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Abstract—Bladder cancer staging is crucial for operation
planning and cancer assessment. Deep Convolutional Neural
Networks (DCNNs) have been widely used to classify the bladder
tumor images to identify cancer stages. However, the pure image-
based deep learning methods over depend on the labeled data
training and neglect the clinical priors. Human doctors judge
the stage of a bladder tumor through checking whether the
tumor infiltrating into bladder wall. The clinical priors of tumor
infiltration are helpful to improve the DCNN-based bladder
cancer staging and make the predictions coincide with the law
of medicine. To involve clinical priors into deep learning for
cancer staging, we propose a DCNN model with prior evidence
to classify medical images of bladder tumors. Specifically, we
measure the degree of tumor infiltrating into bladder wall to
construct the prior evidence and integrate the prior evidence
into the image-based prediction with evidential deep neural
networks. We analyze the learning objective and prove that the
prior evidences consistent with the ground truth will certainly
reduce the prediction error and variance produced by image-
based neural networks. The experiments on bladder cancer MR
images datasets validate that involving prior evidences is effective
to improve the DCNN-based cancer staging.

Index Terms—bladder cancer staging, evidential deep neural
network, prior evidence

I. INTRODUCTION

Radiographs such as Magnetic Resonance (MR) and Com-
puted Tomography (CT) images are crucial for diagnosis and
treatments of bladder cancer. As to the superiority of image
feature extraction, Deep Convolutional Neural Networks (DC-
NNs) have been widely used in the image-based Computer
Aided Diagnosis (CAD) of bladder cancer [1], [2], which
include cancer staging [3], [4], tumor segmentation [5]–[7],
cancer treatments [8], [9] and etc. Bladder cancer staging
is generally performed based on MR images. Based on the
characteristics of tumors in images, the bladder tumors can be
staged from T0 to T4 and the tumors of T2 or greater stages
are often treated with partial or total cystectomy [10].

For bladder cancer staging, most existing methods directly
utilize deep neural networks to classify bladder images of

patients to determine the stage to tumors. However, the pure
image-based classification methods over depend on the model
training on labeled image data and neglect the clinical experi-
ences and priors. Human doctors generally judge the stage of a
bladder tumor through checking whether the tumor infiltrating
into bladder wall. The clinical priors of tumor infiltration are
helpful to improve the prediction accuracy of cancer stage and
make the predictions coincide with the law of medicine.

To involve clinical priors into deep learning for cancer
staging, we propose a deep convolutional neural network
with prior evidence to classify the MR images of bladder
tumors. Specifically, we construct the prior evidence of tumor
infiltrating into bladder wall and integrate the prior evidence
into the image-based prediction with evidential deep neural
networks. Figure 1 illustrates the workflow of the proposed
method. The block of green dash line indicates the image-
based prediction, which can be considered as a process of
DCNNs extracting evidences from images for prediction.
The block marked with orange dash line shows the process
of generating prior evidences of tumor infiltration. Through
fusing the evidences from both image data and priors, we
formulate the probability distribution of prediction with both
prior and image data. Based on the probability distribution
of prediction, we construct the loss objective of evidential
deep neural network to involve priors into DCNNs for cancer
stage identification. The contributions of the paper work are
summarized below.
• Propose an intuitive way to construct the prior evidence

of tumor infiltration to formulate clinical experience.
The prior evidence of tumor infiltrating into bladder
wall is measured by the overlap degree between the
segmentation masks of tumor and wall, which can be
efficiently computed based on the inner product of mask
matrices.

• Propose an evidential deep neural network with prior
evidence of tumor infiltration for bladder cancer staging.
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Fig. 1. Workflow of bladder cancer staging.

We formulate the prior probability distribution with prior
evidence and fuse the prior probability into the objective
of evidential deep neural networks built on only labeled
images. We analyze the learning objective and prove that
the prior evidences consistent with the ground truth will
reduce the prediction errors produced by image-based
neural networks.

