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Abstract

In this work, we extend the Markov models describing the susceptible-infected-
susceptible (SIS) epidemics over undirected networks to take into account the virus
minimum incubation period and the minimum recovery period of an infected indi-
vidual. We represent both periods as time delays in the states of the extended
model. However, due to the addition of time delays, the process loses its Markovain
property. We use the generalized semi-Markov theory to introduce both the incu-
bation and recovery delays to the probabilistic dynamical models. Hence, in this
paper, we propose a time-delay version of the two principal models of the SIS epi-
demics over undirected networks: the exact 2𝑁−state model and the approximated
𝑁−intertwined model. Finally, using Lyapunov analysis, we give sufficient condi-
tions that guarantee the global exponential stability of the time-delay 𝑁−intertwined
model.

KEYWORDS:
Epidemic models, semi-Markov theory, time-delay systems, multi-agent systems.

1 INTRODUCTION

Since the seminal work of Kermack and McKendrick1 introducing the SIS model, where S stands for susceptible and I for
infectious, a lot of research has been done for developing mathematical epidemic models that studies the spread of an infectious
disease in a certain population. The SIS class can model the propagation of specific viruses in which immunity is not acquired
upon recovery from infection, and individuals become susceptible again, for example the cold flu and influenza. The most
famous SIS models are the compartmental models which assume homogeneous mixing of the population1. These models do
not allow for heterogeneous contacts between individuals, a limitation that is overcomed by the so called degree-based mean
field (DBMF) models2,3. The DBMF models divide the population into a set of groups. Individuals belonging to the same
group have the same number of connections and equivalently have the same probability to become infected. The drawback of
the compartmental and DBMF models is that they do not precisely compute the probability of infection of each individual in
the population. Knowing every individual infection probability helps in using mobile applications that give each one specific
isolation instructions, instead of imposing centralized lockdowns which are economically heavy4. The epidemic models that
serve this goal are called multi-agent epidemic models. They can describe the spread of infections between countries, provinces,
cities, towns, districts, computers, individuals and many more5. Their advantages is to consider the network heterogeneity on a
graph of nodes and to assign to each class of the model a probability of infection.

Ganesh et al.6 have proposed a multi-agent probablistic model for the SIS class over graphs using the theory of Markov
chains. The model is in continuous-time and it is of 2𝑁 states, 𝑁 is the population size. Their analysis is mainly focused on
estimating how fast or slow an epidemic will die out. Afterwards, Van Mieghem et al.7 have extended the work of Ganesh et
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FIGURE 1 Sample path of the stochastic process 𝑋𝑖(𝑡) which is the state of agent 𝑖 at time 𝑡. In an SIS model, 𝑋𝑖(𝑡) is either
susceptible 𝑋𝑖(𝑡) = 𝑆 or infected 𝑋𝑖(𝑡) = 𝐼 . 𝜏0 and 𝜏1 are the constant time delays for the minimum incubation and recovery
periods respectively.

al.6 by approximating the exact model with an 𝑁−intertwined model of 𝑁 states using a mean field approximation. Since each
virus has a incubation period, which is the time to be infectious after being infected, there is a minimum intrinsic time delay 𝜏0
before transitioning from the susceptible state S to the infected state I. After becoming infected, there is also a minimum time
for recovery 𝜏1 to return back susceptible, see Figure 1. The models of Ganesh et al.6 and Van Mieghem et al.7 do not consider
this time-delay aspect in their modeling. Because of the time delays, the waiting time in the states is not any more exponentially
distributed and the SIS process loses its Markovian property as shown in Figure 1. The main goal of this paper is to introduce
the minimum incubation time delay 𝜏0 and the minimum recovery time delay 𝜏1 into the SIS multi-agent model of Ganesh et
al.6 and Van Mieghem et al.7. Note that we refer to 𝜏0 as the minimum incubation period and to 𝜏1 as the minimum recovery
period. Actually, the incubation period and the recovery period vary between each individual, and hence, 𝜏0 and 𝜏1 are random
variables and are not constants. However, in this paper we define them as the minimum periods for incubation and recovery
and they are considered as constants.

Introducing time delays to the continuous-time SIS-SIR models, where R stands for recovery, is well studied by the research
community. Hethcote et al.8, J.Arino et al.9, Chapter 13, Tien et al.10, Bretta et al.11 and Cooke et al.12, not to mention many
others, have considered introducing time delays to the compartmental models SIS, SIR, SEIRS, etc. They have assumed general
probabilistic distributions for the sojourn times in the states and they have encapsulated different time delays between the
different compartments. The authors have also studied the existence of solutions of these models, calculated their equilibrium
points and analyses the epidemic stability. The models are based on homogeneous contacts between individuals, i.e. they are
based on the assumption that all individuals are equally likely to be infected or to be recovered. Another type of models for
SIS-SIR classes that could incorporate time delays is modeling using the piecewise deterministic Markov process (PDMP).
Clancy et al.13,14 use the theory of PDMP developed by Davis et al.15 to model the SIR epidemic. The idea is to consider
infectious periods that are not necessarily exponentially distributed. Finally, in the work of Huang et al.16,17 the time delays
are encapsulated in the DBMF models developed by Pastor et al.2,3, and their results is focused in formulating the stability
conditions in terms of the basic reproduction number 𝑅0. These models predict the infection probability of groups that have
the same number of connections. We should also mention that the models of Huang et al.16,17 consider only time delays for the
incubation period. The main difference between all these works and our work is in modeling the contacts between the indi-
viduals. We model contacts between individuals over general graphs where we consider that each individual in the population
is a node in the graph and therefore it has its specific number of neighbors and has specific number of contacts. Hence, our
modeling introduces the contacts heterogeneity of the network through graphs and we give a probability of infection for each
individual of the population at each instant of time.
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Now, we look on multi-agent models that could incorporate time delays. Bovenkamp et al.18 have proposed a steady state
model for the SIS infection process with general curing and infection times over undirected graphs with 𝑁 nodes. Ogura et
al.19 have also explored the exponential decay rate of the SIS processes toward the disease free equilibrium over undirected
graphs. They consider non-markovian processes and allows for a “phase-type” distributions for the waiting times. Kiss et al.20

have proposed a delayed SIS model for pairwise correlated networks. The time delay is considered from the class S to the class
I. Hang-Hyun et al.21 have modeled the (SI) infection process over a temporal network of infinite size. The goal is to study
the bursty nature of some dynamical processes that appear in nature such as earthquake statistics, financial interactions, etc.
In these processes, the distribution of the inter-event times follows a power-law and not the homogeneous Poisson process.
Furthermore, Doerr et al.22 have modeled the distribution of the spreading time 𝑇 of information in social networks as a
convolution of two lognormally distributed random variables.

Our contribution in this paper is to propose a multi-agent model for the SIS epidemics that includes time delays for the
incubation and the recovery periods. The modeling is done over a finite-size graph composed of 𝑁 agents and we consider no
correlations between the nodes. It is a dynamical model that predicts at each instant of time a probability of infection for each
individual in the population. We approximate the exact model which has 2𝑁 states with an 𝑁−intertwined model of 𝑁 states
using a mean field approximation. While the multi-agent dynamical model for SIS epidemics is presented by Ganesh et al.6 and
Van Mieghem et al.7, their model is delay free and assumes the Markovian property. We upgrade this model to incorporate time
delays by using the semi-Markovian analysis and the resulting model coincides with the model of Van Mieghem et al.7 when
the delays are zero. Using Lyapunov analysis, we then obtain sufficient conditions for the epidemic to die out. The stability
conditions of the disease free equilibrium point (DFE) coincides with the results of Ganesh et al.6, Wang et al.23 and Paré et
al.24 for the delay-free case, more precisely Condition 1 in the article of Ganesh et al.6, Theorem 1 in the article of Paré et al.24

and Corollary 1 in the article of Wang et al.23).
The paper is organized as follows. After some preliminaries on semi-Markov processes in Section 2, we present the exact 2𝑁

states semi-Markov model of the SIS class in Section 3 where 𝑁 is the size of the population. In Section 4, the exact model is
approximated by the 𝑁−intertwined model with 𝑁 states. Stability results are provided in Section 5. Section 6 is devoted to
numerical simulations and the paper is concluded in Section 7.

Notations
{𝑍(𝑡), 𝑡 ≥ 0}Ω is a stochastic process defined over the discrete state space Ω. 𝑃𝑟(𝑋 = 𝑥) is the probability that the random
variable 𝑋 takes the value 𝑥. 𝐑 is the set of real numbers. Let 𝑓 (𝑡) ∶ [0,+∞) → 𝐑 be a piece-wise continuous function, then
𝑓 𝑙(𝑠) = 𝐿{𝑓 (𝑡)} is the Laplace transform of 𝑓 (𝑡). 𝐻(𝑢) is the Heavise function, i.e. 𝐻(𝑢) = 1 if 𝑢 ≥ 0 and 𝐻(𝑢) = 0 if 𝑢 < 0.
𝛿𝑖𝑗 is the Kronecker delta function, 𝛿𝑖𝑗 = 1 if 𝑖 = 𝑗 and 𝛿𝑖𝑗 = 0 otherwise. (𝑣)𝑛×1 denotes a vector in 𝐑𝑛. 𝑑𝑖𝑎𝑔(𝑣) is the 𝑛 × 𝑛
diagonal matrix formed with elements of 𝑣. 𝟏𝑛 is the vector of all ones of length 𝑛. 𝐈𝑛×𝑛 is the identity matrix. The indicator
function is defined by 1𝑥 = 1 if 𝑥 is true and 1𝑥 = 0 if 𝑥 is false.

2 PRELIMINARIES ON SEMI-MARKOV PROCESSES

Let us begin by introducing some necessary concepts on semi-Markov processes that we shall need later in our analysis. The
reader may refer to the chapter 5 of the book of Ross25 for more details on semi-Markov processes. A stochastic process {𝑆(𝑡), 𝑡 ≥
0}Ω that makes a transition from one state to the other while satisfying the Markov property at the instants of the jumps, but in
which the time spent in any state is random, is called a semi-Markov process. More precisely, consider the following definition.

Definition 1. Let Ω = {1,… , 𝑁} be a discrete state space. A stochastic process {𝑆(𝑡), 𝑡 ≥ 0}Ω is called a time-homogeneous
semi-Markov process on the probability space with finite state space Ω if the following conditions hold:

1. the sample paths {𝑆(𝑡), 𝑡 ≥ 0}Ω are right-continuous step functions and the probability of the left-handed limits is equal
to one;

2. denote by 0 = 𝑇0 < 𝑇1 < … < 𝑇𝑘 < … the jump times of (𝑆𝑡)𝑡≥0 and by 𝜏𝑘 = 𝑇𝑘 − 𝑇𝑘−1 the sojourn times in the states,
the process {𝑆(𝑡), 𝑡 ≥ 0}Ω satisfies the Markov property at each jump instant 𝑇𝑘, 𝑘 = 0, 1, 2,…

𝑃𝑟
(

𝑆(𝑇𝑘+1) = 𝑗|𝑆(𝑇𝑘) = 𝑖, 𝑆(𝑇𝑘−1) = 𝑚,… , 𝑆(𝑇0) = 𝑙
)

= 𝑃𝑟
(

𝑆(𝑇𝑘+1) = 𝑗|𝑆(𝑇𝑘) = 𝑖
)

, 𝑖, 𝑗, 𝑚,… , 𝑙 ∈ Ω
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3. 𝐹𝑖𝑗(𝑡) = 𝑃𝑟
(

𝜏𝑘+1 ≤ 𝑡 ∣ 𝑆(𝑇𝑘) = 𝑖, 𝑆(𝑇𝑘+1) = 𝑗
)

does not depend on the jump instant 𝑇𝑘.

