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CMAP, École Polytechnique, CNRS UMR7641, Institut Polytechnique de Paris,
Route de Saclay, Palaiseau, 91128, France

Abstract

A closure relation for moments equation in kinetic theory was recently
introduced in [38], based on the study of the geometry of the set of moments.
This relation was constructed from a projection of a moment vector toward
the boundary of the set of moments and corresponds to approximating the
underlying kinetic distribution as a sum of a chosen equilibrium distribution
plus a sum of purely anisotropic Dirac distributions.

The present work generalizes this construction for kinetic equations in-
volving unbounded velocities, i.e. to the Hamburger problem, and provides a
deeper analyzis of the resulting moment system. Especially, we provide rep-
resentation results for moment vectors along the boundary of the moment set
that implies the well-definition of the model. And the resulting moment model
is shown to be weakly hyperbolic with peculiar properties of hyperbolicity and
entropy of two subsystems, corresponding respectively to the equilibrium and
to the purely anisotropic parts of the underlying kinetic distribution.

1 Introduction

This paper is a follow-up to [38] and aims at generalizing and analyzing the projec-
tive closures of moment equations.

Kinetic theory commonly describes the motion of a cloud of particles through its
density f in the phase space. This so-called distribution function depends on time
t ∈ R+, position x ∈ Rd (the space dimension d is set to one in all the paper) and on
a state variable s ∈ E which can model various quantity representing the particles
such as the velocity v ∈ Rd, the internal energy I ∈ R+ for polyatomic gases or the
size S ∈ R+ for polydisperse sprays. In the spirit of Boltzmann’s H-theorem, the
kinetic equation commonly dissipates an entropy, which corresponds to saying that
the dynamics tends to push the distribution function to have a certain form. This
form, minimizing the entropy, corresponds to an equilibrium. In many applications
in physics, the hypothesis of thermal equilibrium is made and the distribution with
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respect to this state variable is forgotten as only a weaker information is required,
i.e. the mean density, momentum and energy which are moments of the distribution
function with respect to s. However, out of equilibrium regimes play an important
role in many applications.

The discretization of f with respect to s presents several difficulties. First, the
computational cost is high because of the number of variables involved. Second,
capturing appropriately the equilibria requires a special treatment. The method of
moment is a key technique for the reduction of kinetic equations into fluid models
which can be interpreted as such a discretization. The moments f are weighted
integrals of the distribution function f with respect to s. This technique consists in
multiplying the kinetic equation by a set of basis functions of s and integrating it.
However, the resulting moment equations are commonly undetermined and require
supplementary equations, so-called closure, to be well-posed. The most common
idea to construct such closures consists in solving a truncated moment problem, i.e.
finding a distribution function from its moments and computing the unknown terms
based on this function. Such a construction also provides a kinetic interpretation
to the moment model.

The problem of constructing a closure has been widely studied and many sug-
gestions were provided depending on the field of applications and on the properties
required of the approximation, we exhibit here a (non-exhaustive) list of them il-
lustrating the main ideas. A first idea consisted in constructing the closure from
the equilibrium distribution and leads typically to Euler equations or Navier-Stocks
through Chapman-Enskog expansion. A first alternative was proposed by Grad
([20]) and consisted in a polynomial perturbation of the Maxwellian. This lead to
non-strictly hyperbolic equations. Some regularizations (see e.g. [44, 8] and ref-
erences therein) dealt with this issue by a clever pertubation of the Maxwellian
but it commonly leads to non-conservative equations. The idea of reconstructing
the distribution minimizing the entropy ([30], see also e.g. [14, 22, 36] for other
applications) was shown to satisfy most of the properties desired for a closure. Es-
pecially, the resulting moment equations are symmetric hyperbolic and possesses an
entropy directly related to the kinetic one. However, the numerical computation of
this closure require special consideration (see e.g. [23, 5, 4, 33, 39]). Furthermore,
there exists moment vectors for which this closure cannot be constructed. This
was circumvented recently ([1, 2]) by a clever modification of the entropy. Another
approach, inspired of quadrature techniques to approximate integrals, consists in
approximating the distribution function by a sum of Diracs. This quadrature-based
method of moments (QMOM ; [34]) is very well-adapted to numerical applications,
but it leads to weakly hyperbolic models, while strong hyperbolicity can be expected
in some applications, and does not dissipate the entropy defined at the kinetic level
(though other entropies can be found). Many extensions of this model were pro-
posed to tackle e.g. the weak hyperbolicity, to capture certain Maxwellian regimes
(see e.g. [31, 47, 9, 40, 17]).

In [38], a generic construction of closures was suggested by computing the projec-
tion of any vector of moments toward a certain direction headed to the boundary of
the set of moments. This led to the interpretation of the closure as the sum of a cho-
sen equilibrium distribution plus a sum of Dirac measures. However, two (strong)
hypothesis were performed to obtain this distribution, 1-the equilibrium function
was chosen constant and especially independent of the vector of moments from
which the projection is performed; 2-the set of integration was chosen to be a 1D

2



bounded interval. Furthermore, if numerical applications were presented illustrat-
ing the appropriate behavior of this model in various regimes, the hyperbolicity and
the entropy of the resulting moment models was left as a perspective. The present
paper extends the construction of this closure to moments on 1D unbounded sets,
i.e. in Hamburger case (the construction in Stieltjes [43] case would follow similarly)
and when the equilibrium function depends on the vector of moments, especially
when the equilibrium is represented by a non-fixed Maxwellian. This study is com-
pleted with the study of hyperbolicity and entropy decay of the resulting moment
model in the case of an equilibrium representing by an entropy-minimizing distribu-
tion. Especially, we show that the resulting model retains certain properties of the
entropy-minimizing moment model and of the QMOM model, since the underlying
distribution is a combination of those of these two models.

The paper is organized as follows. The next section recalls the context, i.e. the
considered kinetic equation together with the construction of the projective closure
and its application in Hausdorff case. The following section extends the framework
of [38] in the case of Hamburger, i.e. when the set of integration is unbounded.
Especially, it is devoted to the study of the set of moments and includes represen-
tations of the vectors along all the boundary of the realizability domain. Section 4
extends the construction of the projective closure when the equilibrium function
depends on the vector of moments itself, including in the case of Hamburger with
a Maxwellian as equilibrium function. Finally, Section 5 analyzes the hyperbolic
and the entropic structure of the resulting model in a general framework. The last
section is devoted to conclusive remarks.

2 Preliminary on the projective moment models

In this first part, the considered kinetic model is presented and the construction of
the projective model from [38] is recalled with adapted notations.

2.1 The kinetic model

Consider a generic 1D kinetic equation of the form

∂tf + s∂xf = Q(f), (1)

where the unknown f is a distribution function depending on time t ∈ R+, position
x ∈ Z ⊂ R and a state variable s ∈ E ⊂ R.

The method below aims to propose an appropriate approximation of the varia-
tions of f with respect to s ∈ E ⊂ R. This state variable can be a velocity variable
v ∈ R when modelling rarefied gases or plasmas, or direction of flight µ ∈ [−1,+1]
when modelling radiations. The method below also applies to spray models, where
the state variable commonly represents a size of droplets S ∈ R+ even though this
variable appears differently in the kinetic.

We will assume that (1) possesses the following features that we aim to preserve
through the moment extraction presented in the next subsection

(P1) Together with appropriate initial and boundary condition, (1) possesses a
non-negative solution f ≥ 0, and it has finite moments at least up to a certain
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order N + 1, i.e.

∀i = 0, . . . , N + 1,

∫
E

sif(s)ds <∞.

(P2) At fixed s, the left-hand side of (1) is an hyperbolic operator. Here, it is a
transport operator at speed s.

(P3) Equation (1) is assumed to dissipate a strictly convex entropy function η, i.e.

∂tH(f) + ∂xJ (f) = D(f) ≤ 0,

where the entropy-entropy flux pair (H,J ) and the entropy dissipation D read

H(f) =

∫
E

η(f(s))ds, J (f) =

∫
E

sη(f(s))ds, D(f) =

∫
E

η′(f(s))Q(f(s))ds.

Furthermore, the equality D(f) = 0 holds if and only if f = M equals a
certain Maxwellian which will be specified later.

2.2 Projective moment model

We consider polynomial moment models up to order N . For this purpose, define

b(s) = bN (s) := (1, . . . , sN )T ,

a basis of polynomials of s up to degree N . Computing the moments up to order
N of (1) w.r.t. the s variable provides the under-determined system

∂tf + ∂xF = Q, (2)

where

f =

∫
E

b(s)f(s)ds, F =

∫
E

sb(s)f(s)ds, Q =

∫
E

b(s)Q(f)(s)ds. (3)

The system (2-3) is under-determined and needs to be supplemented with a closure
relation. The choice of this closure of course impacts on the existence of an under-
lying positivity solution, on the hyperbolicity of this system and on the existence
of an entropy that correspond to the moment versions of the property (P1-3).

Following the property (P1) of the kinetic equation, the solution f is assumed
to be positive and integrable. In this direction, define the following set of functions
which is assumed to contain the solution f of (1) at all time

f ∈ L1
b(E)+ =

{
f ∈ L1(E) s.t. bf ∈ L1(E)N+1 and ess inf

s∈E
f(s) > 0

}
and the associated set of moments, also called realizability domain, in which we will
aim to have the solution of (2) evolve

Rb =

{∫
E

b(s)f(s)ds, f ∈ L1
b(E)+

}
.
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In the next sections, we also widely exploit the following set obtained by replacing
the integral in the definition of Rb by a finite positive quadrature formula

RQb =

{
J∑
i=1

αib(si), J <∞, (si)i=1,...,J ∈ EJ , (αi)i=1,...,J ∈ (R+)J

}
.