II. RELATED WORK

A. Computer-aided diagnosis of bladder cancer

Deep Convolutional Neural Networks (DCNNs) are good at
extracting hierarchical features from images at multiple levels
of image abstraction [11], [12]. As to the superiority of image
feature learning, DCNNs have been widely utilized to imple-
ment Computer-Aided Diagnosis systems of bladder cancer
based on medical images. The applications include bladder
cancer staging, bladder segmentation [13], tumor detection
[14] and cancer treatments.

In the applications of bladder segmentation, tumor detection
and cancer treatments, Ma et al. proposed an automated
bladder segmentation method based on U-Net for CT urog-
raphy, in which the bladder boundary is estimated by U-Net
without user-input bounding box [15]. Shkolyar et al. built
up CystoNet based on DCNNs to improve the localization,
surgical resection and intraoperative navigation of bladder
tumors [16]. Rundo et al. proposed a radionics pipeline to
describe possible responses of bladder cancer patients during
immunotherapeutic treatments [17].

For bladder cancer staging, DCNNs were utilized to extract
features from MR images to recognize the stage of bladder
tumors. Garapati et al. used DCNNs to segment bladder
lesions from MR images to extract morphological features and
adopted the LDA classifier to predict bladder cancer stage
[3]. Moreover, the morphological and texture features were
synthesized and various kinds of classifiers which include
Support Vector Machine, Neural Network, Random Forest
were also utilized to improve the cancer staging predictions

[4]. Besides image feature extraction, Zhang et al. learnt
bladder cancer staging rules from MR images referring to
clinical experiences and integrated the rules into DCNNs for
tumor stage classification [18].

B. Machine learning based on evidence theory

Evidence theory (Dempster-Shafer evidence theory) is re-
garded as a kind of generalized probability. Evidence theory
utilizes mass function to measure the uncertainty in decision-
making and performs reasoning by Dempster’s rule [19],
[20]. Evidence theory has been widely used in the fields of
information fusion and reasoning with uncertainty. Combining
evidence theory with machine learning, related researches have
implemented a variety of supervised learning and unsupervised
learning algorithms for uncertain data analysis, which includes
Evidential K-Nearest Neighbors [21], Evidential Linear Dis-
crimination Analysis [22], BP neural network with evidence
[23] and etc.

Evidence theory has been widely used in medical image
analysis, such as medical image segmentation. Capelle et
al. presented a region-based segmentation method for the
detection of brain tumors in which each voxel’s segmentation
in MR images is combined with its neighborhood information
by using Dempster’s rule [24]. Lian et al. proposed a multi-
modality medical image segmentation method, using belief
functions to formulate the uncertain and imprecise segmen-
tation in each modality, and utilized Dempster’s rule to fuse
segmentation results of different modalities [25]. Huang et al.
used belief functions to evaluate the segmentation uncertainty
of boundary regions, and adopted Dempster’s rule to fuse it
with output probabilities of segmentation [26]. Besides image
segmentation, evidence theory was also used for other tasks
of medical image analysis. In recent years, some researchers
combined evidence theory with deep learning and proposed
evidential deep neural networks to improve the ability of
evidence theory to process complex data [27]. In the evidential
deep neural networks, evidence theory is used to measure



the uncertainty of the predictions produced by deep neural
networks and rectify the unreasonable predictions [28].

III. DCNN WITH PRIOR EVIDENCE FOR BLADDER
CANCER STAGING

A. Constructing prior evidence of tumor infiltration

As introduced in Section I, the stage of bladder cancer
can be divided into five phases from T0 to T4. The stages
greater than T2 are considered as high stages and require
cystectomy [10]. According to the clinical experience, human
doctors generally identify the stage of bladder tumors through
checking the degree of tumor infiltrating into bladder wall. It
is intuitive to consider that the high overlap degree between
the regions of tumor and bladder wall indicates the high cancer
stage (≥ T2), conversely, the low overlap degree indicates the
low stage (< T2). Therefore, we can compute the overlap
degree between tumor and bladder wall as the prior evidence
of tumor infiltration,

% =
〈Mtumor,Mwall〉
‖Mwall‖22

, (1)

where Mtumor and Mwall denote the mask matrixes of tumor
and bladder wall segmented from MR images respectively,
〈·, ·〉 is the Frobenius inner product of two matrixes. For each
image i, we further normalize the overlap degree %i to ρi =
%i−%min

%max−%min . Two instances in Figure 2 show the correlation
between the tumor-wall overlap degree and the bladder cancer
stage. As ρ increases, the predicted bladder cancer stage will
increase from < T2 to ≥ T2. In the next section, we compute
the prior evidence of tumor infiltration for each image based
on ρi to improve the performance of bladder cancer staging.

