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In order to evaluate the cracking process in large reinforced and pre-stressed concrete structures, a predictive simulation of concrete damage with a refined mesh and a nonlinear law is required. Because of the computational load, such modelling is not applicable directly on large-scale structures whose characteristic dimensions are over several tens of meters. To deal with this type of structure, an adaptive static condensation method (ASC), which concentrates the computational effort on the damaged area (domain of interest) only, is proposed. The ASC method is first presented. A particular attention is paid to the needed developments to extend its domain of application up to prestressed concrete structures. The method is then applied to a three point bending prestressed beam and validated by comparison to a classical finite element damage computation. The numerical efficiency of the proposed approach is evaluated with, on this application, a time saving factor of about 15. An automatic mesh partitioning method is then implemented to make the method even more efficient. Based on physical considerations, it takes into account the expected shape and the evolution of the damaged regions during the loading. It is applied to three test cases with different geometries and loading to discuss the calibration process through a sensitivity analysis. A unique set of parameters is finally proposed and the efficiency of the method is demonstrated. As a conclusion; a complete automatic method is made available for the simulation of large scale reinforced and prestressed concrete structures

INTRODUCTION

Numerical simulation is playing an increasingly role in engineering sciences in order to facilitate the design of new structures while limiting the production of experimental prototypes. The ever-increasing need to consider more and more complex phenomena in order to predict as accurately as possible the behavior of a structure in all situations very quickly leads to highly complex models. On large structures, these approaches are prohibitively expensive and thus typically inapplicable to modelling the overall structural response. In practice, engineers are interested by the fine physical description only in very specific areas rather than by the response throughout the whole structure. The need for a "reduced" method and/or to reduce the computational cost is very often necessary. The physical phenomenon, which is studied in this contribution is the cracking in concrete structures which occurs on a relatively local scale. Its modeling thus requires a fine mesh and a nonlinear constitutive law to obtain representative results. However, applying this fine density of mesh (order of centimeter) directly to large-scale structures (e.g. containment buildings) is challenging, because of prohibitive computation times and memory occupancy [START_REF] Guenter | Numerical Modeling of Concrete Cracking (Google eBook)[END_REF]. The decomposition of the system combined to the use of parallel computation to exploit several computation units simultaneously is one of the possible solutions. It can significantly reduce the calculation time. Several approaches have been developed for parallel computation analysis. A review of the fundamental concepts and issues of parallel processing is made in [START_REF] Noor | Parallel processsing in finite flement structural analysis[END_REF]. The parallel processing can be applied in fluid mechanics [START_REF] Bartels | Computational fluid dynamics applications on parallelvector computers: Computations of stirred vessel flows[END_REF], for nonlinear analysis of reinforced concrete three-dimensional frames [START_REF] Romero | A parallel procedure for nonlinear analysis of reinforced concrete three-dimensional frames[END_REF] or on structural dynamics in [START_REF] Abdel-Jabbar | Structural analysis and partitioning of dynamic process models for parallel state estimation[END_REF], among others domains. Parallelism brings a computing power and a storage capacity, which increases with the increase of the number of processors. This makes it possible to reach higher simulation levels, within a reasonable timeframe [START_REF] Bassomo | Contribution à la parallélisation de méthodes numériques à matrices creuses skyline. Application à un module de calcul de modes et fréquences propres de Systus[END_REF]. However, with this type of approach, the overall computational load increases because of the cost of communication between the different calculation units. Therefore, for a given computing power, this method does not improve the computation. The adaptive mesh refinement, introduced initially in [START_REF] Berger | Adaptive mesh refinement for hyperbolic partial differential equations[END_REF] is another possible solution. It consists in locally increasing the density of the mesh in the zones where it is essential to calculate the solution with greater precision. The advantage of the method lies mainly in its performance in terms of memory size and CPU time [START_REF] Santacreu | Méthode de raffinement de maillage adaptatif hybride pour le suivi de fronts dans les écoulements incompressibles[END_REF]. However, with this approach, the nonlinear behavior is verified on the whole structure, even in the non-interesting areas with linear behavior. In the case of localized damaged zones, this step can become very costly, and the solution is not totally satisfying. In computational mechanics, static condensation is a model reduction method that reduces the number of degrees of freedom by eliminating variables from the linear system in the stiffness matrix. Condensed substructures are thus created. "Super-elements" are generally defined by eliminating the internal unknowns in the condensed zones. Complex problems, whose complexity is related to their size, can be calculated at a more reasonable cost. The condensation method was first introduced by Guyan in 1965 [START_REF] Guyan | Reduction of stiffness and mass matrices[END_REF] and has been widely used in mechanics. The method is called "static condensation" since it is only exact for static problems, even if it has been widely applied in structural dynamics. In this case, the condensation of mass is approximated [START_REF] Guyan | Reduction of stiffness and mass matrices[END_REF]. The initial formulation have been gradually improved in dynamic calculations ( [START_REF] Craig | Coupling of Substructures for Dynamic Analyses[END_REF], [START_REF] Ong | Automatic masters for eigenvalue economization[END_REF], [START_REF] Leung | An accurate method of dynamic condensation in structural analysis[END_REF]) and/or associated with substructuring ( [START_REF] Lee | an approach for efficient , conceptual-level aerospace structural design using the static condensation reduced basis element method[END_REF]) in the analysis of structures with localized nonlinearities. In [START_REF] Lee | an approach for efficient , conceptual-level aerospace structural design using the static condensation reduced basis element method[END_REF], the static condensation was used for efficient conceptual-level aerospace structural design. Regarding nonlinear cracking in reinforced concrete structures, a so-called "adaptive static condensation" method has been developed [START_REF] Llau | Adaptive zooming method for the analysis of large structures with localized nonlinearities[END_REF] (ASC method). It consists in concentrating the computational effort of the nonlinear calculation on preliminary defined "zones of interest" (zones with expected cracking behavior), by "eliminating" the zones with a linear elastic behavior. This approach uses Guyan's static condensation method [START_REF] Guyan | Reduction of stiffness and mass matrices[END_REF] to replace the elastic zones by a set of boundary conditions applied at the boundaries of the zones of interest. As the system evolves (evolution of a given crack or apparition of a new one), criteria are used to detect if damage is likely to appear and to make evolve the geometry of the zones of interest. This method enables to reduce the dimension of the nonlinear problem without altering the quality of the results compared to a complete reference computation. However, the domain of applicability of the method was initially limited to reinforced concrete structures and included a significant number of "user parameters". The aim of this contribution is first to improve this method in terms of domain of applicability. Concrete is indeed a material which is well-resistant to compression but rather limited in case of tension loads. That is why in several applications, concrete may be prestressed by means of steel cables, that maintains the concrete stress in compression even in case of tensile loads [START_REF] Mazars | A new 3D damage model for concrete under monotonic, cyclic and dynamic loadings[END_REF]. Numerical simulation of this process may be a difficult task, if a representative state of stress wants to be achieved. It is indeed necessary to deal with the first steps of application of the tension, the immediate loss of the prestressing, the behaviour under external loads and, in the case of long term analysis, the loss of prestressing due to phenomena such as shrinkage and creep of concrete, and relaxation of tendons [START_REF] Moreira | Nonlinear finite element simulation of unbonded prestressed concrete beams[END_REF]. After a brief description of the ASC method, it is thus proposed to enlarge its field of application to prestressed concrete structures in section 2. To increase the numerical efficiency and to limit the number of additional parameters, an automatic mesh partitioning method is then developed in section 3. It is applied on three test cases through a sensitivity analysis to argue the proposition of a unique set of parameters, which consolidates the proposition of a fully automatic and numerically efficient adaptive static condensation method.

