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LONG-TIME BEHAVIOR OF SSEP WITH SLOW BOUNDARY

LINJIE ZHAO

Abstract. We consider the symmetric simple exclusion process with slow boundary first
introduced in [Baldasso et al., Journal of Statistical Physics, 167(5), 2017]. We prove a law
of large number for the empirical measure of the process under a longer time scaling instead
of the usual diffusive time scaling.

1. Introduction

Interacting particle systems in contact with reservoirs have been investigated in various
literature [5, 7, 8]. We study in this article the symmetric simple exclusion process (SSEP)
on a line segment {1, . . . , N − 1} with slow boundary, which is first introduced by Baldasso
et al. [1]. Here, N is the scaling parameter. There is at most one particle per site. In the
bulk, a particle jumps to one of its neighbors at rate one provided the target site is empty.
Fix parameters c > 0, θ ≥ 0 and α, β ∈ (0, 1). At the boundary site 1 (resp. N − 1), a
particle is created at rate cαN−θ (resp. cβN−θ) if site 1 (resp. N − 1) is empty, and a
particle is destroyed at rate c(1 − α)N−θ (resp. c(1 − β)N−θ) if site 1 (resp. N − 1) is
occupied. Therefore, the particle density of the left (resp. right) reservoir is α (resp. β),
and the interaction strength between the bulk and the reservoirs is cN−θ. The hydrodynamic
equation of the model turns out to be the heat equation with Dirichlet boundary conditions
if θ < 1, with Robin boundary conditions if θ = 1 and with Neumann boundary conditions if
θ > 1. We refer the readers to [1] for more background of the model.

The hydrodynamic limit of the model is considered under the diffusive time scaling, i.e.,
with time speeded up by N2 and space divided by N . The aim of this article is to consider
the behavior of the process under a longer time scaling N2+γ , γ > 0. Since the process is
irreducible, it has a unique invariant measure. Under the invariant measure, the empirical
measure converges in probability to the stationary solution of the corresponding hydrodynamic
equations as N → ∞. This is called hydrostatic limit [1, 13]. The hydrostatic limit could be
formally interpreted as taking γ = ∞. For 0 < γ < ∞, it is natural to expect that the limit
of the empirical measure should coincide with the hydrostatic limit. This is indeed true for
θ ≤ 1, since the stationary solution of the corresponding hydrodynamic equation is unique
in this case. For θ > 1, since the stationary solution is not unique, three regimes appear
depending on whether γ < θ − 1, γ = θ − 1 or γ > θ − 1. See Theorem 2.3 for details.

Despite the simple structure of the model, it has attracted a lot of attention since then.
The equilibrium/non-equilibrium fluctuations from the hydrodynamic limit are considered in
[9, 11]. The large deviation of the SSEP with slow boundary are investigated in [2, 6, 10].

Key words and phrases. Exclusion process; slow boundary; empirical measure; law of large numbers.
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The paper is organized as follows. In Section 2 we define the model rigorously via its
infinitesimal generator, review the hydrodynamic/hydrostatic limit already proven in [1, 13],
and state the main result of the article. In Section 3 we introduce the notation of Dirichlet
forms and prove the so-called replacement lemmas under a longer time scaling. The estimates
involving the Dirichlet forms are mostly borrowed from [1]. The proof of Theorem 2.3 is
presented in Section 4. In the last Section 5 we explain how to adapt our results to mixed
slow boundaries, i.e., when the strengths of interactions with left and right reservoirs are
different.

2. Notation and Results

2.1. The model. The state space of the process (ηt)t≥0 is ΩN := {0, 1}IN , where IN :=

{1, . . . , N − 1} . Here, N is the scaling parameter. For a configuration η ∈ ΩN , η(x) = 1

if and only if there is a particle at site x. Fix parameters c > 0, θ ≥ 0 and α, β ∈ (0, 1).
The parameter θ denotes the strength of interaction with reservoirs and α, β are the particle
densities of reservoirs. The generator LN of the process (ηt)t≥0 is given by

LN = LN,0 + L α
N,L + L β

N,R.