B. Involving prior evidence into DCNN to identify cancer
stage

As mentioned in Section II-B, in the evidential deep neural
network (EvidentialNet) [28], the network prediction p is
extended to a Binomial probability distribution and the prob-
ability density function (pdf ) of the prediction p is denoted as
f(p; e−, e+). e−, e+ are the model outputs of DCNN which
are considered as the prediction evidences extracted from
images to support stage < T2 and stage ≥ T2 respectively.
In contrast to the image-based prediction, we formulate the
prediction based on priors with Beta distribution and suppose
the pdf of the prediction is f(p; a−, a+) where a−, a+ are the
prior evidences of tumor infiltration to support stage < T2 and
stage ≥ T2 respectively. According to Bayesian theorem, we
can formulate the pdf of the prediction based on both image
data and priors as

fpri(p; e−, e+, a−, a+) =f(p; e−, e+) ∗ f(p; a−, a+). (2)

For each image i, we further infer the pdf and obtain

fpri(pi; e
−
i , e

+
i , a

−
i , a

+
i ) =

p
e−i +2a−

i −1
i0 p

e+i +2a+
i −1

i1

B(e+i + 2a+i , e
−
i + 2a−i )

, (3)

where pi = (pi0, pi1), and pi0 and pi1 are the prediction prob-
abilities belonging to stage < T2 and stage ≥ T2, respectively.

B(·) denotes Beta function. Based on the tumor-wall overlap
degree in Section III-A, we can calculate the prior evidences
a−i , a

+
i as the parameters of fpri by

a−i = 1− ρi, a+i = ρi. (4)

Fig. 2. Calculation of prior evidence from segmentations.

Based on the pdf of the prediction based on both image data
and priors, we can construct the expectation of the prediction
error as the loss objective of the deep neural network with
prior. Given a data set D={xi,yi}Ni=1 of N labeled images,
suppose yi = (yi0, yi1) is the one-hot label vector for xi,
yi = (0, 1) when stage ≥ T2 and yi = (1, 0) when stage <
T2. The prediction loss of the ith image is

Lpri(ei) =

∫
‖yi − pi‖22fpri(pi; e

+
i , e
−
i , a

+
i , a

−
i )dpi

= Efpri

[
‖yi − pi‖22

]
=

1∑
j=0

Efpri [y2ij − 2yijpij + p2ij ]

=

1∑
j=0

(y2ij − 2y2ijEfpri(pij) + Efpri(p2ij)). (5)

Because Efpri(p2ij) = Efpri(pij)
2 + V arfpri(pij), we infer

the formula and obtain

Lpri(ei) =

1∑
j=0

(yij − Efpri(pij))
2
+ V ar(pij)

=

(
yi0−

e−i + 2a−i
Si

)2

+

(
yi1−

e+i + 2a+i
Si

)2

︸ ︷︷ ︸
Lpri

err

+
2(e−i + 2a−i )(e

+
i + 2a+i )

S2i (Si + 1)︸ ︷︷ ︸
Lpri

var

, (6)

where Si = e−i +e
+
i +1. From (6), we know that the prediction

loss of neural network consists of two terms. The first term
Lpri
err denotes the prediction error (bias) and the second term
Lpri
var represents the variance of predictions. This reveals that

we can reduce both the prediction error and variance through
minimizing the loss function. Moreover, we can obtain the



following theorems to analyze the prediction enhancement
brought by priors.
Theorem 1. For positive instances, if prior evidences a+ >
a−, we have Lerr > Lpri

err. For negative instances, if a− > a+,
Lerr > Lpri

err.
proof: Without priors, we can obtain the predictive error term
Lerr of EvidentialNet as