For a vector f ∈ Rb, the projective closure is constructed by minimizing the
distance to some equilibrium function feq (and to its moments denoted feq). At
this step, this function feq can be a Maxwellian M satisfying D(M) = 0 or not. We
make some additional hypothesis constraining the choice of feq:

(H1) It is positive and has finite moments up to order N+1, i.e. feq ∈ L1
bN+1

(E)+.

(H2) It depends linearly on the moments f0 of order 0 and on the normalized
moments N = f

f0
as

feq ≡ feq(f) = f0f
eq(N).

(H3) Denote Hf ,d the half line starting in f and directed by d

Hf ,d :=
{
f + αd, α ∈ R+

}
.

Then we will suppose that for all f ∈ Rb, the function{
Rb → L1

bN+1
(E)+

f 7→ feq(f)
f0

,

is constant along Hf ,−feq(f).

Some further hypothesis on the equilibrium function will be made in the next sec-
tion, related to the properties of hyperbolicity and entropy decay of the resulting
closure.

Then, one decomposes all realizable vectors f ∈ Rb into

f = α0f
eq + fp s.t. fp ∈ ∂Rb. (4)

In [38], this decomposition was shown to exist for all f ∈ Rb, to be unique and with
α0 > 0.

Remark 1. Hypothesis (H3) is a priori not necessary, but it simplifies the com-
putations below, and it is natural and satisfied by all the functions feq we have in
mind. Especially, forall f ∈ Rb and α ∈ (−∞, α0(f)], we can simply relate the value
of the functions feq, fp and α0 (from the decomposition (4)) in fα := f −αfeq(f) to
their value in f through

feq(fα) = feq(f), fp(fα) = fp(f) and α0(fα) = α0(f)− α. (5)

This is discussed with a particular choice of equilibrium function will be given in
Section 4. See also Appendix A for another characterization of this hypothesis.

In [38], the realizability domain was shown to be open. Especially, the vector
fp ∈ ∂Rb can not be realized by integrable functions. Though, one can still interpret
fp ∈ ∂Rb as moments in the sense of measures or distributions as illustrated in
the next subsections. Once this reconstruction is clarified, the construction of the
closure becomes straightforward. The representation in the case of a bounded set
of integration E = [−1,+1] is first recalled from [38] before being extended to the
unbounded set E = R in the next section.
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2.3 Hausdorff case: E = [−1,+1]

In the following, we use extensively the notion of Riesz functional ([41]) to simplify
notations.

Definition 2.1. The Riesz functional RV associated to the vector V sends any
polynomial λTb onto RV(λTb) = λTV. We also apply it componentwise to vectors
and matrices of polynomials.

When the set E of integration is an interval, typically E = [−1, 1], solving
Hausdorff problem (see e.g. [24, 3, 28, 11]) provides a characterization of realizable
vectors f ∈ Rb. This also provides the existence of a unique positive measure (or
distribution) having such fp ∈ ∂Rb for moments.

Proposition 1. Consider f ∈ RN+1. Then f ∈ Rb if and only if

Even case N = 2K: Rf

(
bKbTK

)
and Rf

(
(1− s2)bK−1b

T
K−1

)
, (6a)

Odd case N = 2K + 1: Rf

(
(1 + s)bKbTK

)
and Rf

(
(1− s)bKbTK

)
(6b)

are symmetric positive definite.

Proposition 2 ([11, 38]). Consider f ∈ RN+1. Then f ∈ ∂Rb if and only if
the matrices (6) are symmetric positive semi-definite and at least one of them is
singular.

In such a case, there exists a unique representing measure for f

f =

J∑
i=1

αib(si) =

∫ +1

−1
b(s)

J∑
i=1

αiδsi(s), (7)

where the masses αi > 0 are strictly positive, and the quadrature points si ∈ [−1,+1]
can be computed from the kernell of the singular matrix (6) and their number J ≤ K.

This also provides
Rb = int(RQb ) ( RQb = Rb.

by exploiting the convexity of these sets.
Using the decomposition (4), one simply obtains a representing measure for all

realizable vector f ∈ Rb

f = α0f
eq +

J∑
i=1

αib(si) =

∫ +1

−1
b(s)

(
α0feq(s)ds+

J∑
i=1

αiδsi(s)

)
.

The projective closure is then obtained by replacing f by this reconstruction in (3)
which provides

F(f) =

∫
E

sb(s)α0f
eq(f)(s)ds+

J∑
i=1

αisib(si). (8)

The presence of Dirac measures in the decomposition (4) does not offer a simple
framework for the construction of the term Q(f) when the kinetic collision operator
Q is non-linear. Some intuitions on how to construct this term will be given in
Section 5.2 by suggesting constraints this function needs to satisfy.
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So far, this closure is only restricted to moment models on bounded sets of
integration E = [−1,+1]. The reason for this restriction is that vectors belonging to
the boundary ∂Rb of the realizability domain for moments on unbounded domains,
typically E = R, are not realized by such simple sum of Dirac deltas as in (7). This
issue is investigated and circumvented in the next section.

3 Extension of the formalism to Hamburger case:
E = R

In all this section, we denote similarly the number of moments in the even N = 2K
or odd N = 2K + 1 case. The difference between the two cases are discussed when
appropriate.

3.1 Realizability and recursiveness

Again the problem of moments in the sense of L1(R)+ has been solved in various
manner (see e.g. [21, 11, 3]). We recall the one we will use below.

Proposition 3. Consider f ∈ RN+1. Then f ∈ Rb if and only if Rf

(
bKbTK

)
is

symmetric positive definite.

In the odd case N = 2K + 1, one remarks that this constraint only applies on
the first moments (f0, . . . , f2K)T and the higher order moment f2K+1 is left free.

One deduces that the boundary is characterized by

f ∈ ∂Rb ⇔ Rf (bKbTK) is symmetric positive and singular.

However, contrarily to Proposition 1, not all the vectors on this boundary are
realized by a sum of Diracs. Through the notion of recursiveness, R. Curto and
L. Fialkow (see e.g. [11, 12, 15]) provided the description of the set RQb realized
by Dirac measures which is closely related to Rb also in the case of Hamburger.
However, contrarily to Hausdorff case RQb 6= Rb. We first recall some results [11]
and their reformulation from [38].

Definition 3.1. Denote J = rank Rf (bKbTK). A vector f ∈ RN+1 is positively
recursively generated if

• Rf (bJ−1b
T
J−1) is symmetric positive definite.

• For all j > J − 1, then

Rf (s
2j−1) = Rf (s

j−1bTJ−1)Rf (bJ−1b
T
J−1)−1Rf (s

jbJ−1),

Rf (s
2j) = Rf (s

jbTJ−1)Rf (bJ−1b
T
J−1)−1Rf (s

jbJ−1).

One remarks again that this definition imposes no constraint on the moment of
order 2J − 1 as the first equation for j = J just rewrites Rf (s

2J−1) = Rf (s
2J−1).

Then the set of moments of Dirac measures is characterized by the following
proposition.

Proposition 4. Consider f ∈ RN+1. The following assertions are equivalent:
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• f ∈ RQb ,

• f is positively recursively generated,

• f =
J∑
i=1

αib(si) with J = rank Rf (bKbTK) and αi > 0 for all i = 1, . . . , J .

Remarking that the case J = K + 1 in the definition of positive recursiveness
implies f ∈ Rb (through Proposition 3), then this result provides Rb ⊂ RQb . Espe-

cially, it provides a representation for fp ∈ ∂Rb ∩ RQb as a sum of J Dirac deltas
where J = rank Rf (bKbTK) < K + 1.

Decomposing the boundary

∂Rb =
(
∂Rb ∩RQb

)
∪
(
∂Rb\RQb

)
,

one obtains therefore a representation for the first part of the boundary ∂Rb ∩RQb .

However, contrarily to the case of Hausdorff, the other part ∂Rb\RQb that is not
represented through the last proposition is non-empty. Indeed, taking for instance
f = (0, 0, 1)T provides a positive semi-definite matrix Rf (b1b

T
1 ) while Rf (b0b

T
0 ) = 0

and f is not positively recursively generated. Therefore, in the case of Hamburger,
we only have

Rb ( RQb ( Rb.

Since there is no reason for the projection fp ∈ ∂Rb defined in (4) to be restricted

to ∂Rb∩RQb , we need to find some other representation for the rest of the boundary

∂Rb\RQb . However, such a representation can neither be an integrable functions
(as it belongs not to the open set Rb) nor a discrete measures (as it belongs not to

RQb ).

We first specify some more properties of vectors in ∂Rb\RQb exploited to con-
struct a representation.

3.2 Characterization of ∂Rb\RQ
b

First, we provide a lemma required in the proof of Proposition 5 below.

Lemma 3.2. Consider f ∈ ∂Rb and W ∈ Ker Rf (bKbTK) such that p := WTbK
is of lowest (non-zero) possible degree. Then p has distinct real roots.

Proof. p has real roots: By contradiction, suppose that p has a pair of complex
roots, then

p(s) = (s2 + 2bs+ c2)q(s) with b2 < c.

