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Abstract We propose a hybrid architecture composed of a fully convolutional
network (FCN) and a Dempster-Shafer layer for image semantic segmentation. In
the so-called evidential FCN (E-FCN), an encoder-decoder architecture first ex-
tracts pixel-wise feature maps from an input image. A Dempster-Shafer layer then
computes mass functions at each pixel location based on distances to prototypes.
Finally, a utility layer performs semantic segmentation from mass functions and
allows for imprecise classification of ambiguous pixels and outliers. We propose an
end-to-end learning strategy for jointly updating the network parameters, which
can make use of soft (imprecise) labels. Experiments using three databases (Pascal
VOC 2011, MIT-scene Parsing and SIFT Flow) show that the proposed combina-
tion improves the accuracy and calibration of semantic segmentation by assigning
confusing pixels to multi-class sets.

Keywords Evidence theory · belief function · fully convolutional network ·
decision analysis · semantic segmentation

1 Introduction1

In the past few decades, one of the most difficult problems in computer vision has2

been image semantic segmentation, defined as the process of partitioning a digital3

image into multiple sets of pixels. The result of image segmentation is a set of4

segments that collectively cover the entire image, called the segmentation mask.5

This mask constitutes a simplified representation, more meaningful and easier to6

analyze than the original image. Semantic segmentation has been widely applied7
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to advanced driver assistance systems [6, 16, 36], human-machine interaction [39],8

medical imaging [18], and so on.9

In the last decade, deep learning-based models, especially fully convolutional10

networks (FCNs) [25] and variants [22, 28], have been developed for semantic seg-11

mentation and have achieved remarkable success. FCNs take advantage of existing12

deep neural networks, which have the capacity to learn reliable and robust features.13

An FCN transforms existing and well-known classification models such as VGG14

(16-layer net) [31] or ResNet [21] into fully convolutional ones by replacing the15

fully connected layers with convolutional ones to output spatial maps instead of16

classification scores. Those maps are upsampled using fractionally-strided convo-17

lutions (called deconvolutions [41, 42]) to produce dense per-pixel labeled outputs.18

This approach has allowed for significant improvements in segmentation accuracy19

over traditional methods on benchmark databases like Pascal VOC 2011 [17]. How-20

ever, despite the power and flexibility of the FCN-based models, they still face the21

following three problems:22

1. How to perform novelty detection? In many learning sets, not all classes are23

labeled, especially for some objects in the background. An ideal image segmen-24

tation algorithm should detect “unknown” objects belonging to classes that are25

not represented in the learning set. This capacity is called novelty detection [8].26

FCN-based models generally randomly assign unknown objects to one of the27

known classes, though some models tend to assign unknown objects to the28

background class.29

2. How to process pixels with confusing information? In image-segmentation train-30

ing sets, all pixels are precisely labeled, even if the true label is actually un-31

certain. This is the case, for example, for the pixels at object borders. Pixels32

with precise but incorrect labels may have negative effects on the performance33

of learning systems [2, 27].34

3. When will the FCN-based methods fail? In decision-making systems, a neural35

network should not only be as accurate as possible, but it should also have the36

ability to signal when it is likely to be incorrect. Neural networks developed37

nowadays tend not to be well calibrated [20], though they are more accurate38

than they were a decade ago. In other words, the accuracy of modern neural39

networks, including FCN-based models, does not match their confidence.40

In this paper, the above problems are tackled using the Dempster-Shafer (DS)41

theory of belief functions [7, 30]. This mathematical framework, also referred to42

as Evidence Theory, is based on representing independent pieces of evidence by43

mass functions and combining them using a generic operator called Dempster’s44

rule. It is a well-established formalism for reasoning and making decisions under45

uncertainty [10, 13, 38]. A mass function has more degrees of freedom than a46

probability distribution, which allows it to represent a wider range of belief states,47

from complete ignorance to full certainty.48

One of the applications of the DS theory is to design evidential classifiers49

(e.g., [9, 14, 24, 33]), which compute a predicted mass function for each input50

vector. The output mass function can then be used for decision-making [4, 8, 19].51

Over the years, two main principles have been developed to design an evidential52

classifier: the model-based and distance-based approaches [15]. The former uses es-53

timated class-conditional distributions [32], while the latter constructs mass func-54

tions based on distances to prototypes [9, 14, 24]. Thanks to the generality and55
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expressiveness of the belief-function formalism, an evidential classifier provides56

more informative outputs than those of conventional classifiers (e.g., a neural net-57

work with a softmax output layer). The flexibility of evidential classifiers can be58

exploited for uncertain data classification [40] and set-valued classification [8, 26].59

Therefore, it may be advantageous to combine an FCN-based model with an evi-60

dential classifier for semantic segmentation.61

The objective of this study is to take advantage of object representations gen-62

erated by an FCN and use them as the input features of an evidential classifier for63

decision-making. The proposed model, referred to as the evidential fully convolu-64

tional network (E-FCN), transforms an FCN model by replacing its softmax layer65

by a distance-based DS layer and a utility layer. In an E-FCN, an FCN architec-66

ture is used to extract pixel-wise high-order features from an input image. Then,67

the features are converted into pixel-wise mass functions by the DS layer. Finally,68

the mass functions are used to compute the utilities of acts assigning pixels to a set69

of classes for semantic segmentation in a so-called “utility layer”. An end-to-end70

learning procedure allows us to train the E-FCN using a learning set with soft71

labels. The effectiveness of the E-FCN is demonstrated and discussed based on72

experiments using three benchmark databases (Pascal VOC 2011 [17], MIT-scene73

Parsing [43], and SIFT Flow [34]).74

The rest of the paper is organized as follows. Section 2 starts with a brief75

reminder of DS theory, the DS layer for constructing mass functions, and feature76

representation via FCN. The E-FCN model is then introduced in Section 3. Section77

4 presents numerical experiments, which demonstrate the advantages of the E-78

FCNs. Finally, we conclude the paper in Section 5.79

2 Background80

This section first recalls some necessary definitions regarding DS theory (Section81

2.1), and the evidential neural network at the basis of the DS layer (Section 2.2).82

A brief description of feature representation via FCNs is then provided in Section83

2.3.84

2.1 Dempster-Shafer theory85

The main concepts underlying DS theory are only briefly presented in this section,86

and some basic notations are introduced. Detailed information can be found in87

Shafer’s original work [30] and in the recent review [13].88

Let Ω = {ω1, . . . , ωM} be a set of classes, called the frame of discernment. A89

mass function on Ω is a mapping m from 2Ω to [0,1] such that m(∅) = 0 and90 ∑
A⊆Ω

m(A) = 1. (1)

For any A ⊆ Ω, each mass m(A) is interpreted as a share of a unit mass of belief91

allocated to the hypothesis that the truth is in A, and which cannot be allocated92

to any strict subset of A based on the available evidence. Set A is called a focal93

set of m if m(A) > 0. A mass function is said to be logical if it has only one focal94

set.95
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Two mass functions m1 and m2 representing independent items of evidence96

can be combined conjunctively by Dempster’s rule ⊕ [30] as97

(m1 ⊕m2) (A) =
(m1 ∩m2)(A)