ADAPTIVE STATIC CONDENSATION (ASC) METHOD AND IMPLEMENTATION

The principle of the initial static condensation method is first briefly summarized. The modifications to obtain an "adaptive" static condensation are then discussed. Finally, the developments to be applied to prestressed concrete structures are presented and validated on a representative test case.

Principle of static condensation

For a given mechanical problem, the static equilibrium can be expressed in matrix form by the equation:

𝐾 𝑢 = 𝑓
(1) with 𝐾 the stiffness of the structure, 𝑓 the force vector and 𝑢 the displacement vector. Guyan's approach [START_REF] Guyan | Reduction of stiffness and mass matrices[END_REF] consists in breaking down the structure into two domains: a master domain Ω 𝑀 , which will remain totally represented and a slave one Ω 𝐶 , which will be condensed. Differentiating the degrees of freedom (DOF) into the slave and the master domains, equation (1) becomes:

( 𝐾 𝐶,𝐶 𝐾 𝐶,𝑀 𝐾 𝑀,𝐶 𝐾 𝑀,𝑀 ) ( 𝑈 𝐶 𝑈 𝑀 ) = ( 𝑓 𝐶 𝑓 𝑀 ) (2) 
Let 𝑛 be the number of DOF of the total system and let 𝑝 and 𝑞 respectively be the number of slave and master DOF with 𝑛 = 𝑝 + 𝑞, 𝐾 𝐶,𝐶 (𝜖 ℝ 𝑝,𝑝 ), 𝐾 𝑀,𝑀 (𝜖 ℝ 𝑞,𝑞 ), 𝐾 𝑀,𝐶 (𝜖 ℝ 𝑝,𝑞 ) and 𝐾 𝐶,𝑀 (𝜖 ℝ 𝑞,𝑝 ) are the stiffness matrix related to respectively the slave domain, the master domain, the master-slave connections and the slave-master connections. 𝑈 𝐶 (𝜖 ℝ 𝑝 ) and 𝑈 𝑀 𝜖 (ℝ 𝑞 ) are respectively the slave and master DOF. 𝑓 𝐶 (𝜖 ℝ 𝑝 ) and 𝑓 𝑀 (𝜖 ℝ 𝑞 ) are the external forces applied to Ω 𝐶 and Ω 𝑀 respectively. By developing equation ( 2), a reduced (condensed) problem can be defined by:

𝐾 ̂. 𝑈 𝑀 = 𝐹 ̂ (3) 
The reduced stiffness matrix 𝐾 ̂ and the condensed force are given by:

{ 𝐾 ̂= 𝐾 𝑀,𝑀 -𝐾 𝑀,𝑐 𝐾 𝑐,𝑐 -1 𝐾 𝑐,𝑀 𝐹 ̂= 𝑓 𝑀 -𝐾 𝑀,𝑐 𝐾 𝑐,𝑐 -1 𝑓 𝑐 (4) 
As expected, the dimension of the reduced system is equal to q which is less than n and its resolution gives the solution on the master domain Ω 𝑀 . It should be noted here that the matrix 𝐾 ̂ can be denser than classical resolution matrices, in particular at the master points. It can thus add difficulties to solve this reduced system. Then, storing a dense matrix can also be more expensive in terms of memory than a sparse one. However, even considering these potential drawbacks, in main cases, the resolution of the reduced system remains faster than that of the global system, in particular when the condensed part is large compared to the non-condensed one. However, it remains possible to determine the vector 𝑈 𝑐 by applying a "decondensation":

𝑈 𝐶 = 𝐾 𝑐,𝑐 -1 (𝑓 𝑐 -𝐾 𝑐,𝑀 . 𝑈 𝑀 ) (5) 
It is noted that if the domain Ω 𝐶 is large, the dimension of the inverse term 𝐾 𝑐,𝑐 -1 is large and its computation can become expensive.

The ASC method: principle and algorithm

The adaptive static condensation method [START_REF] Llau | Adaptive zooming method for the analysis of large structures with localized nonlinearities[END_REF] is a method for the resolution of large-dimensional structures with non-linear behavior and with localized damage zones, which can evolve. Based on the main principle of the initial static condensation method, the global idea consists in cutting the problem into zones, fully representing the zones with expected nonlinear behavior, condensing the zones with linear elastic behavior and reassuring during the calculation that the condensed zones remain elastic. If the last step is not fulfilled, new zones of interest have to be included and fully represented in the calculation and some steps will be calculated to keep the accuracy of the computation. That is why the method have been called "adaptive" condensation method. It is to be noted that the ASC method is expected to be particularly efficient when the cracking behavior is localized over an area of small dimensions compared to the size of the entire structure. The more localized the damage, the more efficient the method. On the contrary, the interest of the ASC method may be limited when damage appears from the beginning of the calculation on large zones, as it may lead to the activation of the whole structure. Figure 1 represents the algorithm of the ASC method. This algorithm has two phases: a setup phase and a calculation phase.