Then

p(s)2 = (s2 + 2bs+ c)2q(s)2

=
(
(s+ b)2 + (c− b2)

)2
q(s)2

= (s+ b)
4
q(s)2 + 2

(
c− b2

)
(s+ b)

2
q(s)2 +

(
c− b2

)2
q(s)2.

Each of these polynomials is squared. Then by the non-negativity hypothesis,
Rf (p

2) = 0 implies that Rf

(
q2
)

= 0. Especially, there exists W̃ ∈ RK+1 such
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that q = W̃TbK . This rewrites W̃TRf (bKbTK)W̃ = 0, then by the non-negativity
hypothesis W̃ ∈ Ker Rf (bKbTK). But deg q < deg p which violates the hypothesis.

p has distinct roots: By contradiction, suppose that one of the roots of p has
a double multiplicity, then

p(s) = (s− s1)2q(s).

Write W̃ such that q = W̃TbK . Then, by hypothesis

WRf (bKbTK)W̃ = 0 = Rf (pq), with p(s)q(s) = (s− s1)2q(s)2.

Finally, writing W̄ such that W̄TbK(s) = (s − s1)q(s) =: q̃(s), then again W̄ ∈
Ker Rf (bKbTK) with deg q̃ < deg p.

For fp ∈ ∂Rb, we observe the following properties on the dimension of the
matrix Rfp(bKbTK) and its submatrices.

Proposition 5. Consider f ∈ ∂Rb and write J = rank Rf (bKbTK). The following
assertions are equivalent:

• f /∈ RQb ,

• Rf (b2K−1) is positively recursively generated, but f is not,

• rank Rf (bib
T
i ) = J for all i = J − 1, . . . ,K,

• f = frec + fnrec with frec =
J∑
i=1

αib(si) positively recursively generated and

fnrec =

{
αKe2K if N = 2K even case,
αKe2K + βKe2K+1 if N = 2K + 1 odd case,

(9)

non-positively recursively generated with αi > 0 and where ei := (0, . . . , 0, 1, 0, . . . , 0)T

is the i-th vector of the canonical basis.

Proof. Denote J̃ ≤ K the first integer such that Rf (bJ̃−1b
T
J̃−1) is positive definite

and Rf (bJ̃bT
J̃

) is singular, i.e. such that rank Rf (bJ̃−1b
T
J̃−1) = rank Rf (bJ̃bT

J̃
) =

J̃ .
Either J̃ = J which corresponds to the case f recursively generated or J̃ < J . In

this second case, there exists another integer K̃ > J̃ such that rank Rf (bJ̃−1b
T
J̃−1) <

rank Rf (bK̃bT
K̃

) = J̃ + 1.

We first prove that K̃ = K which implies J̃ = J − 1 through rank conditions:
By contradiction, suppose that K̃ < K. By construction, we have rank Rf (bib

T
i ) =

J̃ for all i = J̃−1, . . . , K̃−1. Especially rank Rf (bK̃−1b
T
K̃−1) = rank Rf (bK̃−2b

T
K̃−2).

Then there exists W ∈ Ker Rf (bK̃−1bK̃−1) such that deg(WTbK̃−1) = K̃ − 1.

Write W̃ = (WT , 0, . . . , 0)T such that

W̃TRf (bKbTK)W̃ = 0 = WTRf (bK̃−1b
T
K̃−1)W.

By the non-negativity ofRf (bKbTK), then W̃ ∈ Ker Rf (bKbK) andRf (bKbK)W̃ =
0RK+1 . Write p := WTbK̃−1 = W̃bK and define W̄ such that W̄TbK(s) = sp(s).
Then

W̄TRf (bKbTK)W̄ = Rf (pq) with q(s) = p(s)s2.
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Since deg (q) = K̃+1 ≤ K, then q ∈ Span(bK) andRf (pq) = 0 = W̄TRf (bKbTK)W̄.
Again, the non-negativity provides W̄ ∈ Ker Rf (bKbTK).

Then, defining p̃(s) := sp(s), we have for all q̃ ∈ RK̃+1[X] that Rf (p̃q̃) = 0 and

rank Rf (bK̃−1b
T
K̃−1) = rank Rf (bK̃bT

K̃
) which conflicts with the definition of K̃.

Therefore, K̃ = K, and rank Rf (bib
T
i ) = J for all i = J − 1, . . . ,K − 1, and

there exists P orthogonal such that

Rf

(
bK−1b

T
K−1

)
= PDiag (λ1, . . . , λJ , 0, . . . , 0)PT .

Then, writing b̃K(s) =
(
bK−1(s)TP, sK

)T
, one has

Rf (b̃K b̃TK) =


Diag(λ1, . . . , λJ) 0RJ×(K−J−1) 0RJ 0RJ

0TR(K−J−1)×J 0R(K−J−1)×(K−J−1) 0R(K−J−1) 0R(K−J−1)

0TRJ 0TR(K−J−1) 0 a

0TRJ 0TR(K−J−1) a b

 ,

where only the components Rf

(
(bK)K(b̃K)K−1

)
= a and Rf

(
(bK)2K

)
= b that

appear not in the matrix Rf (bK−1bK−1) and are a priori non-zero, i.e. the last
two components of the last row or column of Rf (b̃K b̃TK).

By contradiction, suppose that a 6= 0, and define V = (0, . . . , 0,− b
a , 1)T , then we

have V TRf (b̃K b̃TK)V = −b, which would prevent Rf (b̃K b̃TK) from being positive.
Therefore, a = 0 and Rf ((bK)KbK−1) ∈ Span

(
Rf (bK−1b

T
K−1)

)
. This implies that

Rf (b2K−1) is positively recursively generated.

As a consequence, any realizable vector f ∈ Rb can be decomposed under the
form

f = α0f
eq + frec + αKfnrec, (10)

where frec ∈ ∂Rb∩RQb is positively recursively generated (a sum of b(si)), αK ≥ 0
is non-negative and fnrec is of the form (9).

If feq and frec have well-understood representation, writing fnrec in terms of mo-
ments is more problematic. Several methods to include this term in a representation
are provided in the next subsection.

3.3 Some representation results including ∂Rb\RQ
b

In the next section, we focus on a particular choice of equilibrium function feq

that provides naturally a projection fp ∈ ∂Rb\RQb . However, we provide some
partial results of representation used (in proofs) in the next sections. These results
provide some mathematical understanding and could also be used to construct other
closures, even if they don’t provide a straightforward kinetic interpretation.

3.3.1 Representation using the limit of a sequence of Dirac distributions

The first representation of any vector fp ∈ ∂Rb\RQb follows simply from the def-

inition of this boundary as ∂Rb = Rb\Rb and therefore fp ∈ Rb\RQb . Since it
belongs to the closure set of the realizability domain, any vector on the boundary
is the limit of a sequence of realizable vectors. A first proposition is recalled.

10



Proposition 6. Considering moments up to an even N = 2J or odd N = 2J − 1
order, the realizability domain is represented by exactly J different Dirac measures

RbN
=

{
J∑
i=1

αib(si), αi > 0, si ∈ E ⊂ R s.t. si 6= sj ∀i 6= j

}
.

This result has been formulated in various manner in the literature. The proof
can be found for instance in [13, 11].

Based on such a representation of realizable vectors, we may interpret any vector
on the boundary ∂Rb as the limit of a sequence in Rb. In this spirit, one verifies
for instance that the last canonical vector reads

eN = lim
ε→0

εNbN (ε−1) = lim
ε→0

∫
R
εNbN (s)δε−1(s)

which provides a representation of fnrec = eN . This can be extended with the
following result.

Corollary 1. Consider a vector f ∈ ∂Rb with even N = 2K or odd N = 2K + 1
order moments. Then,

• Either f ∈ ∂Rb ∩RQb then f can be represented by less Dirac measures

f =

J∑
i=1

αib(si), (11a)

with J < K such that αi > 0 and si 6= sj for all i 6= j.

• Or f ∈ ∂Rb\RQb then f can be represented by

f =

J∑
i=1

αib(si) (11b)

+ lim
ε→0

{
αKε

2Kb(±ε−1) even case N = 2K,

αK

(
ε2K+βKε

2K+1

2 b(ε−1) + ε2K−βKε
2K+1

2 b(−ε−1)
)

odd case N = 2K + 1,

with J < K − 1 such that αi > 0 and si 6= sj for all i 6= j and αK > 0.

Proof. The case f ∈ ∂Rb ∩RQb was treated in Proposition 4.
If f ∈ ∂Rb, Corollary 1 states that

f =

J∑
i=1

αib(si) + αK

{
e2K if N = 2K even case,
e2K + βKe2K+1 if N = 2K + 1 odd case,

with αK ≥ 0. If αK = 0, one easily verifies that f is recursively generated and is
therefore in RQb . Then f ∈ ∂Rb\RQb imposes αK > 0. In the even case, one can
represent

e2K = lim
ε→0

ε2Kb2K(ε−1),

and in the odd case(
e2K + βKe2K+1

)
= lim
ε→0

1

2

[(
ε2K + βKε

2K+1
)
b2K+1(ε−1) +

(
ε2K − βKε2K+1

)
b2K+1(−ε−1)

]
,

which correspond to the limit of the sum of two Dirac measures with positive masses
(if ε is small enough).

11



In the odd case of (11), the moment of order 2K of the two Dirac measures tend
to ±∞ in the limit ε→ 0, but their sum vanishes to the finite value αK .

This representation can be useful for proofs, as in Section 4 below. However,
it is useless for the construction of a closure since all moments of order superior
to N are unbounded in this limit. It is therefore a bad candidate for a closure
representation, as it does not provide finite higher order moments.