The time-homogeneous semi-Markov process {𝑆(𝑡), 𝑡 ≥ 0}Ω can be described by the following two notions:
– the transition probability matrix (𝑃 )𝑁×𝑁 such that:

𝑝𝑖𝑗 = 𝑃𝑟
(

𝑆(𝑇𝑘+1) = 𝑗 ∣ 𝑆(𝑇𝑘) = 𝑖
)

, 𝑖, 𝑗 ∈ Ω

where 𝑝𝑖𝑗 is the conditional probability that the process will make a transition from the state 𝑖 to the state 𝑗 at the instant 𝑇𝑘+1,
𝑘 ≥ 0, and

∑

𝑗∈Ω 𝑝𝑖𝑗 = 1, 𝑖 ∈ Ω;
– the holding time density 𝑓𝑖𝑗(𝑡) in a state 𝑖 given that the next transition is to state 𝑗

𝑓𝑖𝑗(𝑡)𝑑𝑡 = 𝑃𝑟
(

𝑡 ≤ 𝜏𝑘+1 ≤ 𝑡 + 𝑑𝑡 ∣ 𝑆(𝑇𝑘) = 𝑖, 𝑆(𝑇𝑘+1) = 𝑗
)

where 𝑡 ≥ 0 and 𝑖, 𝑗 ∈ Ω. Hence, one can think of generating a semi-Markov process as follows: after having entered state
𝑖, make a random draw to determine the successor state 𝑗 based on the set of transition probabilities 𝑝𝑖𝑗 , 𝑖, 𝑗 ∈ Ω, then make
another draw to determine the waiting time in 𝑖 before transiting to 𝑗 based on the holding densities 𝑓𝑖𝑗(𝑡), 𝑖, 𝑗 ∈ Ω.

Another useful notion in semi-Markov processes is the transition density functions defined by

ℎ𝑖𝑗(𝑡) = 𝑝𝑖𝑗𝑓𝑖𝑗(𝑡), 𝑖, 𝑗 ∈ Ω (1)

where
ℎ𝑖𝑗(𝑡)𝑑𝑡 = 𝑃𝑟

(

𝑡 ≤ 𝜏𝑘+1 ≤ 𝑡 + 𝑑𝑡, 𝑆(𝑇𝑘+1) = 𝑗 ∣ 𝑆(𝑇𝑘) = 𝑖
)

is the probability of a transition to state 𝑗 between 𝑡 and 𝑡 + 𝑑𝑡 given that the last transition was to state 𝑖. Let 𝑤𝑖(𝑡) be the
unconditional waiting time density in a state 𝑖 ∈ Ω,

𝑤𝑖(𝑡) =
∑

𝑗∈Ω
ℎ𝑖𝑗(𝑡) (2)

then 𝑤𝑖(𝑡)𝑑𝑡 is the probability of leaving state 𝑖 between 𝑡 and 𝑡+𝑑𝑡. After recalling the basic features of a semi-Markov process,
we can now directly give the dynamics of the state transition probabilities 𝜙𝑖𝑗(𝑡) = 𝑃𝑟(𝑆(𝑡) = 𝑗 ∣ 𝑆(0) = 𝑖), for 𝑡 ≥ 0 and
𝑖, 𝑗 ∈ Ω,

𝜙𝑖𝑗(𝑡) = 𝛿𝑖𝑗𝑊𝑖(𝑡) +
𝑁
∑

𝑘=1

𝑡

∫
0

ℎ𝑖𝑘(𝑣)𝜙𝑘𝑗(𝑡 − 𝑣)𝑑𝑣 (3)

where 𝛿𝑖𝑗 = 1 if 𝑖 = 𝑗 and 𝛿𝑖𝑗 = 0 if 𝑖 ≠ 𝑗, and 𝑊𝑖(𝑡) = 1 − ∫ 𝑡
0 𝑤𝑖(𝑣)𝑑𝑣. By (3), 𝜙𝑖𝑗(𝑡), which is the probability that the process

is in state 𝑗 at time 𝑡, given that it entered state 𝑖 at time zero, is a sum of the following two terms:

1. the non-zero term 𝑊𝑖(𝑡) when 𝑖 = 𝑗, which represents the probability that the process may have not left state 𝑖 by time 𝑡;

2. the integral over all 𝑣 between 0 and 𝑡 of ℎ𝑖𝑘(𝑣)𝑑𝑣 (probability of a transition to state 𝑘 between 𝑣 and 𝑣+𝑑𝑣) multiplied by
𝜙𝑘𝑗(𝑡− 𝑗) (probability that the process will reach state 𝑗 in the remaining time 𝑡− 𝑣 after having entered state 𝑘) summed
all over the states 𝑘.

In what follows, we use the semi-Markov theory to model the SIS epidemic over undirected networks while taking into account
the time delays.

3 2𝑁−STATE SEMI-MARKOV MODEL

We model the spread of an infection in a certain population by using an undirected graph 𝐺(𝑁,𝐸) with a fixed adjacency matrix
𝐴. 𝐴 is a binary matrix, i.e. 𝑎𝑖𝑗 = 1 if individual 𝑖 is connected to individual 𝑗 otherwise 𝑎𝑖𝑗 = 0, and 𝑎𝑖𝑖 = 0. For details on
graph theory, the reader may refer to Chapter 3 of the book of Bullo et al.26. The arrival of an infection to a link and the curing
process of an infected node is modeled using two independent Poisson processes of rates 𝛽 and 𝛿 respectively. Each node in the
graph represents an agent in the population whom can be either healthy or infected at time 𝑡. This type of modeling belongs to
the class of SIS models in continuous time. Define Ω = {0, 1, 2,… , 2𝑁 −1} to represent all the possible states of the population
at time 𝑡 which are detailled in Table 1. State 0 means that all the agents in the population are healthy, state 2𝑁 − 1 means that
all the agents are infected and so on, see Page 3 of Van Mieghem et al.7.
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TABLE 1 States binary notation of the 2𝑁−state semi-Markov chain

State number 𝑖 𝑥𝑁𝑥𝑁−1 ⋯ 𝑥2𝑥1
0 0 0⋯ 0 0
1 0 0⋯ 0 1
⋮ ⋮

2𝑁 − 1 1 1⋯ 1 1

Without time delays, the susceptible-infection process defines a continous-time Markov chain defined on the discrete state space
Ω. The infinitesimal rate matrix of this Markov chain is defined, similarly to equation (4) of Van Mieghem et al.7, by:

𝑞𝑖𝑗 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑞𝛿𝑖𝑗 = 𝛿 if 𝑖 = 𝑗 + 2𝑚−1, 𝑚 = 1,… , 𝑁, 𝑥𝑚 = 1
𝑞𝐴𝑖𝑗 = 𝛽

∑𝑁
𝑘=1 𝑎𝑚𝑘𝑥𝑘 if 𝑖 = 𝑗 − 2𝑚−1, 𝑚 = 1,… , 𝑁, 𝑥𝑚 = 0

−
∑𝑁

𝑘=1;𝑘≠𝑗 𝑞𝑘𝑗 if 𝑖 = 𝑗
0 else

(4)

where 𝑖 =
∑𝑁

𝑘=1 2
𝑘−1𝑥𝑘, 𝑥𝑘 is either 0 or 1, 𝑖, 𝑗 ∈ Ω. If one agent in a state 𝑖 ∈ Ω is healthy (𝑥𝑚 = 0), it will be infected with a

rate 𝑞𝐴𝑖𝑗 = 𝛽
∑𝑁

𝑘=1 𝑎𝑖𝑗𝑥𝑘. 𝑞𝐴𝑖𝑗 is simply 𝛽 multiplied by the number of the infected neighbors of the healthy agent. Otherwise, if an
agent in a state 𝑖 ∈ Ω is infected (𝑥𝑚 = 1), it will be cured with a rate 𝑞𝛿𝑖𝑗 = 𝛿. Note that 𝑄 is written as a sum of three matrices
𝑄 = 𝑄𝛿 +𝑄𝐴 +𝑄𝑑 where 𝑄𝛿 is a lower triangular matrix of elements 𝑞𝛿𝑖𝑗 , 𝑄𝐴 is an upper triangular matrix of elements 𝑞𝐴𝑖𝑗 and
𝑄𝑑 is a diagonal matrix of elements 𝑞𝑖𝑖. This formulation is well explained in Van Mieghem et al.7.
The novelty of our approach with respect to the work of the authors Van Mieghem et al.7 is to consider that when an agent
𝑖 receives an infection, it cannot be infected or infectious instantly, there is a minimum time 𝜏0 before transiting from 𝑆 to 𝐼
because of the disease incubation period as shown on Figure 1. Moreover, when an agent 𝑖 is infected, it cannot recover instantly
and return back to be susceptible, there is a minimum time for recovery to transition from 𝐼 to 𝑆 represented by the minimum
time 𝜏1. Adding a minimum time to jump from 𝑆 to 𝐼 or from 𝐼 to 𝑆 does not affect the Markov property at the instants of the
jumps, but affects the waiting time in a given state that becomes not exponentially distributed, see Figure 1. Hence, in our case,
the process defined over the discrete state space Ω is not a continuous-time Markov process but a semi-Markov process.
Let {𝑍(𝑡), 𝑡 ≥ 0}Ω be the semi-Markov process defined over the discrete state space Ω. 𝑍(𝑡) models the evolution of the SIS
epidemic with time delays over the graph 𝐺. Recall that the objective is to find the probability of infection for each agent as a
function of time in the presence of the time delays. We have mentioned in Section 2 that in order to generate the semi-Markov
process {𝑍(𝑡), 𝑡 ≥ 0}Ω, the first step is to specify the transition probability matrix (𝑃 )2𝑁×2𝑁 and the holding time densities 𝑓𝑖𝑗(𝑡),
𝑖, 𝑗 ∈ Ω. Let us start by computing (𝑃 )2𝑁×2𝑁 . Since {𝑍(𝑡), 𝑡 ≥ 0}Ω is Markovian at the instants of the jumps, the transition
probability matrix (𝑃 )2𝑁×2𝑁 is the same as that in the continuous-time Markov model given in Van Mieghem et al.7. Hence, we
can define the transition probability matrix (𝑃 )2𝑁×2𝑁 for the semi-Markov process {𝑍(𝑡), 𝑡 ≥ 0}Ω as:

𝑝𝑖𝑗 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−
𝑞𝛿𝑖𝑗
𝑞𝑖𝑖

if 𝑖 = 𝑗 + 2𝑚−1, 𝑚 = 1,… , 𝑁, 𝑥𝑚 = 1

−
𝑞𝐴𝑖𝑗
𝑞𝑖𝑖

if 𝑖 = 𝑗 − 2𝑚−1, 𝑚 = 1,… , 𝑁, 𝑥𝑚 = 0

0 else

Note that 𝑝𝑖𝑗 is just the ratio of the rate to be cured or to be infected over the total rate of leaving a given state. One can notice
also that 𝑝𝑖𝑖 = 0, and this means that we only allow real transitions from 𝑖 to 𝑗 where 𝑖 ≠ 𝑗. The second step to generate the
semi-Markov process {𝑍(𝑡), 𝑡 ≥ 0}Ω is to define the densities 𝑓𝑖𝑗(𝑡). We will directly define ℎ𝑖𝑗(𝑡) as it will be used later in the
probability dynamics (𝑓𝑖𝑗(𝑡) can be directly calculated from (1) as well as 𝑤𝑖(𝑡) can be calculated from (2)):

ℎ𝑖𝑗(𝑡) =

⎧

⎪

⎨

⎪

⎩

𝑞𝛿𝑖𝑗𝑒
𝑞𝑖𝑖(𝑡−𝜏1)𝐻(𝑡 − 𝜏1) if 𝑖 = 𝑗 + 2𝑚−1, , 𝑚 = 1,… , 𝑁, 𝑥𝑚 = 1

𝑞𝐴𝑖𝑗𝑒
𝑞𝑖𝑖(𝑡−𝜏0)𝐻(𝑡 − 𝜏0) if 𝑖 = 𝑗 − 2𝑚−1, 𝑚 = 1,… , 𝑁, 𝑥𝑚 = 0

0 else
(5)
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The equations of ℎ𝑖𝑗(𝑡) in (5) mean that the holding time in a state 𝑖 before transitioning to a state 𝑗 is a delayed exponential
random variable. The process cannot transition from a state 𝑖 to a state 𝑗 before the minimum time delays of the incubation period
or the recovery period are ended, as explained in Figure 1. We have set all the distribution properties of the semi-Markov process
{𝑍(𝑡), 𝑡 ≥ 0}Ω. We start now computing the dynamics of the state transition probabilities 𝜙𝑖𝑗(𝑡). Take the Laplace transform of
(3) to get:

𝜙𝑙
𝑖𝑗(𝑠) = 𝛿𝑖𝑗

(

1 −𝑤𝑙
𝑖(𝑠)

𝑠

)

+
2𝑁−1
∑

𝑘=0
ℎ𝑙
𝑖𝑘(𝑠)𝜙

𝑙
𝑘𝑗(𝑠) (6)

Now, we compute the Laplace transform ℎ𝑖𝑗(𝑡) in (5) and 𝑤𝑖(𝑡) in (2) as:

ℎ𝑙
𝑖𝑗(𝑠) =

⎧

⎪

⎨

⎪

⎩

𝑒−𝑠𝜏1
𝑠−𝑞𝑖𝑖

𝑞𝛿𝑖𝑗 if 𝑖 = 𝑗 + 2𝑚−1, , 𝑚 = 1,… , 𝑁, 𝑥𝑚 = 1
𝑒−𝑠𝜏0
𝑠−𝑞𝑖𝑖

𝑞𝐴𝑖𝑗 if 𝑖 = 𝑗 − 2𝑚−1, 𝑚 = 1,… , 𝑁, 𝑥𝑚 = 0

0 else

(7)

𝑤𝑙
𝑖(𝑠) =

𝑒−𝑠𝜏0
𝑠 − 𝑞𝑖𝑖

∑

𝑗
𝑞𝐴𝑖𝑗 +

𝑒−𝑠𝜏1
𝑠 − 𝑞𝑖𝑖

∑

𝑗
𝑞𝛿𝑖𝑗 (8)

For 𝑖 = 𝑗, equation (6) becomes:

𝜙𝑙
𝑖𝑖(𝑠) =

1
𝑠
(1 −𝑤𝑙

𝑖(𝑠)) +
2𝑁−1
∑

𝑘=0
ℎ𝑙
𝑖𝑘(𝑠)𝜙

𝑙
𝑘𝑖(𝑠) (9)

By substituting (7) and (8) in (9) one gets:

𝜙𝑙
𝑖𝑖(𝑠) =

1
𝑠

(

1 − 𝑒−𝑠𝜏0
𝑠 − 𝑞𝑖𝑖

∑

𝑗
𝑞𝐴𝑖𝑗 −

𝑒−𝑠𝜏1
𝑠 − 𝑞𝑖𝑖

∑

𝑗
𝑞𝛿𝑖𝑗

)

+ 𝑒−𝑠𝜏0
𝑠 − 𝑞𝑖𝑖

∑

𝑘
𝑞𝐴𝑖𝑘𝜙

𝑙
𝑘𝑖(𝑠) +

𝑒−𝑠𝜏1
𝑠 − 𝑞𝑖𝑖

∑

𝑘
𝑞𝛿𝑖𝑘𝜙

𝑙
𝑘𝑖(𝑠) (10)

Multiplying both sides of (10) by (𝑠 − 𝑞𝑖𝑖) leads to:

𝑠𝜙𝑙
𝑖𝑖(𝑠) − 𝑞𝑖𝑖𝜙

𝑙
𝑖𝑖(𝑠) = 1 −

𝑞𝑖𝑖
𝑠

− 𝑒−𝑠𝜏0
𝑠

∑

𝑗
𝑞𝐴𝑖𝑗 −

𝑒−𝑠𝜏1
𝑠

∑

𝑗
𝑞𝛿𝑖𝑗 +

∑

𝑗
𝑞𝐴𝑖𝑗𝜙

𝑙
𝑗𝑖(𝑠)𝑒

−𝑠𝜏0 +
∑

𝑗
𝑞𝛿𝑖𝑗𝜙

𝑙
𝑗𝑖(𝑠)𝑒

−𝑠𝜏1 (11)

If 𝑖 ≠ 𝑗, then (6) becomes:

𝜙𝑙
𝑖𝑗(𝑠) =

2𝑁−1
∑

𝑘=0
ℎ𝑙
𝑖𝑘(𝑠)𝜙

𝑙
𝑘𝑗(𝑠)

= 𝑒−𝑠𝜏0
𝑠 − 𝑞𝑖𝑖

∑

𝑘
𝑞𝐴𝑖𝑘𝜙

𝑙
𝑘𝑗(𝑠) +

𝑒−𝑠𝜏1
𝑠 − 𝑞𝑖𝑖

∑

𝑘
𝑞𝛿𝑖𝑘𝜙

𝑙
𝑘𝑗(𝑠)

(12)

Multiplying both sides of (12) by (𝑠 − 𝑞𝑖𝑖) leads directly to:

𝑠𝜙𝑙
𝑖𝑗(𝑠) − 𝑞𝑖𝑖𝜙

𝑙
𝑖𝑗(𝑠) =

∑

𝑘
𝑞𝐴𝑖𝑘𝜙

𝑙
𝑘𝑗(𝑠)𝑒

−𝑠𝜏0 +
∑

𝑘
𝑞𝛿𝑖𝑘𝜙

𝑙
𝑘𝑗(𝑠)𝑒

−𝑠𝜏1 (13)

Define the matrix (Φ(𝑡))2𝑁×2𝑁 with elements 𝜙𝑖𝑗(𝑡), 𝑖, 𝑗 ∈ Ω. By taking the inverse Laplace transform of (11) one gets

�̇�𝑖𝑖(𝑡) + 𝛿(𝑡)𝜙𝑖𝑖(0) − 𝑞𝑖𝑖𝜙𝑖𝑖(𝑡) =𝛿(𝑡) − 𝑞𝑖𝑖 −𝐻(𝑡 − 𝜏0)
∑

𝑗
𝑞𝐴𝑖𝑗 −𝐻(𝑡 − 𝜏1)

∑

𝑗
𝑞𝛿𝑖𝑗

+𝐻(𝑡 − 𝜏0)
∑

𝑘
𝑞𝐴𝑖𝑘𝜙𝑘𝑖(𝑡 − 𝜏0) +𝐻(𝑡 − 𝜏1)

∑

𝑘
𝑞𝛿𝑖𝑘𝜙𝑘𝑖(𝑡 − 𝜏1)

(14)

where 𝛿(𝑡) is the Dirac function. Since 𝜙𝑖𝑖(0) = 1 which is the initial condition, (14) becomes:

�̇�𝑖𝑖(𝑡) = 𝑞𝑖𝑖𝜙𝑖𝑖(𝑡) −

(

𝑞𝑖𝑖 +𝐻(𝑡 − 𝜏0)
∑

𝑗
𝑞𝐴𝑖𝑗 +𝐻(𝑡 − 𝜏1)

∑

𝑗
𝑞𝛿𝑖𝑗

)

+𝐻(𝑡 − 𝜏0)
∑

𝑘
𝑞𝐴𝑖𝑘𝜙𝑘𝑖(𝑡 − 𝜏0) +𝐻(𝑡 − 𝜏1)

∑

𝑘
𝑞𝛿𝑖𝑘𝜙𝑘𝑖(𝑡 − 𝜏1)

(15)
Now, take the inverse Laplace transform of (13) to get:

�̇�𝑖𝑗(𝑡) + 𝛿(𝑡)𝜙𝑖𝑗(0) − 𝑞𝑖𝑖𝜙𝑖𝑗(𝑡) = 𝐻(𝑡 − 𝜏0)
∑

𝑘
𝑞𝐴𝑖𝑘𝜙𝑘𝑗(𝑡 − 𝜏0) +𝐻(𝑡 − 𝜏1)

∑

𝑘
𝑞𝛿𝑖𝑘𝜙𝑘𝑗(𝑡 − 𝜏1) (16)
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Since 𝜙𝑖𝑗 = 0 which is the initial condition, (16) becomes:

�̇�𝑖𝑗(𝑡) = 𝑞𝑖𝑖𝜙𝑖𝑗(𝑡) +𝐻(𝑡 − 𝜏0)
∑

𝑘
𝑞𝐴𝑖𝑘𝜙𝑘𝑗(𝑡 − 𝜏0) +𝐻(𝑡 − 𝜏1)

∑

𝑘
𝑞𝛿𝑖𝑘𝜙𝑘𝑗(𝑡 − 𝜏1) (17)

Combining (15) and (17) in the matrix form leads directly to the dynamics of the state transition probability matrix Φ(𝑡):
Φ̇(𝑡) = 𝑄𝑑Φ(𝑡) +𝐻(𝑡 − 𝜏0)𝑄𝐴Φ(𝑡 − 𝜏0) +𝐻(𝑡 − 𝜏1)𝑄𝛿Φ(𝑡 − 𝜏1)

−
(

𝑄𝑑 +𝐻(𝑡 − 𝜏0)𝑑𝑖𝑎𝑔(𝑄𝐴𝟏2𝑁 ) +𝐻(𝑡 − 𝜏1)𝑑𝑖𝑎𝑔(𝑄𝛿𝟏2𝑁 )
) (18)

where Φ(0) = 𝐈2𝑁×2𝑁 is the matrix of the initial conditions.

Remark 1. In the delay-free case, i.e. 𝜏0 = 𝜏1 = 0, equation (18) becomes:

Φ̇(𝑡) = 𝑄Φ(𝑡) (19)

which is the Kolmogorov backward differential equations for continuous-time Markov chains over discrete state space. When
𝜏0 = 𝜏1 = 0, the waiting time in any state is exponentially distributed and the semi-Markov process {𝑍(𝑡), 𝑡 ≥ 0} becomes a
continuous-time Markov chain. In this case, the dynamics of the state probability transitions in (19) are the same as the ones
obtained by the authors in Van Mieghem et al.7 for the exact 2𝑁−state SIS Markov models without time delays.

After obtaining the dynamics of Φ(𝑡) in (18), we can proceed to calculate the infection probabilities 𝑝𝑗(𝑡) =
𝑃𝑟(agent 𝑗 is infected at time 𝑡). Let 𝑠𝑖(𝑡) = 𝑃𝑟(𝑍(𝑡) = 𝑖) be an element of the state probability vector (𝑠(𝑡))2𝑁×1 for all 𝑖 ∈ Ω,
and 𝑝𝑗(𝑡) is an element of the infection probability vector (𝑌 (𝑡))𝑁×1 for all 𝑗 = 1,… , 𝑁 . 𝑌 (𝑡) is computed as follows:

𝑌 (𝑡) = 𝑀𝑇 𝑠(𝑡) (20)

where 𝑠(𝑡) = Φ(𝑡)𝑠(0) and (𝑀)2𝑁×𝑁 is defined in Van Mieghem et al.7 by

𝑀 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 ⋯ 0
1 0 0 ⋯ 0
0 1 0 ⋯ 0
1 1 0 ⋯ 0
⋮ ⋮ ⋮ ⋮
1 1 1 ⋯ 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

The time-delay system (18) with the output (20) models the probability of infection of each agent taking into account the
incubation and recovery time delays. The main problem of this exact 2𝑁−state semi-Markov model is that the number of states
2𝑁 increases rapidly with 𝑁 which makes it computationally heavy and difficult to implement especially for large populations.
Hence, an approximation for this model is necessary and this is the subject of the next section.

4 𝑁−INTERTWINED SEMI-MARKOV MODEL

The exact model in Section 3 computes the probabilities of all the possible combinations of infected-susceptible agents over the
network. We aim in this section at approximating this model by looking at each node directly. But before modeling the infection
process at the node level, we show how to obtain the infection probability with time delays for only one isolated agent (no
connections with the network), then we upgrade this model by introducing the connections with the other agents.