Setup phase

The first step is to cut the structure into zones (Figure 2-a). It is to be noted that in the original method [START_REF] Llau | Adaptive zooming method for the analysis of large structures with localized nonlinearities[END_REF], this initial geometric decomposition is fully given by the user. This point will be discussed in section 3. Each zone is then condensed and replaced by equivalent boundary conditions on its borders ("first condensation"). This condensation of stiffness and loading is done only once during the setup phase and the condensed matrices are saved and used when needed during all the simulation. At the same time, a linear elastic computation is performed on the entire structure to identify an initial domain of interest (DI), which corresponds to the domain that will be activated and totally represented. This DI is obtained from a predefined criterion based on the Mazars's equivalent deformation [START_REF] Mazars | A new 3D damage model for concrete under monotonic, cyclic and dynamic loadings[END_REF]. More details about this choice will be detailed in 3.2. The rest of the structure is called the elastic domain (ED). The "second condensation" builds equivalent boundary conditions on the borders between the DI and the ED (Figure 2-d). The nonlinear computation is finally performed on the DI only, associated to the equivalent stiffness boundary conditions. This system has a size smaller than the complete structure, which improves the performance of computation [START_REF] Llau | Adaptive zooming method for the analysis of large structures with localized nonlinearities[END_REF]. 

Calculation phase

The non-linear computation remains representative as long as the condensed zones remains elastic. This hypothesis is checked periodically and the zones of interest may evolve if necessary during the computation. This procedure includes two verification criteria (see Figure 3). In this figure, 𝑁 is the current step number, 𝑖 is a natural integer and 𝑝 is a parameter which determines the number of steps after which the initiation criterion is verified.  The initiation criterion (Figure 5) evaluates the potential apparition of new zones of interest (corresponding to the apparition of new damaged zones). It supposes to check the elasticity of the condensed zones. To do so, a double "decondensation" is performed to obtain the values of the displacements on the whole structure (not only in the DI). Elasticity hypothesis is verified from the calculation of the inelastic deformation 𝜀 𝑖𝑛𝑒𝑙 = 𝜀 -𝜀 𝑒𝑙 with 𝜀 is the strain calculated using the used constitutive law and the stress state and 𝜀 𝑒𝑙 is the elastic strain calculated using the displacement field obtained. If 𝜀 𝑖𝑛𝑒𝑙 > 0 in a given zone, outside the DI, this zone has to be included in the new DI. Because of the cost of the double "decondensation", this criterion is only checked each 𝑝 loading step, where 𝑝 is an integer chosen by the user in the initial method. In both cases (propagation and initiation), if the DI evolves, a domain reconstruction procedure is used in which only the second condensation is carried out. It especially shows the advantage of the double condensation as a recondensation of the whole structure is not needed. It is to be noted that in both cases, if the DI is changed, previous loading steps need to be recalculated (p steps in case of initiation, one step for propagation). Details can be found in [START_REF] Llau | Adaptive zooming method for the analysis of large structures with localized nonlinearities[END_REF].

EXTENSION FOR PRESTRESSED CONCRETE STRUCTURES

Modification to the ASC method

In its original form, the ASC method was limited to reinforced concrete structures. In this section, its application to prestressed concrete structures is discussed. Concrete resists well in compression, but has a little tensile strength. It must therefore be artificially compressed in the tensioned areas, so that the concrete remains compressed or very slightly tensioned, to avoid cracking. The term "prestressed" indicates that the concrete is put into compression in its "initial state". In the following, the application of the ASC method to the calculation of post-tensioned prestressed structure is developed. The first step in the numerical prestressing process consists in evaluating the tension profile along the tendons. Tension losses are considered which may result from linear and angular friction, anchor retreat or steel relaxation and they are calculated, according to Eurocode 2 standards [START_REF]Règles BPEL 91 -Règles techniques de conception et de calcul des ouvrages et constructions en béton précontraint suivant la méthode des états limites[END_REF].

The tension profile (stress) is first changed into a field of nodal forces on the cable. These nodal forces are then applied to the structure without considering the stiffness of the cables. A mechanical equilibrium is reached through an iterative nonlinear process. A second mechanical equilibrium is then obtained, taking into account the stiffness of the cables, the values of the prescribed stresses in the cables and the stress distribution in the concrete, which has been obtained from the first equilibrium. Details can be found in [START_REF] Cea | Description of the finite element code Cast3M[END_REF]. It is to be noted that compared to simpler alternative methods for prestressing applications (initial temperature field, external compressive load…), this approach enables to obtain the appropriate values of the stress inside concrete (in compression) and cables (in tension). Moreover, this method makes it possible to apply the tension in several steps of computation (which is beneficial in the case of non-linearity) or to stretch the cables successively (one after the other).

As the nonlinear computations on the whole structure may be time consuming, the presented numerical prestressing process is adapted to the ASC method. The zones of the structure which contain the ends of cables builds the initial DI (maximum of the stress in concrete). The prestressing stress in the condensed zones are then replaced by a prestressing load which is condensed at the border of the DI. A verification is finally done at the end of the computation to check the elasticity of the initially condensed domain (ED) and additional steps of calculations are carried out in case of appearance of damage in new zones following the application of prestressing.

Example of application

A 1 𝑚 long beam is considered. A condensed calculation is performed and compared to a classical finite element simulation. Both computations are done using the finite element code Cast3m [START_REF] Cea | Description of the finite element code Cast3M[END_REF] on the same computing node (24 cores). This beam, whose dimensions are given in Figure 6 is modeled in three dimensions (3D). The concrete mesh is made up of 23400 linear cubic elements (1 cm side) and the steel tendon is modeled using 100 bar elements (1cm length). These bar elements have an equivalent section of 𝑆 = 7.0 𝑐𝑚 2 (diameter 3 cm). Concrete is modeled using Mazars's damage model [START_REF] Giry | Modélisation objective de la localisation des déformations et de la fissuration des structures en béton soumises à des chargements statiques ou dynamiques[END_REF] with the same parameters as in [START_REF] Dufour | Estimation of crack opening from a two-dimensional continuum-based finite element computation[END_REF]. The parameters used give a compressive strength of 41.4 MPa at 28 days and a tensile strength of 3.03 MPa. A nonlocal integral method [START_REF] Pijaudier-Cabot | Nonlocal damage theory[END_REF] is used to limit the damage mesh dependency in concrete with an internal length 𝐿 𝑐 = 3 𝑐𝑚. A linear elastic model is considered for the tendon, as a plastic behavior is not expected during the loading. The cable is tensioned by its two ends with a force 𝑃 = 20 𝑘𝑁. The bond between the tendon and the concrete is ensured by kinematic conditions between the degrees of freedom of the nodes of the cable and those of the associated concrete elements (perfect adhesion). The structure is partitioned into 22 zones using the automatic mesh partitioning procedure that will be presented in the next part of the paper. This particular mesh decomposition does not affect the validation process but only impacts the numerical performance. Figure 7-a shows the resulting partitioned structure. As previously mentioned, the initial DI is defined as the concrete zones including the ends of the tendon (Figure 7 -b).