1− (m1 ∩m2)(∅) (2a)

for all A 6= ∅, with98

(m1 ∩m2)(A) =
∑

B∩C=A

m1 (B)m2 (C) , (2b)

and (m1 ⊕m2)(∅) = 0. Mass functions m1 and m2 can be combined if and only99

if the denominator on the right-hand side of Eq. (2a) is strictly positive. The100

operator ⊕ is commutative and associative.101

For decision-making with belief functions, let uij ∈ [0, 1] denote the utility of102

selecting ωi when the true state is ωj , and fωi the act of selecting ωi. We define103

the pignistic expected utility [11] of act fωi as104

Em(fωi) =
M∑
j=1

uijBetPm({ωj}), (3a)

where BetPm is the pignistic probability measure computed from mass function105

m by the pignistic transformation, defined as106

BetPm({ωj}) =
∑

{A⊆Ω:ωj∈A}

m(A)

|A| , (3b)

for all ωj ∈ Ω. The act with the highest pignistic expected utility can then be107

selected. Other decision criteria in the belief function framework are reviewed in108

[11] and [26].109

2.2 Evidential neural network110

Denœux [9] proposed a distance-based neural-network based on DS theory, known111

as the evidential neural network (ENN) classifier. The ENN classifier summarizes112

the learning set by a small number of prototypes, and treats the proximity of an113

input vector to each prototype as a piece of evidence about its class. The different114

pieces of evidence are represented by mass functions, which are combined using115

Dempster’s rule (2). This section provides a brief description of the ENN classifier.116

We consider a training set X =
{
x1, . . . ,xN

}
⊂ RP of N examples represented117

by P -dimensional feature vectors, and n prototypes {p1, . . . ,pn} ⊂ RP . For a118

test sample x, the ENN classifier constructs mass functions that quantify the119

uncertainty about its class in Ω = {ω1, . . . , ωM}, using a three-step procedure.120

This procedure can be implemented in a neural network with two hidden layers121

and one output layer. These three layers can be considered as a single complex122

layer called the “DS layer”, which will be plugged into an FCN architecture as123

explained in Section 3.1. The three-step procedure can be described as follows.124
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Step 1: The similarity between x and each prototype pl is computed as125

sl = αl exp

(
−
(
ηldl

)2)
, l = 1, . . . , n, (4)

where dl =
∥∥x− pl

∥∥ is the Euclidean distance between x and prototype pl,126

ηl ∈ R is a scale parameter and αl is a parameter in [0, 1]. Prototypes p1, . . . ,pn127

can be considered as vectors of connection weights between the input layer128

and a hidden layer of n Radial Basis Function (RBF) units. The number n of129

prototypes is a hyper-parameter and can be tuned using a validation set or by130

cross-validation.131

Step 2: The mass function ml associated to reference pattern pl is computed as

ml({ωj}) = vljs
l, j = 1, . . . ,M (5a)

ml(Ω) = 1− sl, (5b)

where vlj ≥ 0 is the degree of membership of prototype pl to class ωj with132 ∑M
j=1 v

l
j = 1. We denote the vector of masses induced by prototype pl as133

ml = (ml({ω1}), . . . ,ml({ωM}),ml(Ω))T .

Eq. (5) can be regarded as computing the activation of units in a “mass func-134

tions” layer composed of n modules of M + 1 units each. The activations of135

the units in module l correspond to the belief masses assigned by ml.136

Step 3: The n mass functions ml, l = 1, . . . , n, are aggregated by Dempster’s rule
(2). The combined mass function can be computed iteratively as µ1 = m1 and
µl = µl−1 ∩ml for l = 2, . . . , n. From (2a), we have

µl({ωj}) = µl−1({ωj})ml({ωj})+

µl−1({ωj})ml({Ω}) + µl−1(Ω)ml({ωj}) (6a)

for l = 2, . . . , n and j = 1, . . . ,M , and137

µl(Ω) = µl−1(Ω)ml(Ω) l = 2, . . . , n. (6b)

The output vector m = (m({ω1}), . . . ,m({ωM}),m(Ω))T is finally obtained138

by normalizing µn as139

m(A) =
µn(A)

µn(Ω) +
∑M
j′=1 µ

n({ωj′})
,

with A ∈ {{ω1}, . . . , {ωM}, Ω}.140

The network parameters are the prototypes pl, the coefficients αl and ηl, and141

the membership degrees vlj for l = 1, . . . , n and j = 1, . . . ,M . They are learnt by142

minimizing a loss function. To enforce the constraints 0 ≤ αl ≤ 1, we introduce143

new variables ξl ∈ R such that144

αl =
1

1 + exp(−ξl) ∈ (0, 1).
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Similarly, the constraints on parameters vlj are enforced by introducing new pa-145

rameters δlj ∈ R such that146

vlj =
(δlj)

2∑M
j′=1(δlj′)

2
(7)

for l = 1, . . . , n and j = 1, . . . ,M . More details can be found in [9].147

2.3 Fully convolutional network148

The performance of a classifier in semantic segmentation tasks heavily depends on149

the information contained in its input features. Feature representation, an essential150

part of the machine learning workflow, consists in discovering the predictors needed151

for semantic segmentation from input images. In recent years, FCNs [25] and their152

variants [22, 28] have achieved remarkable performances thanks to their ability to153

construct rich pixel-wise deep feature representations.154

FCNs owe their name to their architecture, which is built only from locally155

connected layers, such as convolution, pooling, and upsampling layers. No dense156

layer is used in this kind of architecture. Generally, an FCN consists of two main157

parts: an encoder-decoder architecture for pixel-wise object representation and158

a softmax layer for pixel-wise assignments. In the encoder-decoder architecture,159

an input image is encoded by several convolutional and pooling layers and then160

decoded by one or more upsampling layers. The softmax layer assigns each pixel in161

the input image to one of the classes based on the outputs of the encoder-decoder162

architecture. Therefore, the outputs of the encoder-decoder architecture, called163

the pixel-wise feature maps, are considered as a feature representation of the input164

image. In the study, these feature maps are used as input to a DS layer allowing165

for set-valued semantic segmentation, as will be shown in Section 3.1.166

To understand the feature representation of FCNs, we briefly recall the encoder-167

decoder architecture illustrated in Figure 1. The encoder part consists of several168

convolutional and pooling layers. Each convolutional layer performs convolutions169

its input to produce a set of feature maps. Let z = (z1, . . . , zD) be the input170

made up of D input maps or input channels zi (i = 1, . . . , D) of size H ×W . The171

processes in a convolutional layer with input z, consisting of e convolution kernels172

with size a× b, are expressed as173

cj = f(λj +
∑
i

εi,j ∗ zi), (8)

where εi,j , a matrix of size a× b, is the convolution kernel between the i-th input174

map and the j-th output map; λj is the bias of kernel εi,j ; ∗ denotes the convolution175

operation; cj is the j-th output feature map, with size h−a+1
r ×w−b+1

r , j = 1, . . . , e;176

r is the stride with which the kernel slides over input map zi, and f is the activation177

function, such as the rectified linear unit ReLU(x) = max(0, x) [23]. A pooling layer178

follows the convolutional layer to sub-sample feature map cj by computing some179

statistics of feature values within non-overlapping s × s windows. In the case of180

max-pooling used in this paper, the statistic is the maximum. Thus, the outputs of181

the pooling layer is composed of the D feature maps sub-sampled by factor s. For182

example, feature map cj with size h−a+1
r × w−b+1

r is downsized to h−a+1
2r × w−b+1

2r183

by a pooling layer with a 2× 2 non-overlapping window.184
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Fig. 1: Illustration of the encoder-decoder architecture. An encoder downsizes its
input by convolution and pooling operations. The outputs of the encoder, as the
sparse feature maps, are imported into a decoder. A decoder upsamples and den-
sifies its inputs by performing the reverse operation of convolution and pooling.
The final decoder outputs are the pixel-wise feature maps.