4.1 Semi-Markov process with time delays for one agent
Let {𝑆(𝑡), 𝑡 ≥ 0}Ω𝑆

be a semi-Markov process with two states Ω𝑆 = {0, 1}, and with minimum state waiting times 𝜏0 and 𝜏1.
This configuration is the same as the model in Section 3 for the case 𝑁 = 1 with the following 𝑄 matrix:

𝑄 =
[

−𝑞𝐴01 𝑞𝐴01
𝑞𝛿10 −𝑞𝛿10

]
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where 𝑄𝐴 = 𝑞𝐴01 = 𝜆0 and 𝑄𝛿 = 𝑞𝛿10 = 𝜆1, 𝜆0 and 𝜆1 are the post-delay transition rates from state 0 to state 1 and vice-versa. By
inserting 𝑄 in (18), one gets the following dynamics for the state transition probabilities:

�̇�00(𝑡) + 𝜆0𝜙00(𝑡) = 𝜆0𝐻(𝑡 − 𝜏0)𝜙10(𝑡 − 𝜏0) + 𝜆0(1 −𝐻(𝑡 − 𝜏0)) (21)
�̇�10(𝑡) + 𝜆1𝜙10(𝑡) = 𝜆1𝐻(𝑡 − 𝜏1)𝜙00(𝑡 − 𝜏1) (22)
�̇�01(𝑡) + 𝜆0𝜙01(𝑡) = 𝜆0𝐻(𝑡 − 𝜏0)𝜙11(𝑡 − 𝜏0) (23)
�̇�11(𝑡) + 𝜆1𝜙11(𝑡) = 𝜆1𝐻(𝑡 − 𝜏1)𝜙01(𝑡 − 𝜏1) + 𝜆1(1 −𝐻(𝑡 − 𝜏1)) (24)

with 𝜙00(0) = 1, 𝜙10(0) = 0, 𝜙01(0) = 0 and 𝜙11(0) = 1 the initial conditions. Our goal is to compute directly the dynamics of
the probability of infection 𝑝(𝑡) = 𝑃𝑟(𝑆(𝑡) = 1) for 𝑡 ≥ 0. We recall that by definition, 𝑝(𝑡) is given by:

𝑝(𝑡) = 𝜙01(𝑡)(1 − 𝑝0) + 𝜙11(𝑡)𝑝0 (25)

where 𝑝(0) = 𝑝0 is the probability of being in state 1 at time 𝑡 = 0. By taking the Laplace transform of (23)–(24) one gets:

𝜙𝑙
01(𝑠) =

𝜆0𝑒−𝑠𝜏0 +
𝜆0𝜆1
𝑠
𝑒−𝑠𝜏0 − 𝜆0𝜆1

𝑠
𝑒−𝑠(𝜏0+𝜏1)

𝑠2 + (𝜆0 + 𝜆1)𝑠 + 𝜆0𝜆1(1 − 𝑒−𝑠(𝜏0+𝜏1))
(26)

𝜙𝑙
11(𝑠) =

𝑠 + 𝜆0 +
𝜆1(𝑠+𝜆0)

𝑠
− 𝜆1(𝑠+𝜆0)

𝑠
𝑒−𝑠𝜏1

𝑠2 + (𝜆0 + 𝜆1)𝑠 + 𝜆0𝜆1(1 − 𝑒−𝑠(𝜏0+𝜏1))
(27)

Substitute (26) and (27) in (25) to get:

𝑠𝑝𝑙(𝑠) + (𝜆0 + 𝜆1)𝑝𝑙(𝑠) +
𝜆0𝜆1
𝑠

(1 − 𝑒−𝑠(𝜏0+𝜏1))𝑝𝑙(𝑠) =
𝜆0
𝑠
𝑒−𝑠𝜏0 +

𝜆0𝜆1
𝑠2

𝑒−𝑠𝜏0 −
𝜆0𝜆1
𝑠2

𝑒−𝑠(𝜏0+𝜏1)

+
(

1 +
𝜆0
𝑠
(1 − 𝑒−𝑠𝜏0) +

𝜆1
𝑠
(1 − 𝑒−𝑠𝜏1) +

𝜆0𝜆1
𝑠2

(

1 − 𝑒−𝑠𝜏0 − 𝑒−𝑠𝜏1 + 𝑒−𝑠(𝜏0+𝜏1)
)

)

𝑝0
(28)

where 𝑝𝑙(𝑠) is the Laplace transform of 𝑝(𝑡). Now by taking the inverse Laplace transform of each term in (28), for example,
𝐿−1{𝑠𝑝𝑙(𝑠)} = �̇�(𝑡) + 𝛿(𝑡)𝑝0, 𝐿−1{ 𝜆0𝜆1

𝑠
(1 − 𝑒−𝑠(𝜏0+𝜏1))𝑝𝑙(𝑠)} = 𝜆0𝜆1(𝑥𝐼 (𝑡) −𝐻(𝑡 − 𝜏0 − 𝜏1)𝑥𝐼 (𝑡 − 𝜏0 − 𝜏1)), where �̇�𝐼 (𝑡) = 𝑝(𝑡),

and so on, we obtain the explicit dynamics of 𝑝(𝑡):

�̇�𝐼 (𝑡) = 𝑝(𝑡)

�̇�(𝑡) = 𝜆0(𝐻(𝑡 − 𝜏0) − 𝑝(𝑡)) − 𝜆1𝑝(𝑡) − 𝜆0𝜆1
(

𝑥𝐼 (𝑡) −𝐻(𝑡 −𝐷)𝑥𝐼 (𝑡 −𝐷)
)

+ 𝜆0𝜆1
(

𝐻(𝑡 − 𝜏0)(𝑡 − 𝜏0) −𝐻(𝑡 −𝐷)(𝑡 −𝐷)
)

+
(

𝜆0
(

1 −𝐻(𝑡 − 𝜏0)
)

+ 𝜆1
(

1 −𝐻(𝑡 − 𝜏1)
)

+ 𝜆0𝜆1
(

𝑡 −𝐻(𝑡 − 𝜏0)(𝑡 − 𝜏0) −𝐻(𝑡 − 𝜏1)(𝑡 − 𝜏1) +𝐻(𝑡 −𝐷)(𝑡 −𝐷)
))

𝑝0
(29)

where 𝐷 = 𝜏0 + 𝜏1, 𝑝(0) = 𝑝0 and 𝑥𝐼 (0) = 0 are the system initial conditions. 𝑥𝐼 (𝑡) represents the history of the infection. 𝑥𝐼 (𝑡)
contains information on the number of times agent 𝑖 becomes infected in the time interval [0, 𝑡]. Notice that 𝑥𝐼 (𝑡) disappears in
the delay-free case because the process is Markovian.It is known that for Markovian process, the history of the process has no
effect on the future predictions. System (29) is the time-delay model of the infection probability for one agent not connected to
the rest of the network. Now, we will introduce the network aspect into (29).

Remark 2. In the delay-free case, i.e. 𝜏0 = 𝜏1 = 0, the dynamics of 𝑝(𝑡) following (29) become:

�̇�(𝑡) = 𝜆0(1 − 𝑝(𝑡)) − 𝜆1𝑝(𝑡) (30)

which are the dynamics of infection in a 2-state continuous-time Markov chain, because as mentioned in Remark 1, in the
delay-free case, the semi-Markov process becomes a continuous-time Markov chain.

4.2 Multi-agent 𝑁−intertwined semi-Markov model
Let {𝑋𝑖(𝑡), 𝑡 ≥ 0}{0,1} be the stochastic process attached to an agent 𝑖. At any time 𝑡, 𝑋𝑖(𝑡) can take only two values, 𝑋𝑖(𝑡) = 1 if
agent 𝑖 is infected and 𝑋𝑖(𝑡) = 0 if agent 𝑖 is healthy. If agent 𝑖 is susceptible i.e. 𝑋𝑖(𝑡) = 0, it can receive an infection from the
neighbors with a rate 𝜆0,𝑖 = 𝛽

∑𝑁
𝑗=1 𝑎𝑖𝑗1{𝑋𝑗 (𝑡)=1}, where 𝛽 is the infection rate. After receiving the infection, the process 𝑋𝑖(𝑡)

waits for the minimum incubation period 𝜏0, then it transition towards the state 1. When 𝑋𝑖(𝑡) enters the state 1, it stays for a
minimum recovery time 𝜏1. After 𝜏1, it can transition to state 0 with a curing rate 𝜆1,𝑖 = 𝛿. Agent 𝑖 is coupled with the rest of the
network through the rate 𝜆0,𝑖 which is a random variable that makes the process doubly-stochastic. Due to the randomness in the
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value of 𝜆0,𝑖, the process {𝑋𝑖(𝑡), 𝑡 ≥ 0} is no more semi-Markovian. The random nature of 𝜆0,𝑖 can be removed by conditioning
to all the possible combinations of the states 𝑋𝑗(𝑡) = 1 (and 𝑋𝑗(𝑡) = 0) which are neighbors of node 𝑖. But we will end up with
the 2𝑁 -state semi-Markov process defined earlier in Section 3. This is a model of a large number of states (2𝑁 states). Therefore,
we approximate 𝜆0,𝑖 by its expectation �̄�0,𝑖 = 𝐸{𝜆0,𝑖} = 𝛽

∑𝑁
𝑗=1 𝑎𝑖𝑗𝑃𝑟(𝑋𝑗(𝑡) = 1) = 𝛽

∑𝑁
𝑗=1 𝑎𝑖𝑗𝑝𝑗(𝑡), similar to the mean field

approximation done in Van Mieghem et al.7. As a result, the process {𝑋𝑖(𝑡), 𝑡 ≥ 0} is now semi-Markovian with post-delay
rates �̄�0,𝑖 and 𝜆1,𝑖. Let 𝑝𝑖(𝑡), 𝑖 = 1,… , 𝑁 , be the probability of infection of agent 𝑖 at time 𝑡. Hence, using (29), the time-delayed
dynamics of 𝑝𝑖(𝑡) become:

�̇�𝐼,𝑖(𝑡) =𝑝𝑖(𝑡)

�̇�𝑖(𝑡) =𝛽
𝑁
∑

𝑗=1
𝑎𝑖𝑗𝑝𝑗(𝑡)(𝐻(𝑡 − 𝜏0) − 𝑝𝑖(𝑡)) − 𝛿𝑝𝑖(𝑡) − 𝛽𝛿

𝑁
∑

𝑗=1
𝑎𝑖𝑗𝑝𝑗(𝑡)

(

𝑥𝐼,𝑖(𝑡) −𝐻(𝑡 −𝐷)𝑥𝐼,𝑖(𝑡 −𝐷)

−𝐻(𝑡 − 𝜏0)(𝑡 − 𝜏0) +𝐻(𝑡 −𝐷)(𝑡 −𝐷)
)

+
(

𝛽
𝑁
∑

𝑗=1
𝑎𝑖𝑗𝑝𝑗(𝑡)

(

1 −𝐻(𝑡 − 𝜏0)
)

+ 𝛿
(

1 −𝐻(𝑡 − 𝜏1)
)

+ 𝛽𝛿
𝑁
∑

𝑗=1
𝑎𝑖𝑗𝑝𝑗(𝑡)

(

𝑡 −𝐻(𝑡 − 𝜏0)(𝑡 − 𝜏0) −𝐻(𝑡 − 𝜏1)(𝑡 − 𝜏1) +𝐻(𝑡 −𝐷)(𝑡 −𝐷)
)

)

𝑝0,𝑖

(31)

where 𝑝𝑖(0) = 𝑝0,𝑖 and 𝑥𝐼,𝑖(0) = 0 are the initial conditions. Unlike model (18)–(20), model (31) is composed of 𝑁 states.

Remark 3. If 𝜏0 = 𝜏1 = 0, the model (31) reduces to

�̇�𝑖(𝑡) = 𝛽
𝑁
∑

𝑗=1
𝑎𝑖𝑗𝑝𝑗(𝑡)(1 − 𝑝𝑖(𝑡)) − 𝛿𝑝𝑖(𝑡), 𝑖 = 1,… , 𝑁 (32)

where 𝑝𝑖(0) = 𝑝0,𝑖 are the initial conditions. The model (32) is the same as the 𝑁−interwined Markov model obtained by the
authors in Van Mieghem et al.7 describing the evolution of SIS epidemics over networks.

5 STABILITY RESULTS

In practice, it is vital to know under which conditions the epidemic will terminate. For example, it is important to know how
many individuals a random individual can meet, or how fast medications and also vaccinations can stop an epidemic. This is
crucial to decrease the number of hospitalisations caused by the disease to protect the health system. All these questions are
answered by doing a stability analysis of the model, see for instance the work of Giordano et al.27. In this section, we study the
stability of the disease free equilibrium (DFE) 𝑝𝑒𝑞𝑖 = 0 for 𝑖 = 1,… , 𝑁 , of the 𝑁−intertwined model with time delays given in
(31).