One remarks one more important representation result of the boundary.

Corollary 2. The part of the boundary ∂Rb ∩RQb is dense in ∂Rb.

Proof. One simply observes that the number of deltas, i.e. at most J − 1 in the
even case or J in the odd case, before taking the limit in (11) is strictly lower than

the number in the interior RQb , i.e. J in the even case or J + 1 in the odd case.

Therefore, before the limit, the representation is in ∂Rb ∩RQb .

3.3.2 Representation with derivatives of a Dirac distribution

As functions and discrete measures are rejected to represent fnrec ∈ ∂Rb\RQb , we
interprete moments in the sense of (differentiable) distributions in this paragraph.

Proposition 7. Consider f ∈ ∂Rb\RQb . Then

f =

J∑
i=1

αib(si) +
αK
2K!

b(2K)(sK),

where αi > 0, the velocities si are the roots of the polynomial p of lowest (non-zero)
degree such that Rf (p

2) = 0 and

• Even case N = 2K: sK ∈ R can have any real value,

• Odd case N = 2K + 1:

sK = (2K + 1)

Rf (s
2K+1)−

J∑
i=1

αis
2K+1
i

Rf (s2K)−
J∑
i=1

αis2Ki

.

Proof. Corollary 1 provides that (f0, . . . , f2K−1) is positively recursively generated
and is therefore represented by a sum of Dirac distributions. Finally, onlyRf (s

2K) 6=
J∑
i=1

αis
2K
i . This can be corrected by adding a vector b(2K)(sK) which has only

zero components except those in 2K (and potentially 2K + 1 in the odd case).
Especially, adding this term to the sum does not alter Rf (b2K−1). Removing all
the first eigenvectors provides

Rf (bKbTK)−
J∑
i=1

αibK(si)bK(si)
T = Diag(0, . . . , 0, αK).

This provides αK = Rf (s
2K)−

J∑
i=1

αis
2K
i > 0. Rewrite

Diag(0, . . . , 0, αK) =
αK
2K!

(bKbTK)(2K)(sK)

12



and the matrix can be corrected by Rf (bKbTK) where f = αK

2K!b
(2K)(sK) for some

sK . In the even case, no other moment is known, then for all sK , one has b(2K)(sK) =
(0, . . . , 0, 2K!). In the odd case, following Corollary 1, then we still haveRf (s

K+1bK) ∈
Span(Rf (bKbTK)), then

Rf (s
2K)−

J∑
i=1

αis
2K
i = αK , Rf (s

2K+1)−
J∑
i=1

αis
2K+1
i = (2K + 1)αKsK ,

which provides a unique sK .

This provides a representation for all f ∈ Rb which is valid when the projection
fp ∈ ∂Rb ∩ RQb and continuously degenerates onto the known one when fp ∈
∂Rb\RQb . One may easily construct a closure out of this representation in a general
framework. However, it is not entirely satisfactory for several reasons:

• This representation is not positive since the last term b(2K)(s) is not repre-
sented by a positive distribution but only by some derivative of a distribution.
And higher order moments of such a representation do not satisfy the realiz-
ability property from Proposition 3.

• In terms of application, if the sum of Diracs can have various interpretations
in the physics community (think e.g. of Klimontovitch equation or PIC simu-
lations in plasma, or more generally a BBGKY derivation in kinetic theory),
the present reconstruction can only be understood as some mathematical tool.

• Finally, the non-uniqueness of the velocity of this last term in the even case
is unpleasant the moment system is not closed at this step and there is yet no
reason to fix a certain value to sK .

3.3.3 Representation with a modified equilibrium

Another idea consists in merging this last order term fnrec in the equilibrium feq

and defining a modified equilibrium

f̃eq := feq + αKfnrec.

Decompose f̃eq under the form

f̃eq =
1

1 + αK
feq +

αK
1 + αK

fp,eq,

where fp,eq satisfies

∀i = 0, . . . , N − 1, fp,eqi = feqi and fp,eqN = feqN + (1 + αK).

There remains to find an appropriate representation for fp,eqi ∈ Rb. This construc-
tion does not simplify the representation problem as we still need a representation
of a realizable vector, but it can be used to obtain the properties of the present
projective closure with another representation such as Grad’s ([20]) or quadrature
methods (QMOM ; [34, 47]). Especially, several recent work ([40, 17]) aimed at
turning this last method strongly hyperbolic. Instead of enforcing strong hyperbol-
icity, the present idea would provide an exact representation of the equilibria.

This idea is not pushed forward in the rest of the paper and is only left as a
perspective. In the next section, we focus on a representation of the form (4) that

always enforces fp ∈ ∂Rb ∩RQb .
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4 A parametrization of Rb adapted to the projec-
tive closure

In order to avoide the difficulty of the representation over ∂Rb\RQb , we now con-
struct some appropriate equilibrium function such that fnrec = 0 in (9), or equiva-

lently such that the projection fp ∈ ∂Rb ∩RQb .

4.1 Preliminary

The equilibrium functions we have in mind are always Maxwellians. For this pur-
pose, we make the following additional hypothesis:

(H4) The equilibrium feq is defined from M parameters λ ∈ RM such that

(N + 1)−M =: 2J is even

and is of the form
feq = (η∗)′(λTbM−1), (12)

where η∗ is the Legendre dual of the strictly convex entropy η. It satisfies
(η∗)′ = (η′)−1 and such a distribution corresponds to one given by an entropy
minimization process ([6, 35, 30, 26, 42]).

Following the decomposition (4), our goal now is to reconstruct a measure of the
form

dµ(s) = (η∗)′
(
λTbM−1(s)

)
ds+

J∑
i=1

αiδsi(s) (13)

from a vector f ∈ Rb. Remark that we have a chosen to seek a decomposition with
J Dirac measures such that the number of parameters on this decomposition equals
the number of moments. Let us denote

v := (λ, α1, s1, . . . , αJ , sJ) ∈ Ev ⊂ RN+1

the vector of parameters required to define the reconstruction. The set Ev of pa-
rameters v will be defined in the next subsection.

Remark 2. Considering a vector f ∈ RbM−1
of size M , the distribution (12) is

commonly obtained as the unique minimizer (see e.g. [6, 35, 30, 26, 42]) of

feq = arginf
f ∈ L1

bM (E)+∫
E

bM−1f = f ∈ RbM−1

∫
E

η(f),

and the coefficients λ ∈ Λ ⊂ RM corresponds to the Lagrange multipliers associated
to the moment constraints. In the present context with f ∈ RbN

with N > M − 1,
one remarks:
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• Adapting this optimization result, the equilibrium function feq solves

feq = arginf
f ∈ L1

b(E)+∫
E

p2bM−1f = Rf (p2bM−1)

∫
E

p2η(f) where p(s) =

J∏
i=1

(s− si).

However, this provides little information since the roots si of p are also un-
knowns in our decomposition and further attempts relating the present de-
composition to an optimization problem are left as perspectives.

• Furthermore, the coefficients λ in (13) do not correspond to the Lagrange
multipliers associated to the reduced moment constraints∫

E

bM−1f
eq = Rf (bM−1)

because Rf (bM−1) are the moments of feq and the sum
∑
i

αiδsi together.

After choosing such an equilibrium function, (H2) rewrites:

(H2’) The strictly convex entropy η satisfies

∀(p,K) ∈ RM [X]× R+, ∃!K̃ ∈ R+ s.t. K(η∗)′(p) = (η∗)′(K̃p).

Indeed, with such a constraint, choosing

K =

(∫
E

(η∗)′
(
λTbM−1(s)

)
ds

)−1
provides (H2).

Remark 3. Condition (H2’) holds for instance for the entropies

• Boltzmann/Shanons’ η(f) = f log f − f , that gives (η∗)′(p) = exp(p),

• quadratic η(f) = f2, that gives (η∗)′(p) = p

• or Burgs’ η(f) = − log f , that gives (η∗)′(p) = p−1.

However, other physical entropies such as Fermi-Diracs’ or Bose-Einsteins’ η(p) =
(1± f) log(1± f)∓ f log f provide (η∗)′(p) = (exp(∓p)± 1)−1 which do not enforce
this property.

4.2 Bijection between moments f and parameters v

Let us first define the appropriate set Ev of parameters v for the reconstruction (14).
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4.2.1 Definition of the set Ev of parameters

First, the set of appropriate Lagrange multipliers is denoted Λ and following classical
optimization result ([26, 42]), we set

Λ :=
{
λ ∈ RM s.t. (η∗)′

(
λTbM−1

)
∈ L1

bN+1
(E)+

}
for its moments feq to be well-defined.

Second, in order to distinguish a Dirac from another in (14), we require that
they all have non-zero (and positive) masses and all different locations. Without
loss of generalities, let us order these locations and define

Eα,s := {(αi, si)i=1,...,J s.t. ∀i, αi > 0, si ∈ E s.t. s1 < s2 < · · · < sJ} .

Finally, the considered set of parameters Ev yields

Ev = Λ× Eα,s.

By abuse, let us denote f the function that sends v ∈ Ev onto Rb as

f :


Ev → Rb

v = (λ, α1, s1, . . . , αJ , sJ) 7→ f(v) =

∫
E

b(η∗)′
(
λTbM−1

)
+

J∑
i=1

αib(si).

