
HAL Id: hal-03511154
https://hal.science/hal-03511154

Submitted on 4 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Evidential Segmentation of 3D PET/CT Images
Ling Huang, Su Ruan, Pierre Decazes, Thierry Denoeux

To cite this version:
Ling Huang, Su Ruan, Pierre Decazes, Thierry Denoeux. Evidential Segmentation of 3D PET/CT
Images. 6th International Conference on Belief Functions (BELIEF 2021), Sep 2021, Shanghai, China.
pp.159-167, �10.1007/978-3-030-88601-1_16�. �hal-03511154�

https://hal.science/hal-03511154
https://hal.archives-ouvertes.fr


Evidential segmentation of 3D PET/CT images?

Ling Huang1,2, Su Ruan2, Pierre Decazes3, and Thierry Denœux1,4
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Abstract. Positron Emission Tomography (PET) and Computed To-
mography (CT) are two modalities widely used in medical image anal-
ysis. Accurately detecting and segmenting lymphomas from these two
imaging modalities are critical tasks for cancer staging and radiotherapy
planning. However, this task is still challenging due to the complexity of
PET/CT images, and the computation cost to process 3D data. In this
paper, a segmentation method based on belief functions is proposed to
segment lymphomas in 3D PET/CT images. The architecture is com-
posed of a feature extraction module and an evidential segmentation
(ES) module. The ES module outputs not only segmentation results (bi-
nary maps indicating the presence or absence of lymphoma in each voxel)
but also uncertainty maps quantifying the classification uncertainty. The
whole model is optimized by minimizing Dice and uncertainty loss func-
tions to increase segmentation accuracy. The method was evaluated on
a database of 173 patients with diffuse large b-cell lymphoma. Quan-
titative and qualitative results show that our method outperforms the
state-of-the-art methods.

Keywords: lymphoma segmentation · 3D PET/CT · belief functions ·
Dempster-Shafer theory · uncertainty quantification · deep learning

1 Introduction

Positron Emission Tomography - Computed Tomography (PET/CT) scanning is
an effective imaging tool for lymphoma segmentation with application to clinical
diagnosis and radiotherapy planning. The standardized uptake value (SUV) for
PET images is widely used to locate and segment lymphomas thanks to its
high sensitivity and specificity to the metabolic activity of tumor. CT images
are usually used jointly with PET images because of their anatomical feature
representation capability.

Although a lot of progress has been made in computer-aided lymphoma
segmentation, the segmentation of whole-body lymphomas is still challenging.
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(Fig. 1 shows an example of lymphoma patient. There is great variation in inten-
sity distribution, shape, type and number of lymphomas). The methods can be
classified into three main categories: SUV-threshold-based [5], region-growing-
based [4] and Convolutional Neural Network (CNN)-based [7] methods. For PET
images, it is common to segment lymphomas with a set of fixed SUV thresholds.
This method is fast but lacks of flexibility in boundary delineation and requires
domain knowledge to locate the region of interest. Region-growing-based meth-
ods have been proposed to optimize boundary delineation by taking texture and
shape information into account. However, those methods still need clinicians to
locate the seeds for region growing [11].

Fig. 1. Examples of patient with lymphomas. The first and second rows show, respec-
tively PET and CT, slices of one patient in axial, sagittal and coronal views. The
lymphomas are marked in red.

CNN-based segmentation methods have recently achieved great success. The
UNet architecture [12] has become the most popular medical image segmenta-
tion model. Driven by different tasks and datasets, many extended and optimized
variants of UNet have been proposed, such as VNet [9], nnUNet [6] and SegRes-
Net [10]. In [7], Li et al. propose a SegResNet-based lymphoma segmentation
model with a two-flow architecture (segmentation and reconstruction flows). In
[1], Blanc-Durand et al. propose a nnUNet-based lymphoma segmentation net-
work.

Because of low resolution and contrast due to limitations of medical imaging
technology, PET/CT image segmentation results are tainted with uncertainty,
which greatly limits the segmentation accuracy. Traditional uncertainty mea-
surement methods [8] focus on model rather than information uncertainty to
improve the robustness of the model. Belief function (BF) theory [13][3], also
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known as Dempster-Shafer theory, is a formal theory for information modeling,
evidence combination and decision-making under uncertainty. In this paper, we
propose a 3D PET/CT diffuse large bcell lymphoma segmentation model based
on BF theory and deep learning. The proposed deep neural network architec-
ture is composed of a UNet module for feature extraction and a BF module
for decision with uncertainty quantification. End-to-end learning is achieved by
minimizing a two-part loss function allowing us to increase the Dice score while
decrease the uncertainty. The model will first be described in Section 2 and
experimental results will be reported in Section 3.