Above, the generator LN,0 of the bulk dynamics acting on functions f : ΩN → R is

(LN,0f) (η) =

N−2∑
x=1

[
f
(
ηx,x+1

)
− f(η)

]
,

where ηx,y is the configuration obtained from η by exchanging the values of η(x) and η(y),
i.e., ηx,y(x) = η(y), ηx,y(y) = η(x) and ηx,y(z) = η(z) for z 6= x, y. The generators L α

N,L and
L β

N,R correspond to the boundary effects, and are given by

(L α
N,Lf)(η) := cN−θrα,L(η)

[
f
(
η1
)
− f(η)

]
, (L β

N,Rf)(η) := cN−θrβ,R(η)
[
f
(
ηN−1

)
− f(η)

]
,

where ηx is the configuration obtained from η by flipping the value of η(x), i.e., ηx(x) = 1−η(x)

and ηx(z) = η(z) for z 6= x, and

rα,L(η) = α(1− η(1)) + (1− α)η(1), rβ,R(η) = β(1− η(N − 1)) + (1− β)η(N − 1).

Denote by µN the initial measure of the process. For any positive integer k, let Ck[0, 1] be
the family of functions on [0, 1] such that the m-th derivative is uniformly continuous in (0, 1)

for any m ≤ k.

2.2. Hydrodynamic limit. It has been proven in [1] that phase transitions occur for the
SSEP with slow boundary, depending on whether θ < 1, θ = 1 or θ > 1. To state the
hydrodynamic limit, we impose the following assumptions on the initial measure µN : there
exists a measurable initial density profile ρ0 : [0, 1] → [0, 1] such that for any G ∈ C[0, 1],

lim
N→∞

1

N

N−1∑
x=1

η(x)G
(
x
N

)
=

∫ 1

0
ρ0(u)G(u) du

in probability with respect to µN . The following result characterize the macroscopic density
profile under the diffusive time scaling.
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Theorem 2.1 (Cf. [1, Theorem 2.8]). For any t ≥ 0 and for any G ∈ C[0, 1],

lim
N→∞

1

N

N−1∑
x=1

ηtN2(x)G
(
x
N

)
=

∫ 1

0
ρ(t, u)G(u) du

in probability, where
(i) if 0 ≤ θ < 1, then ρ(t, u) is the unique weak solution to the heat equation with Dirichlet
boundary 

∂tρ(t, u) = ∆ρ(t, u), u ∈ (0, 1), t ≥ 0

ρ(t, 0) = α, ρ(t, 1) = β, t ≥ 0,

ρ(0, u) = ρ0(u), u ∈ [0, 1]

(2.1)

(ii) if θ = 1, then ρ(t, u) is the unique weak solution to the heat equation with Robin boundary
∂ρ(t, u) = ∆ρ(t, u), u ∈ (0, 1), t ≥ 0

∂uρ(t, 0) = c (ρ(t, 0)− α) , t ≥ 0,

∂uρ(t, 1) = c (β − ρ(t, 1)) , t ≥ 0

ρ(0, u) = ρ0(u), u ∈ [0, 1]

(2.2)

(iii) if θ > 1, then ρ(t, u) is the unique weak solution to the heat equation with Neumann
boundary 

∂tρ(t, u) = ∆ρ(t, u), u ∈ (0, 1), t ≥ 0

∂uρ(t, 0) = 0, ∂uρ(t, 1) = 0, t ≥ 0

ρ(0, u) = ρ0(u), u ∈ [0, 1]

(2.3)

We refer the readers to [1] for rigorous definitions of weak solutions to the above PDEs.

2.3. Hydrostatic limit. Since the process (ηt)t≥0 is irreducible, it has a unique invariant
measure denoted by µss

N . The following result characterize the macroscopic density profile
under the invariant measure µss

N .

Theorem 2.2 (Cf. [1, Theorem 2.2] and [13]). For any G ∈ C[0, 1],

lim
N→∞

1

N

N−1∑
x=1

η(x)G
(
x
N

)
=

∫ 1

0
ρ̄(u)G(u) du

in probability with respect to µss
N , where

ρ̄(u) =


(β − α)u+ α, if θ ∈ [0, 1)
c(β−α)
2+c u+ α+ β−α

2+c , if θ = 1
β+α
2 , if θ ∈ (1,∞)

We say ρ : [0, 1] → [0, 1] is a stationary solution to (2.1) if

∆ρ(u) = 0, u ∈ (0, 1), ρ(0) = α, ρ(1) = β.

