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Abstract

To understand thoroughly the strain-induced crystallization in natural rubbers, conventional
mechanical measurements are inadequate because they only provide a macroscopic relation
between stress and strain. In this second part, a physically-based constitutive model for
filled natural rubbers is coupled with the infrared thermography based quantitative surface
calorimetry (Part I) to shed new light on multiaxiality of strain-induced crystallization. In
contrast to previous works, the kinetics of phase transition outside thermodynamic equilib-
rium is discussed. By introducing only two additional parameters (compared to the equilib-
rium crystallization theory), underlying mechanisms of nonequilibrium strain-induced crys-
tallization can be well interpreted. To capture multiaxiality of strain-induced crystallinity,
the analytical network-averaging is utilized for the calculation of kinematic internal vari-
ables. Model predictions are then compared with comprehensive testing data (Part I) and
demonstrate good agreement with these experiments.
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1. Introduction

The crystallization of natural rubber under deformation (so-called strain induced crys-
tallization, Katz (1925)) is believed to be crucial for its resistance to crack growth. Most of
studies on strain-induced crystallization for the last two decades were conducted under the
quasi-static conditions (see a thorough review in Khiém and Itskov (2018b)). Although very
important, there have been relatively few studies on strain-induced crystallization under dy-
namic loading. It has been reported that, natural rubber demonstrates lower crack resistance
under dynamic loading compared to quasi-static one (Huneau, 2011). The crystallinity is
lower whereas the stress is higher as the deformation rate increases (Rault et al., 2006a; Am-
nuaypornsri et al., 2012; Candau et al., 2015; Briining et al., 2012). When natural rubber is
subjected to a constant strain, the stress gradually decreases and the crystallinity increases
(Rault et al., 2006a; Tosaka et al., 2006; Briining et al., 2015). Due to the little experimental
research on dynamic loading, thermomechanics and kinetics of the strain-induced crystal-
lization have not been fully understood despite the recent effort on theoretical treatments
(Laghmach et al., 2015; Plagge and Kliippel, 2018; Plagge and Hentschke, 2021; Khiém and
Itskov, 2018b; Gros et al., 2019a).

The constitutive modeling of strain-induced crystallization in natural rubbers were solely
considered in either equilibrium or nonequilibrium situation. The rate-independent elasto-
plasticity has been extensively used in constitutive modeling of strain-induced crystallization
(Mistry and Govindjee, 2014; Guilié et al., 2015; Rastak and Linder, 2018; Guo et al., 2018;
Nateghi et al., 2018; Aygiin and Klinge, 2020; Arunachala et al., 2021). Since the crystallinity
there was considered as an elastoplastic internal variable, these models can only describe the
decrease of stress after the onset of strain-induced crystallization (compared to noncrystal-
lizing rubber) but cannot predict the stress upturn afterwards. Dargazany et al. (2014a,b);
Plagge and Kliippel (2018); Plagge and Hentschke (2021); Gros et al. (2019b) modeled
strain-induced crystallization by rate-independent damage evolutions, which are subjected
to the same issues as elastoplasticity models. Furthermore, since damage-elastoplastic mod-

els are rate-independent, they cannot capture time-dependent strain-induced crystallization



(Briining et al., 2012). Last but not least, all these models result in strictly positive intrin-
sic dissipation in quasi-static loading, which contradicts experimental observation (Samaca
Martinez et al., 2013b). Other researchers (Kroon, 2010; Guo and Zairi, 2020; Loos et al.,
2020) made use of rate-dependent flow-rule to describe strain-induced crystallization. All
mentioned constitutive models are isothermal, which also disagrees with experimental ob-
servations (Candau et al., 2015; Samaca Martinez et al., 2013a). Recently, Behnke et al.
(2018) developed a phenomenological model for thermo-mechanical coupling in nonequilib-
rium crystallization, however their model cannot describe the decrease of stress at the onset
of strain-induced crystallization. Khiém and Itskov (2018b) proposed a quasi-static consti-
tutive theory for strain-induced crystallization in natural rubbers which can reproduce both
mechanical and calorimetric response of natural rubbers. Moreover, their theory proves
that the intrinsic dissipation in natural rubber under quasi-static loading is zero (Samaca
Martinez et al., 2013b), and the quasi-static hysteresis is due to the appearance of a second
type of crystallites under unloading. Nevertheless, this model does not cover nonequilibrium
aspects of strain-induced crystallization.