Figure 7 : a-decomposition of the beam on initial zones, b-initial domain of interest in blue (DI)

Figure 8 shows the results of the two calculations. Damage appears in both cases around the ends of the tendon. It was expected as this damage results from the singularity of stresses due to the application of the tension on a single node of the 1D cable ( [START_REF] Ulm | Modélisation Elastoplastique avec endomagement du beton de structures[END_REF], [START_REF] Ouezdou | Analyse de la diffusion de la précontrainte par la méthode des éléments finis[END_REF] and [START_REF] Llau | Finite element modelling of 1D steel components in reinforced and prestressed concrete structures[END_REF]). This numerical aspect is a well-known limit of the proposed numerical prestressing process. It could be avoided using for example a cone of stress diffusion to distribute the tension force over a larger concrete surface [25]. However, this consideration is out of the scope of this paper.

The same results are obtained between both calculations. Figure 9 shows that in DI, the same forces were obtained along the cable in the condensed calculation as the complete reference calculation. This validates the application of the ASC method for the calculation of prestressed structures. The numerical efficiency results of the ASC method are given in Table 1. A time saving factor of 15.9 is observed in this case. This numerical efficiency is directly related to the number of "nonlinear" degrees of freedom (3680 DOF with the ASC method against 27381 in the complete calculation). It is noted that this case may represent the most beneficial case for the ASC method as the damage is much localized and does not evolve. The ASC method thus concentrates the non-local nonlinear effort only on limited geometric zones, compared to the classical calculation which supposes to check the nonlocal criterion on the whole structure. 

AUTOMATIC MESH PARTITIONING METHOD EFFECT OF MESH PARTITIONING ON THE COMPUTATION TIME

The ASC method supposes an initial decomposition of the mesh into zones. In its original form, this decomposition is arbitrarily provided by the user. However, this step can deeply affect the computational performance of the method. To illustrate this impact, a notched bending beam is considered with several initial mesh partition using the ASC method. The beam is 160 cm long and 40 cm high including a notch at mid span, which is 80 mm high and 8 mm large. It is modeled in two dimensions (plane stress with thickness of 20 cm). The mesh is made with 6440 quadrilateral elements of 1 cm length (Figure 10). Mazars's model is chosen, considering the same parameters and the same regularization technique as in section 2.2. The load is applied on a 10 cm zone on the top of the beam, through an imposed vertical displacement downwards increasing from 0 up to 25 mm. Vertical displacement is blocked at the support points and horizontal displacement is blocked at the top middle point only and free elsewhere. The results of the 10 calculations are first compared in terms of damage distribution. Identical results are obtained. Figure 12 illustrates the damage profile at the end of the computation for N = 1 (non-condensed complete computation), 8, 512 and 64 zones. Table 2 details the computation results for these four decompositions. The complete calculation has 321 computation steps. In the 8 zones case, a large part of the domain of interest is, in fact, not damaged. This case has 327 steps. For the case of 512 zones, almost the whole DI is damaged (optimized DI) but 412 steps of computation were necessary. As a conclusion, dividing into very small zones optimizes the size of the domain of interest (DI) during the computation but requires more steps (propagation of damage, reconstruction of domains and recalculations of some steps). A division into large zones reduces the number of computation steps but increases the size of the DI. We also notice that the best partitioning (64 zones) is that which makes a compromise between the size of the activated domain and the number of steps of computation. Figure 13 gives the calculation time obtained as a function of the number of initial partitioning zones. This graph shows that the mesh partitioning significantly affects the computation time with the ASC method. For example, for the case of 512 zones, the computation is approximately 2 times slower than the complete computation while for the optimal case (64 zones), the computation is approximately 5 times faster. These differences can be explained by the concurrence between the size of the domain of interest (which may be smaller with a decomposition into a larger number of zones) and the propagation and initiation criteria (which may be activated more often in the condensed computation if the size of the initial zones are small). This study clearly indicates that the initial partition method has a significant influence on the computational efficiency. In addition, we have no prior knowledge on the number of zones that gives the optimal computation time.

That is why a new mesh-partitioning method has been developed. In the state-of-the-art, the existing methods of mesh partitioning are not fully suitable as they aim rather at distributing the numerical difficulty (therefore the nonlinearity) between the zones to achieve a balanced estimate of execution time across the processors in a distributed system [START_REF] Chen | ParaPART: Parallel mesh partitioning tool for distributed systems[END_REF] [27] [START_REF] Korošec | Solving the mesh-partitioning problem with an ant-colony algorithm[END_REF]. If this strategy is suitable for methods like parallel computation for example, they are not fully adapted to the proposed ASC method, as the goal is here to concentrate the computational effort in the domains of interest only. It becomes thus necessary to develop a suitable automatic partitioning method.

METHOD

The automatic mesh partitioning method is presented in this section, based on physical considerations of damage initiation and propagation. It is developed so as to be applicable to different types of structures and loads. For the aim of simplicity, it is illustrated on the notched bending beam used in the previous section. The method is decomposed into five steps:

1. The first step consists in carrying out a linear precomputation on the whole structure to obtain a distribution of the elastic strain. The maximum of the loading is used as the applied force for the linear precomputation.