The first step is to prove that the probability of infection predicted by the approximated time-delay system (31) remains
bounded between 0 and 1 for all times and is really a probability, as in Paré et al.24 for the delay free case. This is given in the
following theorem.

Theorem 1. Consider system (31). If 0 ≤ 𝑝0,𝑖 ≤ 1 then we have 0 ≤ 𝑝𝑖(𝑡) ≤ 1 for all 𝑡 ≥ 0 and 𝑖 = 1,… , 𝑁 .

Proof. We assume without any loss of generality that 𝜏0 ≤ 𝜏1. Due to the time delays, the time domain is divided into four
intervals.

Interval 1: 0 ≤ 𝑡 < 𝜏0. One can notice that 𝑝𝑖(𝑡) = 𝑝0,𝑖, 𝑖 = 1,… , 𝑁 , is a solution of (31) in the interval 0 ≤ 𝑡 < 𝜏0. This
result is obvious, since wherever the process starts it should wait at least 𝜏0 amount of time before jumping to the other state,
and hence the probability in the interval 0 ≤ 𝑡 < 𝜏0 remains constant and equal to the initial condition 𝑝0,𝑖. Since 0 ≤ 𝑝0,𝑖 ≤ 1,
then we have 0 ≤ 𝑝𝑖(𝑡) ≤ 1 for 0 ≤ 𝑡 < 𝜏0 and 𝑖 = 1,… , 𝑁 .

Interval 2: 𝜏0 ≤ 𝑡 < 𝜏1. The dynamics in (31) become:

�̇�𝑖(𝑡) =𝛽
𝑁
∑

𝑗=1
𝑎𝑖𝑗𝑝𝑗(𝑡)(1 − 𝑝𝑖(𝑡)) − 𝛿𝑝𝑖(𝑡) + 𝛿𝑝0,𝑖 + 𝛽𝛿

𝑁
∑

𝑗=1
𝑎𝑖𝑗𝑝𝑗(𝑡)

𝑡

∫
𝜏0

(1 − 𝑝𝑖(𝜏))𝑑𝜏 (33)

If 𝑝0,𝑖 = 1, then by (33) we obtain �̇�𝑖(𝜏0) = 0, and hence the probability of infection in the interval 𝜏0 ≤ 𝑡 < 𝜏1 remains constant
and equals to 1. This is also clear from the fact that if the initial start is in the state 1, the process is obliged to stay there for
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a time 𝜏1 before it is able to transition. If 𝑝0,𝑖 = 0 for some 𝑖, and 𝑝0,𝑗 > 0, for 𝑗 ≠ 𝑖, 𝑖, 𝑗 = 1,… , 𝑁 , then by (33) we obtain
�̇�𝑖(𝜏0) = 𝛽

∑𝑁
𝑗=1 𝑎𝑖𝑗𝑝𝑗(𝜏0) > 0; therefore, 𝑝𝑖(𝑡) increases when it touches zero at 𝜏0. If 0 ≤ 𝑝0,𝑖 < 1, 𝑖 = 1,… , 𝑁 , let 𝜖𝑖,0 and 𝜖𝑖,1

be the two time instants between 𝜏0 and 𝜏1 such that 𝑝𝑖(𝜖𝑖,0) = 0 and 𝑝𝑖(𝜖𝑖,1) = 1 for the first time in the interval 𝜏0 ≤ 𝑡 < 𝜏1. By
(33), one obtains:

�̇�𝑖(𝜖𝑖,0) =𝛽
𝑁
∑

𝑗=1
𝑎𝑖𝑗𝑝𝑗(𝜖𝑖,0)

⎛

⎜

⎜

⎝

1 + 𝛿

𝜖𝑖,0

∫
𝜏0

(1 − 𝑝𝑖(𝜏))𝑑𝜏
⎞

⎟

⎟

⎠

+ 𝛿𝑝0,𝑖 (34)

�̇�𝑖(𝜖𝑖,1) = − 𝛿
⎛

⎜

⎜

⎝

(1 − 𝑝𝑖,0) − 𝛽
𝑁
∑

𝑗=1
𝑎𝑖𝑗𝑝𝑗(𝜖𝑖,1)

𝜖𝑖,1

∫
𝜏0

(1 − 𝑝𝑖(𝜏))𝑑𝜏
⎞

⎟

⎟

⎠

(35)

We should emphasis that the chronological order at which the probability states reach 0 or reach 1 does not affect the proof,
as we can always consider that when 𝑝𝑖 reaches 0 or 1 at a given time, all the other states 𝑝𝑗 , 𝑖 ≠ 𝑗, do not reach 0 or 1 by
that time, then afterwards, the proof can then be repeated similarly. The term between the brackets in (35) is the probability of
being infected at the time 𝜖𝑖,0, which is equal to the probability to be infected initially 𝑝𝑖,0 summed with the probability to not be
infected in the time interval

[

𝜏0, 𝜖𝑖,0
]

and then to be infected from the neighbors at 𝜖𝑖,0. Hence, we have �̇�𝑖(𝜖𝑖,0) = 0 and therefore,
when 𝑝𝑖 touches 1 in [𝜏0, 𝜖𝑖,0], it remains constant since the time delay 𝜏1 has not yet been reached for the process to be able to
transition. Now consider (34), we have �̇�𝑖(𝜖𝑖,0) ≥ 0 and therefore by the continuity of the solution in the interval

[

𝜏0, 𝜖𝑖,0
]

, 𝑝𝑖(𝑡)
stays bounded between 0 and 1 in the interval

[

𝜏0, 𝜖𝑖,0
]

. The same analysis is repeated on the complete interval [𝜏0, 𝜏1].
Interval 3: 𝜏1 ≤ 𝑡 < 𝐷. The dynamics in (31) read as:

�̇�𝑖(𝑡) = 𝛽
𝑁
∑

𝑗=1
𝑎𝑖𝑗𝑝𝑗(𝑡)(1 − 𝑝𝑖(𝑡)) − 𝛿𝑝𝑖(𝑡) + 𝛽𝛿

𝑁
∑

𝑗=1
𝑎𝑖𝑗𝑝𝑗(𝑡)

(

−𝑥𝐼,𝑖(𝑡) + 𝑡 − 𝜏0 − 𝑝0,𝑖 (𝑡 −𝐷)
)

(36)

If 𝑝𝑖(𝜏1) = 0, then by (36) and the boundedness of 𝑝𝑖(𝑡) in the interval [0, 𝜏1], we have �̇�𝑖(𝜏1) ≥ 0. If 𝑝𝑖(𝜏1) = 1, then by (36) and
the boundedness of 𝑝𝑖(𝑡) in the interval [0, 𝜏1], it leads to �̇�𝑖(𝜏1) ≤ 0. Let 𝜖𝑖,0 and 𝜖𝑖,1 be the two time instants between 𝜏1 and 𝐷
such that 𝑝𝑖(𝜖𝑖,0) = 0 and 𝑝𝑖(𝜖𝑖,1) = 1 for the first time in the interval 𝜏1 ≤ 𝑡 < 𝐷. From (36) we get:

�̇�𝑖(𝜖𝑖,0) = 𝛽
𝑁
∑

𝑗=1
𝑎𝑖𝑗𝑝𝑗(𝜖𝑖,0) + 𝛽𝛿

𝑁
∑

𝑗=1
𝑎𝑖𝑗𝑝𝑗(𝜖𝑖,0)

⎛

⎜

⎜

⎝

𝜖𝑖,0

∫
𝜏0

(1 − 𝑝𝑖(𝜏))𝑑𝜏 − 𝑝0,𝑖 × (𝜖𝑖,0 − 𝜏1)
⎞

⎟

⎟

⎠

(37)

�̇�𝑖(𝜖𝑖,1) = −𝛿
⎛

⎜

⎜

⎝

1 + 𝛽
𝑁
∑

𝑗=1
𝑎𝑖𝑗𝑝𝑗(𝜖𝑖,1)𝑝0,𝑖 × (𝜖𝑖,0 − 𝜏1) − 𝛽

𝑁
∑

𝑗=1
𝑎𝑖𝑗𝑝𝑗(𝜖𝑖,1)

𝜖𝑖,1

∫
𝜏0

(1 − 𝑝𝑖(𝜏))𝑑𝜏
⎞

⎟

⎟

⎠

(38)

The last term in (38) is the probability of not being infected in the interval [𝜏0, 𝜖𝑖,1] and then to be infected from the neighbors
at time 𝜖𝑖,1. Because 𝑝𝑖(𝑡) is a probability in [0,𝜖𝑖,1], the last term in (38) is less than 1 and therefore �̇�𝑖(𝜖𝑖,1) ≤ 0. Consider
now equation (37). Since 𝑝𝑖(𝑡) stays less than 1 before the states touch zero, then we have �̇�𝑖(𝜖𝑖,0) ≥ 0. By repeating the same
procedure over the time instants at which the solution touch 0 or 1 and by using the continuity of the dynamics, we obtain that
𝑝𝑖(𝑡) remains bounded between 0 and 1 in the interval [𝜏1, 𝐷].

Interval 4: 𝑡 ≥ 𝐷. The system has the following dynamics:

�̇�𝑖(𝑡) = 𝛽
𝑁
∑

𝑗=1
𝑎𝑖𝑗𝑝𝑗(𝑡)(1 − 𝑝𝑖(𝑡)) − 𝛿𝑝𝑖(𝑡) + 𝛽𝛿

𝑁
∑

𝑗=1
𝑎𝑖𝑗𝑝𝑗(𝑡)

(

𝜏1 − 𝑥𝐼,𝑖(𝑡) + 𝑥𝐼,𝑖(𝑡 −𝐷)
)

(39)
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We argue as before. Let 𝜖𝑖,0 ≥ 𝐷 and 𝜖𝑖,1 ≥ 𝐷 be the two time instants such that 𝑝𝑖(𝜖𝑖,0) = 0 and 𝑝𝑖(𝜖𝑖,1) = 1 for the first time in
the interval 𝑡 ≥ 𝐷. By (39) we have:

�̇�𝑖(𝜖𝑖,0) = 𝛽
𝑁
∑

𝑗=1
𝑎𝑖𝑗𝑝𝑗(𝜖𝑖,0)

⎛

⎜

⎜

⎜

⎝

1 + 𝛿𝜏1 − 𝛿

𝜖𝑖,0

∫
𝜖𝑖,0−𝐷

𝑝𝑖(𝜏)𝑑𝜏

⎞

⎟

⎟

⎟

⎠

(40)

�̇�𝑖(𝜖𝑖,1) = −𝛿

⎛

⎜

⎜

⎜

⎝

1 + 𝛽𝜏0
𝑁
∑

𝑗=1
𝑎𝑖𝑗𝑝𝑗(𝜖𝑖,1) − 𝛽

𝑁
∑

𝑗=1
𝑎𝑖𝑗𝑝𝑗(𝜖𝑖,1)

𝜖𝑖,1

∫
𝜖𝑖,1−𝐷

(1 − 𝑝𝑖(𝜏))𝑑𝜏

⎞

⎟

⎟

⎟

⎠

(41)

One can notice that the last term in (40) is the probability to be infected in the interval [𝜖𝑖,0 −𝐷,𝜖𝑖,0] and then to be cured at time
𝜖𝑖,0. Since 𝑝𝑖(𝑡) is a probability in the time interval [0, 𝜖𝑖,0], then the last term in (40) is less than 1 and hence �̇�𝑖(𝜖𝑖,0) ≥ 0. Doing
the same analysis for the last term in (41), one can directly deduce that �̇�𝑖(𝜖𝑖,1) ≤ 0. Repeating the same argument over all the
time instants at which the solution intersects 0 or 1 and by using the continuity of the dynamics, we deduce that 0 ≤ 𝑝𝑖(𝑡) ≤ 1
for 𝑡 ≥ 𝐷 and the proof is complete.