Although the convolution and pooling operations in the encoder part contribute185

to feature representation by retaining only robust activations, spatial information186

within a receptive field is lost, which may be critical for image semantic segmen-187

tation. To address the issue, a decoder part made up of one or more upsampling188

layers is added at the output of the encoder part. The decoder performs the re-189

verse operation of convolution and pooling for reconstructing a set of activations190

with the same size of the input image, as shown in Figure 1. Thus, the outputs of191

the decoder part are enlarged feature maps. In this study, we use a deconvolution192

layer [28] to implement the upsampling operation.193

A deconvolutional layer densifies its inputs of sparse feature maps through194

convolution-like operations with multiple learned kernels. However, contrary to195

convolutional layers, which connect multiple inputs within a kernel to a single196

activation, a deconvolutional layer associates a single input in a feature map to197

multiple outputs. Thus, the outputs of a deconvolutional layer are enlarged and198

dense feature maps. The processes of a deconvolution operation can also be sum-199

marized as Eq. (8), but its kernel sizes are larger than the input sizes, i.e., a ≥ H200

and b ≥W .201

3 Evidential fully convolutional network202

In this section, we describe the proposed E-FCN. Section 3.1 presents the overall203

architecture composed of an encoder-decoder module for feature representation, a204

DS layer to construct mass functions, and a utility layer for decision-making. The205

details of the utility layer are described in Section 3.2. Section 3.3 introduces the206

strategy for training E-FCN models using a learning set with soft labels.207



8 Zheng Tong et al.

Fig. 2: Architecture of an evidential fully convolutional network (E-FCN). The
E-FCN performs semantic segmentation using a three-step procedure. In the first
step, an encoder-decoder architecture extracts pixel-wise feature maps from the
input image. Each vector in the feature maps is fed into a DS layer to construct the
pixel-wise mass functions in the second step. These mass functions are finally fed
into a utility layer to generate the pixel-wise expected utilities of all acts. Finally,
the segmentation mask is computed based on the expected utilities.

3.1 Network architecture208

The main idea of this work is to hybridize the ENN classifier presented in Sec-209

tion 2.2 and the FCN recalled in Section 2.3 by “plugging” a DS layer followed210

by a utility layer at the output of the final deconvolutional layer in the FCN.211

The architecture of the proposed method, called the evidential FCN (E-FCN), is212

illustrated in Figure 2. An E-FCN classifier performs set-valued semantic segmen-213

tation and quantifies the uncertainty about the class of each pixel, taking values214

in Ω = {ω1, . . . , ωM}, using a three-step procedure defined as follows.215

Step 1: As in a probabilistic FCN (P-FCN), an image of size W × H × 3 is216

presented as input to the encoder-decoder architecture of an FCN to generate217

pixel-wise feature maps of size W ×H × P , where P is the number of output218

channels. Each feature vector 1 × 1 × P from a pixel-wise feature map is a219

P -dimensional representation of the corresponding pixel, ready to be fed into220

the DS layer. This architecture generates reliable pixel-wise representations of221

the input image. Thanks to the representations, the E-FCN yields similar or222

even better performance for precise semantic segmentation than does a P-FCN223

with the same encoder-decoder architecture, as will be shown in Section 4.2.224

Step 2: Each feature vector from the encoder-decoder architecture is fed into225

the DS layer, in which it is used to compute a mass function as explained226

in Section 2.2. The output of the DS layer for a given feature vector is an227

(M + 1)-dimensional mass vector228

m = (m({ω1}), . . . ,m({ωM}),m(Ω))T .

Thus, given pixel-wise feature maps of size W ×H×P from Step 1, the output229

of the DS layer is a tensor of size W × H × (M + 1). Each mass vector in230

the tensor represents the uncertainty about the class of the corresponding231

pixel. More precisely, the mass m({ωi}) is the degree of belief that the true232
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class of the corresponding pixel is ωi. The DS layer tends to allocate uniform233

masses if the representations contain confusing information. The additional234

degree of freedom m(Ω) makes it possible to quantify the lack of evidence [12]235

and to verify whether the model is well trained [35]. The advantages of this236

uncertainty representation will be demonstrated in the performance evaluation237

of set-valued semantic segmentation using E-FCN in Section 4.3.238

Step 3: The output pixel-wise mass vectors are fed into a utility layer, where239

they are used to compute the expected utility of acts. Each act is defined240

as the assignment of a pixel to a non-empty subset A of Ω. Therefore, the241

output of the layer for each feature vector from Step 2 is a vector of at most242

2Ω − 1 expected utilities when all of the possible acts are considered. The243

utility layer allows the E-FCN to perform set-valued semantic segmentation.244

This capability will be demonstrated by comparing the performances of the two245

types of FCNs in set-valued segmentation (Section 4.3) and novelty detection246

(Section 4.4) tasks. More details about the utility layer are given in the next247

section.248

3.2 Utility layer249

In this section, we describe in greater detail the decision-making process taking250

place in the utility layer. Section 3.2 begins by introducing the precise semantic251

segmentation method using mass functions and utilities. Section 3.2 then describes252

a method for computing the utility of set-valued pixel-wise classification, after253

which an approach to set-valued classification based on mass functions is described254

in Section 3.2. In Section 3.2, we summarize the workflow as a neural network layer255

in the E-FCN model.256

3.2.1 Precise semantic segmentation257

Let Ω = {ω1, . . . , ωM} be the set of classes. For semantic segmentation problems258

with precise prediction, each pixel in an image is assigned to exactly one class.259

An act is thus defined as the assignment of a pixel to one and only one of the M260

classes, and the set of acts is F = {fω1 , . . . , fωM }, where fωi denotes assignment261

to class ωi. To make decisions, we define a utility matrix U of size M ×M , whose262

general term uij ∈ [0, 1] is the utility of assigning a pixel to class ωi when the true263

class is ωj .264

When uncertainty about Ω is described by a DS mass function, each act fωi265

induces an expected utility, such as the pignistic expected utility defined by Eq.266

(3). Given utility matrix U and the output of the DS layer m for a given pixel, the267

pignistic expected utility of assigning that pixel to class ωi is given by Eq. (3a),268

where BetPm is the pignistic probability defined by Eq. (3b). The pixel is finally269

assigned to class ωi∗ such that270

i∗ = arg max
i∈{1,...,M}

Em(fωi). (9)
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3.2.2 Extending the utility matrix271