Stationary solutions to (2.2) and (2.3) could be defined in the same way. Note that the
hydrostatic limits ρ̄ are stationary solutions to the corresponding hydrodynamic equations
as stated in Theorem 2.1. We underline that the stationary solution to (2.1) and (2.2) is
unique, while the stationary solution to (2.3) is not unique. Indeed, any constant function is
a stationary solution to (2.3). The above theorem tells us that the correct choice is (α+β)/2.
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2.4. Long-time limit. In this subsection, we state the main result of the article. Fix γ > 0.
We shall consider the process speeded up by N2+γ . Denote by (ηNt )t≥0 the process with
generator N2+γLN . Then (ηNt )t≥0 and (ηtN2+γ )t≥0 have the same distribution. We are
interested in the long time behavior of the empirical measure πN

t of the process defined as

πN
t (du) =

1

N

N−1∑
x=1

ηNt (x)δx/N (du),

where δx/N (du) is the Dirac measure on the point x/N . Whence, πN
t is a random measure on

[0, 1] with total mass bounded by one. With this notation, for any G ∈ C[0, 1],

〈
πN
t , G

〉
=

1

N

N−1∑
x=1

ηNt (x)G
(
x
N

)
.

For θ > 1 and 0 < γ ≤ θ − 1, we assume that the average number of particles converges in
the following sense: there exists m0 ∈ [0, 1] such that

lim
N→∞

EµN

[∣∣∣ 1

N − 1

N−1∑
x=1

η(x)−m0

∣∣∣] = 0. (2.4)

We underline that we impose no restrictions on the initial measure µN in the rest of the cases.
Denote by PN

µN
the probability measure on D([0,∞),ΩN ) associated to the process (ηNt )t≥0

and the initial measure µN , and by EN
µN

the corresponding expectation.
We now state the law of large numbers for the empirical measure πN

t .

Theorem 2.3. For any t > 0 and for any G ∈ C[0, 1],

lim
N→∞

EN
µN

[∣∣ ∫ t

0

{〈
πN
s , G

〉
−
∫ 1

0
ρθ,γ(s, u)G(u)du

}
ds
∣∣] = 0,

where

ρθ,γ(t, u) =



(β − α)u+ α, if 0 ≤ θ < 1
c(β−α)
2+c u+ α+ β−α

2+c , if θ = 1,

m0, if θ > 1, 0 < γ < θ − 1,
β+α
2 , if θ > 1, γ > θ − 1,

β+α
2 +

(
m0 − α+β

2

)
e−2ct, if θ > 1, γ = θ − 1.

(2.5)

Remark 2.4. Note that ρθ,∞ = ρ̄. This is not surprising since the hydrostatic limit stated
in Theorem 2.2 could be formally interpreted as taking γ = ∞. Compared with Theorem 2.2,
the above theorem states that phase transition occurs even in the supercritical case θ > 1.

Remark 2.5. The result should also hold if the density reservoirs vary slowly with time, i.e.,
if replacing α (resp. β) with some smooth function ρ−(t) : R+ → (0, 1) (resp. ρ+(t) : R+ →
(0, 1)). This is called quasi-static hydrodynamic limit [3, 4]. We underline that the case θ = 0

is covered by [4, Theorem 2.1/3.1].
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3. Preliminary results

In this section, we introduce the notion of Dirichlet forms and prove several replacement
lemmas in different regimes, which are crucial in the proof of Theorem 2.3.

3.1. Dirichlet form. For a probability measure µ on ΩN and a function g : ΩN → R, the
Dirichlet forms corresponding to the bulk/boundary dynamics are defined as

DN,0(g, µ) :=
1

2

N−2∑
x=1

∑
η∈ΩN

(
g
(
ηx,x+1

)
− g(η)

)2
µ(η),

Dα
N,L(g, µ) :=

1

2

∑
η∈ΩN

cN−θrα,L(η)
(
g
(
η1
)
− g(η)

)2
µ(η),

Dβ
N,R(g, µ) :=

1

2

∑
η∈ΩN

cN−θrβ,R(η)
(
g
(
ηN−1

)
− g(η)

)2
µ(η).

For any two functions f, g : ΩN → R, denote〈
f, g

〉
µ
=

∑
η∈ΩN

f(η)g(η)µ(η).

For any density profile λ : [0, 1] → [0, 1], let νNλ(·) be the product measure on ΩN with marginals
given by

νNλ(·){η : η(x) = 1} = λ
(
x
N

)
, x ∈ IN .

In particular, if λ(·) ≡ ρ for some ρ ∈ [0, 1], we simply write νNρ .
The following lemma compares

〈
LNg, g

〉
µ

with DN (g, µ).