(14)
Its Jacobian reads (in the form of a concatenation of a N × M matrix and

vectors)

Jvf(v) =

(∫
E

bbTM−1(η∗)′′
(
λTbM−1

)
, b(s1), α1b

′(s1), . . . , b(sJ), αJb′(sJ)

)
.

(15)
For this Jacobian to be well-defined, we therefore need to add another hypothesis.

(H5) The strictly convex entropy η satisfies

∀λ ∈ Λ, (η∗)′′(λTbM−1) ∈ L1
bN+M

(E).

Remark 4. • This requirement could be refined to a condition on η using con-
vex analyzis. We only remark that this hold when η is Boltzmann entropy on
E = R or with all the entropies mentioned in Remark 3 when E = [−1, 1], i.e.
for all the applications we have in mind.

• The integrability against bN+M−1 is sufficient for the Jacobian to be well-
defined, but we will also use this hypothesis in the next section for the con-
struction of the closure. This closure will require one order of integrability
higher.

• By convexity of η and the properties of the Legendre transformation, (η∗)′′ is
positive.

Proposition 8. Under hypothesis (H5), the Jacobian Jvf(v) is invertible for all
v ∈ Ev.
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Proof. Define for instance a vector of polynomials l such that for all i ≤ J

l2i−1(s) =
∏
j 6=i

(s− sj)2

(si − sj)2
, l2i(s) = (s− si)

∏
j 6=i

(s− sj)2

(si − sj)2
,

and the remaining ones, for all i > 2J

li =

J∏
j=1

(s− sj)2bi−2J .

The Hermite interpolation polynomials form a basis as long as the interpolation
points are all different, i.e. si 6= sj for all i 6= j. Then one easily verify that the
components of the l are a basis of RN [X]. This provides a change of basis matrix
P such that

PJvf(v)PT =

 ∗ Diag(J1, . . . , JJ)∫
E

J∏
j=1

(s− sj)2bM−1bTM−1(η∗)′′
(
λTbM−1

)
0J×2M

 ,

Ji =

(
1 αil

′
i(si)

0 αi

)
.

The right part of this matrix (composed of Jordan blocks) is composed of linearly
independent vectors as long as all αi 6= 0 and si 6= sj for i 6= j.

The block on the bottom left

∫
E

J∏
j=1

(s − sj)
2bM−1b

T
M−1(η∗)′′

(
λTbM−1

)
is

symmetric positive definite, then is also composed of linearly independent vectors,
which are also independent of those on the right side of the matrix.

Together, this provides the invertibility of Jvf(v).

Corollary 3. The function (14) is a C1-diffeomorphism from Ev into f(Ev) ⊂ Rb.

Proof. The bijection follows directly from the previous computation, and one ob-
serves that f(v) ∈ Rb is realizable as long as the masses αi > 0.

Remark 5. Hypothesis (H3) always hold for an equilibrium function of the form (12)
satisfying Hypothesis (H2’) (see also Remark 3). This simply follows from the fact
that the function (14) is a bijection.

4.2.2 Density of f(Ev) into Rb

In order to study the part of Rb that can be represented by a representation of
the form (14), we focus on the boundary of the set f(Ev). For this purpose, let us
decompose the boundary Ev into

∂Ev = (∂Λ× Eα,s) ∪ (Λ× ∂Eα,s). (16)

By abuse of notation (since f is not defined on the boundary), we denote f(∂Ev) ≡
∂f(Ev) the boundary of the set of moments represented by (14). And we denote
f(∂Λ × Eα,s) and f(Λ × ∂Eα,s) the parts of this boundary corresponding to the
decomposition (16).
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At this step, the inclusion f(Ev) ⊂ Rb ensures not that any realizable vector
f ∈ Rb possesses a decomposition of the form (14) with positive masses αi and an
equilibrium function of the form (12). In fact, this never holds and we only have

f(Ev) ( Rb.

Two illustrative counterexamples are provided to explain this issue:

• Consider a distribution of the form (14) but with less than J = N+1−M
2

Dirac measures. This also corresponds to a boundary distribution f(v) with
v ∈ ∂Ev, i.e. v /∈ Ev. This can be represented in two manner in (14): a Dirac
with a zero mass αJ = 0 at any location sJ ∈ R, or several Dirac measures
at the same location si = si+1. Especially, this implies the non-uniqueness of
the parameters in such a limit and therefore the loss of the bijective property
along this boundary.

Such vectors belong to f(Λ× ∂Eα,s).

• M. Junk ([25, 26]) exhibited realizable vectors that can not be represented by
an entropy minimization reconstruction in the case of Boltzmann entropy for
the problem of Hamburger E = R. This led to the fact that Λ is open and
possesses a boundary ∂Λ\Λ 6= ∅ and there exists some λs ∈ ∂Λ\Λ such that

f lim = lim
λ→λs

(∫
R

bM−1(η∗)′
(
λTbM−1

))
∈ RbM−1

(17a)

is realizable, but that have no representation of the form

@λ ∈ Λ s.t. f lim =

∫
R

bM−1(η∗)′
(
λTbM−1

)
. (17b)

Since (14) is a bijection, adding some αib(si) in (17a) and taking the same
limit on λ also leads to a realizable vector that cannot be represented under
the form (17b).

Such vectors belong to f(∂Λ× Eα,s).

Concerning the second point, we focus on a case (see hypothesis in Theorem 4.1
below) avoiding the appearance of such a Junk line ([25]). This hypothesis could be
softened, as one only needs such a Junk line not to open onto a part of the realizabil-
ity domain Rb\f(Ev) that can not be represented by our representation (14) and
that has a non-empty interior in RN+1. For simplicity, this discussion is avoided
here.

Concerning the first point, we may still quantify the part of the realizability
domain not covered by the present representation (14).

Theorem 4.1. Suppose that Λ 6= ∅ and ∂Λ ∩ Λ = ∅. Then f(Ev) is dense in Rb.

In order to keep the main results highlighted in the core of the text, the (essen-
tially technical) proof of this theorem is given in Appendix B.

Remark 6. The hypothesis Λ ∩ ∂Λ = ∅ was also exploited by M. Junk in [26]. It
is satisfied when
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• the equilibrium feq corresponds to a Maxwellians, i.e. when using Boltz-
mann entropy (η∗)′ = exp for the Hamburger problem E = R and where the
equilibrium is modeled with M = 3 parameters,

• or with all the entropies discussed in Remark 3 for the Hausdorff problem
E = [−1,+1].

The other cases involving a Junk line, e.g. when the equilibrium is modelled with
higher entropy minimizer for Hamburger problem, would require further considera-
tions in order to prove that such a part of the boundary f (∂Λ× Eα,s) does not open
onto a domain Rb\f(Ev) with non-empty interior. This can be expected, however
it would require further analyzis to prove this result, which are not discussed here.

4.3 Discussion on the set Rb\f(Ev)

In the spirit of [25], the existence of such realizable vectors f ∈ Rb\f(Ev) may seem
problematic. Existence and uniqueness of parameters v ∈ Ev such that f = f(v)
are not ensured.

In fact, the previous result can be refined, and we prove that there is existence
and uniqueness of a representation of the form (13) for such vectors just by removing
the Dirac measures having zero mass.

Proposition 9. Under the hypothesis of Theorem 4.1, for all f ∈ Rb, there exists
a unique representation of the form

f =

∫
E

b(s)(η∗)′
(
λTbM−1(s)

)
ds+

J̃∑
i=1

αib(si), (18)

with λ ∈ Λ, J̃ ≤ J and such that (αi)i=1,...,J̃ ∈ (R∗+)J̃ are all strictly positive and

(si)i=1,...,J̃ ∈ EJ̃ .

Proof. The case f ∈ Rb ∩ f(Ev) is covered in Theorem 4.1 with J̃ = J .
In the case f ∈ Rb\f(Ev), then f ∈ Rb∩ f(∂Ev). Using the decomposition (16),

either f ∈ Rb ∩ f(Λ× ∂Eα,s) or f ∈ Rb ∩ f(∂Λ× Eα,s).
Lemma B.1 in Appendix B provides that f(∂Λ × Eα,s) = ∂Rb. But, since this

set is open Rb ∩ f(∂Λ× Eα,s) = Rb ∩ ∂Rb = ∅.
Finally, the case f ∈ Rb ∩ f(∂Λ × Eα,s) corresponds to the case where f is

of the form (18) with less Dirac measures J̃ < J (so we have existence of the
parameters). In that case, simply consider the reduced vector Rf (bM−1+2J̃). We

can use Theorem 4.1 again on this vector to obtain the uniqueness of J̃ parameters

(αi)i=1,...,J̃ ∈ (R∗+)J̃ and (si)i=1,...,J̃ ∈ EJ such that (18) holds.

This provides that the realizability domain is in bijection with the set of measures
of the form (13), as long as the equilibrium function creates no Junk line.

5 Hyperbolicity and entropic structure

Now, we discuss the hyperbolicity of the projective models and the notions of en-
tropy that can be expected through this construction.
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5.1 Weak hyperbolicity and wave speeds of the full system

We first study the hyperbolic structure of the full moment model through the fol-
lowing proposition.