For semantic segmentation problems with imprecise prediction, we adopt the ap-272

proach described in [26] for set-valued classification under uncertainty, which al-273

lows the assignment of a pixel to any non-empty subset A of Ω. The set of acts274

thus potentially becomes F = {fA : A ⊆ Ω,A 6= ∅}, where fA denotes the assign-275

ment to a subset A. (In practice, when the cardinality of Ω is very large, we may276

only consider acts fA for some subsets A of Ω). In this study, fA is referred to277

as an imprecise assignment when subset A is a multi-class set with |A| ≥ 2. For278

decision-making with F , the utility matrix U has to be extended to a matrix Ũ279

of size (2M − 1) ×M , where each element ũA,j denotes the utility of assigning a280

pixel to set A of classes when the true label is ωj . Following [26], this extension is281

performed as follows.282

When the true class is ωj , the utility of assigning a pixel to set A is defined283

as an Ordered Weighted Average (OWA) aggregation [37] of the utilities of each284

precise assignment in A as285

ũA,j =

|A|∑
k=1

gk u
A
(k)j , (10)

where uA(k)j is the k-th largest element in the set {uij : ωi ∈ A} made up of286

the elements in the utility matrix U , and weights g = (g1, . . . , g|A|) represent287

the preference to choose u(k)j(A) if forced to select a single value in {uij : ωi ∈288

A}. The components of weight vector g represent the tolerance to imprecision289

of a decision maker (DM). For example, full tolerance to imprecision is achieved290

when the assignment act fA has utility 1 once set A contains the true label, no291

matter how large A is. In this case, only the maximum utility of elements in set292

{uij , ωi ∈ A} is considered: (g1, g2, . . . , g|A|) = (1, 0, . . . , 0). At the other extreme,293

a DM attaching no value to imprecision would consider the act fA as equivalent294

to selecting one class uniformly at random from A: this is achieved when295

(g1, g2, . . . , g|A|) =

(
1

|A| ,
1

|A| , . . . ,
1

|A|

)
,

in which case the OWA operator becomes the average. In this study, following [26],296

we determine the weight vector g of the OWA operator by adapting O’Hagan’s297

method [29]. We define the tolerance to imprecision as298

TDI(g) =

|A|∑
k=1

|A| − k
|A| − 1

gk = γ, (11)

which equals 1 for the maximum, 0 for the minimum, and 0.5 for the average.299

In practice, we only need to consider values of γ between 0.5 and 1 as a precise300

assignment is always more desirable than an imprecise one when γ<0.5 [26]. Given301

a value of γ, we can compute the weights of the OWA operator by maximizing the302

entropy303

ENT (g) = −
|A|∑
k=1

gk log gk (12)

subject to the constraints TDI(g) = γ,
∑|A|
k=1 gk = 1, and gk ≥ 0.304
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Table 1: Utility matrix extended by an OWA operator with γ = 0.8.

Classes
ω1 ω2 ω3

f{ω1} 1 0 0
f{ω2} 0 1 0
f{ω3} 0 0 1
f{ω1,ω2} 0.8 0.8 0
f{ω1,ω3} 0.8 0 0.8
f{ω2,ω3} 0 0.8 0.8
fΩ 0.6819 0.6819 0.6819

Example 1 Table 1 shows an example of the extended utility matrix generated by305

an OWA operator with γ = 0.8. The first three rows constitute the original utility306

matrix, indicating that the utility equals 1 when assigning a sample to its true class,307

and 0 otherwise. The remaining rows are the matrix of the aggregated utilities. For308

example, we get a utility of 0.8 when assigning a sample to set {ω1, ω2} if the true309

label is ω1.310

3.2.3 Set-valued semantic segmentation311

Based on an extended utility matrix Ũ and the output of the DS layer m for312

a given pixel, we can compute the pignistic expected utility of assigning that pixel313

to set A as314

Em(fA) =
M∑
j=1

ũA,jBetPm({ωj}), (13)

where BetPm is the pignistic probability defined by Eq. (3b). The pixel is finally315

assigned to set A such that316

A = arg max
∅6=B⊆Ω

Em(fB). (14)

3.2.4 Utility layer317

The procedure of assigning a pixel to a set of classes using utility theory is318

implemented in the neural network as a utility layer. In this layer, the inputs319

and outputs are, respectively, the pixel-wise mass vectors m from the preceding320

DS layer and the pixel-wise expected utilities of all acts in F . The connection321

weight between unit j of the DS layer and output unit A ⊆ Ω corresponding322

to the assignment to set A is the utility value ũA,j . As coefficient γ describing323

the imprecision tolerance degree is predetermined, the connection weights of the324

expected utility layer are fixed and do not need to be updated during training.325

In practice, the connections between the DS and utility layers can be designed326

by the user. For example, one can build a utility layer using the utility values ũA,j327

with |A| = 1 to only consider precise assignments, or 0 < |A| ≤ 2 to consider328

assignment to sets classes of cardinality one or two. In this paper, we have only329
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considered the acts fA such that A is a singleton, Ω, or one of the soft labels330

present in the learning set (as explained in Section 3.3 below).331

3.3 Learning with soft labels332

In traditional learning systems for image semantic segmentation, all pixels are la-333

beled with a single class even when their true class cannot be determined with full334

certainty. For example, the true class may be uncertain at object borders, but the335

border pixels are still given precise labels. Additionally, one cannot reliably label336

some small objects in an image, such as distant objects in a driving scene. Arbi-337

trarily giving precise labels to pixels with confusing information may negatively338

impact the performance of learning systems in image semantic segmentation tasks.339

The notion of soft label [5, 14] is a way to address this problem.340

Here, we define a soft label as a nonempty subset A∗ ∈ 2Ω\∅ of classes a pixel341

may belong to, based on our current knowledge. For example, label A∗ = {ωi, ωj}342

indicates that the true class of a pixel is known to be either ωi or ωj but we cannot343

determine which one specifically. A strategy of end-to-end learning is proposed to344

train an E-FNC from an image learning set with soft labels. All parameters in the345

DS layer are first initialized randomly using normal distributions. For a given pixel346

with nonempty soft label A∗ ⊆ Ω, let ml be the logical mass function with focal set347

A∗, i.e., such that ml(A∗) = 1. The labeling pignistic expected utilities Eml(fA)348

for A ∈ 2Ω\∅ can be computed using Eq. (13) and the pignistic belief-probability349

transformation Eq. (3b). Similarly, we consider the predicted pignistic expected350

utilities Em(fA) for A ∈ 2Ω\∅ , where m is the predicted mass function from the351

DS layer of the E-FCN, with focal sets {ω1}, . . . , {ωM} and Ω. For a given pixel352

with soft label ml and predicted mass function m, the loss L(m,ml) is defined as353

the squared Euclidean distance between the vectors of expected utilities w.r.t. ml354

and m:355

L(m,ml) =
∑
∅6=A⊆Ω

[Eml(fA)− Em(fA)]2 . (15)

The derivatives of L(m,ml) of the error w.r.t the output masses m({ωk}) are356

∂L(m,ml)

∂m({ωk})
=

∑
∅6=A⊆Ω

∂L(m,ml)

∂Em(fA)
· ∂Em(fA)

∂m({ωk})

= −2
∑
∅6=A⊆Ω

[Eml(fA)− Em(fA)]
M∑
j=1

∂Em(fA)

∂BetPm(ωj)

∂BetPm(ωj)

∂m({ωk})