Lerr =

(
y0 −

e− + 1

S

)2

+

(
y1 −

e+ + 1

S

)2

. (7)

In contrast, the predictive error term with prior Lpri
err in (6) is

Lpri
err =

(
y0 −

e− + 2a−

S

)2

+

(
y1 −

e+ + 2a+

S

)2

. (8)

Because a+ > a−, a++a− = 1, we have e−+2a− < e−+1
and e+ + 2a+ > e+ + 1. According to (7) and (8), we can
infer that (

y0 −
e− + 1

S

)2

>

(
y0 −

e− + 2a−

S

)2

,(
y1 −

e+ + 1

S

)2

>

(
y1 −

e+ + 2a+

S

)2

,

Lerr > Lpri
err. (9)

For negative instances, we can make the similar proof.
Theorem 2. For each instance, if (e+ − e−)(a+ − a−) > 0,
we have Lvar > Lpri

var.
proof: The prediction variance term Lvar of EvidentialNet
without priors is

Lvar =
2(e− + 1)(e+ + 1)

S2(S + 1)
. (10)

According to the prediction variance term with priors Lpri
var

in (6), we have

Lvar−Lpri
var=

2(e−+1)(e++1)

S2(S + 1)
− 2(e−+2a−)(e++2a+)

S2(S + 1)

=
e+(1−2a−)+e−(1−2a+)+(1−4a+a−)

S2(S + 1)
.

Because (1− 4a+a−) > 0 and a+ + a− = 1, we have

Lvar−Lpri
var=

(e+−e−)(a+−a−) + (1−4a+a−)
S2(S + 1)

>0. (11)

Referring to Theorem 1, we can design a strategy to
determine whether a prior can be integrated into DCNN-
based classification and thereby filter out prior evidences to
guarantee the decrease of prediction error. From Theorem 2,
we know that when the prediction evidences for classification
are consistent with the prior evidences, the variance of the
prediction produced by DCNNs will be reduced.

IV. EXPERIMENT RESULTS

In the experiments, the bladder cancer MR images for stage
prediction are collected from two sources, our cooperative hos-
pital and Chinese University Computer Design Competition.
The image data set contains 344 MR images of 38 patients,
and the size of MR images is 512×512. All the MR images
are labeled with high cancer stage (stage ≥ T2) or low cancer

stage (stage <T2) by human doctors and the ratio between
high stage and low stage is 1.26 : 1.

We divide the data set by patients and conduct five-fold
cross validation to implement experiments. Moreover, we
employ the measures of accuracy, precision, recall rate and
F1-score to evaluate the performances of image classification
methods. The experiments include two tests. The first test
will verify that integrating prior evidence into DCNNs is
effective to improve the predictions of bladder cancer stage.
The second test will validate the superiority of the proposed
method through comparing with other representative image
classification methods.

A. Validation of prior evidence for prediction improvement

In this test, we implement ablation studies to verify the
prediction improvement brought by integrating prior evidences
of tumor infiltration into DCNN. We adopt ResNet [29],
EvidentialNet [28], and our method in which the prior ev-
idence of tumor infiltration is integrated into EvidentialNet
to classify the bladder MR images for cancer staging. All
the deep neural networks above are constructed based on the
backbone network model of ResNet18 [29]. The classification
results are presented in Table I. We can find that based on the
evidential representation of prediction, EvidentialNet achieves
more precise predictions than ResNet. If we integrate priors
into EvidentialNet (denoted as EvidentialNet+prior), all the
evaluation measures of accuracy, precision, recall rate and
F1-score are further improved by +8.91%, +11.44%, +4.96%
and +8.35%, which verifies the prediction improvement of
prior integration.

TABLE I
ABLATION STUDIES OF INTEGRATING PRIOR EVIDENCE

ResNet EvidentialNet EvidentialNet+prior (Our Method)

Accuracy 72.14 83.86 92.77
Precision 70.43 80.40 91.84

Recall 84.19 90.05 95.01
F1-score 76.06 84.84 93.19

Next we exemplify integrating priors of tumor infiltration is
helpful for DCNNs to identify the confusing cases of cancer
staging. Figure 3 presents four cases that are misclassified by
EvidentialNet but correctly identified by EvidentialNet+prior.