Lemma 3.1. (i) Let λ : [0, 1] → (0, 1) be a smooth density profile such that there exists
a neighborhood of 0 where γ(·) = α, and a neighborhood of 1 where γ(·) = β. Let f be a
νNλ(·)-density,

f ≥ 0,
∑
η∈ΩN

f(η)νNλ(·)(η) = 1.

Then〈
LN

√
f,

√
f
〉
νN
λ(·)

= −(1/2)DN,0(
√

f, νNλ(·))−Dα
N,L(

√
f, νNλ(·))−Dβ

N,R(
√

f, νNλ(·)) +O(N−1),

where |O(N−1)| ≤ CN−1 for some finite constant C.
(ii) Let ρ ∈ (0, 1) be a constant. Let f be a νNρ -density. Then〈

LN

√
f,

√
f
〉
νNρ

= −DN,0(
√

f, νNρ )−Dα
N,L(

√
f, νNρ )−Dβ

N,R(
√
f, νNρ ) +O(N−θ).

The first statement (i) is a direct consequence of [1, Lemma 5.1 (ii) and Lemma 5.2]. The
second statement (ii) follows directly from [1, Lemma 5.1 (i) and Corrollary 5.3]. For this
reason, we omit the proof here.

The following lemma bound the occupation variables at the boundary sites by the corre-
sponding Dirichlet forms.
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Lemma 3.2. Let λ : [0, 1] → (0, 1) be a smooth density profile such that there exists a
neighborhood of 0 where γ(·) = α, and a neighborhood of 1 where γ(·) = β. Let f be a
νNλ(·)-density. Then there exists a finite constant Cα such that for any B > 0,∣∣ ∑

η∈ΩN

(η(1)− α)f(η)νNλ(·)(η)
∣∣ ≤ CαB + CαN

θB−1Dα
N,L(

√
f, νNλ(·)).

The same result holds at the right boundary: there exists a finite constant Cβ such that for
any B > 0,∣∣ ∑

η∈ΩN

(η(N − 1)− β)f(η)νNλ(·)(η)
∣∣ ≤ CβB + CβN

θB−1Dβ
N,R(

√
f, νNλ(·)).

The above lemma is a direct consequence of [1, Lemmas 5.6 and 5.7]. For that reason, we
omit the proof here.

3.2. Replacement lemmas. In this subsection, we prove several replacement lemmas under
the longer time scaling N2+γ , γ > 0.

The following lemma states that in the subcritical regime 0 ≤ θ < 1, we could replace the
occupation variable at the boundary sites with the corresponding particle density of reservoirs.

Lemma 3.3 (Replacement lemma for the case 0 ≤ θ < 1.). Suppose 0 ≤ θ < 1. Then for any
t > 0,

lim
N→∞

EN
µN

[∣∣ ∫ t

0
(ηNs (1)− α) ds

∣∣] = 0.

The same result holds with ηNs (1) replaced with ηNs (N − 1) and α with β.

Proof. Let λ : [0, 1] → (0, 1) be a smooth density profile such that there exists a neighborhood
of 0 where γ(·) = α, and a neighborhood of 1 where γ(·) = β. By the relative entropy
inequality (cf. [12, A.1.8]), for any A > 0, the expectation in the lemma could be bounded
from above by

H(µN |νNλ(·))
AN

+
1

AN
logEN

νN
λ(·)

[
exp

{
AN

∣∣ ∫ t

0
(ηNs (1)− α) ds

∣∣}], (3.1)

where for any probability measures µ, ν on ΩN such that µ is absolutely continuous with
respect to ν, H(µ|ν) is the relative entropy of µ with respect to ν defined as

H(µ|ν) =
∑
η∈ΩN

µ(η) log
µ(η)

ν(η)
.

It is not hard to prove that H(µN |νNλ(·)) ≤ CλN for some finite constant Cλ. Therefore, the
first term in (3.1) is bounded by Cλ/A. In the sequel, we shall take A = A(N) → ∞ as
N → ∞. Whence the first term in (3.1) vanishes in the limit. Since

lim
N→∞

r−1
N log(aN + bN ) = max{ lim

N→∞
r−1
N log aN , lim

N→∞
r−1
N log bN}

for any positive sequences {aN}N≥1, {bN}N≥1 and {rN}N≥1 such that limN→∞ rN = ∞,
we could remove the modulus inside the exponential for the second term in (3.1). By the
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Feynman-Kac formula (cf. [1, Lemma 7.3]), the second term in (3.1) is bounded by

t sup
f : νN

γ(·)-density

{ ∑
η∈ΩN

(η(1)− α)f(η)νNλ(·)(η) +
N1+γ

A

〈
LN

√
f,

√
f
〉
νN
λ(·)

}
. (3.2)

By Lemma 3.1 (i), 〈
LN

√
f,

√
f
〉
νN
λ(·)

≤ −Dα
N,L(

√
f, νNλ(·)) +O(N−1).

