qua
p+w approximate to

both the experimental measurements [51] and the direct
MD simulations, especially at 300 K. The limited discrep-
ancies at 50 K are mostly originating from the classical
population of phonons in MD simulation, which overesti-
mates phonon-phonon scatterings while underestimating
κclasp and κclasp+w with suppressed τpλ and τ cλ.

For overall comparison, thermal conductivities based
on our direct MD simulations, experimentally measured
values [51] and the BTE calculations with TDEP [25]
are summarized in Fig. 3(a). MD simulations implicitly
include all orders of anharmonicity for phonon-phonon
scattering as well as both the wavelike and particle-

FIG. 3. Comparison of thermal conductivities of Tl3VSe4
from different approaches. (a) The comparison of thermal
conductivities of Tl3VSe4 versus temperature. The left ori-
ented triangles are experimental results (Exp.) [51], the
upward triangles refer to BTE results [25] and the squares
correspond to our machine learning based MD simulations
(MD+ML). Full symbols denote the models of Eq. (4)
(squares) and of our theory of Eq. (6) (circles) in the classical
(blue) and the quantum (red) approximations. (b) The addi-
tional contribution of coherence to thermal conductivities of
Tl3VSe4 versus temperature.

like behaviors of phonons. Consequently, EMD simu-
lations include the real phonon dynamics and well co-
incide with the experimental κ, indicating the accuracy
of our MLP. The computed particlelike thermal conduc-

tivities (κ
clas/qua
p ) agree well with the BTE results, but

remains lower than the experimental measurements, indi-
cating the failure of BTE in capturing phonon coherence
of Tl3VSe4. As we further include the wavelike contribu-
tion by applying the revised heat conduction law of Eq.
(6), the thermal conductivities significantly increase. The

wavelike corrected values κ
clas/qua
p+w agree well with the ex-

perimental measurements and MD simulations in the full
temperature region. This comparison indicates that the
proposed model is sufficient in predicting thermal trans-
port by including the wavelike features of phonons.

The degree of coherence correction to thermal
conductivity is further estimated in Fig. 3(b) from
κ
clas/qua
p+w −κclas/quap

κ
clas/qua
p+w

×100%. Interestingly, a non-monotonic

dependence of the coherence contribution as a function
of temperature is observed, which agrees well with the
above demonstration of the coexistence of two types of
coherence. At room-temperature, the wavelike correction
reaches 66 %. The trend of the correction with tempera-
ture coincides with the discrepancy between the prevail-
ing BTE theory and the real phonon dynamics observed
in the experiments and MD simulations of Fig. 3(a), re-
vealing that the wavelike behavior becomes more signif-
icant at low and high temperatures. In Ref. [25], Jain
found that when including coherence as proposed by Si-
moncelli et al. [3], a conductivity close to the experi-
mental measurements could be obtained but still smaller,
especially at low temperatures where mutual coherence
disappears and intrinsic coherence becomes important
(See the comparison in [38]). The used Allen and Feld-
man (AF) model [52, 53] and Cahill-Watson-Pohl (CWP)
model [54, 55], as well as the theory from [3], are based on
the weakly propagating modes and the inter-modes ‘hop-
ping’ additionally contributing to thermal transport in
complex crystals or disordered systems. The discovered
mutual coherence offers direct evidence on how modes in-
teract and affect the thermal transport. The above com-
parisons between thermal conductivities demonstrate the
remaining issues of prevailing theories and indicate the
ability of our model to capture both wavelike and par-
ticlelike pictures of phonons in thermal transport. The
agreement with measurements especially provides a sat-
isfactory test of our theory based on experimental data.

Coming back to the fundamental definition of the heat
flux, we have established a new expression of the ther-
mal conductivity including phonon coherence via coher-
ence time. The estimation of this generalized thermal
conductivity was implemented by introducing a wavelet
transformation of MD quantities, which offers the coher-
ence time of phonon excitations as well as their lifetimes.
This methodological treatment of coherence in heat con-
duction has hence unraveled the rich content of coher-
ent effects on thermal transport. This previously un-
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charted information has led to quantitative estimation
of the impact of coherence responsible for a 66 % in-
crease of thermal conductivity at room-temperature for
complex crystal Tl3VSe4. In addition, two distinct types
of coherence are observed in our explorations, including
intrinsic coherence and mutual coherence, which can be
simultaneously modeled by our heat conduction theory.
In short, we proposed a novel paradigm to describe the
full coherence of phonon heat carriers, which has a global
repercussion in the assessment of the thermal properties
in nanostructures as well as in bulk materials.
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S1. Construction of machine learning potential

S1.1. Ab initio MD simulations

The VASP code [1–3] is used with potpaw-PBE.54 [4] pseudopotentials to perform ab initio molecular dynamic
(AIMD) simulations to collect the energies, atomic force, and stress as train datasets for the training of the machine
learning potential (MLP). The system size of Tl3VSe4 for AIMD calculations is 3×3×3 primitive cells containing 216
atoms. The cutoff energy of 400 eV is used. A 2×2×2 Γ-centered grid of k points in the irreducible Brillouin zone is
used. To fully consider the effect of temperature on structure, AIMD is performed with isothermal-isobaric (NPT)
ensemble from 0 K to 1000 K. The time step is 0.5 fs. The 2000 and 4000 AIMD atomic configurations and the
corresponding atomic forces, total energy, and stress are used to train machine learning potential [5, 6].