In the case where only one type of loading is considered, this level does not affect the results because the steps of the partitioning method are carried out using relative quantities. In the case of several types of loadings (prestressing followed by an internal pressure for example), the force used for the precomputation is the combination of the maximum values of each loading in order to take into account the potential interactive effects. This choice may not be the optimal one for every configuration. However, it is to be noted that the impact would be on the mesh partition and not on the result of the mechanical simulation. A quantity of interest is then calculated to partition the structure. In this contribution, related to damage mechanics, this quantity is Mazars's equivalent strain, ε eq , which is computed using the following equation:

ε eq = √〈ε 1 〉 + 2 + 〈ε 2 〉 + 2 + 〈ε 3 〉 + 2 (6) 
Where 〈ε i 〉 + represents the principal positive value of the strain. As an illustration, Figure 14 shows the elastic equivalent strain ε eq obtained on the beam for an imposed displacement downward equal to 25 mm. It is to be noted that different quantities of interest could have been considered like Von Mises or Tresca stresses, according to the constitutive law used. 2. The second step is related to the definition of the zones which are most likely to be damaged ("risky zones"). They are obtained using an iterative approach, which is illustrated in Figure 15. In this figure, 𝑆 𝑡𝑜𝑡𝑎𝑙 is the total surface of the structure and 𝑆 𝑍𝑅 is the total surface of the expected risky zones. 𝑇 𝑚𝑎𝑥𝑍𝑅 is the first parameter of the method, that defines the maximum goal size of a risky zone compared to the total size of the structure. To do so, the iteration process is initiated considering all the connected elements in which at least one Gauss point has an equivalent strain (ε eq ) greater than 1% of the maximum equivalent strain (max(ε eq )). This obviously gives very large areas (roughly the whole structure). As the "stop" criterion is not met, this percentage is gradually increased, until the convergence is obtained. The obtained initial risky zone on the notched beam is illustrated in Figure 16. 𝑆 𝑍𝑝𝑟 𝑖 = 𝑆 𝑍𝑅 𝑖 𝑇 𝑍𝑝𝑟 [START_REF] Berger | Adaptive mesh refinement for hyperbolic partial differential equations[END_REF] The shape of these zones is first obtained supposing a uniform radial propagation of the damage. In order to take into account a potential directional propagation of the damage, each propagation zone is then cut into 𝑁 𝑃𝑎𝑟𝑡𝑝𝑟 zones (with 𝑁 𝑃𝑎𝑟𝑡𝑝𝑟 the third parameter of the method). This choice enables to activate in the ASC method, only a part of the surrounding area in case of a directional propagation, while not penalizing computational time in case of radial progression as all the surrounding zones will be activated at the same time. This step is illustrated for the notched bending beam in Figure 17. 4. The rest of the structure is finally divided into equivalent zones by minimizing the number of points on the borders using the "nested dissection" algorithm [START_REF] Gilbert | The analysis of a nested dissection algorithm[END_REF] . This algorithm allows the structure to be divided into 2 𝑛 zones of equivalent size. The approximate size of each remaining zone 𝑆 𝑍𝑟𝑒𝑠𝑡 is chosen such as 𝑆 𝑍𝑟𝑒𝑠𝑡 = 𝑇 𝑧𝑟𝑒𝑠𝑡 × 𝑆 𝑀𝑒𝑎𝑛 (8) Where 𝑆 𝑀𝑒𝑎𝑛 is the average size of risky and propagation zones and 𝑇 𝑧𝑟𝑒𝑠𝑡 is the fourth parameter of the method. Given 𝑆 𝑍𝑟𝑒𝑠𝑡 , the appropriate value of the power of 2 is obtained, such as the size of each remaining zone is as close as possible to 𝑆 𝑍𝑟𝑒𝑠𝑡 . The resulting mesh decomposition on the notched bending beam is illustrated in Figure 18. 5. At the end of each of the above four steps, we go through a procedure which consist in eliminating the zones whose dimension ( 𝑆 𝑧𝑜𝑛𝑒 ) is very small compared to the size of the structure (𝑆 𝑡𝑜𝑡𝑎𝑙 ). If 𝑆 𝑧𝑜𝑛𝑒 < 𝑆 𝑡𝑜𝑡𝑎𝑙 × 𝑇 𝑚𝑖𝑛𝑍 (with 𝑇 𝑚𝑖𝑛𝑍 the fifth parameter of the method), the zone is merged with the neighboring one. This choice is done not to penalize the condensation calculation time, considering too small zones. The value we used for the example above for 𝑇 𝑚𝑖𝑛𝑍 is 0.1%. As a conclusion, this partition method, based on the process of damage initiation and propagation, depends on five parameters. The choice of these parameters, which determine the size and the number of the zones, may affect the computation time. In the following, a sensitivity analysis is performed on three test cases to evaluate the influence of each parameter. In this study, the parameter 𝑝 which gives the number of loading steps for the verification of the initiation criterion, is also considered, as this parameter is expected to be closely related to the initial mesh decomposition. The sensitivity analysis is thus carried out on the 6 parameters { 𝑻 𝒎𝒂𝒙𝒁𝑹 , 𝑻 𝒎𝒊𝒏𝒁 , 𝑻 𝒁𝒑𝒓 , 𝑵 𝒑𝒂𝒓𝒕𝒑𝒓 , 𝑻 𝒛𝒓𝒆𝒔𝒕, , 𝒑 }.

SENSITIVITY ANALYSIS

This sensitivity analysis is carried out using Uranie [START_REF] Cea | The Uranie platform: an open-source software for optimisation, meta-modelling and uncertainty analysis[END_REF], which is a software for optimization, meta modeling and uncertainty analysis. The main goal of this study is first to evaluate the individual and crossed effects of the six parameters and then to propose a unique set of "optimal" parameters. The output quantity of interest is the computational time. The sensitivity analysis is performed on 3 test cases, aiming at considering a representative range of applications in terms of geometry and loading. They consist in the 3D prestressed beam (section 2.2) with additional bending, the 2D notched bending beam (section 3.1) and a simplified containment vessel (3D reinforced concrete structure) under internal pressure. 500 simulations are launched on each test case (total of 1500 computations) considering the same variation of parameters. All parameters follow the uniform law over the interval given in Table 3. This interval has been chosen from an initial analysis performed on the notched beam to define "realistic" values. Latin Hypercube Sampling method (LHS) [START_REF] Team | Methodological reference guide for Uranie v4[END_REF] is used to generate the design of experiments. An illustration of the 500 sets of parameters is provided in Figure 19. A sensitivity analysis is then carried out to see the effect of the parameters and to quantify the contribution of each parameter on the computation time. Let 𝑌 = 𝑀(𝑿) the computation time in function of a random vector 𝑿 , defined by six input variables 𝑿 = { 𝑻 𝒎𝒂𝒙𝒁𝑹 , 𝑻 𝒎𝒊𝒏𝒁 , 𝑻 𝒁𝒑𝒓 , 𝑵 𝒑𝒂𝒓𝒕𝒑𝒓 , 𝑻 𝒛𝒓𝒆𝒔𝒕 , 𝒑}. The aim of this sensitivity analysis is to describe how 𝑌 is affected by each input variable or combinations thereof. For this, two sensitivity indices are calculated: the first order sensitivity index that represents the effect of the parameter 𝑋 𝑖 individually and the total sensitivity index that represents the effect of 𝑋 𝑖 , taking into account the possible interaction between other parameters. The first order sensitivity index is given by [START_REF] Team | Methodological reference guide for Uranie v4[END_REF] :