= −2
∑
∅6=A⊆Ω

[Eml(fA)− Em(fA)]
M∑
j=1

ũA,j

(
δkj −

1

M

)
,

(16)
where δkj = 1 if k = j and δkj = 0 otherwise. The derivatives of m({ωk}) w.r.t357

plk, ηl, and ξl in the DS layer are the same as in Denœux’s original work [9], and358

the gradient with respect to all network parameters can be back-propagated from359

the output layer to the input layer.360
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4 Experiments361

In this section, we present numerical experiments that demonstrate the advantages362

of the proposed model. The databases and metrics are first introduced in Section363

4.1. Precise and imprecise segmentation results are then reported, respectively, in364

Sections 4.2 and 4.3. Finally, novelty detection results are presented in Section 4.4.365

4.1 Databases and metrics for performance evaluation366

Databases367

Three benchmark databases were used in the study: Pascal VOC 2011 [17], MIT-368

scene Parsing [43], and SIFT Flow [34]. These databases were used to train and369

test the E-FCNs as well as probabilistic FCNs (P-FCNs) for comparison.370

The Pascal VOC 2011 database contains 20 object classes in 5034 images,371

with segmentation masks that indicate the class of each pixel, or label it as “back-372

ground” if the object does not belong to one of the twenty specified classes. The373

MIT-scene Parsing and SIFT Flow databases are similar to the Pascal VOC 2011374

database but have, respectively, 150 categories in 20K images and 33 classes in375

2688 images. The list of classes for the three databases are given in Table 2. Each of376

the three databases was split into 50% for training/validation and 50% for testing.377

The validation sets were used to determine hyper-parameters, such as the number378

of prototypes in each DS layer. The optimal tolerance to imprecision γ can be379

determined in the same way since it can also be considered as a hyper-parameter.380

There is no confidence value associated with the pixel labels in any of the381

three databases. Thus, we defined soft labels for them. For the Pascal VOC 2011382

database, we assigned each pixel in a boundary area a soft label A ⊆ Ω, where383

A consists of the object classes around the boundary area. Some examples are384

shown in Figure 3a. For the MIT-scene Parsing and SIFT Flow databases with no385

identified boundary areas, we assigned soft labels to the pixels situated between386

every two objects, as shown in Figures 3b and 3c.387

A semantic segmentation model should not only be accurate for the classes in388

the learning set, but it should also be able to detect objects belonging to classes389

that are not included in the learning set. To evaluate this novelty detection capac-390

ity, we mixed the three databases: for example, an FCN model trained using the391

Pascal VOC 2011 database was tested on the other two databases.392

Metrics393

We used three metrics for the performance evaluation of semantic segmentation:394

pixel utility (PU), utility of intersection over union (UIoU), and expected calibra-395

tion error (ECE).396

Pixel utility. For an image with T pixels, the pixel utility is defined as397

PU =
1

|T |

|T |∑
i=1

ũA(i),A∗(i) (17)
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Table 2: Lists of classes for the three databases used in this study. Classes in bold
characters are included in two or three databases. Classes with close meanings,
such as “minibike” and “motorbike”, are considered as identical.

Database Class list
Pascal VOC 2011 background, cat, dog, horse, sheep, train, sofa, aeroplane, bicycle,

bird, boat, bottle, bus, car, chair, cow, diningtable, motorbike,
person, pottedplant, tv.

MIT-scene parsing wall, floor, ceiling, bed, cabinet, earth, curtain, water, painting, shelf,
house, mirror, rug, armchair, seat, desk, wardrobe, lamp, bathtub, rail-
ing, cushion, base, box, column, chest, counter, sink, skyscraper, fire-
place, refrigerator, grandstand, path, stairs, runway, case, pool, pillow,
screen, bookcase, blind, coffee, toilet, flower, book, hill, bench, counter-
top, stove, palm, kitchen, computer, swivel, bar, arcade, hovel, towel,
light, truck, tower, chandelier, booth, dirt track, apparel, land, ban-
nister, escalator, ottoman, buffet, poster, stage, van, ship, fountain,
conveyer, canopy, washer, plaything, swimming, stool, barrel, basket,
waterfall, tent, bag, minibike, cradle, oven, ball, food, step, tank, trade,
microwave, pot, animal, lake, dishwasher, screen, blanket, sculpture,
hood, sconce, vase, traffic, tray, ashcan, fan, pier, screen, plate, moni-
tor, bulletin, shower, radiator, glass, clock, flag, sofa, airplane, build-
ing, sky, tree, road, windowpane, grass, sidewalk, person, door,
table, mountain, plant, chair, car, sea, field, fence, rock, sign,
sand, staircase, river, bridge, boat, bus, awning, streetlight, tv,
pole, bottle, minibike, bicycle.

SIFT Flow balcony, crosswalk, desert, moon, sun, window, awning, bird, boat,
bridge, building, bus, car, cow, door, fence, field, grass, moun-
tain, person, plant, pole, river, road, rock, sand, sea, sidewalk,
sign, sky, staircase, streetlight, tree.

(a)

(b) (c)

Fig. 3: Segmentation masks with soft labels: (a) Pascal VOC 2011, (b) MIT-scene
Parsing, and (c) SIFT Flow.

where A∗(i) is the label of pixel i, A(i) is the selected set of classes for pixel398

i determined from Eq. (14), and using the notations introduced in Section 3.2,399

ũA(i),A∗(i) is the utility of assigning pixel i to subset A(i) ⊆ Ω when its label400

is A∗(i). Thus, PU is the same as pixel accuracy when only considering precise401

assignments and precise labels. To consider soft labels, the utility matrix Ũ defined402
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Table 3: Utility matrix considering soft labels with γ = 0.8.

Label
ω1 ω2 ω3 {ω1, ω2} {ω1, ω3} {ω2, ω3} Ω

Act

f{ω1} 1 0 0 0.625 0.625 0 0.489
f{ω2} 0 1 0 0.625 0 0.625 0.489
f{ω3} 0 0 1 0 0.625 0.625 0.489
f{ω1,ω2} 0.8 0.8 0 1 0.5 0.5 0.782
f{ω1,ω3} 0.8 0 0.8 0.5 1 0.5 0.782
f{ω2,ω3} 0 0.8 0.8 0.5 0.5 1 0.782
fΩ 0.682 0.682 0.682 0.853 0.853 0.853 1

in Section 3.2 should be extended to a matrix Ũ
′

of size (2M − 1)× (2M − 1) with403

general term ũA,A∗ defined as the utility of assigning a pixel to subset A ⊆ Ω404

when its label is A∗, with |A∗| ≥ 1. Soft label A∗ means that we only know the405

true class of a pixel is in set A∗, and nothing more. To define the utility ũA,A∗ , we406

first compute the average of the utilities of selecting subset A when the true class407

is in A∗ as408

uA,A∗ =
1

|A∗|
∑

wk∈A∗

ũA,k, (18a)

where ũA,k is the utility of selecting subset A when the true class is ωk, and we409

normalize this average utility to ensure that ũA∗,A∗ = 1:410

ũA,A∗ =
uA,A∗
uA∗,A∗

. (18b)