S1.2. Machine learning potential

We employ a moment tensor potential developed by A. V. Shapeev [5, 6] as a machine learning potential MLP model
to describe the interatomic interactions in Tl3VSe4. The details of the training process can be found in references
[5–7]. With the trained MLP and an interface to LAMMPS software [6, 8], we would be able to do further lattice
dynamic and molecular dynamic calculations. To begin with, the trained MLP is tested by comparing the energies and
atomic forces predicted by DFT and MLP predictions, which reveals a good agreement between the two calculations
(See Fig. S1). During the calculations, we find that the lattice constant is optimized at the value of 7.892 Å which
agrees well with the DFT result of 7.887 Å and also with the experimental value of 7.904 Å [9].

FIG. S1. (a) The comparison of potential energy between DFT calculation and MLP based prediction. (b) The comparison
of averaged forces between DFT calculation and MLP based prediction. The forces are averaged over different atoms. 200
samples are used for the testing.

S2. Benchmarks of MLP

S2.1. Phonon dispersion

Then we compare the phonon dispersion from DFT and MLP calculations. The phonon dispersion is calculated by
using the PHONOPY code [10] with 3×3×3 primitive cells. As shown in Fig. S2, the phonon dispersion from MLP is
in agreement with the DFT calculations, indicating the accuracy of MLP in terms of harmonic properties prediction.
In addition, by increases the training set from 2000 samples to 4000 samples, the accuracy can be further improved.
Therefore, the trained MLP with 4000 samples are used in this work.
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FIG. S2. The comparison of phonon dispersion from DFT calculation and MLP prediction with different training set.

FIG. S3. The comparison of thermal conductivity predicted by DFT and MLP calculations versus temperature.

S2.2. BTE Thermal conductivity

We used VASP code [1–4] combined with the PHONONPY code [10] and the thirdorder.py [11] script to calculate
the 2-rd and 3-rd interatomic force constants (IFCs) for Tl3VSe4. A set of supercells containing 2×2×2 conventional
cells is simulated for the calculations of IFCs and the Monkhorst–Pack k-mesh of 5×5×5 is implemented to sample
the irreducible Brillouin zone for the calculations of 2-rd and 3-rd IFCs, respectively. The cutoff energy is set to 550
eV. The IFCs are also calculated from the MLP with the same supercell and cutoff than the ones used in the DFT
calculations of IFCs.

The phonon Boltzmann transport equation (PBTE) is then solved to calculate the thermal conductivity of Tl3VSe4

in the single-mode relaxation time approximation, as implemented in the ShengBTE software [12]. A q-grid of
16×16×16 is applied in the PBTE calculations. The comparison of thermal conductivities of DFT and MLP calcu-
lations, in which the IFCs are respectively calculated based on DFT and MLP interactions, is displayed in Fig. S3.
The thermal conductivities from MLP calculations are well consistent with the results from DFT calculations in the
full temperature region, indicating the high reliability of MLP in describing the phonon anharmonicity of Tl3VSe4.
In addition, our MLP results also agree well with the predictions from Luo et al. [13] that are based on the DFT
interactions and without considering the temperature dependent effective potential.
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S2.3. MD Thermal conductivity

FIG. S4. The calculation of thermal conductivity based on the EMD simulations (a) The autocorrelation function of heat
flux versus time. (b) The integral thermal conductivity from the Green-kubo approach versus integration time. The EMD
simulations are carried out at room-temperature.

All MD simulations are performed by using LAMMPS package [8] with an interface to the MLP. The simulation size
is chosen as 8× 8× 8 the conventional cell. Periodic boundary conditions are applied in all directions. The time step
is set as 0.15 fs in our simulations. After the structure relaxation and thermal equilibration in the isothermal-isobaric
(NPT) ensemble for 30 ps, EMD simulations with the microcanonical (NVE) ensemble are performed for another 0.9
ns. The thermal conductivity of Tl3VSe4 is also calculated during the EMD simulations based on the Green-Kubo
approach in Eq. (1) of the maintext. Here, the heat current is calculated as [14]:

S =
1

V



N∑

i

Eivi +
1

2

N∑

i

N∑

j>i

(Fij · (vi + vj)) rij


 , (S1)

where Ei and vi are the total energy and velocity, respectively, for the i-th atom. rij and Fij are the distance and
force between two atoms i and j, respectively. For each case, 20 independent runs are performed in order to obtain a
stable averaged of κ. The correlation time considered in our simulation is long enough to ensure the proper decaying
of heat current autocorrelation function as displayed in Fig. S4. The isotope scattering effect is included by randomly
change the mass of atoms in MD simulations.