The second step is to compute the steady state points of the 𝑁−intertwined model (31). The interval of interest is Interval 4
for 𝑡 ≥ 𝐷. We begin by writing (39) in the matrix form:

�̇�𝐼 (𝑡) = 𝑝(𝑡)
�̇�(𝑡) =

(

𝛽(1 + 𝛿𝜏1)𝐴 − 𝛽𝑃𝑑(𝑡)𝐴 − 𝛿𝐈𝐍×𝐍 − 𝛽𝛿
(

𝑋𝑑(𝑡) −𝑋𝑑(𝑡 −𝐷)
)

𝐴
)

𝑝(𝑡) (42)

where 𝑝(𝑡) =
[

𝑝1(𝑡),… , 𝑝𝑁 (𝑡)
]𝑇 , 𝑋𝐼 (𝑡) =

[

𝑥𝐼,1(𝑡),… , 𝑥𝐼,𝑁 (𝑡)
]𝑇 , 𝑃𝑑(𝑡) = 𝑑𝑖𝑎𝑔(𝑝(𝑡)) and 𝑋𝑑(𝑡) = 𝑑𝑖𝑎𝑔(𝑋𝐼 (𝑡)). In the steady

state when 𝑡 goes to +∞, one can obtain the following algebraic steady state equation from (42):

0 = 𝛽(1 + 𝛿𝜏1)
𝑁
∑

𝑗=1
𝑎𝑖𝑗𝑝

∞
𝑗 − 𝛽𝑝∞𝑖

𝑁
∑

𝑗=1
𝑎𝑖𝑗𝑝

∞
𝑗 − 𝛿𝑝∞𝑖 (43)

where 𝑝∞ =
[

𝑝∞1 ,… , 𝑝∞𝑁
]𝑇 is the steady state vector of the infection probabilities. We can rewrite (43) in a more compact way

as:

𝑝∞𝑖 = (1 + 𝛿𝜏1)

(

1 − 1
1 + 𝛽

𝛿

∑𝑁
𝑗=1 𝑎𝑖𝑗𝑝

∞
𝑗

)

(44)

Obviously from (44), 𝑝∞𝑖 = 0 for all 𝑖 is a trivial solution. If 𝛿 = 0, then 𝑝∞𝑖 = 1 for all 𝑖, which is also obvious from the fact that
eventually all the nodes will become infected if the curing rate is zero. Now for 𝛽 ≠ 0 and 𝛿 ≠ 0 and if the graph is connected,
we have that either all the 𝑝∞𝑖 = 0 for all 𝑖 or non of the 𝑝∞𝑖 is zero. Since (44) is a nonlinear equation, this gives rise to a second
solution called the meta-stable solution, i.e. to have a long live epidemic. An idea on the magnitude of this solution is given in
the following lemma:

Lemma 1. If 𝛽∕𝛿 ≥ 0, then the non-zero solution 𝑝∞𝑖 can be expressed as a continued fraction

𝑝∞𝑖 = (1 + 𝛿𝜏1)

⎛

⎜

⎜

⎜

⎝

1 − 1
1 + 𝛽

𝛿
(1 + 𝛿𝜏1)𝑑𝑖 −

𝛽
𝛿

∑𝑁
𝑗=1

𝑎𝑖𝑗
1+ 𝛽

𝛿
(1+𝛿𝜏1)𝑑𝑗−

𝛽
𝛿

∑𝑁
𝑘=1

𝑎𝑗𝑘

1+ 𝛽
𝛿 (1+𝛿𝜏1)𝑑𝑘−

𝛽
𝛿
∑𝑁
𝑙=1

𝑎𝑘𝑙
...

⎞

⎟

⎟

⎟

⎠

(45)

where 𝑑𝑖 =
∑

𝑗 𝑎𝑖𝑗 is the degree of node 𝑖. Furthermore, 𝑝∞𝑖 is bounded as follows:

0 ≤ 𝑝∞𝑖 ≤ min

{

(1 + 𝛿𝜏1)

(

1 − 1
1 + 𝛽

𝛿
𝑑𝑖

)

, 1

}

(46)
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Proof. Consider equation (44). We have that:

𝑝∞𝑖 = (1 + 𝛿𝜏1)

(

1 − 1
1 + 𝛽

𝛿

∑𝑁
𝑗=1 𝑎𝑖𝑗𝑝

∞
𝑗

)

= (1 + 𝛿𝜏1)

(

1 − 1
1 + 𝛽

𝛿
𝑑𝑖 −

𝛽
𝛿

∑𝑁
𝑗=1 𝑎𝑖𝑗(1 − 𝑝∞𝑗 )

)

≤ (1 + 𝛿𝜏1)

(

1 − 1
1 + 𝛽

𝛿
𝑑𝑖

)

Since 𝛽
𝛿

∑𝑁
𝑗=1 𝑎𝑖𝑗(1 − 𝑝∞𝑗 ) ≥ 0 as a consequence of 0 ≤ 𝑝∞𝑗 ≤ 1 for all 𝑗 proved in Theorem 1. The proof of (46) is complete.

Furthermore, by doing consecutive iterations of (44), one can find directly the infinite continued fraction expansion in (45).

We should remark that the calculation of the steady state solution is similar to Section 4-B of Van Mieghem et al.7. Hence,
we will not proceed to the proof of existence of the steady state as it is exactly similar to Van Mieghem et al.7. However, it is
useful to comment on the upper bound of the steady state probability given in (46). The upper bound depends on the degree
of connection of each node 𝑑𝑖. If the node 𝑖 is isolated, i.e. 𝑑𝑖 = 0, then individual 𝑖 has no neighbors and cannot be infected
(𝑝∞𝑖 = 0). Otherwise, if a node has many connections then it is more likely to be infected. Similarly, if the rate of infection 𝛽
is small then the steady state probability is small, otherwise the probability of infection increases with the increase of 𝛽. The
bound is linear in 𝜏1, so if 𝜏1 is very large (i.e. 𝛿 is very small) then the upper bound is no more significant, this is clear from the
fact that 𝜏1 is the time spent in the infected state for any individual. If this time is large, the probability of infection will be large.

The third step is to analyse the stability of the DFE 𝑝𝑒𝑞𝑖 = 0, 𝑖 = 1,… , 𝑁 for the 𝑁−intertwined model (31). This is given in
the following theorem:

Theorem 2. Consider system (42) for 𝑡 ≥ 𝐷. If there exists 𝛾 > 0 such that

𝜆𝑚𝑎𝑥(𝛽(1 + 𝛿𝜏1)𝐴 − 𝛿𝐈𝐍×𝐍) ≤ −
𝛾
2

(47)

where 𝜆𝑚𝑎𝑥 denotes the largest eigenvalue, then for all 0 ≤ 𝑝𝑖,0 ≤ 1, the DFE of model (31) will converge to zero exponentially,
i.e. the DFE is globally exponentially stable (GES).

Proof. We define the following Lyapunov function for 𝑡 ≥ 𝐷:

𝑉 (𝑡) = 1
2
𝑝𝑇 (𝑡)𝑝(𝑡). (48)

Differentiating (48) with respect to time, we get:

�̇� (𝑡) = 𝑝𝑇 (𝑡)
(

𝛽(1 + 𝛿𝜏1)𝐴 − 𝛽𝑃𝑑(𝑡)𝐴 − 𝛿𝐈𝐍×𝐍 − 𝛽𝛿
(

𝑋𝑑(𝑡) −𝑋𝑑(𝑡 −𝐷)
)

𝐴
)

𝑝(𝑡). (49)

If we observe closely the nonlinear terms in (49), we have that
(

𝑝𝑇 (𝑡)𝑃𝑑(𝑡)𝐴𝑝(𝑡)
)

𝑖𝑗 ≥ 0 for all 𝑖, 𝑗 = 1,… , 𝑁 , since 𝑝𝑖(𝑡) ≥ 0
by Theorem 1, and 𝑎𝑖𝑗 ≥ 0 by definition of the adjacency matrix. Secondly,

(

𝑋𝑑(𝑡) − 𝑋𝑑(𝑡 − 𝐷)
)

𝑖𝑖 = ∫ 𝑡
𝑡−𝐷 𝑝𝑖(𝜏)𝑑𝜏 ≥ 0 for

all 𝑖 = 1,… , 𝑁 by Theorem 1. Hence, the second nonlinear term satisfies
(

𝑝𝑇 (𝑡)
(

𝑋𝑑(𝑡) −𝑋𝑑(𝑡 −𝐷)
)

𝐴𝑝(𝑡)
)

𝑖𝑗 ≥ 0 for all
𝑖, 𝑗 = 1,… , 𝑁 . Therefore, we can bound the derivative of the Lyapunov function as follows:

�̇� (𝑡) ≤ 𝑝𝑇 (𝑡)
(

𝛽(1 + 𝛿𝜏1)𝐴 − 𝛿𝐼𝑁×𝑁
)

𝑝(𝑡). (50)

Because the graph is undirected, i.e. 𝐴 = 𝐴𝑇 , then the matrix 𝛽(1+𝛿𝜏1)𝐴−𝛿𝐼𝑁×𝑁 is symmetric. Now, we use the Rayleigh-Ritz
quotient to simplify more (50) and obtain:

�̇� (𝑡) ≤ 𝜆𝑚𝑎𝑥
(

𝛽(1 + 𝛿𝜏1)𝐴 − 𝛿𝐼𝑁×𝑁
)

||𝑝||2. (51)

If there exists 𝛾 > 0 such that condition (47) is fulfilled, then by (51), we have that �̇� (𝑡) ≤ −𝛾𝑉 (𝑡) and this gives the exponential
decay of the Lyapunov function for 𝑡 ≥ 𝐷 and the proof is complete.

Remark 4. Condition (47) is equivalent to require 𝜏 = 𝛽(1+𝛿𝜏1)
𝛿

< 𝜏𝑐 =
1

𝜆𝑚𝑎𝑥(𝐴)
. If 𝜏1 = 0, we require 𝜆𝑚𝑎𝑥(𝐴) <

𝛿
𝛽

and this leads
to the stability results in Condition 1 in the article of Ganesh et al.6, Theorem 1 in the article of Paré et al.24 and Corollary 1
in the article of Wang et al.23. Equation (47) means that 𝜏0 does not affect the long-term stability. 𝜏0 is the incubation time
of the virus. Since we assume static links between agents, i.e. fixed topology, we expect that an infected agent will eventually
infect its neighbors after the incubation period 𝜏0 is passed. Therefore, 𝜏0 must not affect the steady state infection probability
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and this is what appears in condition (47). However, equation (47) shows that 𝜏1 is important for stabilizing the epidemics.
In practice, it means that having drugs decreasing the time delay 𝜏1 is decisive in putting an end to epidemics rather than the
intrinsic characteristics 𝜏0 of viruses in the social bubble strategy inducing a graph having a fixed topology. To know how large
is the conservativeness of (47), one way is to find if condition (47) is also a necessary condition. This is difficult as we cannot
obtain analytically the solution of (42). But we can do a linearization approximation in neglecting the nonlinear terms in (42),
the terms in 𝑝2(𝑡), as done in Wang et al.23. This reduces (42) to:

�̇�(𝑡) = (𝛽(1 + 𝛿𝜏1)𝐴 − 𝛿𝐼𝑁×𝑁 )𝑝(𝑡) (52)

From (52), one can notice that condition (47) can also be a necessary condition for the infection probability to stabilize at zero.
If the nonlinearity do not play an important role, the marge of conservativneness of (47) is not large.