411

Example 2 Table 3 shows an example of the utility matrix considering soft labels,412

which is extended from Example 1. The last four columns correspond to the utility413

matrix for soft labels. An act achieves utility 1 only if A = A∗, 0 if A ∩ A∗ = ∅,414

and a value between 0 and 1 if A 6= A∗ and A ∩A∗ 6= ∅.415

Utility of intersection over union. The segmentation performance was also evalu-416

ated by the utility of intersection over union (UIoU) defined as417

UIoU =
1

2|Ω| − 1

∑
B⊆Ω

∑
i∈GB∩PB ũA(i),B

|GB ∪ PB |
, (19)

where PB = {i : A(i) ∩ B 6= ∅} is the predicted area containing pixels assigned418

to a set of classes that intersect B, and GB = {i : A∗(i) = B)} is the ground419

truth area composed of pixels with label B. Thus, in the special case of precise420

segmentation with only precise labels, UIoU boils down to intersection over union,421

a widely used metric for semantic segmentation [22, 25, 28].422

Expected calibration error. In decision systems, a neural network should not only423

be accurate, but it should also indicate when it is likely to be incorrect. Thus,424

the confidence of an E-FCN should be calibrated. To characterize this property,425
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we extend the expected calibration error (ECE) introduced in [20] as follows. We426

define the prediction confidence of pixel i as427

co(i) = BetPi(A∗(i)) =
∑

ωj∈A∗(i)

BetPi({ωj}), (20)

where BetPi is the predicted pignistic probability measure for pixel i. Let Iq be the428

set of pixels whose prediction confidence lies in the interval ( q−1
Q , qQ ], q = 1, . . . , Q.429

The average utility and confidence of Iq are defined, respectively, as430

au(Iq) =
1

|Iq|
∑
i∈Iq

ũA(i),A∗(i), (21a)

and431

co(Iq) =
1

|Iq|
∑
i∈Iq

co(i). (21b)

We consider that the classifier is well calibrated if co(Iq) ≈ au(Iq) for all q, and432

we define the ECE as433

ECE =

∑Q
q=1 |Iq| × |co(Iq)− au(Iq)|∑Q

q′=1 |I ′q|
(22)

When only considering precise acts and labels, ECE defined by (22) boils down to434

the original definition in [20].435

4.2 Precise segmentation results436

In precise segmentation, each pixel of an image is assigned to exactly one class,437

the set of acts being defined as F = {fω1 , . . . , fωM }. Three databases without438

soft labels mentioned in Section 4.1 were used to train and test the E-FCNs and439

probabilistic FCNs (P-FCNs). The metrics defined in Section 4.1 with the utility440

matrix U equal to the identity matrix were used for performance assessment.441

In the experiment with each database, three widely used encoder-decoder ar-442

chitectures were combined with the DS and utility layers, as shown in Table 4.443

All encoder-decoder architectures in Table 4 have the same encoder part, which444

consists of four stages and two convolutional layers with 3× 3 kernels. Each stage445

is made up of three convolutional layers with 3 × 3 kernels and a max-pooling446

layer with a 2 × 2 non-overlapping window. Figure 4a illustrates the differences447

between the FCN-32s, FCN-16s, and FCN-8s architectures in their decoder parts448

with a deconvolutional layer. The FCN-SegNet architecture uses four deconvolu-449

tional layers to upsample the sparse feature maps from the end of the encoder450

part, as well as the feature maps from the corresponding pooling layers based on451

pooling indices [1], as shown in Figure 4b. The FCN-DilatedVGG architecture is452

the same as FCN-SegNet except that it adds a fully connected conditional ran-453

dom field at the end of the last deconvolutional layer [3]. The numbers P of feature454

maps for the Pascal, MIT and SIFT databases were, respectively, 31, 128 and 64.455

The numbers n of prototypes in the DS layer for these three databases were set,456

respectively, to 75, 300 and 95.457
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(a)

(b)

Fig. 4: Illustration of the encoder-decoder architectures used in this paper. Pool-
ing layers are represented as grids that show relatively sparse information. In-
termediate convolution layers are omitted. (a) The FCN-32s, FCN-16s, FCN-8s
architectures are used to combine sparse and high-layer information with dense
and low-layer information for upsampling. Black arrow: the deconvolutional layer
in FCN-32s directly upsamples the outputs of Pool 4 to pixel-wise feature maps;
orange arrows: the deconvolutional layer in FCN-16s combines outputs from Pool
3 and 4, lets the net predict finer details, while retaining high-level semantic in-
formation; green arrows: the deconvolutional layer in FCN-8s acquire additional
feature maps from Pool 2 to provide further precision; (b) The FCN-SegNet archi-
tecture uses four deconvolutional layers to upsample the sparse feature maps from
the end of the encoder part, as well as the feature maps from the corresponding
pooling layers based on pooling indices (purple arrows).
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Table 4: Performance evaluation of precise segmentation: (a) Pascal VOC 2011,
(b) MIT-scene Parsing, and (c) SIFT Flow. P-FCN and E-FCN are, respectively,
probabilistic and evidential FCNs. The rests of the notations, such as “-32s” and
“-16s”, stand for different encoder-decoder architectures. The results are in form
of “mean value ± standard deviation”. The best results for each encoder-decoder
architecture are shown in bold.

(a)

PU UIoU
P-FCN-32s [25] 0.8912 ± 0.0019 0.5941 ± 0.0033
P-FCN-16s [25] 0.9001 ± 0.0015 0.6243 ± 0.0025
P-FCN-8s [25] 0.9033 ± 0.0017 0.6269 ± 0.0021
E-FCN-32s 0.8973 ± 0.0021 0.6128 ± 0.0024
E-FCN-16s 0.9045 ± 0.0014 0.6304 ± 0.0019
E-FCN-8s 0.9074 ± 0.0015 0.6337 ± 0.0020

(b)

PU UIoU
P-FCN-16s [25] 0.7009 ± 0.0030 0.289 ± 0.0051
P-FCN-8s [25] 0.7128 ± 0.0024 0.294 ± 0.0048
P-FCN-SegNet [1] 0.7153 ± 0.0023 0.305 ± 0.0042
E-FCN-16s 0.7090 ± 0.0026 0.292 ± 0.0048
E-FCN-8s 0.7148 ± 0.0025 0.296 ± 0.0046
E-FCN-SegNet 0.7167 ± 0.0026 0.330 ± 0.0043

(c)

PU UIoU
P-FCN-16s [25] 0.8489 ± 0.0034 0.3922 ± 0.0047
P-FCN-8s [25] 0.8525 ± 0.0032 0.3948 ± 0.0042
P-FCN-DilatedVGG [3] 0.8643 ± 0.0036 0.4168 ± 0.0043
E-FCN-16s 0.8521 ± 0.0030 0.3937± 0.0042
E-FCN-8s 0.8528 ± 0.0031 0.3961 ± 0.0040
E-FCN-DilatedVGG 0.8649 ± 0.0035 0.4182 ± 0.0038

The DS and utility layers slightly improve the accuracy of precise assign-458

ments performed by FCN models, even though the performance of FCN mod-459

els on precise segmentation mainly depends on the encoder-decoder architecture.460

Table 4a presents the results of PU and UIoU for the Pascal VOC database. E-461

FCNs achieved higher PU and UIoU than P-FCNs with the same encoder-decoder462

architecture, which shows the E-FCNs outperform the P-FCNs for precise seg-463

mentation. Similar improvements can also be found in the MIT-scene Parsing and464