2 Methods

2.1 Network Architecture

Fig. 2 shows the global lymphoma segmentation architecture (ES-UNet). It is
composed of (1) an encoder-decoder feature extraction module (UNet), and (2)
an evidential segmentation (ES) module comprising a distance activation layer,
a basic belief assignment layer and a mass fusion layer. Details about the ES
module will be given in Section 2.2. Two loss terms are used for optimizing the
training process: the Dice loss, which quantifies the segmentation accuracy and
the uncertainty loss, which quantifies the segmentation uncertainty. These loss
functions will be described in Section 2.3. A “slim UNet” with (8, 16, 32, 64, 128)
convolution filters was implemented to reduce computation cost and avoid over-
fitting.
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Fig. 2. Global lymphoma segmentation model (ES-UNet).

2.2 Evidential segmentation module

A probabilistic network with a softmax output layer may assign voxels a high
probability of belonging to one class while the segmentation uncertainty is ac-
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tually very high because, e.g., the voxel is located close to the fuzzy boundary
between the tumor region and other tissues. Based on the evidential neural net-
work model introduced in [2] and using an approach similar to that recently
described in [14], we propose a BF theory-based ES module to quantify the un-
certainty about the class of each voxel by a Dempster-Shafer mass function. The
main idea of the ES module is to assign a mass to each of the K classes and
to the whole set of classes Ω, based on the distance between the feature vector
of each voxel and I prototype centers. For a given voxel x, each prototype pi
is considered as a piece of evidence, the reliability of which decreases with the
Euclidean distance di between x and pi. Each prototype pi is assumed to have a
membership degree uik to each class ωk with the constraint

∑K
k=1 uik = 1. The

mass function induced by prototype pi is

mi({ωk}) = αiuik exp(−γid2i ), k = 1, . . . ,K (1a)

mi(Ω) = 1− αi exp(−γid2i ), (1b)

The network parameters are the prototypes pi, the coefficients αi and γi, and
the membership degrees uik. They are learnt by minimizing a loss function [2].

The mass functions induced by the I prototypes are then combined by Demp-
ster’s rule [13]

m =

I⊕
i=1

mi. (2)

The ES module outputs for each voxel three mass values: two masses cor-
responding to lymphoma ({a}) and background ({b}), and an additional mass
corresponding to ignorance (Ω). For the voxels that are easy to classify into
lymphoma or background, the mass values m({a}) or m({b}) are high and the
mass m({a, b}) is low. A high mass m({a, b}) signals a lack of information to
make a reliable decision. Thus, some constraints are required to reduce m(Ω)
during training, as will be explained in Section 2.3.

Since the output of the ES module is a mass function with K + 1 focal sets
while there are K classes, we transform the mass function by distributing a
fraction ξ of m(Ω) to each class, as

Tξ,k = m({ωk}) + ξ m(Ω) with 0 6 ξ 6 1. (3)

In this paper, Ω = {a, b} and K = 2, thus we set ξ = 0.5. The crisp output S of
module ES module is defined as S = 1 if m({a}) < m({b}) and S = 0 otherwise.

2.3 Loss function based on accuracy and uncertainty for
segmentation

In general, a good segmentation system is expected to make few segmentation
errors while providing as informative outputs as possible. Since we quantify
uncertainty by the “ignorance class” via the evidential network, we propose to
minimize a loss function defined as the sum of two terms: a Dice loss lossd that
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measures the discrepancy between the ground truth and segmentation outputs,
and an uncertainty loss lossu that measures the uncertainty of the segmentation
outputs. We use the Dice loss instead of the original cross-entropy loss in UNet
because the goal of segmentation is to maximize the Dice coefficient. The Dice
loss is defined as

lossd = 1−
2
∑N
n=1 SnGn∑N

n=1 Sn +
∑N
n=1Gn

, (4)

where N is the number of voxels in the image volume, Sn and is the n-th voxel
of the segmented output image and Gn is n-th voxel of the ground truth image.
The uncertainty loss is defined as

lossu =
1

N

N∑
n=1

[mn(Ω)]2, (5)

where mn is the mass function computed for voxel n. With the uncertainty
loss, the parameters of the model can be further optimized and more precise
segmentation results can be obtained. The total loss function is then

loss = lossd + lossu + λ ‖α‖1 , (6)

where λ is the regularization coefficient for parameter vector α = (α1, . . . , αI)
with the αi defined in (1). The regularization term allows us to decrease the
influence of unimportant prototype centers and avoid overfitting.