Remark 5. Theorem 2 specifies the stability conditions of the DFE of the 𝑁−intertwined model (31). For the exact model (18)–
(20), if the graph is connected, the DFE (𝑝𝑒𝑞𝑖 = 0) is always stable even for large delays. In other words, the exact model (18)–(20)
will always converge to zero if the delays are not infinite and if the graph is connected. This is because that the disease-free
state is an absorbing state for the semi-Markov process 𝑍(𝑡) modeling the SIS infection in Section 3. To clear up the point, let
us consider for example a population of three agents. As we have explained in Section 3, an agent can be either infected I or
susceptible S. Therefore at any time, this population of three agents is found in one of the following 8 states: 𝑆𝑆𝑆, 𝐼𝑆𝑆, 𝑆𝐼𝑆,
𝑆𝑆𝐼 , 𝐼𝐼𝑆, 𝐼𝑆𝐼 , 𝑆𝐼𝐼 and 𝐼𝐼𝐼 . For example, state 𝐼𝑆𝑆 means that agent 1 is susceptible, agent 2 is susceptible and agent 3
is infected. The flow diagram of this semi-Markov chain is shown on Figure 2. The green arrows represent the recovery paths
while the red arrows represent the infection paths. One can directly notice that once the process reaches the state SSS, it cannot
go out and it remains there forever. When 𝑡 → +∞, and since their is a probability to arrive at 𝑆𝑆𝑆 (𝛿 ≠ 0), eventually the
process will reach 𝑆𝑆𝑆 once and it will remain there. Hence, the state 𝑆𝑆𝑆 is an absorbing state and the exact model (18)–
(20) will always converge to it at infinity. If the time delays are big, the process will be slow in reaching 𝑆𝑆𝑆. In theory, if
for example 𝜏1 → +∞, the SIS model reduces to the SI model. In an SI model, once an agent becomes infected it will remain
infected forever and there is no curing rate 𝛿 (𝛿 = 0). If we retake the 𝑁 = 3 agents example in Figure 2, the state 𝐼𝐼𝐼 becomes
an absorbing state for the SI model. But for the SIS model, there is no practical interest in considering large delays because each
virus has a finite incubation and a finite recovery period.
To recap, the exact SIS model will converge to zero at the steady state, i.e. when 𝑡 ←→ +∞, because zero is the absorbing state of
the semi-Markov process. However, for some large enough effective spreading rate 𝜏 and for large number of agents 𝑁 , the exact
SIS model can settle in the so called meta-stable state. This is the state where the process remains constant for a long period
before converging to zero when time goes to infinity. The meta-stable state is not yet clearly defined for the exact SIS processes.
In the delay-free case, the authors Van Mieghem et al.28 have proposed that this meta-stable state of the exact SIS process is the
steady state of the so called 𝜖-SIS model. For more details on the 𝜖-SIS model, we orient the readers to the work of Van Mieghem
et al.28 and Li Cong et al.29. For our case with time delays, we will give an insight on this meta-stable state of the exact SIS
process using numerical simulations while leaving the theoretical developments for future works. Because the 𝑁−intertwined
model approximates the exact SIS model, the non-zero steady state of the 𝑁−intertwined model defined in (45) approximates
the meta-stable state of the exact SIS process. Hence, the interest behind studying the stability of the 𝑁−intertwined model in
Theorem 2 is because this model approximates the exact model. It has 𝑁 states instead of 2𝑁 which makes it computationally
much lighter. It is extremely important to know the convergence conditions of the 𝑁−intertwined model in order to evaluate
the limits of the mean field approximation.

6 NUMERICAL SIMULATIONS

6.1 Delayed SIS model versus SEIRS model
The first scenario that we would like to test through numerical simulations is the advantage of injecting two time delays 𝜏0 and
𝜏1 into the SIS model instead of simply replacing them by two extra states 𝐸 and 𝑅 to have the SEIRS model. This is legitimate
because one can think of 𝜏0 as the exposed state E before becoming infected and 𝜏1 as the recovery state R before returning back
susceptible. Theoretically speaking, an ODE state cannot replace the endogenous time delay. The time delay corresponds to an
infinite state which is the output of a transport partial differential equation (PDE), see the work of the authors Krstic et al.30.
However, the question that remains is: can the delay be approximately compensated by adding an extra state? To answer this
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FIGURE 2 Semi-Markov chain for three agents.
.

question, we perform a numerical simulations. We simulate the 𝑁−intertwined model (31) versus the SEIRS networked model
over-viewed by the authors Paré et al.5:

�̇�𝑖(𝑡) = −𝛽

( 𝑁
∑

𝑗=1
𝑎𝑖𝑗𝑒𝑗(𝑡) + 𝑎𝑖𝑗𝑝𝑗(𝑡)

)

+ 𝛿𝑟𝑖(𝑡)

�̇�𝑖(𝑡) = 𝛽

( 𝑁
∑

𝑗=1
𝑎𝑖𝑗𝑒𝑗(𝑡) + 𝑎𝑖𝑗𝑝𝑗(𝑡)

)

− 𝜎𝑒𝑖(𝑡)

�̇�𝑖(𝑡) = 𝜎𝑒𝑖(𝑡) − 𝛾𝑝𝑖(𝑡)
�̇�𝑖(𝑡) = 𝛾𝑝𝑖(𝑡) − 𝛿𝑟𝑖(𝑡)

(53)

where 𝑠𝑖(𝑡) is the probability that agent 𝑖 is susceptible at time 𝑡, 𝑒𝑖(𝑡) is the probability that agent 𝑖 is exposed to infection at time
𝑡, 𝑝𝑖(𝑡) is the probability that agent 𝑖 is infected at time 𝑡 and 𝑟𝑖(𝑡) is the probability that agent 𝑖 is recovered at time 𝑡. The goal of
the evaluation is to check if adding two extra states E and R to the SIS model can compensate the effect of the two time delays 𝜏0
and 𝜏1. We simulate the models in (31) and (53) for the same parameters: 𝛽 = 0.001, 𝛿 = 0.05 and for the same initial conditions.
But we vary the value of the incubation delay 𝜏0 and the minumum time to recovery 𝜏1. We take two values of 𝜏0 = {20, 50}
and two values for 𝜏1 = {50, 100}. The rate of transition from E to I is computed as 𝜎 = 1∕𝜏0, and the rate of transition from
I to R is computed as 𝛾 = 1∕𝜏1. Figure 3 shows the comparison between the delayed SIS model and the SEIRS model. The
network is a scale-free network composed of fifty agents 𝑁 = 50, constructed using the Barabasi and Albert algorithm. One
can directly observe on the two upper plots of Figure 3 that for relatively small time delays, the SEIRS model (53) approximate
the delayed SIS model (31). When the time delays are relatively large on the two bottom plots of Figure 3, the SEIRS fails to
approximate the delayed SIS model. Hence, one can deduce that adding a multi-compartmental states to compensate the effect
of the delay is reasonable if the delay is small. However, when the time delay is large, this approximation is no more useful. This
decreases the predictability of the model. Therefore, it is of great interest to work on the time-delay system directly instead of
adding extra states. The multi-agent model that we have presented in the paper is of general setting. It works for small and large
delays depending on the intrinsic nature of the disease or of the virus.
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FIGURE 3 Comparison between the delayed SIS model (31) and the SEIRS model (53). 𝑦𝑆(𝑡) =
1
𝑁

∑𝑁
𝑖=1 𝑠𝑖(𝑡) is the density of

sustepible nodes at time 𝑡 and 𝑦𝐼 (𝑡) =
1
𝑁

∑𝑁
𝑖=1 𝑝𝑖(𝑡) is the density of infected nodes at time 𝑡.

6.2 Validity of the mean field approximation
The second scenario is dedicated to the analysis of the effect of the time delays on the validity of the approximation of the exact
2𝑁−state semi-Markov model by the 𝑁−intertwined model of Section 4. The exact model (18)–(20) of 2𝑁 states is difficult to
simulate directly when the number of agents is large. So we distinguish between two cases: the first case is for small 𝑁 ≤ 9,
where we simulate the exact SIS process using equations (18)–(20), and the second case is for large 𝑁 where we simulate the
SIS exact process by performing realizations/trials. We will explain later the simulation algorithm of these trials. Now, we start
the case of small number of agents.

6.2.1 The case of small number of agents 𝑁 ≤ 9
We are able to simulate the exact model (18)–(20) for a maximum number of agents 𝑁 = 9. Recall that when 𝜏0 = 𝜏1 = 0, our
models in (18)–(20) and (31) coincide with the models of Van Mieghem et al.7 and hence the same explanations follow, see
Section VIII in Van Mieghem et al.7. If 𝜏0 ≠ 0 and 𝜏1 ≠ 0, we have explained in Remark 4 that if 𝜏 = 𝛽(1+𝛿𝜏1)

𝛿
< 𝜏𝑐 =

1
𝜆𝑚𝑎𝑥(𝐴)

,
the 𝑁−intertwined model will converge to the DFE. Since 𝜏0 does not affect the long term stability, we have simulated the
models of (18)–(20) and (31) for the same value of 𝜏0 but different values of 𝜏1. We first plot the time response of the exact
SIS process and the 𝑁−intertwined model on the complete graph (𝐾9) and the scale-free graph with 9 agents. Starting with
the homogeneous case, i.e. the graph is complete and the number of agents is 𝑁 = 9 (𝐾9 graph). Figure 4 shows the variation
of the density of the infected nodes 𝑦(𝑡) = 1

𝑁

∑𝑖=𝑁
𝑖=0 𝑝𝑖(𝑡) as a function of time. Note that we have replicated the simulation

scenario done in Section VIII in Van Mieghem et al.7 The evaluation is done for four values of 𝜏1 ∈ {5, 10, 20, 25}. The rate
of infection 𝛽 is set to 𝛽 = 0.01 and the curing rate 𝛿 is set to 𝛿 = 0.5. The first up-left plot of Figure 4 corresponds to 𝜏1 = 5,
and 𝜏 = 0.07 << 𝜏𝑐 = 0.125. We can observe that the 𝑁−intertwined model is stable, as predicted by Theorem 2, and the
approximation of the exact model is accurate. Moving to the bottom-left plot of Figure 4 that corresponds to a value 𝜏1 = 10
and 𝜏 = 0.12 < 𝜏𝑐 = 0.125, the 𝑁−intertwined model stays stable, as predicted by Theorem 2, but the approximation of the
exact model starts to become less accurate. Increasing more the value of the time delay 𝜏1 to 𝜏1 = 20 in the up-right plot of
Figure 4, one can notice that the 𝑁−intertwined model differs significantly from the exact model. Stability is not attained by
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FIGURE 4 Evolution of the density of infected nodes 𝑦(𝑡) with time for 𝑁 = 9 agents over the complete graph 𝐾9 for the
2𝑁−state semi Markov exact model and the 𝑁−intertwined model. The subplots differ in the values of the time delay 𝜏1.

the 𝑁−intertwined model and this confirms the results predicted by Theorem 2 because in this case 𝜏 = 0.22 > 𝜏𝑐 = 0.125.
For large 𝜏1 = 25, the 𝑁−intertwined model diverges and the aprroximation is not accurate.
Now, we consider the setting on a more general heterogeneous graphs. We simulate the exact and the 𝑁−intertwined models
on a two scale-free graphs with 9 agents. The first scale-free graph, we call it “scale-free-3” graph, has an average number of
connections equal to three while the second has an average number of connections equal to seven and we call it “scale-free-
7” graph. Both graphs are constructed using the Barabasi and Albert algorithm. We perform the same simulation scenario as
before, with the same parameters 𝛽 = 0.01, 𝛿 = 0.5 and 𝜏0 = 5 but for different values of 𝜏1. Figure 5 shows the evolution
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FIGURE 5 Evolution of the density of infected nodes 𝑦(𝑡) with time for 𝑁 = 9 agents over the “scale-free-3” graph for the
2𝑁−state semi Markov exact model and the 𝑁−intertwined model.
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FIGURE 6 Evolution of the density of infected nodes 𝑦(𝑡) with time for 𝑁 = 9 agents over the “scale-free-7” graph for the
2𝑁−state semi Markov exact model and the 𝑁−intertwined model.