Theorem 5.1. Under the hypothesis of Theorem 4.1, the left-hand-side of (2,8)
is weakly hyperbolic as long as f ∈ f(Ev). Especially, the Jacobian of the flux is
similar to a matrix of the form

JfF = P

(
Aeq 0R2K×2K

B As

)
P−1,

where

Aeq =

(∫
E

l(s)2(bM−1b
T
M−1)(s)(η∗)′′

(
λTbM−1(s)ds

))−1
×
(∫

E

sl(s)2(bM−1b
T
M−1)(s)(η∗)′′

(
λTbM−1(s)

)
ds

)
,

As = Diag(Aα1,s1 , . . . , AαK ,sK ), Aαk,sk =

(
sk αk
0 sk

)
, l(s) =

K∏
k=1

(s− sk),

and some matrix B ∈ R2J×(M−1). Especially, the spectrum of JfF is composed of
the eigenvalues of Aeq (multiplicity one) and each sk of multiplicity two.

Proof. Under the hypothesis of Theorem 4.1, we can decompose

f =

∫
E

b(s)(η∗)′
(
λTbM−1(s)

)
ds+

K∑
i=1

αib(si),

where Jvf is computed in (15). Performing the same decomposition and computa-
tion for the flux reads

F =

∫
E

sb(s)(η∗)′
(
λTbM−1(s)

)
ds+

K∑
i=1

αisib(si),

JvF =

(∫
E

sbbTM−1(η∗)′′
(
λTbM−1

)
, s1b(s1), α1 (s1b

′(s1) + b(s1)) , . . . , b(sJ), αJ (sJb′(sJ) + b(sJ))

)
.

(19)

Define the matrix P such that

Pb =
(
l2bTM−1, b̃T

)T
,

b̃(s) =
(
l21(s), (s− s1)l21(s), . . . , l2J(s), (s− sJ)l2J(s)

)T
, li(s) =

J∏
j=1

j 6=i

s− sj
s− si

.

This new vector of polynomials forms a basis, thus P is invertible and we can
decompose

JfF = (Jvf)
[
(PJvf)−1(PJvF)

]
(Jvf)−1.
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Computing the blocks provides

(PJvf) =

 ∫
E
l2(s)(bM−1b

T
M−1)(s)(η∗)′′

(
λTbM−1(s)

)
ds 0RN−M+1×2J∫

E
(b̃bTM−1)(s)(η∗)′′

(
λTbM−1(s)

)
ds Diag(Bα1,s1 , . . . , BαJ ,sJ )

 ,

(PJvF) =

 ∫
E
sl2(s)(bM−1b

T
M−1)(s)(η∗)′′

(
λTbM−1(s)

)
ds 0RN−M+1×2J∫

E
s(b̃bTM−1)(s)(η∗)′′

(
λTbM−1(s)

)
ds Diag(Cα1,s1 , . . . , CαJ ,sJ )

 ,

Bαi,si =

(
1 2αil

′
i(si)

0 αi

)
, Cαi,si =

(
s1 αi(1 + 2sil

′
i(si))

0 αi

)
.

Computing the inverse (PJvf)−1 of the triangular block matrix (PJvf) and multi-
plying by (PJvF) provides the result. Remark that the matrix B can be computed
explicitly, but its value does not impact on the eigenstructure of JfF.

Based on the considered representation involving the propagation of Dirac dis-
tributions, weak hyperbolicity was highly expected. Indeed, such weakly hyperbolic
models are known to create and propagate δ-shocks (see e.g. [29, 7, 16]), i.e. the so-
lution involves Dirac measures propagated with the flow. In the present case, those
δ-shocks are exactly those appearing in (4). The same phenomenon appear with
the QMOM method ([34]) which also provide a weakly hyperbolic model as this
reconstruction is only composed on Dirac distributions. However, the equilibrium
part in (4) provide other benefits that are studied in the next subsection.

From [30], the wave speeds of the equilibrium system, i.e. without the delta
in (4), are simply the eigenvalues of Aeq where the polynomial l2 is set to 1.

We provide two corollaries for the applications we have in mind.

Corollary 4. Suppose that N = 2J+1 is odd and feq ∈ LbN+1
(E)+ is independent

of f and such that fs ∈ ∂Rb ∩RQb . Then the wave speeds are the si (of multiplicity
two) and

seq :=

∫
E
s
J∏
i=1

(s− si)2feq(s)ds∫
E

J∏
i=1

(s− si)2feq(s)ds
.

Proof. Under the hypothesis, fs can be represented by J Dirac measures and there is
a bijection between Eα,s and ∂Rb∩RQb such that we can use the decomposition (14)
with the appropriate number of parameters. The rest of the proofs is identical.

The hypothesis fs ∈ ∂Rb ∩RQb always hold when E is compact, e.g. in the case
of Hausdorff problem E = [−1,+1] for radiative transfer which was studied in [38].

In the case of Hamburger E = R, e.g. for rarefied gases, one may try to use a
precomputation of a Maxwellian, by solving Euler equation for instance, and use
the present projective method to study the perturbation from the thermodynamic
equilibrium. However, at this step, there is no reason for this Maxwellian to satisfy
fs ∈ ∂Rb ∩ RQb . For this purpose, one may use a Maxwellian that depends on the
moments f . The difference between those two approaches relies on the parameters
of this Maxwellian, either a precomputation, therefore independent of f and easier
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to compute numerically, or a non-linear function of f fully coupled with the location

and the masses (and a priori ρ 6= f0, u 6= f1
f0

and T 6= f2
f0
−
(

f1
f0

)2
).

Corollary 5. Suppose that N = 2J + 1 is odd and feq is a Maxwellian, i.e. of the
form

feq(s) =
ρ√
2πT

exp

(
− (s− u)

2

2T

)
where the density ρ, the velocity u and the temperature T depend on f . Then, the
wave speeds are the si (of multiplicity 2) and the eigenvalues of

Aeq =

(∫
E

K∏
k=1

(s− sk)2(b2b
T
2 )(s) exp

(
− (s− u)2

2T

)
ds

)−1

×

(∫
E

s

K∏
k=1

(s− sk)2(b2b
T
2 )(s) exp

(
− (s− u)2

2T

)
ds

)
.

This is a direct application of Theorem 5.1. One may find a simpler form of
the wave speeds of this system by using the change of variables σ = s−u√

2T
in those

integrals.

5.2 Entropy dissipation

We provide here partial results around the entropy dissipation of the present closure.
At this point, we have not provided any hints on how to construct the moments
of the collision operator. Contrarily to many closures in the literature, one can
not define it just by plugging the chosen reconstruction in the definition of the
moments of the collision operator (3), because this reconstruction involves Dirac
measures which are commonly inappropriate for most collision operator (typically
for Boltzmann or BGK).

We provide here two constructions providing some intuitions on constraints to
impose to this Q for the closed moment equations to have appropriate entropy
dissipation.

5.2.1 Symmetric hyperbolicity of the equilibrium subsystem

The equilibrium part of the reconstruction is closely related to the entropy min-
imizing closure. In [30], such a closure was shown to lead to a Godunov-Mock
([19, 37, 18]) symmetric form

A(λ)∂tλ+B(λ)∂xλ = Dλ,

with A symmetric definite positive and B symmetric. The definition of those relate
the hyperbolic moment equations with its underlying kinetic interpretation. Fol-
lowing [27, 45, 10], one commonly construct a closure Q with such a closure, such
that it leads to a definition of the entropy dissipation operator Dλ (depending on
λ) that has non-positive components.

This property also inspired the construction of the ϕ-divergence closure in [1, 2].
We exhibit here a property of the equilibrium function that leads to a similar

Godunov-Mock form.
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Proposition 10. For a given function Q(f), suppose that the function f satis-
fies (2,8) in a neighborhood of (x, t) and such that it belongs to f(x, t) ∈ f(Ev).
Then λ satisfy the symmetric hyperbolic equation

A(v)∂tλ+B(v)∂xλ = Dλ(v), (20)

with A symmetric positive definite and B symmetric. Those matrices and the op-
erator Dλ depend on both λ and on (αi, si)i=1,...,J and are defined by

A(v) =

∫
E

l2(s)(bM−1b
T
M−1)(s)(η∗)′′(λTbM−1(s))ds,

B(v) =

∫
E

sl2(s)(bM−1b
T
M−1)(s)(η∗)′′(λTbM−1(s))ds,

Dλ(v) = RQ(l2bM−1).

Proof. We have
Jvf∂tv + JvF∂xv = Q, (21)

where Jvf is defined in (15) and JvF in (19). Define the matrix P such that
Pb = l2bM−1, then

PJvf = (A(v), 0RM−1 , . . . , 0RM−1) , PJvF = (B(v), 0RM−1 , . . . , 0RM−1) .

Therefore multiplying (21) on the left by P reads (20).

5.2.2 Entropy equation of the Dirac subsystems

Similarly, the singular part of the reconstruction is closely related to the QMOM
closure ([34]).

In [7], it was shown that a system of moment represented by one Dirac measure
satisfied an additional equation of the form

∂t (α1H(s1)) + ∂x (α1s1H(s1)) = DH,α,s,

for any convex function H. Commonly one choose to impose a non-positive entropy
dissipation term DH,α,s ≤ 0. This idea extends for multiple Dirac measures, e.g.
in [9] under the form

∂t

(
J∑
i=1

αiHi(si)

)
+ ∂x

(
J∑
i=1

αisiHi(si)

)
= DH,α,s(v),

for any convex functions Hi.
We exhibit here a property of the singular part of the reconstruction that leads

to a similar entropy equation.

Proposition 11. For a given function Q(f) and given convex functions (Hi)i=1,...,J ,
suppose that the function f satisfies (2,8) in a neighborhood of (x, t) and such that
it belongs to f(x, t) ∈ f(Ev).