In this contribution, we investigate the dynamics of strain-induced crystallization from
the theoretical point of view. We aim to answer three fundamental questions: What are
similarities and differences between equilibrium and nonequilibrium strain-induced crystal-
lization? What are sources of hysteresis in dynamic loading of natural rubbers? Can natural
rubbers crystallize under biaxial loading? To this end, the previous theory of equilibrium
strain-induced crystallization (Khiém and Itskov, 2018b) will be considerably extended out-
side of the thermodynamic equilibrium. Furthermore, a fully non-adiabatic thermodynamic
process will be considered here. The advanced experimental result of Part I (Khiém et al.,
2021) will be utilized for the validation of the theory. Sections 2 - 5 of the paper discuss
newly developed concepts in multiaxiality, strain-induced crystallization and filler-polymer
interaction in filled natural rubbers. Sophisticated analysis (Section 7) of the theoretical
model (Section 6) reveals a full picture of dynamics of crystallization induced by multi-
axial tension. Additionally, four appendices summarize important results of the previous

theories (Khiém and Itskov, 2017) and (Khiém and Itskov, 2018b) are included for reader
3
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Figure 1: Polymer network, strand and chain (Khiém et al., 2019).

convenience.

2. Kinematics

2.1. Terminology

In this paper, we consider a polymer network as a composition of many linear polymer
strands (so-called subnetworks) dispersed in different directions n in space (Figure 1, Khiém
and Itskov (2016)). A strand is defined by a subnetwork path between two permanent cross-
links whose functionalities could be three or more. Each polymer strand contains a series
of chains. A chain is defined as a part of strand between two successive quadrafunctional

cross-links (e.g. trapped entanglements).

2.2. Kinematic measure

According to the analytical network-averaging concept (Khiém and Itskov, 2017; Khiém
et al., 2019), the average stretch applied on the polymer strand in a direction ¢ in the filled

rubber network can be given by

1
2

A= /pi (n)A?dS | = ((1 — wy) gl + woA?) . i=1,2,..,m, (1)

where m is the number of equidistant points on the microsphere (see Appendix A). Fur-
thermore, p; (n) is the directional probability distribution function of polymer strands (its
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specific form is given in Appendix A), m is an arbitrary direction in the microsphere repre-
senting the directional random variable. [; represents the first principal invariant of the right
Cauchy-Green tensor C = FTF, where F is the deformation gradient, and A? = C : E;® E;
denotes the square of the principal stretch in a direction specified by a unit vector Ej;.
Furthermore, wy is the effective volume fraction of filler (Khiém and Itskov, 2017). The
average stretch (1) captures the interpenentration of polymer strands in different directions
(Khiém et al., 2019), which is crucial for describing multiaxiality of polymeric materials at
finite strain. In the current paper, this kinematic measure will be applied for the case of

strain-induced crystallization.

3. Strain-induced crystallization

In this section, a novel multiple-step kinetics of strain-induced crystallization is discussed.
This involves the nucleation of the primary crystallites, independent nucleation and growth
of secondary crystallites, as well as dependent growth of tertiary crystallites (Figure 2).

To describe the dynamics of strain-induced crystallization, static and free strands in
the natural rubber network are considered. The crystallization in static strands (with a
fraction of ® = 2/3) is time-independent, while the free strands (with a fraction (1 —
®)) can undergo unequilibrium crystallization. The free strand are long chains with the
number of chain segments significantly higher than the static chains. Since these two strand
types are independent, the total crystallinity is a sum of equilibrium crystallinity ®(°? and

nonequilibrium crystallinity ¢
Ctotal — (I)Ceq + C (2)

Before discussing the unequilibrium crystallization, let us recall the previous derivation of

crystallinity at equilibrium (Khiém and Itskov, 2018b).