SIFT Flow databases as shown, respectively, in Tables 4b and 4c.465

The use of DS and utility layers also makes the FCN models better calibrated.466

Figure 5 presents a visual calibration representation of the FCN-8s models in the467

Pascal VOC database. The top row shows the pixel distribution of prediction468

confidence (21b) as histograms. The average confidence of the E-FCN-8s model469

closely matches its average pixel utility, while the average confidence of the P-470

FCN-8s model is substantially higher than its average pixel utility. This is further471

illustrated in the pixel utility diagrams (bottom row of Figure 5), which show472

pixel utility as a function of confidence. The E-FCN-8s model is well calibrated473
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Fig. 5: Pixel confidence distributions (top) and pixel utility histograms (bottom)
for P-FCN-8s (left) and E-FCN-8s (right) on the Pascal VOC database.

since its confidence in each bin approximates the expected average utility, whereas474

the predicted utility of the P-FCN-8s model does not match its confidence. As a475

consequence, the E-FCN-8s model achieves a smaller ECE than the probabilistic476

one. The effect of the DS and utility layers on the calibration can also be found477

in the FCN-SegNet and FCN-DialtedVGG models on the MIT-scene Parsing and478

SIFT Flow databases as shown, respectively, in Figures 6 and 7.479

4.3 Imprecise segmentation results480

In imprecise segmentation, each pixel of an image is assigned to a non-empty481

subset A of Ω; the set of acts is F = {fA, A ∈ 2Ω\∅}, or a subset thereof. Here482

we only considered acts fA such that A is a singleton, Ω or one of the soft labels483

in the training set. For performance evaluation, we used the metrics and the three484

databases described in Section 4.1. For each database, the segmentation masks485

with and without soft labels were used to train different FCN models. The same486

encoder-decoder architectures used for precise segmentation in Section 4.2 were487

combined with the DS and utility layers.488

Figure 8 displays the test results according to PU and UIoU for imprecise489

segmentation of the Pascal VOC database. For a wide range of imprecision toler-490

ance degree γ, the E-FCN models reach higher PU and UIoU values than those491

obtained by the P-FCN models; this is due to the fact that the E-FCN models492
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Fig. 6: Pixel confidence distributions (top) and pixel utility histograms (bottom)
for P-FCN-SegNet (left) and E-FCN-SegNet (right) on the MIT-scene Parsing
database.

tend to assign ambiguous pixels to multi-class sets, instead of making precise de-493

cisions. Such imprecise assignments avoid pixel misclassification in case of high494

uncertainty, especially when feature vectors from an encoder-decoder architecture495

do not contain sufficient information to predict a precise class, and multiple classes496

have similar probabilities. Figure 9 shows the pixel confidence distributions for the497

FCN models with γ = 0.8. We can see that the average confidences of the E-FCN498

models are smaller than those of the P-FCN models. This observation suggests499

that the E-FCN models make cautious decisions for ambiguous pixels by assigning500

them to multi-class sets, rather than classifying them arbitrarily into a single class.501

The E-FCN models are thus better calibrated than those based on P-FCN, which502

can be over-confident. Similar results are observed with the MIT-scene Parsing503

(Figures 10-11) and SIFT Flow (Figures 12-13) databases. We can thus conclude504

the DS and utility layers improve the performance of the FCN models in impre-505

cise segmentation tasks by allowing the assignment of some ambiguous pixels to506

multi-class sets.507

In Figures 8, 10 and 12, we can see that the value of UIoU first increases and508

then decreases when γ increases from 0.5 to 1. To explain this behavior, Figure509

14 shows some segmentation examples generated by the E-FCN-8s model trained510

on the Pascal VOC database with soft labels. The first and second columns of511

Figure 14 contain, respectively, the original images and their precise segmentation512

predicted masks, while the third to sixth columns show the imprecise segmentation513

results for values of γ ranging from 0.6 to 0.9. When γ increases from 0.5 to 0.8,514

the majority of the green masks (the areas whose pixels are assigned to multi-class515
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Fig. 7: Pixel confidence distributions (top) and pixel utility histograms (bottom)
for P-FCN-DilatedVGG (left) and E-FCN-DilatedVGG (right) on the SIFT Flow
database.

(a) (b)

(c) (d)

Fig. 8: Testing PU and UIoU vs. γ on the Pascal VOC database. The first and
second columns are the models trained with/without soft labels, respectively.
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Fig. 9: Pixel confidence distributions for the P-FCN-8s (left) and E-FCN-8s (right)
models on the Pascal VOC 2011 database without (top)/with (bottom) soft labels.

(a) (b)

(c) (d)

Fig. 10: Testing PU and UIoU vs. γ on the MIT-scene Parsing database. The first
and second columns are the models trained with/without soft labels, respectively.
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Fig. 11: Pixel rate histograms for the P-FCN-SegNet (left) and E-FCN-SegNet
(right) models on the MIT-scene Parsing database without (top)/with (bottom)
soft labels.

(a) (b)

(c) (d)

Fig. 12: Testing PU and UIoU vs. γ on the SIFT Flow database. The first and
second columns are the models trained with/without soft labels, respectively.
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Fig. 13: Pixel rate histograms for the P-FCN-DilatedVGG (left) and E-FCN-
DilatedVGG (right) models on the SIFT Flow database without (top)/with (bot-
tom) soft labels.

sets) tends to cover the red masks (the areas whose pixels are incorrectly classified516

in the precise segmentation). This observation can be explained by the fact that,517

in Eq. (19), the increase in the utility of the intersection between predicted and518

labeled areas is larger than the increase in the union between the two areas. As a519

result, UIoU increases when γ increases from 0.5 to 0.8. However, when γ increases520

from 0.8 to 1.0, the majority of the green masks cover the areas predicted correctly521

in the precise segmentation, which causes the increase in the utility of intersection522

to be smaller than the increase in the union areas. This phenomenon leads to the523

decrease of UIoU when γ is larger than 0.8.524

The use of soft labels improves the performance of the FCN models for im-525

precision segmentation tasks. As shown in Figure 8, the FCN models trained on526

the Pascal VOC database with soft labels have larger testing PU and UIoU than527

the ones without soft labels, which demonstrates the accuracy improvement using528

soft labels. Additionally, the use of soft labels can also improve the calibration of529

the FCN models. Figure 15 shows that the ECEs and bin gaps in the E-FCN and530

P-FCN models are smaller when using the learning set with soft labels. These re-531

sults demonstrate the feasibility of processing pixels with ambiguous information532

using soft labels when training FCN models. An improvement of accuracy and533

calibration due to learning from soft labels is also observed with the MIT-scene534

Parsing and SIFT Flow databases, as shown, respectively, in Figures 16 and 17.535

Therefore, we can conclude that the use of soft labels improves the accuracy and536

calibration of FCN models.537



Evidential fully convolutional network for semantic segmentation 25

Fig. 14: Segmentation examples from the Pascal VOC 2011 database: (a) Original
image, (b) Precise segmentation, (c) Imprecise segmentation with γ = 0.6, (d)
Imprecise segmentation with γ = 0.7, (e) Imprecise segmentation with γ = 0.8,
and (f) Imprecise segmentation with γ = 0.9. Red masks are pixels incorrectly
classified in the precise segmentation; green masks are pixels assigned to multi-
class sets except set Ω; pink masks are pixels assigned to set Ω; other masks are
pixels assigned to correct single-class sets.