Together with Lemma 3.2, for any B > 0, we may bound (3.2) by

t sup
f : νN

λ(·)-density

{
CαB + CαN

θB−1Dα
N,L(

√
f, νNλ(·))−

N1+γ

A
Dα

N,L(
√
f, νNλ(·)) +O(Nγ/A)

}
for some finite constant Cα. Taking B = CαAN

θ−1−γ and A = Nγ logN , the above term is
bounded by t

(
C2
αN

θ−1 logN +O(1/ logN)
)
, which converges to zero as N → ∞ since θ < 1.

This concludes the proof. □

Let mN (η) be the average number of particles in the system

mN (η) =
1

N − 1

N−1∑
x=1

η(x).

Denote mN
t = mN (ηNt ). The next result states that in the supercritical regime θ > 1, we could

replace the occupation variables at the boundary sites with the average number of particles
in the system.

Lemma 3.4 (Replacement lemma for the case θ > 1.). Suppose θ > 1. Then for any t > 0,

lim
N→∞

EN
µN

[∣∣ ∫ t

0
(ηNs (1)−mN

s ) ds
∣∣] = 0.

The same result holds with ηNs (1) replaced with ηNs (N − 1)

Proof. The proof is similar to that of Lemma 3.3, and we only sketch the proof here. Fix a
constant ρ ∈ (0, 1). By the relative entropy inequality (cf. [12, A.1.8]), for any A > 0, the
expectation in the lemma could be bounded from above by

H(µN |νNρ )

AN
+

1

AN
logEN

νNρ

[
exp

{
AN

∣∣ ∫ t

0
(ηNs (1)−mN

s ) ds
∣∣}]. (3.3)

As in Lemma 3.3, the first term is bounded by C/A for some finite constant C. By the
Feynman-Kac formula (cf. [1, Lemma 7.3]), the second term in (3.3) is bounded by

t sup
f : νNρ -density

{ ∑
η∈ΩN

(η(1)−mN (η))f(η)νNρ (η) +
N1+γ

A

〈
LN

√
f,

√
f
〉
νNρ

}
. (3.4)

We may rewrite η(1)−mN (η) as a telescope sum

1

N − 1

N−1∑
x=1

x−1∑
y=1

(η(y)− η(y + 1)).
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Making the change of variables η 7→ ηy,y+1,∑
η∈ΩN

(η(1)−mN (η))f(η)νNρ (η) =
1

2(N − 1)

N−1∑
x=1

x−1∑
y=1

∑
η∈ΩN

(η(y)−η(y+1))
(
f(η)−f(ηy,y+1)

)
νNρ (η).

By Cauchy-Schwarz inequality, for any B > 0, we may bound the last term by

B

4(N − 1)

N−1∑
x=1

x−1∑
y=1

∑
η∈ΩN

(√
f(η)−

√
f(ηy,y+1)

)2
νNρ (η)

+
1

4B(N − 1)

N−1∑
x=1

x−1∑
y=1

∑
η∈ΩN

(√
f(η) +

√
f(ηy,y+1)

)2
νNρ (η)

≤ B

2
DN,0(

√
f, νNρ ) +

N

B
.

The last inequality follows from the basic inequality (a+ b)2 ≤ 2(a2 + b2) and the fact that f

is a density with respect to νNρ . By Lemma 3.1 (ii),〈
LN

√
f,

√
f
〉
νNρ

≤ −DN,0(
√

f, νNρ ) +O(N−θ).

Whence, (3.4) is bounded by

t sup
f : νNρ -density

{B

2
DN,0(

√
f, νNρ ) +

N

B
− N1+γ

A
DN,0(

√
f, νNρ ) +O(N1+γ−θ/A).

}
Taking B = 2N1+γ/A and A = Nγ/(logN), the above term is bounded by 1/(2 logN) +

O(N1−θ logN), which converges to zero as N → ∞ since θ > 1. This concludes the proof. □

The next lemma concerns about the long time behavior of the average number of particles
in the supercritical case.