𝑆 𝑖 = 𝑉𝑎𝑟 (𝐸 (𝑌|𝑋 𝑖 )) 𝑉𝑎𝑟(𝑌) (9) 
With 𝑉𝑎𝑟 (𝐸 (𝑌|𝑋 𝑖 ) is the expectation of the conditional variance over all possible 𝑋 𝑖 values. This index does not take into account the possible interaction between the inputs. It can be completed by considering the interaction between all the inputs. The total order sensitivity index 𝑆 𝑇 𝑖 is the sum over all the sensitivity indices involving the input variables:

𝑆 𝑇 𝑖 = ∑ 𝑆 𝑘 𝑘𝜖#𝑖 = 1 -𝑆 𝑖̅ (10) 
where #𝑖 and 𝑖̅ represents respectively the group of indices that contains and does not contain the 𝑖 index.

The method chosen to calculate the sensitivity indices is the Sobol's decomposition [START_REF] Sobol | Sensitivity estimates for nonlinear mathematical models[END_REF] because it allows calculating both the first order and the total sensitivity indexes. Moreover, no hypothesis is needed between the inputs and the output (as it is the case in linear regression for example).

Notched beam in bending

The sensitivity analysis is first performed on the 2D notched bending beam. The damage distribution obtained for the mesh decomposition provided in Figure 18 is illustrated in Figure 20. It can be compared to the ones in Figure 12 to validate the method. It is especially noticed that the DI strictly evolves with the damage. The results of the sensitivity analysis are presented in Figure 21. According to the total sensitivity index, the two most impacting parameters are the parameters that define the size of a risky zone 𝑇 𝑀𝑎𝑥𝑍𝑅 (size of risky zones) and 𝑇 𝑍𝑝𝑟 (size of propagation zones). The effect of parameter 𝑇 𝑚𝑖𝑛𝑍 (minimum size of a zone) is negligible. For illustration, the computation time ranges from 156 𝑠 to 513 𝑠. The computation time associated to the classical finite element simulation (without condensation) is 899 𝑠. 

Prestressed concrete beam with additional bending

The second test case is the 3D prestressed beam presented in part 2.2. A bending loading is added after prestressing on a 5 cm width band at the top in the middle of the beam, up to a force of 15 kN (Figure 22-a). Figure 23 presents the results of the sensitivity analysis for this test case. These results show that the two most impacting parameters are still 𝑇 𝑀𝑎𝑥𝑍𝑟 and 𝑇 𝑍𝑝𝑟 . Regarding parameter p, the variation between the first order and the total sensitivity index clearly indicates a significant interaction between this parameter and the others, which confirms previous qualitative observations. The effect of the 𝑇 𝑚𝑖𝑛𝑍 parameter whose influence was negligible for the bending beam is here more impacting. For illustration, the computation time ranges from 2730 𝑠 to 7280 𝑠. The computation time associated to the classical finite element simulation (without condensation) is 9210 𝑠. The last test case is a reinforced concrete cylinder with a hemispherical dome under internal pressure. The structure is chosen to be close in its specificities to a nuclear containment vessel [START_REF] Costaz | Confinement . Enceintes[END_REF] and to test the capacity of the ASC method to be applied to reinforced concrete applications. It is 13. The results of the sensitivity analysis presented in Figure 26 show that the most impacting parameter here is the parameter 𝑝 (the number of steps after which the initiation criteria is checked). 𝑇 𝑚𝑎𝑥𝑍𝑅 remains an influencing parameter. Parameters 𝑁 𝑝𝑎𝑟𝑡𝑝𝑟 and 𝑇 𝑧𝑟𝑒𝑠𝑡 have also a significant impact. 

Summary of the sensitivity analysis and proposition of an "optimal" set of parameters

The results of the sensitivity analysis on three test cases show first that each considered parameter have an impact on the calculation time. This impact depends on the test case, the type of loadings and especially on the damage propagation. Then, it also indicates that the parameters have significant interaction (especially interaction between parameter p and the initial mesh decomposition).

In this section, a unique set is aimed at being proposed in order to optimize the choice of the parameters. To do so, the results of the previous 3 x 500 simulations are used. A 500 input vectors is defined:

{ 𝑋 1 ⋮ 𝑋 𝑖 ⋮ 𝑋 500 } (11) 
Each input vector 𝑋 𝑖 is associated to an output per test case 𝑗 (computational time: 𝑡 𝑖,𝑗 ); expressed as:

𝑡 𝑖,𝑗 = 𝑀 𝑗 (𝑋 𝑖 ) , 𝑤𝑖𝑡ℎ 𝑖 ∶ 1 → 500 𝑎𝑛𝑑 𝑗 ∶ 1 → 3 (12) 
In order to compare the results on a common scale, each computational time is divided by the computational time of the classical finite element simulation (without ASC method) for each test case. The resulting quantity 𝑅 𝑖,𝑗 thus indicates the percentage of a given ASC computation compared to the complete computation time:

𝑅 𝑖,𝑗 = 𝑡 𝑖,𝑗 𝑡 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑗 (13) 
For example, a value 𝑅 𝑖,𝑗 = 20% means that the computation using the automatic mesh decomposition with the set of parameter 𝑋 𝑖 , on the case test 𝑗, is 5 times faster than the complete reference computation (without ASC). Finally, to choose the "optimal" set of parameters, for each vector 𝑋 𝑖 , the mean value of 𝑅 𝑖,𝑗 on the 3 test cases is computed (𝑅 ̅ ).

𝑅 ̅ 𝑖 = 1 3 ∑ 𝑅 𝑖,𝑗 𝑗 :1→3 (14) The "optimal" set of parameters set 𝑋 𝑘 is the one corresponding to the minimum value of 𝑅 ̅ .