S3. Wavelet transform

S3.1. Approach

The temporal coherence of thermal phonons can be defined in the following basis

ψωλ,t0,∆λ
(t) = π−

1
4 ∆
− 1

2

λ e[iωλ(t−t0)]e

[
− 1

2

(
t−t0
∆λ

)2
]

, (S2)

where ωλ is the angular frequency of mode λ, and ∆λ defines the wavepacket duration. t corresponds to the time
variable, and t0 to the position of highest amplitude in the wavepacket and also corresponds to the time evolution in
the wavelet space. Inside the wavepacket, planewaves are in phase, the ∆λ term in Eq. (S2) is thus a measure of the
temporal coherence of thermal phonons. Here, we define the wavepacket full-width at half-maximum (FWHM) as the

coherence time τ cλ = 2
√

2ln2∆λ. The temporal coherence information of thermal phonons can be calculated from the
wavelet transform as,

Λ (ωλ, t0, τ
c
λ) =

∫
ψωλ,t0,τcλ (t)F (t0) dt, (S3)
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where F (t0) denotes the time dependent dynamical quantity, which is chosen as the phonon modal velocity υ (k, s)
[15].

υ (k, s) =
1

a

a∑

b,l

[u̇bl (t) · e∗b (k, s)× exp (ik ·R0l)] , (S4)

where u̇bl (t) is the velocity of the bth atom in the lth unit cell at time t, a is the number of cell, e∗ (λ) the complex
conjugate of the eigenvector of mode λ, and R0l is the equilibrium position of the lth unit cell. Here, k and s
corresponding to the mode λ. At the frequency ωλ, the time dependent phonon number of a given coherence time,
here called phonon number density, N (t0, τ

c
λ) can be calculated as N (t0, τ

c
λ) = 1

2m |Λ (ωλ, t0, τ
c
λ)|2 /h̄ωλ.

S3.2. Coherence

FIG. S5. Evolution time and coherence time dependent phonon number of Tl3VSe4 for the 0.25 THz mode at 100K and 300K.

Fig. S4 shows the phonon number density as a function of evolution time and coherence time for a low frequency
mode, i.e., 0.25 THz. As increasing of temperature from 100K to 300K, the coherence time of this mode is significantly
suppressed, indicating the dephasing of phonons due to the enhanced phonon-phonon scattering.

S4. Phonon decay

S4.1. Correlation function

The wavepackets are distributed along the coherence coherence time and can be further investigated by building
the time-averaged phonon number density versus coherence time

D (ωλ, τ
c
λ) =

1

Nt0

∑

t0

N (ωλ, t0, τ
c
λ)∑

τcλ
N (ωλ, t0, τ cλ)

(S5)

where Nt0 denotes the number of terms in the sum. Then, the phonon decay can be calculated from the correlation
function

Cor (t, τ cλ) =
〈∆N (t, τ cλ) ∆N (0, τ cλ)〉
〈∆N (0, τ cλ) ∆N (0, τ cλ)〉 . (S6)
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where, ∆N(t0, τ
c
λ) = N (t0, τ

c
λ) − 〈N(t0, τ

c
λ)〉t0 . To obtain a coherence time independent phonon decay function, an

average over coherence times can be further implemented

Cor (t)λ =
∑

τcλ

D (τ cλ)Cor (t, τ cλ) . (S7)

S4.2. Coherence time and Lifetime

The phonon decays are as numerous as the number of coherence times. As input to the general thermal conductivity
expression (Eq. (6) in maintext), we define the averaged coherence time (τ̄ cλ)

τ̄ cλ =
∑

τcλ

D (τ cλ) τ cλ. (S8)

Mean lifetimes (τ̄pλ) are obtained by fitting the averaged phonon decay Cor (t)λ as

Cor (t)λ = e
− t

2τ̄
p
λ e
−4ln2 t2

τ̄c2
λ . (S9)

In the maintext, especially in the thermal conductivity model, τpλ and τ cλ refer respectively to τ̄pλ and τ̄ cλ of above
formulas. The fitted τpλ and τ cλ are reported in Fig. S6.

FIG. S6. The calculated coherence times and lifetimes versus frequency at 50K and 300K.

S5. Deviation

The deviation (i.e. difference) of thermal conductivities between the reported values in [9] and [16], suggesting that
the coherent theory from [17] fails to capture the intrinsic coherence at low temperatures is reported in Fig. S7.
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FIG. S7. The deviation of the reported thermal conductivities.
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