3 Experimental results

3.1 Experimental settings

The dataset contains 3D images from 173 patients who were diagnosed with
large b-cell lymphoma and underwent PET/CT examination. The study was
approved as a retrospective study by the Henri Becquerel Center Institutional
Review Board. The lymphomas in mask images were delineated manually by
experts and considered as ground truth G. The size and spatial resolution of
PET and CT images and the corresponding mask images vary due to different
imaging machines and operations, from 267×512×512 to 478×512×512 and from
276×144×144 to 407×256×256, respectively; this makes it difficult to transfer
the data into a deep neural model directly. We resized PET, CT and mask images
to the same 3D size 256× 256× 128, and we applied intensity normalization to
both PET and CT images from each patient independently by subtracting the
mean and dividing by the standard deviation of the body region only. For data
augmentation, we applied a random intensity shift between [−0.1, 0.1] of the
standard deviation of each channel, as well as a random scaling intensity of the
input between scales [0.9, 1.1].

We randomly selected 80% of the data for training, 10% for validation and
10% for testing. Dice score, sensitivity, specificity, precision and F1 score were
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used to evaluate the segmentation performance. We first computed the five in-
dices for each test patient and then averaged these indices over the patients.
During training, PET and CT images were concatenated as a two-channel in-
put. The number of prototypes was set to 20, taking class number and compu-
tation cost into consideration. The prototype vectors and membership degrees
were initialized randomly using uniform distributions, while the parameters α
and γ were initialized, respectively, at 0.5 and 0.01. The learning rate was set to
10−3 during training and the model was trained with 50 epochs using the Adam
optimization algorithm. The regularization coefficient λ in (6) was set to 10−5.
All methods were implemented in Python with a PyTorch-based, medical image
framework MONAI and were trained and tested on a desktop with a 2.20GHz
Intel(R) Xeon(R) CPU E5-2698 v4 and a Tesla V100-SXM2 graphics card with
32 GB GPU memory.

3.2 Results and discussion

The quantitative results are shown in Table 1. Our model outperforms the base-
line model UNet as well as the other state-of-the-art methods. In particular, our
model outperforms the best model SegResNet by, respectively, 1.9%, 2.4%, 1.4%
in Dice score, Sensitivity and F1 score. It should be noted that the state-of-the-
art models were trained with 100 epochs on our dataset because they are slower
to converge during training. Fig. 3 displays the learning curves of the training
loss and validation Dice score for UNet and ES-UNet, showing the advantage of
ES-UNet in terms not only of segmentation accuracy, but also of convergence
speed. Fig. 4 shows the segmentation and uncertainty maps at different steps
during the training of ES-UNet. Our model quantifies the uncertainty of am-
biguous pixels instead of classifying them unambiguously into a single class. The
uncertainty decreases during the learning process thanks to the minimization of
the uncertainty loss term.

Table 1. Performance comparison with the baseline methods on the test set.

Models Dice score Sensitivity Specificity Precision F1 score

ES-UNet (our model) 0.830 0.923 0.908 0.912 0.915
UNet [12] 0.769 0.798 0.963 0.890 0.833
nnUNet [6] 0.702 0.950 0.499 0.758 0.807
VNet [9] 0.802 0.882 0.904 0.916 0.909
SegResNet [10] 0.811 0.899 0.942 0.925 0.901

Fig. 5 shows an example of segmentation results obtained by ES-UNet. Our
model can locate and segment most of the lymphomas. The segmentation results
were found credible and were confirmed by experts.
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Fig. 3. Training process visualization: training loss (left) and validation Dice score
(right).

Fig. 4. Uncertainty maps obtained during training, corresponding to different training
steps for the same image. For one map, the pixels classified to background, lymphoma,
ignorance are marked in purple, yellow and iridescent, respectively.



8 L. Huang et al.

Fig. 5. Segmentation results of ES-UNet. From left to right: ground truth and seg-
mented lymphomas in overlapped CT modality, ground truth and segmented lym-
phomas overlapped in PET modality, difference map between the ground truth, and
segmented lymphomas.

4 Conclusion

An evidential segmentation framework (ES-UNet) for segmentation of lymphomas
from 3D PET/CT with uncertainty quantification has been introduced. The pro-
posed architecture is based on the concatenation of a UNet and an evidential
segmentation layer, making it possible to compute output mass functions for
each voxel. The training is performed by minimizing a two-part loss function
composed of a Dice loss and an uncertainty loss, with the effect of increasing the
Dice score while decreasing the uncertainty. Qualitative and quantitative eval-
uations show promising results when compared to the baseline model UNet as
well as the state-of-the-art methods. While we only concatenated PET and CT
as a two-channel input in this work, future research will tackle multi-modality
medical image fusion with BF theory by considering PET and CT images sep-
arately. Moreover, the sensitivity of the results with respect to the number of
prototypes and the initial parameters will be studied in greater detail.
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