As shown in Figure 3(a), the contour and intensities of
shaded area in the red circle are similar to the bladder tumor,
which causes EvidentialNet to generate misclassification of
stage ≥T2. In contrast, involving the prior evidence of tumor
infiltration in model training, our method can extract the
evidence of non-tumor-infiltration and integrate it into deep
neural networks, which enhances the low stage prediction of
p0 = 0.30 produced by EvidentialNet to p0 = 0.86 and
rectifies the prediction. The shade impact also occurs in Figure
3(b). Guided by the prior evidence learnt from segmentation
masks, our method enhances the prediction of low stage
p0 = 0.24 produced by EvidentialNet to p0 = 0.77 to improve
the prediction.

In Figure 3(c) and (d), because the intensities of tumor are
similar to bladder wall, the EvidentialNet based on only image



data may be confused and generate wrong decisions of low
cancer stage. In contrast, involving the prior evidences learnt
from segmentation masks in training phase, our method can
extract the evidences of tumor infiltration and improve the
prediction p1 = 0.76, p1 = 0.35 produced by EvidentialNet
to p1 = 0.88, p1 = 0.93 and generate the correct predictions
of high cancer stage.

According to the results of the ablation experiment, we
validate that integrating prior evidence of tumor infiltration
into DCNNs is helpful to recognize the confusing cases and
thereby improve the tumor stage predictions.

Fig. 3. Confusing cases of bladder cancer staging. Left column presents the
original MR images and the cancer stage predictions produced by Evidential-
Net. Right column presents the corresponding bladder wall and tumor regions
in MR images and the predictions produced by EvidentialNet+prior.

B. Comparison with other bladder cancer staging methods

To validate the effectiveness of our method, we compare our
method with four state-of-the-art DCNN-based medical image
classification methods including ResNet18 [29], DenseNet
[30], EvientialNet [28] and another prior-integrated DCNN
method RuleNet [18]. Figure 4 and Table II present the
comparison of cancer stage classification results produced by
different methods.

We can find that the proposed method achieves the best
performance in terms of all the evaluation metrics. The prior
integration can make the DCNN prediction of cancer stage
more precise and stable. As shown in Figure 4, through inte-
grating priors, the proposed method and RuleNet outperform
the pure data-driven DCNN models of ResNet, DenseNet and
EvidentialNet. Because the RuleNet requires sufficient data

to train an additional network to learn the decision rules of
priors, our method achieves better performance than RuleNet
on limited training data. Moreover, according to Theorem 1
and 2, the strategy of filtering prior evidences can guarantee
that the integrated priors will reduce the prediction error and
variance to produce more precise and stable prediction.

TABLE II
BLADDER CANCER STAGING PREDICTIONS GENERATED BY DIFFERENT

MOTHODS.

Methods Accuracy Precision Recall F1 score

ResNet 72.14 70.43 84.19 76.06
DenseNet 78.80 75.43 87.19 80.87

EvidentialNet 83.86 80.84 90.05 84.84
RuleNet 85.24 83.68 91.08 86.80

Our Method 92.77 91.84 95.01 93.19

To further verify the DCNN prediction improvement
brought by integrating prior evidence, we use Grad-CAM [31]
to visualize the Regions Of Interests (ROIs) in MR images
produced by different classification methods. The visualization
of ROIs is shown in Figure 5.

Fig. 4. Comparison of cancer staging methods.

We can find that ROIs of ResNet and DenseNet include
the areas unrelated to bladder tumors and erratically distribute
in MR images. The possible reason is that limited labeled
MR images cannot guarantee the DCNNs to focus on the
critical regions of bladder wall and tumor, such as contour
and shape. Compare with these two methods, EvidentialNet
can partially alleviate the data deficiencies by using evidence
representation to implement classification. However, the pre-
dictive performances of EvidentialNet are not stable and it still
includes unrelated areas when the contour and intensities of
these areas are similar to bladder tumor. Through integrating
the priors of logic rules, RuleNet generates more precise and
stable ROIs than data-driven network models, but it is sensitive
to the noise in background areas. By extracting prior evidence
from segmentation masks, the ROIs produced by our method
can represent the overlapping areas between bladder tumor
and wall, and are robust to the noise in the background. In
summary, the visualization of ROIs indicates that integrating
prior evidences of clinical experience is helpful to guide
DCNNs to focus on the critical regions between bladder tumor
and wall to improve the cancer stage prediction.
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V. CONCLUSION