of the density of the infected nodes 𝑦(𝑡) with time. The simulation is conducted on the “scale-free-3” graph. Two values for 𝜏1
are chosen 𝜏1 = {20, 50}. The left plot of Figure 5 shows that the exact model and the 𝑁−intertwined model are close. The
𝑁−intertwined model is stable and converges to zero since 𝜏 = 0.22 < 𝜏𝑐 = 0.306. Increasing 𝜏1 to 𝜏1 = 50, we see on the right
plot of Figure 5 that the 𝑁−interwined model diverge from the exact model and it is not stable since 𝜏 = 0.52 > 𝜏𝑐 = 0.306. The
same analysis apply to “scale-free-7” graph on Figure 6. However, one can observe that the mean field approximation become
worst on the “scale-free-7” graph for small values of the delay 𝜏1. For 𝜏1 = 20, the 𝑁−intertwined model is stable on the “scale-
free-3” graph and not stable on the “scale-free-7” graph. Also note that in all the cases, the exact SIS model is converging to
zero at the steady state. This is expected because as we have explained in Remark 5 that the healthy state is the absorbing state
of the exact model, and since the number of agents is very small, the model reaches its equilibrium very fast and the meta-stable
state is not observed.
The previous analysis was done only for two types of graphs and for several values of 𝜏1. To conclude the analysis, we now plot
the mean field approximation error 𝜖(𝜏) as a function of 𝜏 = 𝛽(1 + 𝛿𝜏1)∕𝛿:

𝜖(𝜏) =

𝑇

∫
0

|

|

𝑦𝑒𝑥𝑎𝑐𝑡(𝑡, 𝜏) − 𝑦𝑁−𝑖𝑛𝑡𝑒𝑟𝑡𝑤𝑖𝑛𝑒𝑑(𝑡, 𝜏)|| 𝑑𝑡 (54)

where 𝜖(𝜏) is the 𝐿1−norm of the mean field approximation error and 𝑇 is the simulation time. 𝜖(𝜏) is the transient error and
not the steady state error. So we choose a period 𝑇 = 300 much larger than the time delays. We fix 𝛽 = 0.01, 𝛿 = 0.5 and
we increase 𝜏 by increasing the value of 𝜏1. 𝜏0 is kept equal to zero since the stability condition (47) is not related to 𝜏0. The
evaluation is done on 6 different graphs: complete graph, line graph, star graph, bipartite graph, Erdos-Renyi graph and the
Barabsi-Alber graph1. The results are plotted on Figure 7. We can conclude from Figure 7 three important points. The first one
is that the mean field approximation is accurate for all types of graphs if 𝜏 << 𝜏𝑐 . As we can see on Figure 7, the error starts
to increase after crossing the red line corresponding to the value of 𝜏𝑐 for all the graphs. Van Mieghem et al.7 have also arrived
to the same conclusion. The second point is that the error is increasing with 𝜏. We observe for the delay-free case that the
approximation error decrease with 𝜏. But for the model with delays and for small number of agents, the error is increasing with
𝜏. The third point is that the time delay 𝜏1 have significant effect on highly connected topologies. Remember that 𝜏1 is implicit
in the value of 𝜏 = 𝛽(1 + 𝛿𝜏1)∕𝛿. We have calculated different values of 𝜏 based on different values of 𝜏1 while keeping 𝛽 and 𝛿
fixed. It is also helpful to recall that for connected graphs, the complete graph represents maximum connectivity while the line
graph represents minimum connectivity. We can see that the approximation on the complete graph deteriorates for 𝜏 = 0.125
(corresponding to 𝜏1 = 10 ) while it deteriorates for 𝜏 = 0.52 (corresponding to 𝜏1 = 50) on the line graph. This conclusion is

1The bipartite graph is constructed using two sets of nodes. The first set contains 𝑁
3

nodes and the second set contains 2𝑁
3

nodes. The Erdos-Renyi graph is constructed
using a link probability of 𝑝 = 2𝑝𝑐 = 2 𝑙𝑛𝑁

𝑁
to ensure high probability of graph connectivity. The scale free graph is constructed using Barabsi-Albert algorithm and we

start by 2 connected nodes (𝑚 = 2) as the seed.
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FIGURE 7 Variation of the error 𝜖(𝜏) with respect to 𝜏 over different types of graphs and for 9 agents. The vertical red line is
the value of 𝜏𝑐 = 1∕𝜆𝑚𝑎𝑥(𝐴).

quite reasonable since in highly connected graphs, a node has many connections and when infected it will stay for a time 𝜏1 in
the infected state and eventually infect all the neighbors.

6.2.2 The case of large number of agents 𝑁
The goal of this section is to study the effect of time delays on the mean field approximation for graphs with large number of
agents. The idea is to plot the transient error 𝜖(𝜏) in (54) as a function of 𝜏 on different graphs and for different number of agents
𝑁 . We cannot simulate the exact equations (18)–(20) for large 𝑁 as the number of states grows in the order of 2𝑁 . However,
we can simulate the exact SIS process for large number of agents 𝑁 by performing several realizations/trials of the process, in
the same way as for the Figure 1 made by Li Cong et al.29, and then to take the average of these trials to get an approximation of
the exact solution. First, we detail the simulation algorithm for exact SIS process with large 𝑁 , and after that we plot the mean
field approximation error 𝜖(𝜏).
Consider on Figure 1 a sample path of the stochastic process 𝑋𝑖(𝑡) attached to agent 𝑖. At any time 𝑡, the agent 𝑖 can be susceptible
𝑋𝑖(𝑡) = 𝑆 or infected 𝑋𝑖(𝑡) = 𝐼 . According to our model, if agent 𝑖 is susceptible, the time for an arrival of an infection is
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determined by the rate 𝛽
∑

𝑗∈𝑁𝑖
𝑎𝑖𝑗𝑋𝑗(𝑡) where 𝛽 is the infection rate, 𝑁𝑖 is the set of neighbors of agent 𝑖 and 𝑎𝑖𝑗 are the entities

of the adjacency matrix 𝐴. Upon arrival of the infection, the agent waits for a time 𝜏0 in the susceptible state due to the incubation
period of the virus. If agent 𝑖 is infected, he has to stay for a time 𝜏1 in the infected state, after which he can transition with a rate
𝛿. We fix a simulation time 𝑇 , and we simulate the processes 𝑋𝑖(𝑡), 𝑖 = 1, 2,… , 𝑁 . The simulation is done as follows: we start
with only one infected agent. For any agent in the susceptible state, determine if he can transition using the rate 𝛽

∑

𝑗∈𝑁𝑖
𝑎𝑖𝑗𝑋𝑗(𝑡).

If he can, wait for the incubation period 𝜏0, then do the transition. For any agent in the infected state, wait a time 𝜏1 in the state
𝐼 . Then determine if he can transition using the rate 𝛿. Perform this algorithm at each small interval of time 𝑑𝑡 between [0, 𝑇 ]
and one gets a single realization of the SIS exact process with time delays. We then repeat the algorithm for a big number of
trials 𝑁𝑡𝑟𝑖𝑎𝑙𝑠 and we take the average to have

𝑋𝑎𝑣𝑔
𝑖 (𝑡) = 1

𝑁𝑡𝑟𝑖𝑎𝑙𝑠

𝑁𝑡𝑟𝑖𝑎𝑙𝑠
∑

𝑗=1
𝑋𝑗

𝑖 (𝑡). (55)

Since the trials are independent, 𝑋𝑎𝑣𝑔
𝑖 (𝑡) will converge to 𝑋𝑖(𝑡) as 𝑁𝑡𝑟𝑖𝑎𝑙𝑠 goes to +∞.

Practically and to have a better understanding of the simulation algorithm, consider for example simulating the exact SIS process
on the complete graph of 100 agents 𝑁 = 100 on Figure 8. We have chosen the simulation time 𝑇 = 300, 𝛽 = 0.005 and
𝛿 = 0.6. We have run the latter algorithm for 𝑁𝑡𝑟𝑖𝑎𝑙𝑠 = 200 and plotted the density of infected nodes 𝑦(𝑡) = 1

𝑁

∑𝑁
𝑖 𝑋𝑎𝑣𝑔

𝑖 (𝑡) as a
function of time. The left plot of Figure 8 is 𝑦(𝑡) without time delays 𝜏0 = 𝜏1 = 0 while the right plot is 𝑦(𝑡) with time delays
𝜏0 = 0 and 𝜏1 = 2. For the left plot, we have 𝜏 = 𝛽

𝛿
(1+ 𝛿 ∗ 0) = 0.0083 < 𝜏𝑐 =

1
𝑁−1

= 0.01. The exact SIS process converges to
zero which is the healthy state. When 𝜏 is increased by adding the time delay 𝜏1 = 2, corresponding to 𝜏 = 0.015 > 𝜏𝑐 = 0.01,
the exact SIS process converges to its meta-stable state as shown on the right plot of Figure 8. This is expected and confirmed
by the authors in Li Cong et al.29 because for high enough effective spreading rate 𝜏 and for high number of agents, the exact
SIS process is expected to converge to the meta-stable state as it will take a long time to converge to zero in this case. Now, we
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FIGURE 8 Simulation of the exact SIS process on the complete graph. Density of infected nodes 𝑦(𝑡) as a function of time for
100 agents (N=100). Left plot corresponds to time delay 𝜏1 = 𝜏0 = 0. Right plot corresponds to 𝜏0 = 0 and 𝜏1 = 3.

plot the mean field approximation error as a function of 𝜏 on Figure 9. We follow the same simulation scenario as for the case of
small number of agents, i.e. choose a period 𝑇 = 300 much larger than the time delays and fix 𝛽 = 0.01, 𝛿 = 0.5. We increase
𝜏 by increasing the value of 𝜏1 and 𝜏0 is kept equal to zero. The evaluation is done on 6 different graphs: complete graph, line
graph, star graph, bipartite graph, Erdos-Renyi graph and the Barabsi-Alber graph2. The simulations show that, in the presence
of time delays, the approximation becomes generally better as 𝑁 increases and this is the same conclusion as for the delay-free
case. The error is lowest on the black lines corresponding to 𝑁 = 300 while it increases when 𝑁 is decreased on the blue and

2The bipartite graph is constructed using two sets of nodes. The first set contains 𝑁
5

nodes and the second set contains 4𝑁
5

nodes.The Erdos-Renyi graph is constructed
using a link probability of 𝑝 = 2𝑝𝑐 = 2 𝑙𝑛𝑁

𝑁
to ensure high probability of graph connectivity. The scale free graph is constructed using Barabsi-Albert algorithm and we

start by 4 connected nodes (𝑚 = 4) as the seed.
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FIGURE 9 Variation of the error 𝜖(𝜏,𝑁) with respect to 𝜏 over different types of graphs and for different number of agents.
The vertical green line is the value of 𝜏𝑐 = 1∕𝜆𝑚𝑎𝑥(𝐴).

red lines corresponding to 𝑁 = 150 and 𝑁 = 50 respectively. But we note that this behaviour is not so clear on the Barabasi-
Albert graph. With respect to 𝜏, if 𝜏 < 𝜏𝑐 , the approximation is also very accurate3. If 𝜏 > 𝜏𝑐 then the error decreases with 𝜏
for the complete graph, star graph, bipartite graph and Erdos-Renyi graph while it increases with 𝜏 on the line graph and on the
Barabsi Albert graph. The increase on the line graph is fairly expected and this was the conclusion of the authors in Li Cong et
al.29 and Van Miegham et al.7 that the approximations are worst on the line graphs because the node degree does not increase
with 𝑁 . But surprisingly, the error is also increasing with 𝜏 on the Barabsi-Albert graph. We will pay a special attention to the
spread of epidemics with delays on the scale-free graphs in our future works.

3The interval 𝜏 < 𝜏𝑐 is not shown on Figure 9 for the complete and the bipartite graphs because 𝜏𝑐 is very small in this case and this is not compatible with the scale
of the figure. For the other graphs, because the graphs are of different sizes, we have plotted the minimum value of 𝜏𝑐 for each graph type.
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7 CONCLUSIONS

We have proposed two multi-agent models for the SIS epidemics over undirected networks including time delays for the incu-
bation and recovery periods: the time-delay 2𝑁 exact model and the time-delay 𝑁−intertwined model. The models are based
on the semi-Markov theory and they are generalizations of the Markov models. We have also derived stability conditions that
guarantee the global exponential stability of the time-delay 𝑁−intertwined model. The stability results are also generalizations
of existing results to the time-delay case.

SUPPORTING INFORMATION

This paper has supplementary downloadable material provided by the authors. This includes two videos illustrating Theorem 2
and a readme file.
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The data that support the findings of this study are available from the corresponding author upon reasonable request.
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