Then the coefficients (αi, si)i=1,...,J satisfy an equation of the form

∂t

(
J∑
i=1

αiHi(si)

)
+ ∂x

(
J∑
i=1

αisiHi(si)

)
= DH,α,s(v). (22)
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The operator DH,α,s depends on λ, (αi, si)i=1,...,J and on the choice of (Hi)i=1,...,J ,
it is of the form

DH,α,s(v) = RQ(p) +K∂xλM−1,

for some p ∈ RN [X] and K ∈ R.

We have found little interpretation for the values of p and K and their construc-
tion is only detailed through the proof.

Proof. The polynomiasl (of degree N = 2J + M − 1) orthogonal to Span(bM−1)
with respect to the measure (η∗)′′(λTbM−1(s))ds form a space of dimension 2J .
For our purpose, an appropriate basis of those can be obtained by projecting onto
this orthogonal set the Hermite interpolation polynomials, i.e. the polynomials
(pi,qi)i=1,...,J such that pi(sj) = 0 = qi(sj) for j 6= i and such that qi(si) = 0 6=
q′i(si) too. For completeness, we provide a technique to construct them and obtain
eventually K and p.

Define the Lagrange polynomials (non-normalized yet)

li(s) =
∏
j 6=i

(s− sj)

annihilating at all sj for j 6= i. Then, define p̃i,0(s) = 1 and for j = 1, . . . ,M

p̃i,j(s) =

sj − j−1∑
k=0

p̃i,k(s)

∫
E

p̃i,k(s)li(s)
2sj(η∗)′′

(
λTbM−1(s)

)
ds∫

E
p̃i,k(s)2li(s)2(η∗)′′

(
λTbM−1(s)

)
ds

 .

Then denote p̃i := l2i p̃i,M and q̃i := l2i p̃i,M+1 the polynomials of degree M + 2(J −
1) = N − 1 and N annihilating at all sj with j 6= i orthogonal to all polynomials of

degree respectively M−1 and M with respect to the measure (η∗)′′(λTbM−1(s))ds.
Define P̃ ∈ RN×N such that

P̃b =
(
bTM−1, p̃1, q̃1, . . . , p̃J , q̃J

)T
.

One computes

P̃ Jvf =

(
B0 U

0R2J×(M−1) Diag(B1, . . . , BJ)

)
,

B0 =

∫
E

bM−1(s)bM−1(s)T (η∗)′′(λTbM−1(s))ds,

U =
(
bM−1(s1), α1b

′
M−1(s1), . . . ,bM−1(sJ), αJb′M−1(sJ)

)
,

Bi =

(
p̃i(si) αip̃

′
i(si)

q̃i(si) αiq̃
′
i(si)

)
∀i = 1, . . . , J,
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and similarly

P̃ JvF =

(
C0 V
L Diag(C1, . . . , CJ)

)
,

C0 =

∫
E

sbM−1(s)bM−1(s)T (η∗)′′(λTbM−1(s))ds,

V =
(
s1bM−1(s1), α1(b′M−1(s1) + s1bM−1(s1)), . . . , αJ(b′M−1(sJ) + sJbM−1(sJ))

)
,

L =

∫
E


0 . . . 0 sM p̃1(s)
0 . . . 0 0
...

...
...

...
0 . . . 0 sM p̃J(s)
0 . . . 0 0

 (η∗)′′(λTbM−1(s))ds,

Ci =

(
sip̃i(si) αi(sip̃

′
i(si) + p̃i(si))

siq̃i(si) αi(siq̃
′
i(si) + q̃i(si))

)
∀i = 1, . . . , J.

Remark that, by construction of p̃i, only the integrals involving p̃i and sM don’t
cancel out in the matrix L.

For simplicity, define

B̃i =

(
p̃i(si) p̃′i(si)
q̃i(si) q̃′i(si)

)
.

We prove that this matrix is invertible by contradiction. Assuming B̃i is singular
and denoting V0 a zero left-eigenvector, then the polynomial

V 0

(
p̃i
q̃i

)
=: W 0b,

satisfies

W 0Jv ∈ Span
(∫

E

bNbTM−1(η∗)′′(λTbM−1)

)
.

And especially there exists a zero left-eigenvector to Jvf which contradicts that
f ∈ f(Ev). Therefore B̃i is invertible and

B̃−1i =
1

p̃i(si)q̃′i(si)− p̃′i(si)q̃i(si)

(
q̃′i(si) −p̃′i(si)
−q̃i(si) p̃i(si)

)
.

Lastly, define (pi,qi)
T = B̃−1i (p̃i, q̃i) =: P ib. Then multiplying (21) by P i

provides the system

∂tαi + (si∂xαi + αi∂xsi)+κ(pi)∂xλM−1 = RQ(pi), (23a)

αi(∂tsi + αisi∂xsi) +κ(qi)∂xλM−1 = RQ(qi), (23b)

where

κ(pi) =

∫
E

sMpi(s)(η
∗)′′(λTbM−1(s))ds =

κ(p̃i)q̃
′
i(si)

q̃′i(si)p̃i(si)− p̃′i(si)q̃i(si)
, (23c)

κ(qi) =

∫
E

sMqi(s)(η
∗)′′(λTbM−1(s))ds = − κ(p̃i)q̃i(si)

q̃′i(si)p̃i(si)− p̃′i(si)q̃i(si)
. (23d)
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Summing over i the equations H ′i(si)×(23b)+Hi(si)×(23a) provides the result
with

p =

J∑
i=1

H ′i(si)qi +H(si)pi, (24a)

K = −κ(p) =

∫
E

J∑
i=1

(
H ′i(si)q̃i(si)−H(si)q̃

′
i(si)

q̃′i(si)p̃i(si)− p̃′i(si)q̃i(si)

)
p̃i(s)s

M (η∗)′′
(
λTbM−1(s)

)
ds.

(24b)

One can interpret the polynomials pi and qi as the projections of the Hermite
interpolation polynomials anihilating at all sj for j 6= i and such that the value of
its derivative for pi or the value of the polynomial itself for qi is zero in si, onto
the orthogonal complement of RM−1[X] in RN [X] with respect to the L2 scalar
product weighted with (η∗)′′(λTbM−1) and normalized after projection.

Remark that the spatial derivative of the highest degree term λM−1 in the equi-
librium functions remains in the entropy equation (22) after computations. There
is of course little chance that this derivative term remain signed along the simula-
tion. Therefore, imposing a non-positive dissipation term DH,α,s requires further
assumption on, especially on the convex functions Hi.

Corollary 6. For a given function Q(f), suppose that the function f satisfies (2,8)
in a neighboohood of (x, t) and such that it belongs to f(x, t) ∈ f(Ev) and consider
a convex function Hi such that

Hi(si) = Kiq̃i(si), H ′i(si) = Kiq̃
′
i(si),

where q̃i ∈ RN [X] is constructed in the proof of Proposition 11 as a non-trivial
polynomial such that

q̃i(sj) = 0 = q̃′i(sj) ∀i 6= j, and

∫
E

q̃i(s)bM (s)(η∗)′′ (λbM−1(s)) ds = 0RM+1 .

Then
∂t (αiHi(si)) + ∂x (αisiHi(si)) = KiRQ(q̃i).

Proof. Computing

H ′i(si)qi +Hi(si)pi =
Ki

p̃i(si)q̃′i(si)− p̃′i(si)q̃i(si)
[q̃′i(si) (−q̃i(si)p̃i + p̃i(si)q̃i) + q̃i(si) (q̃′i(si)p̃i − p̃′i(si)q̃i)]

= Kiq̃i.

Since the term in p̃i in p is zero, then κ(p) = 0, and only the term RQ(p) remains
in DH,α,s which simplifies into RQ(q̃i)

Remark 7. • Only the value of Hi(si) and its derivative H ′i(si) at si impacts
on this result.

• Therefore, one easily find a function satisfying this property, e.g. by construct-
ing a quadratic polynomial from these two data together with a constant Ki

such that sign(Ki) = −sign(RQ(q̃i)), to obtain a non-positive dissipation term
DH,α,s ≤ 0.

• This results was written for the i-th Dirac term, but this can of course be
adapted to any combination of deltas.
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6 Conclusion and perspectives

We have extended the framework for the construction of the projective closure
initiated in [38] in several directions:

• First, it was restricted to the Hausdorff problem (i.e. with an interval E =
[−1,+1] for the set of integration) to the Hamburger case (i.e. with an un-
bounded set of integration E = R). Extension to other bounded or unbounded
1D sets (Stieltjes E = R+ or Toeplitz E = S1) present no more difficulties.

• Several representation results were provided along the boundary of the realiz-
ability domain. Since vector along this boundary are known not be vectors of
moments of integrable functions, these representation consists in giving other
interpretations of those vectors. In practice, these representations are a limit
of Dirac measures, a sum of Dirac measures plus a derivative of one, and a
modification of the equilibrium function such that the projection naturally
avoids the difficulties of representation along the boundary.

In this generalized framework, the well-definition of the projective closure was ex-
hibited by providing a parametrization of the realizability domain well-adapted to
our closure. Especially, we showed that the projective closure is based on a one-to-
one function from the realizability domain and the set of measures of the desired
form.

Finally, the hyperbolic and the entropic structure of the resulting moment model
was analyzed. It was shown to be weakly hyperbolic, and its wave speeds were
computed. We exhibited interesting entropic properties of two subsystems related
to the equilibrium and to the purely anisotropic part of the underlying distribution.