𝑅 𝑘 ̅̅̅̅ = 𝑚𝑖𝑛 𝑖 :1→500 𝑅 𝑖 ̅ (15) 
The application of this strategy based on the 3x500 simulations gives the following results:

𝑋 𝑘 = {2,87 % ; 0,38% ; 3,42 ; 2 ; 1,54 ; 6}

𝑅 𝑘 ̅̅̅̅ = 19,61 + 18,97 + 34,49 3 = 24%

The result is illustrated in Figure 27 on which the 500 calculations of each test case are sorted in increasing order of calculation time (from the fastest to the slowest). It shows that for both beams, the calculation is faster than the complete calculation for all considered mesh partition (𝑅 < 100%). For the simplified containment, only few mesh decomposition lead to a computational time higher than the complete calculation (3%). It particularly demonstrates the numerical efficiency of the ASC method on 1500 computations. The results obtained for each test case using the proposed "optimal" set of parameters (equation 16) are then positioned on each curve. The results are close to the minimum value of the computational time (even if not strictly equal as the goal is to propose a unique set of parameters independently of the test case). It should be noted, that even if the three test cases have been chosen to be representative a large variety of geometry and loading (at least the ones a containment vessel could face), the choice of the "optimal" parameter may have been different if additional test cases had been considered. However, it does not question the global strategy that could be enriched if additional loadings were considered. Finally, the proposed automatic mesh decomposition is compared to the results obtained with an initial partitioning into equivalent zones on the 2D bending beam (Figure 13). A comparison with the simulation without ASC is also included (Figure 28). The automatic partition (the point in dark blue on the Figure 28), based on physical interpretation of the damage initiation and propagation and on the sensitivity analysis, is faster than the equivalent partitioning, whatever the number of zones. It shows the performance of the newly developed mesh partitioning method for the application of the ASC method. 

CONCLUSION AND PERSPECTIVES

An ASC method, initially proposed in [START_REF] Llau | Adaptive zooming method for the analysis of large structures with localized nonlinearities[END_REF], has been developed to allow reducing the size of large structural problems to their expected nonlinear part. This method uses the static condensation of Guyan to eliminate the degrees of freedom of the elastic domain to keep the computational effort on the nonlinear domain of interest only.

As this domain of interest may change (damage propagation or initiation), the condensed domain is checked regularly and evolves if necessary. It has revealed to be especially efficient in the case of very localized damage zones.

In this contribution, the field of application of the adaptive static condensation (ASC) method has been extended to take into account the prestressing. In classical finite element methods, this loading requires nonlinear calculations in several time steps on the total structure, which can be very expensive. After a brief presentation of the needed developments, the ASC method was successfully applied to the simulation of a prestressed beam. Compared to a classical simulation, similar results were obtained with a time saving factor of about 15. The efficiency of the method has thus been demonstrated. It is to be noted that even if this prestressing test is ideal for the efficiency of the method (damage only localizes in a very limited part of the structure and does not evolve), other computational performances were obtained on other test cases with "gain factor" up to 5, which remains significant. The performance is thus obviously dependent on the test cases and on the expected evolution of the damage.

As the ASC method supposes an initial mesh decomposition into zones, the effect of this initial decomposition has been investigated. It has been shown that it can have a significant impact on the computational time. It thus argues for the development of an automatic mesh decomposition method, rather than the use of manual user partitioning. The method has been described based on physical interpretation of damage initiation and propagation. It relies on five geometric parameters whose calibration has been discussed through a sensitivity with 1500 computations. An optimal set of parameters has been finally proposed, whose results have been discussed. It has proven to be more efficient than a partitioning into zones of equivalent size, whatever their numbers. It is to be noted that this method is independent of the mesh size and dimensions of the structure. In addition, it could be used in other applications where a partitioning of the structure is needed in the order of non-linearity. Finally, it is to be noted that the optimization process could be enriched in future works with other application cases, either to validate the choice of the parameters or to optimize their determination. As a perspective, an automatic mesh refinement method could be integrated for the domain of interest in the ASC method. It will enable to start from a coarse initial mesh to refine only the DI with a mesh density suitable for a nonlocal regularized model (mesh size of around one centimeter). The objective would be to reduce the cost of all the operations related to the condensed domain (condensation and de-condensation) while enabling the application of a non-local technique whatever the size of the total structure (improvement of the simulation on the simplified containment building for example).

Figure 1 :

 1 Figure 1 : simplified algorithm of the ASC method
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 2 Figure 2 : Setup phase on a single beam in bending
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 3 Figure 3 : procedure of checking the elasticity of zones  The propagation criterion (Figure 4) evaluates the potential propagation of existing zones of interest to neighboring condensed zones. It detects if the damage is approaching the border of the DI. Propagation bands are defined over a width L around the border of the DI (Figure 4a). If damage reaches this band, the neighboring zone is added to the DI (Figure 4 -b).As this test is only geometric, the associated computational cost is not expensive. This criterion is thus checked at the end of each time step.
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 4 Figure 4 : Propagation criterion and evolution of the DI
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 5 Figure 5 : Initiation criterion and evolution of the DI
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 6 Figure 6 : prestressed concrete beam: mesh of the concrete (left), and cross section (right))
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 89 Figure 8 : results of calculations on the prestressing beam
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 10 Figure 10 : details of the beam (mesh and dimensions) Figure 11 illustrates the different initial partitions (zones of equivalent sizes) which are considered for each computation using the ASC method. 10 calculations are performed. Each calculation corresponds to a division of the total structure into 𝑁 equivalent zones with 𝑁 ∈ {1, 2, 4, 8, 16 , 32 , 64 , 128 , 256, 512}. The calculations are performed on the same computer to compare the calculation time.
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 11 Figure 11 : Examples of initial mesh decomposition into 2, 4, 8, 16, 32 or 64 equivalent zones
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 1213 Figure 12 : damage profiles at the end of the computation for different initial mesh decomposition (grey zones are remaining condensed ones)
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 14 Figure 14: distribution of elastic 𝜀 𝑒𝑞 on the notched bending for an imposed displacement of 25 mm.
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 1516 Figure 15 : iterative approach for the identification of risky zones

Figure 17 :

 17 Figure 17 : the propagation zones obtained on the notched beam for a value of 𝑇 𝑍𝑝𝑟 = 4 and 𝑁 𝑃𝑎𝑟𝑡𝑝𝑟 = 4
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 18 Figure 18 : Final partition of the notched beam for a value of 𝑇 𝑧𝑟𝑒𝑠𝑡 = 1
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 19 Figure 19 : design-of-experiments of the six input variables
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 20 Figure 20 : Evolution of damage inside the DI (grey zones are condensed ones)
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 21 Figure 21 : Sensitivity indicesnotched bending beam

Figure 22 :

 22 Figure 22 : ageometry and loads of the prestressed beam in bending ; bthe structure partitioned into 28 zones; c -damage profile at the end of prestressing; ddamage profile at the end of bendingFigure22presents an example of automatic mesh decomposition and the resulting damage distributions, after prestressing and after the additional bending. It is to be noted that in the mesh partition, risky zones are obtained, as expected, at the ends of cables, at the bottom and top in the middle of the beam. Figure23presents the results of the sensitivity analysis for this test case. These results show that the two most impacting parameters are still 𝑇 𝑀𝑎𝑥𝑍𝑟 and 𝑇 𝑍𝑝𝑟 . Regarding parameter p, the variation between the first order and the total sensitivity index clearly indicates a significant interaction between this parameter and the others, which confirms previous qualitative observations. The effect of the 𝑇 𝑚𝑖𝑛𝑍 parameter whose influence was negligible for the bending beam is here more impacting. For illustration, the computation time ranges from 2730 𝑠 to 7280 𝑠. The computation time associated to the classical finite element simulation (without condensation) is 9210 𝑠.