Lemma 3.5 (Replacement lemma for the average particle number.). Suppose θ > 1. Recall
m0 defined in (2.4) is the average number of particles at the initial time. For any t > 0,

(i) if 0 ≤ γ < θ − 1, then

lim
N→∞

EN
µN

[∣∣ ∫ t

0

(
mN

s −m0

)
ds
∣∣] = 0,

(ii) if γ = θ − 1, then

lim
N→∞

EN
µN

[∣∣ ∫ t

0

(
mN

s −ms

)
ds
∣∣] = 0,

where
ms =

α+ β

2
+
(
m0 −

α+ β

2

)
e−2cs.

(iii) if γ > θ − 1, then

lim
N→∞

EN
µN

[∣∣ ∫ t

0

(
mN

s − (α+ β)/2
)
ds
∣∣] = 0.
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Proof. The statement (ii) is a direct consequence of [13, Proposition 4.5]. For the rest of the
statements, consider the martingale mN

t defined as

mN
t := mN

t −mN
0 −

∫ t

0
N2+γLNmN

s ds, (3.5)

whose quadratic variation at time t is given by∫ t

0

{
N2+γLN (mN

s )2 − 2mN
s N2+γLNmN

s

}
ds.

A simple calculation shows that the quadratic variation of mN
t is bounded by CNγ−θ for some

finite constant C, and that the integral term in (3.5) equals
cN2+γ−θ

N − 1

∫ t

0

(
α− ηNs (1) + β − ηNs (N − 1)

)
ds.

If 0 ≤ γ < θ − 1, by Doob’s inequality, for any T > 0,

lim
N→∞

EN
µN

[
sup

0≤t≤T

(
mN

t

)2]
= 0.

The integral term in (3.5) is of order N1+γ−θ, which converges to zero as N → ∞ uniformly
in a bounded time interval. Therefore,

lim
N→∞

EN
µN

[
sup

0≤t≤T
|mN

t −m0|
]
= 0

This proves the first statement (i).
If γ > θ − 1, divided by N1+γ−θ in (3.5), we have

lim
N→∞

EN
µN

[
sup

0≤t≤T

(
N θ−γ−1mN

t

)2]
= 0.

Since mN
t ≤ 1, by (3.5),

lim
N→∞

EN
µN

[∣∣ ∫ t

0

(
α− ηNs (1) + β − ηNs (N − 1)

)
ds
∣∣] = 0.

By Lemma 3.4, we could replace ηNs (1) and ηNs (N − 1) in the time integral with mN
s . This

concludes the proof. □

4. Proof of Theorem 2.3

In this section, we prove Theorem 2.3 depending on whether 0 ≤ θ < 1, θ = 1 or θ > 1.
For H ∈ C2[0, 1], consider the martingale defined as

MN
t (H) =

〈
πN
t ,H

〉
−
〈
πN
0 ,H

〉
−
∫ t

0
N2+γLN

〈
πN
s ,H

〉
ds, (4.1)

whose quadratic variation at time t is given by∫ t

0

{
N2+γLN

〈
πN
s ,H

〉2 − 2
〈
πN
s ,H

〉
N2+γLN

〈
πN
s ,H

〉}
ds.
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Direct calculations show that the quadratic variation of MN
t (H) is bounded by CH(Nγ−1 +

Nγ−θ) for some finite constant CH . Therefore, for any T > 0,

lim
N→∞

EN
µN

[
sup

0≤t≤T

(
N−γMN

t (H)
)2]

= 0.

Since there is at most one particle per site, |
〈
πN
t ,H

〉
| ≤ ||H||∞ uniformly in t, where ||H||∞ :=

maxu∈[0,1] |H(u)| is the uniform norm. Divided by Nγ in (4.1),

lim
N→∞

EN
µN

[∣∣ ∫ t

0
N2LN

〈
πN
s ,H

〉
ds
∣∣] = 0.

Direct calculations yield that
N2LN

〈
πN
s ,H

〉
=

〈
πN
s ,H ′′〉− ηNs (N − 1)H ′(1) + ηNs (1)H ′(0)

+ cN1−θ
(
α− ηNs (1)

)
H(0) + cN1−θ

(
β − ηNs (N − 1)

)
H(1) +O(N−θ +N−1).