The bladder cancer staging methods using deep neural
networks neglect clinical priors and may lead to irrational
predictions. To tackle the problems, we propose an efficient
way to construct the prior evidence of tumor infiltration to
formulate clinical experience, and fuse the prior evidence into
the evidential deep neural networks to improve the cancer
stage prediction. The experiments validate the effectiveness
of the proposed deep neural network with prior evidence for
bladder cancer staging. The conflict between the prediction of
neural networks and priors will be investigated in future work.

ACKNOWLEDGEMENT

This work was supported by National Natural Science Foun-
dation of China (Serial Nos. 92046008, 62173252, 61976134).

REFERENCES

[1] M. E. Gosnell, D. M. Polikarpov, E. M. Goldys, et al. Computer-assisted
cystoscopy diagnosis of bladder cancer. Urologic Oncology: Seminars
and Original Investigations, vol. 36, no. 1, pp. 8-e9, 2018.

[2] H. P. Bhambhvani, A. Zamora, E. Shkolyar, et al. Development of robust
artificial neural networks for prediction of 5-year survival in bladder
cancer. Urologic Oncology: Seminars and Original Investigations, vol.
39, no. 3, pp. 193-e7, 2021.

[3] S. S Garapati, L. M. Hadjiiski, K. H. Cha. Automatic staging of
bladder cancer on CT urography. Medical Imaging 2016: Computer-
Aided Diagnosis, vol. 9785, pp. 97851G, 2016.

[4] S. S. Garapati, L. Hadjiiski, K. H. Cha, et al. Urinary bladder cancer
staging in CT urography using machine learning. Medical physics, vol.
44, no. 11, pp. 5814-5823, 2017.

[5] X. Y. Ma, H. M. Lubomir, J. Wei. U-Net based deep learning bladder
segmentation in CT urography, Medical physics, vol. 46, no. 4, pp. 1752-
1765, 2019.

[6] K. H. Cha, L. Hadjiiski, R. K. Samala, et al. Urinary bladder segmenta-
tion in CT urography using deep learning convolutional neural network
and level sets. Medical physics, vol. 43, no. 4, pp.1882-1896, 2016.

[7] X. Xu, F. Zhou, B. Liu. Automatic bladder segmentation from CT im-
ages using deep CNN and 3D fully connected CRF-RNN. International
Journal of Computer Assisted Radiology and Surgery, vol. 13, no. 7,
pp. 967-975, 2018.

[8] K. H. Cha, L. Hadjiiski, H. P. Chan, et al. Bladder cancer treatment re-
sponse assessment in CT using radiomics with deep-learning. Scientific
Reports, vol. 7, no. 1, pp. 1-12, 2017.

[9] L.M. Hadjiiski, K. H. Cha, R. H. Cohan, et al. Intraobserver Variability
in Bladder Cancer Treatment Response Assessment With and Without
Computerized Decision Support. Tomography, vol. 6, no. 2, pp. 194-202,
2020.

[10] O. Sanli, J. Dobruch, M. A. Knowles, et al. Bladder cancer. Nature
reviews Disease primers, vol. 3, no. 1, pp.1-19, 2017.

[11] A. Krizhevsky, I. Sutskever and G. E. Hinton. Imagenet classification
with deep convolutional neural networks. Advances in neural informa-
tion processing systems, vol. 25, pp. 1097-1105, 2012.

[12] Y. LeCun, Y. Bengio, G. E. Hinton. Deep learning. Nature, vol. 521,
no. 7553, pp. 436-444, 2015.

[13] D. Nie, Y. Z. Gao, L. Wang, D. G. Shen. Asdnet: Attention based semi-
supervised deep networks for medical image segmentation. International
Conference on Medical Image Computing and Computer-Assisted Inter-
vention, pp. 370-378, 2018.