However, contrarily to [38], the extension to Hamburger case is yet restricted
to a theoretical study and the first perspective we have in mind are numerical.
We have shown that the closure existed when the equilibrium distribution is a
Maxwellian, but computing numerically the parameters of this distribution remains
an open problem. Numerical investigation in this direction are closely related to the
algorithmic construction of the QMOM methods (with its extensions ; see e.g. [34,
32, 31, 46, 47, 9, 17] and references therein).

A Discussion on Hypothesis (H3)

This hypothesis states that the equilibrium moment vector is constant along a ray
starting in f and pointed toward −feq(f). This can be characterized by

Proposition 12. Suppose that Hypothesis (H2) holds and that feq is a C1 function
of f . Then, Hypothesis (H3) holds if and only if

Jff
eq(f)feq(f) = 0RN+1 . (25)

Proof. One reformulates

feq(f)

f0
=
feq(f − αfeq(f))

f0
.

Then
feq(f − αfeq(f))− feq(f)

α
= 0.
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Having α tend to zero read (25).

This characterization is not simpler nor more general than the original formu-
lation of (H3). However, it provides a numerical characterization of this hypoth-
esis. And following Remark 5, this hypothesis is always satisfied with the equilib-
rium (12). Therefore, it provides an additional numerical information on feq, and
therefore on the parameters λ that could be used for numerical applications.

B Proof of Theorem 4.1

We prove here that the set of moments of the form (14) is dense in Rb

B.1 Correspondance of ∂Rb and f ((∂Λ\Λ)× Eα,s)

Before proving this result, we provide a technical lemma.

Lemma B.1. Suppose that Λ 6= ∅ and ∂Λ ∩ Λ = ∅. Then f ((∂Λ\Λ)× Eα,s) ∩
RN+1 = ∂Rb ∩ RN+1.

Proof. Define the application

gK :

 Λ → RbK

λ 7→
∫
E

bK(η∗)′(λTbM−1)

for some integer K.
By hypothesis, Λ is a non-empty open set. Following optimization results

(see [26, 6]), this provides that gM−1 is a bijection. Especially, any point on the
boundary fs ∈ ∂RbM−1

can be represented as a limit for some λs ∈ ∂Λ of

fs = lim
λ→λs

∫
E

bM−1(η∗)′(λTbM−1).

According to Corollary 1, the vector fs correspond either to the moments of the
sum of K Dirac measures, where K < M−1

2 in the case M − 1 even or K < M−2
2

in the case M − 1 odd, or to those moments plus the limit of one or two Dirac
measures of the form (11).

Under the integrability assumption (H5) on (η∗)′(λTbM−1), then its moments
of higher order also exists. Therefore, the only λs ∈ ∂Λ such that lim

λ→λs
gN (λ) is

finite are those that match the moments at least up to order N of a sum of K Dirac
measures.

Adding the remaining J Dirac measures from the reconstruction (14) and ob-
serving that this holds for all location si and positive mass αi provides that all
boundary vector f ∈ ∂Rb can be represented as a limit of lim

v→vs
f(v) for some

vs ∈ ((∂Λ\Λ)× Eα,s).

B.2 Decomposing the boundary

With Corollary 3, the function (14) is a C1-diffeomorphism from Ev, i.e. an open
subset of RN+1 into f(Ev), i.e. another open subset of Rb ⊂ RN+1. Then the
boundary of the arriving set ∂f(Ev) match with f(v) in the limit v→ ∂Ev.
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Using the decomposition (16) of this boundary, we have

∂f(Ev) = f(∂Λ× Eα,s) ∪ f(Λ× ∂Eα,s).

Using Lemma B.1, the first part f(∂Λ × Eα,s) = ∂Rb. There remains to show
that the remaining part f(Λ× ∂Eα,s) does not open onto a domain Rb\f(Ev) with
non-empty interior in RN+1. In particular, we show that for all f ∈ ∂f(Ev)\∂Rb

and all direction d ∈ RN+1, there exists ε > 0 such that for all 0 < δ < ε, then
f + δd ∈ f(Ev).

B.3 Tangent and normal vectors to the boundary f(Λ×∂Eα,s)

Any vector fs ∈ f(Λ× ∂Eα,s) can be written under the form

fs =

∫
E

b(η∗)′(λbM−1) +

J−1∑
i=1

αib(si) (26)

with at least one less Dirac measure than (14). It can therefore be written as the
limit

fs =

∫
E

b(η∗)′(λbM−1) +

J−1∑
i=1

αib(si) + lim
ε→0+

εb(sJ)

for any sJ ∈ R different from the other (si)i=1,...,J−1. From this representation,
computing the Jacobian Jf(λ, α1, s1, . . . , αJ−1, sJ−1, ε, sJ) before the limit provides
a basis of RN+1 of the form (15). By definition of the Jacobian, adding any of
the column vectors composing this Jacobian multiplied by an infinitesimal ε to fs

corresponds to having the corresponding parameter vary in fs. One easily verifies
that having fs vary along the direction associated to λ or any of the αi or si for
i = 1, . . . , J − 1 does not alter the representation (14). Neither does the variation
along sJ . However, one obtains that −b(sJ) is a normal direction to the boundary
f(Λ× ∂Eα,s) that points outward.

B.4 No hole in f(Λ× Eα,s)

Let us study the half-line Hfs,−b(sJ ) starting in fs and pointed toward −b(sJ).
Since fs ∈ Rb, then this ray intersects the boundary, i.e. Rb ∩ Hfs,−b(sj) is a
singleton. Since f(Ev) is open and satisfies ∂Rb ⊂ ∂f(Ev), then this half-line also
intersects ∂f(Ev), and since f(∂Λ × Eα,s) = ∂Rb, then it intersect the other part
of the boundary f(Λ× ∂Eα,s). This implies that there exists δ ≥ 0 such that

fs − δb(sJ) =: gs ∈ f(Λ× ∂Eα,s).

Especially, this gs is also of the form of (26). This provides that∫
E

b(η∗)′(λTbM−1) +

J−1∑
i=1

αib(si)− δb(sJ) =

∫
E

b(η∗)′(λ′TbM−1) +

J−1∑
i=1

α′ib(s′i)

(27)
for some λ′ ∈ Λ and α′i ≥ 0. However, one observes that f is also a C1-diffeomorphism
over the set of the form Λ×Eα,s where the constraint on αJ is replaced by a nega-
tivity constraint. Especially, this provides the uniqueness of a representation of the
form (27) and therefore the equalities λ′ = λ, α′i = αi and s′i = si. This means
that fs ± δb(sJ) ∈ f(Ev) remains represented by a distribution of the form (14) on
both side of fs for δ sufficiently small.
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[21] H. Hamburger. Über eine Erweiterung des Stieltjesschen Momentenproblems.
Math. Ann., 82:120–164, 1921.

[22] C. Hauck, C. Levermore, and A. Tits. Convex duality and entropy-based
moment closures: Characterizing degenerate densities. SIAM J. Control Optim,
47:1977–2015, 2008.

[23] C. D. Hauck. High-order entropy-based closures for linear transport in slab
geometry. Commun. Math. Sci., 9(1):187–205, 2011.

[24] F. Hausdorff. Summationmethoden und Momentfolgen. Math. Z., 9:74–109,
1921.

[25] M. Junk. Domain of definition of Levermore’s five-moment system. J. Stat.
Phys., 93(5/6):1143–1167, 1998.

[26] M. Junk. Maximum entropy for reduced moment problems. Math. Mod. Meth.
Appl. S., 10(1001–1028):2000, 1998.

[27] S. Kawashima and W.-A. Yong. Dissipative structure and entropy for hyper-
bolic systems of balance laws. Arch. Rational Mech. Anal., 174:345–364, 2004.

[28] J.-B. Lasserre. Moment, positive polynomials, and their applications, volume 1.
Imperial college press, 2009.

[29] R. J. LeVeque. Finite Volume methods for hyperbolic problems, volume 31.
2002.

[30] C. D. Levermore. Moment closure hierarchies for kinetic theories. J. Stat.
Phys., 83(5–6):1021–1065, 1996.

[31] D. Marchisio and R. Fox. Solution of population balance equations using the
direct quadrature method of moments. J. Aerosol Sci., 36:43–73, 2005.

[32] D. Marchisio and R. Fox. Computational models for polydisperse particulate
and multiphase systems. Cambridge University Press, 2013.

[33] J. McDonald and M. Torrilhon. Affordable robust moment closures for cfd
based on the maximum-entropy hierarchy. J. Comput. Phys., 251:500–523,
2013.

[34] R. McGraw. Description of aerosol dynamics by the quadrature method of
moments. Aerosol S. and Tech., 27:255–265, 1997.

31



[35] L. R. Mead and N. Papanicolaou. Maximum entropy in the problem of mo-
ments. J. Math. Phys., 25(8):2404–2417, 1984.

[36] G. N. Minerbo. Maximum entropy Eddington factors. J. Quant. Spectros.
Radiat. Transfer, 20:541–545, 1978.

[37] M. S. Mock. Systems of conservation laws of mixed type. J. Diff. Eq., 37(1):70–
88, 1980.

[38] T. Pichard. A moment closure based on a projection on the boundary of
the realizability domain: 1d case. Kinetic and related models, 13:1243–1280,
december 2020.

[39] T. Pichard, G. W. Alldredge, S. Brull, B. Dubroca, and M. Frank. An approx-
imation of the M2 closure: application to radiotherapy dose simulation. J. Sci.
Comput., 71:71–108, 2017.
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