Whence,

lim
N→∞

EN
µN

[∣∣ ∫ t

0

{〈
πN
s ,H ′′〉− ηNs (N − 1)H ′(1) + ηNs (1)H ′(0)

+ cN1−θ
(
α− ηNs (1)

)
H(0) + cN1−θ

(
β − ηNs (N − 1)

)
H(1)

}
ds
∣∣] = 0.

(4.2)

4.1. The case 0 ≤ θ < 1. In this subsection, we prove Theorem 2.3 for the case 0 ≤ θ < 1.
Fix G ∈ C[0, 1]. The main technique here is to find an appropriate function H such that
H ′′ = G on (0,1) and that H(0) = H(1) = 0. With such a function H, the second line in
(4.2) vanishes and the result follows by the corresponding replacement lemmas.

Proof of Theorem 2.3 in the case 0 ≤ θ < 1. For G ∈ C[0, 1], let

H(u) = HG(u) =

∫ u

0

∫ v

0
G(w) dw dv + u

∫ 1

0
(v − 1)G(v) dv. (4.3)

It is easy to check that H ∈ C2[0, 1], H ′′ = G on (0, 1), and that

H(0) = H(1) = 0, H ′(0) =

∫ 1

0
(u− 1)G(u) du, H ′(1) =

∫ 1

0
uG(u) du.

Substituting the function H into (4.2),

lim
N→∞

EN
µN

[∣∣ ∫ t

0

{〈
πN
s , G

〉
−
∫ 1

0

[
(ηNs (N − 1)− ηNs (1))u+ ηNs (1)

]
G(u) du

}
ds
∣∣] = 0.

By Lemma 3.3, we could replace ηNs (1) (resp. ηNs (N − 1)) with α (resp. β). This concludes
the proof for the case 0 ≤ θ < 1. □

4.2. The case θ = 1. In this subsection, we prove Theorem 2.3 for the case θ = 1. Fix
G ∈ C[0, 1]. We need to find an appropriate function H such that H ′′ = G on (0,1) and that
the coefficients of η(1) and η(N − 1) vanish in (4.2). Note that in this case we do not need
any replacement lemma.
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Proof of Theorem 2.3 in the case θ = 1. For G ∈ C[0, 1], let

H(u) =

∫ 1

0

( v

2 + c
− 1 + c

c(2 + c)

)
G(v)dv + u

∫ 1

0

( cv

2 + c
− 1 + c

2 + c

)
G(v)dv +

∫ u

0

∫ v

0
G(w) dw dv.

It is easy to check that H ∈ C2[0, 1], H ′′ = G on (0, 1), and that

H(0) =

∫ 1

0

( v

2 + c
− 1 + c

c(2 + c)

)
G(v)dv, H(1) =

∫ 1

0

(
− v

2 + c
− 1

c(2 + c)

)
G(v)dv,

H ′(0) =

∫ 1

0

( cv

2 + c
− 1 + c

2 + c

)
G(v)dv, H ′(1) =

∫ 1

0

( cv

2 + c
+

1

2 + c

)
G(v)dv.

Taking the function H into (4.2) and calculating the coefficients of η(1) and η(N − 1), we
have

−H ′(1)− cH(1) = 0, H ′(0)− cH(0) = 0.

The constant term in (4.2) is given by

cαH(0) + cβH(1) =

∫ 1

0

(c(α− β)

2 + c
v − α− β − α

2 + c

)
G(v)dv.

Whence, the integrand in (4.2) is equal to〈
πN
s , G

〉
−
∫ 1

0

(c(β − α)

2 + c
v + α+

β − α

2 + c

)
G(v)dv.

By (4.2), the time integral of the above term converges in L1(PN
µN

) to zero as N → ∞. This
concludes the proof for the case θ = 1. □

4.3. The case θ > 1. In this subsection, we prove Theorem 2.3 for the case θ > 1. In this
case, the last line in (4.2) converges to zero as N → ∞. Whence, we do not need special
properties of the function H.

Proof of Theorem 2.3 in the case θ > 1. For G ∈ C[0, 1], let

H(u) =

∫ u

0

∫ v

0
G(w) dw dv.

Taking the function H into (4.2) and by Lemma 3.4,

lim
N→∞

EN
µN

[∣∣ ∫ t

0

{〈
πN
s , G

〉
−mN

s (H ′(1)−H ′(0))
}
ds
∣∣] = 0.