[14] K. H. Cha, L. Hadjiiski, H. P. Chan, et al. Computer-aided detection
of bladder masses in CT urography (CTU). Medical Imaging 2017:
Computer-Aided Diagnosis, vol. 10134, pp. 1013403, 2017.

[15] X. Y. Ma, L. M. Hadjiiski, J. Wei, et al. U-Net based deep learning
bladder segmentation in CT urography. Medical physics, vol. 46, no. 4,
pp. 1752-1765, 2019.

[16] E. Shkolyar, X. Jia, T. C. Chang, et al. Augmented Bladder Tumor
Detection Using Deep Learning. European urology, vol. 76, no. 6, pp.
714-718, 2019.

[17] F. Rundo, C. Spampinato, G. L. Banna, et al. Advanced Deep Learning
Embedded Motion Radiomics Pipeline for Predicting Anti-PD-1/PD-
L1 Immunotherapy Response in the Treatment of Bladder Cancer:
Preliminary Results. Electronics, vol. 8, no. 10, pp.1134, 2019.

[18] C. Zhang, X. D. Yue, Y. F. Chen, Y. Lv. Integrating Diagnosis Rules
into Deep Neural Networks for Bladder Cancer Staging. Proceedings of
the 29th ACM International Conference on Information & Knowledge
Management, pp. 2301-2304, 2020.

[19] A. P. Dempster. Upper and Lower Probabilities Generated by A Random
Closed Interval. The Annals of Mathematical Statistics, vol. 39, no. 3,
pp. 957-966, 1968.

[20] G. Shafer. A Mathematical Theory of Evidence Turns 40. International
Journal of Approximate Reasoning, vol. 79, pp. 7-25, 2016.

[21] T. Denoeux. A K-nearest Neighbor Classification Rule Based on
Dempster-Shafer Theory. IEEE Transactions on Systems, Man, and
Cybernetics, vol. 25, no. 5, pp. 804-813, 1995.

[22] B. Quost, T. Denœux, S. Li. Parametric Classification with Soft Labels
Using The Evidential EM Algorithm: Linear Discriminant Analysis Ver-
sus Logistic Regression. Advances in Data Analysis and Classification,
vol. 11, no. 4, pp. 659-690, 2017.

[23] T. Denoeux. Logistic Regression, Neural Networks and Dempster-Shafer
Theory: A New Perspective. Knowledge-Based Systems, vol. 176, pp.
54-67, 2019.

[24] S. A. Capelle, C. Fernandez-Maloigne, O. Colot. Segmentation of brain
tumors by evidence theory: on the use of the conflict information.
International Conference on Information Fusion, pp. 264-271, 2004.

[25] C. Lian, S. Ruan, T. Denœux, et al. Dempster-Shafer theory based
feature selection with sparse constraint for outcome prediction in cancer
therapy. International conference on medical image computing and
computer-assisted intervention, pp. 695-702, 2015.

[26] L. Huang, S. Ruan, T. Denoeux. Belief function-based semi-supervised
learning for brain tumor segmentation. 2021 IEEE 18th International
Symposium on Biomedical Imaging. pp. 160-164, 2021.

[27] A. Amini, W. Schwarting, A. Soleimany, et al. Deep evidential regres-
sion. The International Conference on Learning Representations, 2020.

[28] S. Murat, K. Lance, K. Melih. Evidential deep learning to quantify clas-
sification uncertainty. Proceedings of the 32nd International Conference
on Neural Information Processing Systems, pp. 3183-3193, 2018.

[29] K. M. He, X. Y. Zhang, S. Q. Ren, J. Sun. Deep residual learning for
image recognition. Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 770-778. 2016.

[30] G. Huang, Z Liu, L. V. D. Maaten, K. Q. Weinberger. Densely con-
nected convolutional networks. Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4700-4708. 2017.

[31] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D.
Batra. Grad-cam: Visual explanations from deep networks via gradient-
based localization. Proceedings of the IEEE international conference on
computer vision, pp. 618-626, 2017.