Figure 23 :

 23 Figure 23 : sensitivity indices -3D prestressed concrete beam in bending 3.3.3 Simplified containment vessel under pressure (reinforced concrete structure)The last test case is a reinforced concrete cylinder with a hemispherical dome under internal pressure. The structure is chosen to be close in its specificities to a nuclear containment vessel[START_REF] Costaz | Confinement . Enceintes[END_REF] and to test the capacity of the ASC method to be applied to reinforced concrete applications. It is 13.3 𝑚 high, has an external radius of 7.3 𝑚 and 20 𝑐𝑚 of thickness. The concrete is meshed with linear cubic finite elements (characteristic size of 20 cm). It includes two rectangular openings whose dimensions are respectively 80 × 60 𝑐𝑚 and 100 × 60 𝑐𝑚. Reinforcement is modeled with 1D bar elements (20 𝑐𝑚 length) with an equivalent section 𝑆 = 8.04 𝑐𝑚 2 (3.2 cm of diameter). The structure includes 60 hoops and 20 vertical bars in the wall and 20 U-shaped bars passing through the wall and the dome (Figure24 b). "Perfect" kinematic relations ensure the same displacements between steel and concrete. Mazars's damage law is used for concrete with the parameters from[START_REF] Llau | Adaptive zooming method for the analysis of large structures with localized nonlinearities[END_REF]. A linear elastic law is chosen for reinforcement (𝐸 = 200 𝐺𝑃𝐴 ; 𝜈 = 0,2). The loading is an increasing internal pressure up to 1 × 10 5 𝑃𝑎 and the displacements at the bottom of the cylinder are blocked. It is to be noted that a local version of the damage model has been done. The non-local regularized one would have required a much finer mesh with an increasing computation cost. This point will be addressed in future work through local mesh refinement for example.

  3 𝑚 high, has an external radius of 7.3 𝑚 and 20 𝑐𝑚 of thickness. The concrete is meshed with linear cubic finite elements (characteristic size of 20 cm). It includes two rectangular openings whose dimensions are respectively 80 × 60 𝑐𝑚 and 100 × 60 𝑐𝑚. Reinforcement is modeled with 1D bar elements (20 𝑐𝑚 length) with an equivalent section 𝑆 = 8.04 𝑐𝑚 2 (3.2 cm of diameter). The structure includes 60 hoops and 20 vertical bars in the wall and 20 U-shaped bars passing through the wall and the dome (Figure24 b). "Perfect" kinematic relations ensure the same displacements between steel and concrete. Mazars's damage law is used for concrete with the parameters from[START_REF] Llau | Adaptive zooming method for the analysis of large structures with localized nonlinearities[END_REF]. A linear elastic law is chosen for reinforcement (𝐸 = 200 𝐺𝑃𝐴 ; 𝜈 = 0,2). The loading is an increasing internal pressure up to 1 × 10 5 𝑃𝑎 and the displacements at the bottom of the cylinder are blocked. It is to be noted that a local version of the damage model has been done. The non-local regularized one would have required a much finer mesh with an increasing computation cost. This point will be addressed in future work through local mesh refinement for example.
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 24 Figure 24 : a -Simplified containment building; breinforcement mesh; c -Example of mesh decomposition obtained with the automatic partitioning methodFigure25presents the damage distributions obtained from the mesh decomposition illustrated in Figure24cand the corresponding evolution of the domain of interest during loading. Two zones first appear at the top and bottom of the large opening. Then, damage develops around the small opening. It finally propagates in the vertical directions around both openings, which does correspond, as expected, to the weak points of the structure. This example illustrates the interest of the proposed mesh decomposition method, as it allows the domain of interest to include the maximum possible damage in a smaller number of zones, compared to an arbitrary decomposition into equivalent zones.
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 25 Figure 25 : evolution of damage and of the domain of interest (DI)
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 26 Figure 26 : sensitivity indicesreinforced concrete cylinder
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 27 Figure 27 : Evolution of the computational time with the set of parameters for the three tests cases. Sensitivity analysis and optimal set of parameters
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 28 Figure 28 : calculation time as a function of the number of partitioning zones

Table 1 :

 1 Numerical efficiency results on the prestressing beam

		Complete calculation	Calculation with the ASC
	Processor time	1685 𝑠	105 𝑠
	Gain factor	-	15,94
	Number of degrees of freedom	27381	3680

Table 2 :

 2 

	Number of zones	1	8	512	64
		(complete computation)			
	Size of the DI % total size	100%	74%	32%	44%
	Number of steps	321	327	412	342
	Time (s)	8,39 × 10 2	4,07 × 10 2	18,4 × 10 2	1,73 × 10 2

calculation details for different mesh decomposition

(1, 8, 512 and 64 zones) 

Table 3 :

 3 Interval of variations for the six parameters of the sensitivity analysis (uniform distribution)

	Variable	Description [min, max]
	𝑻 𝒎𝒂𝒙𝒛𝒓	Max. size of risky zones [2% ; 15%]
	𝑻 𝒎𝒊𝒏𝒛	Min. size of a zone [0,2% ; 0,5%]
	𝑻 𝒁𝒑𝒓	Size of a propagation zone [1,0 ; 4,0 ]
	𝑵 𝒑𝒂𝒓𝒕𝒑𝒓	Nb. of parts of a propagation zone [1 ; 8]
	𝑻 𝒛𝒓𝒆𝒔𝒕	Size of the remaining zones [1,0 ; 4,0]
	𝒑	Nb. of verification of initiation criterion [1 ; 10]
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