It is easy to check

H ′(1)−H ′(0) =

∫ 1

0
G(u)du.

Therefore,

lim
N→∞

EN
µN

[∣∣ ∫ t

0

{〈
πN
s , G

〉
−mN

s

∫ 1

0
G(u)du

}
ds
∣∣] = 0.

By Lemma 3.5, we conclude the proof for the case θ > 1. □
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5. Mixed slow boundaries

In this section, we discuss the extension of Theorem 2.3 to mixed slow boundaries, where
the strengths of interactions with left/right reservoirs are different. To be precise, for non-
negative parameters θ1 6= θ2, we consider the process with generator

LN = LN,0 + L α,θ1
N,L + L β,θ2

N,R ,

where LN,0 corresponds to the buck dynamics which is defined in Section 2, and

(L α,θ1
N,L f)(η) := cN−θ1rα,L(η)

[
f
(
η1
)
− f(η)

]
,

(L β,θ2
N,R f)(η) := cN−θ2rβ,R(η)

[
f
(
ηN−1

)
− f(η)

]
.

Since the proof of Theorem 2.3 adapts directly to mixed slow boundaries, we shall state most
of the results without proof. Roughly speaking, if the stationary solution of the hydrodynamic
equation is unique, then under the longer time scale N2+γ , γ > 0, the limiting density profile
is the corresponding stationary solution. If the stationary solutions are not unique, a correct
one has to be chosen. The later case happens if θ1, θ2 > 1, which is more interesting. Note
that in Theorem 2.3, the parameter θ lies in five regimes.

Case 1. If θ1 and θ2 lie in the same regime as stated in Theorem 2.3, then the limiting
density profile, denoted by ρθ,γ , is given by (2.5).

Case 2. If θ1 and θ2 are in different regimes, and the stationary solution is unique, then
ρθ,γ is given by the corresponding stationary solution. Without loss of generality, we may
assume θ1 < θ2. Then there exist three cases:

(2.1) If 0 ≤ θ1 < 1 and θ2 = 1, then

ρθ,γ(t, u) =
c(β − α)

1 + c
u+ α,

which is the unique stationary solution to

∆ρ(u) = 0, u ∈ (0, 1), ρ(0) = α, ∂uρ(1) = c(β − ρ(1)).

(2.2) If 0 ≤ θ1 < 1 and θ2 > 1, then

ρθ,γ(t, u) = α,

which is the unique stationary solution to

∆ρ(u) = 0, u ∈ (0, 1), ρ(0) = α, ∂uρ(1) = 0.

(2.3) If θ1 = 1 and θ2 > 1, then
ρθ,γ(t, u) = α,

which is the unique stationary solution to

∆ρ(u) = 0, u ∈ (0, 1), ∂uρ(0) = c(ρ(0)− α), ∂uρ(1) = 0.
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Case 3. It remains to consider θ1, θ2 > 1. Let us assume θ1 < θ2 as in Case 2. Then we
have

ρθ,γ(t, u) =

{
α if θ1 − 1 < γ ≤ θ2 − 1,

α+ (m0 − α)e−ct if θ1 − 1 = γ < θ2 − 1.
(5.1)

Next we only explain how to adapt the proof of Theorem 2.3 to Case 3, since this is the
most interesting case.

Proof of Eq. (5.1). Since θ1, θ2 > 1, it is easy to check that Lemma 3.4 is still valid. Repeating
the proof presented in Subsection 4.3, we only need to replace the average number of particles
mN

s in the system by a proper quantify, which is exactly ρθ,γ . As in the proof of Lemma 3.5,
in this case the martingale mN

t is given by

mN
t = mN

t −mN
0 −

∫ t

0

{cN2+γ−θ1

N − 1
(α− ηNs (1)) +

cN2+γ−θ2

N − 1
(β − ηNs (N − 1))

}
ds (5.2)

and the quadratic variation of mN
t is bounded by CNγ−θ1 since we assume θ1 < θ2.

If θ1 − 1 < γ ≤ θ2 − 1, divide the martingale mN
t in (5.2) by N1+γ−θ1 , and let N → ∞. It

follows immediately that we may replace ηNs (1), whence mN
s according to Lemma 3.4, by α.

If θ1 − 1 = γ < θ2 − 1, let N → ∞ in (5.2). Then any limit mt of mN
t satisfies

0 = mt −m0 −
∫ t

0
c(α−ms) ds

where we use Lemma 3.4 again to replace ηNs (1) by mN
s . mt has an explicit solution

mt = α+ (m0 − α)e−ct.

This concludes the proof. □
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