4.4 Novelty detection results538

For novelty detection, a pixel is considered as an outlier or an ambiguous sample if539

it is assigned to set Ω. Figures 18, 19 and 20 show the results of novelty detection540

using the E-FCN and P-FCN models when the learning set is extracted, respec-541

tively, from the Pascal VOC, MIT-scene Parsing and SIFT Flow databases, and542

the test set is composed of images from the other two databases. In each testing543

set composed of two databases, only the pixels whose class is not represented in544

the corresponding learning set are reported in Figures 18-20. The E-FCN models545

assign outliers and some known-class pixels to set Ω for values of γ between 0.7546

and 0.9, while the P-FCN models do not. This observation shows that the E-FCN547

models are more efficient than the probabilistic ones for rejecting outliers together548

with ambiguous samples. The proposed architecture thus has the potential to per-549

form novelty detection once given a reasonable value of tolerance to imprecision.550
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Fig. 15: Average utility histograms for P-FCN-8s (left) and E-FCN-8s (right) with
γ = 0.8 on the Pascal VOC 2011 database without (top)/with (bottom) soft labels.

Fig. 16: Average utility histograms for P-FCN-SegNet (left) and E-FCN-SegNet
(right) with γ = 0.8 on the MIT-scene Parsing database without (top)/with (bot-
tom) soft labels.
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Fig. 17: Average utility histograms for P-FCN-DilatedVGG (left) and E-FCN-
DilatedVGG (right) with γ = 0.8 on the SIFT Flow database without (top)/with
(bottom) soft labels.

However, none of the FCN models performs well when γ is less than 0.7 since these551

models favor precise decisions.552

The E-FCN models tend to reject unknown objects whose features are very553

different from those of the known objects in the learning set. For example, Figure554

21 shows images from the MIT-scene Parsing database in which pixels representing555

‘bag’, ‘street light’ and ‘ball’ objects are rejected by an E-FCN-8s model trained556

using the Pascal VOC database, which does not contain these objects. As shown557

in Table 5, 75.2% of the pixels representing a ball in the MIT-scene Parsing and558

and SIFT Flow databases are assigned to Ω, while 16.1% are assigned to a set of559

classes containing “bottle”. For the “bag” and “street light” classes, these numbers560

are, respectively, 68.4%/21.8% and 77.3%/16.3%. Some unknown objects are not561

so easily rejected because of their similarity with known objects. For instance,562

84.7% of the pixels representing a seat and 81.7% of pixels representing a bench563

are assigned to a set of classes containing “chair”, and 88% of “wall” pixels are564

assigned to a set of classes containing “background”.565

We can also observe that the FCN models trained using a leaning set with566

soft labels reject more outliers than those trained without soft labels, as shown in567

Figures 18, 19 and 20. This is because the use of soft labels makes the FCN models568

more cautious and better calibrated, as discussed in Section 4.3. More precisely,569

for ambiguous pixels or outliers, the output mass functions of the FCN models570

trained with soft labels are more uniform than those computed by FCN models571

trained without soft labels. As a result, ambiguous pixels and outliers are more572
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Fig. 18: Proportion of pixels assigned to Ω as a function of γ for novelty detection
on the combination of MIT-scene Parsing and SIFT Flow databases (top) and the
testing set from the Pascal VOC 2011 database (bottom) when the learning set is
from the Pascal VOC database without (left)/with (right) soft labels.

Fig. 19: Proportion of pixels assigned to Ω as a function of γ for novelty detection
on the combination of Pascal VOC 2011 and SIFT Flow (top) and the testing set
of the MIT-scene Parsing database (bottom) when the learning set is from the
Pascal VOC database without (left)/with (right) soft labels.
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Fig. 20: Proportion of pixels assigned to Ω as a function of γ for novelty detection
on the combination of Pascal VOC 2011 and MIT-scene Parsing (top) and the
testing set of the SIFT Flow database (bottom) when the learning set is from the
Pascal VOC database without (left)/with (right) soft labels.

Table 5: Percentage of pixels from some unknown classes in the MIT-scene Parsing
and SIFT Flow databases classified by an E-FCN-8s model trained on the Pascal
VOC database into some sets of classes. The model was trained with soft labels
and γ = 0.8. For instance, 68.4% of the pixels representing a bag were rejected
(i.e., assigned to Ω), and 84.7% of pixels representing a seat were assigned to a set
of classes containing the class “chair”.

True class
bag street light ball seat bench bed wall

Assigned
set

Ω 68.4 77.3 75.2 7.8 4.7 15.9 4.9
{bottle, . . .} 21.8 16.3 16.1 48.5 39.7 30.3 0.2
{chair, . . .} 11.3 9.2 8.5 84.7 81.7 58.6 0.3
{background, . . .} 15.2 13.7 11.5 58.7 48.6 46.9 88.0
Others 4.2 2.4 1.5 2.7 3.5 5.2 3.7

easily assigned to set Ω. We can thus conclude that soft labels have the potential573

to enhance novelty detection performance.574
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Fig. 21: Examples of novelty detention from the MIT-scene Parsing database and
their segmentation masks given by the E-FCN-8s model trained using the Pascal
VOC database with soft labels when γ equals 0.8. Red masks are pixels incorrectly
assigned in the precise segmentation; green masks are pixels assigned to multi-class
sets except set Ω; pink masks are pixels assigned to set Ω; other masks are pixels
assigned to correct single-class sets.

5 Conclusions575

In this paper, we have presented a new approach based on the combination of DS576

theory and FCN for image semantic segmentation. In the proposed model, called577

evidential fully convolutional network (E-FCN), an encoder-decoder architecture578

first extracts pixel-wise feature maps from an input image. A Dempster-Shafer579
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layer then computes mass functions at each pixel location based on distances to580

prototypes. Finally, a utility layer performs semantic segmentation based on pixel-581

wise mass functions. The proposed model can be trained using a learning set with582

soft labels in an end-to-end way.583

The main finding of this study is that the proposed combination of FCNs and584

ENNs makes it possible to improve accuracy and calibration of FCN models by585

assigning ambiguous pixels to multi-class sets, while maintaining the good perfor-586

mance of FCNs in precise segmentation tasks. The E-FCN model is able to select587

a set of classes when the object representation does not allow us to select a single588

class unambiguously, which easily leads to incorrect decision-making in probabilis-589

tic FCNs. This result provides a new direction to improve the performance of FCN590

models for semantic segmentation. The learning strategy using soft labels further591

improves the accuracy and calibration of the FCN models. Additionally, the pro-592

posed approach makes it possible to reject outliers together with ambiguous pixels593

when the tolerance to imprecision is between 0.7 and 0.9.594

Future work will focus on two main aspects. First, we will investigate multi-595

FCN-model information fusion for semantic segmentation based on the defini-596

tion of soft labels, using an approach similar to that introduced in [36]. Other597

advanced evidential classifiers, such as the contextual-discounting evidential K-598

nearest neighbor [14] will also be considered to improve the performance of the599

proposed neural network architecture.600
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