3.1. Equilibrium crystallinity
According to the previous equilibrium theory of crystallization (Khiém and Itskov, 2018b),

the crystallization in natural rubbers contains two steps: formation of a solid cluster of poly-
5
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Figure 2: Crystallization kinetics (filled circles represent either physical or chemical cross-links): Primary
crystallites (blue) nucleate in stretched polymer strands. Higher order crystallites (secondary-orange or
tertiary-green) develop during non-stretching states (i.e. unloading or stress relaxation). The secondary
crystallites occur during unloading, they can nucleate, grow and melt independently from the primary
crystallites. The tertiary ones can only grow on existing crystallites (either primary or secondary) during
stress relaxation. They will disappear when their nuclei melt.

mer segments (nucleus) in the amorphous network and growth of such cluster (Appendix
B). The former is referred to as crystallization nucleation (Fig.3) which can occur in both
loading and unloading, while the latter is referred to as crystallization growth solely taking
place in unloading.

The equilibrium crystallinity due to nucleation can be given by (see details in Appendix

B)

eq - eq - o 871—71573
I — ; Cli - ; By exp kBToA\I/iQ (/—\1) ) (3>

where 74, v are the surface tension at the top and the side surfaces of the crystallite,
respectively. Tj is the reference (absolute) temperature and kg is the Boltzmann constant.

The analytical network-averaging (A.3) requires a calculation of the fraction of oriented
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Figure 3: Crystallization nucleation: In the first step, the nucleus size reach the critical dimension, so
that a crystallite is formed in the strand. Next, the deformation increases, the nucleation occurs in a
neighboring chain in the strand (action at distance), therefore there are 2 crystallites in the strand. Further
stretching lead to more and more crystallites in the network strand. Until all chains in the strand become
semi-crystalline, the saturation of crystallization nucleation takes place.

strands. In the case of strain-induced crystallization, the fraction of oriented strands in each

direction is proportional to the directional crystallinity and is expressed as

8173
W; = Wy + wr, exp (—m> 4 (4)

where wy, = 30% is the maximum fraction of chain alignment (Toki et al., 2002; Murakami
et al., 2002; Toki et al., 2003).

The change in the free energy AW; of the pure polymer strand (i.e. without crystallites)
can be obtained as (Khiém and Itskov, 2016)

_ N, sin 2 - A
A\I’i (Al) = wL—OkBT()KJn In # s
m sin (\%Ai)

where N is the total number of chains per unit reference volume of the rubber network, n is

i=1,2, ..m, (5)

9

the average number of chain segments in the semi-crystalline network, and x = — (Khiém
T

and Itskov, 2016).

Furthermore, the equilibrium crystallinity due to crystallization growth is expressed as



(see details in Appendix B)

8T s
n= ZBQ exp ( ksl A\Dg)

exp | — 877 — exp —87ﬁﬁ$
FaToA T2 (e FaToA T2 ()

(6)

where new surface tensions 4; and 7, are used because the morphology of the secondary

crystallite is different from that of the primary crystallite. To be consistent with Khiem

and Itskov (2018b), we set 3,72 = %%

. Therein, the relative ratio of surface tension y > 1
indicates that it is easier to attach a polymer segment to the secondary crystallite than to the
primary one. Thus, the melting point is lower than the onset of strain-induced crystallization
(A, < A.) due to the introduction of a new crystal morphology. The former term in the
product (6) represents the crystallinity of crystal nuclei, while the latter is the fraction of
grown crystallites.

The maximal cyclic stretch A{™#* is an internal variable, which can be defined as

A{™™ = max Ai(7), i=1,2,..,m, (7)
etet]
where the ending time of the closest directional loading cycle t{ is defined by the local
minimum of A¢ within the time interval 7 € (—oo,t]. As shown in Khiém and Itskov (2018b),
the internal variable AS™# is essential for the description of equilibrium crystallization. It
should be noted that during loading (; = 0, so that secondary crystallites only form in the
direction with a negative stretch rate.

In view of (3) and (6) the total crystallinity at equilibrium is calculated as

Ceq — qu + CIqu' (8)

3.2. Nonequilibrium crystallinity

Outside of thermodynamic equilibrium, the crystallinity can develop (from previously
existed nuclei) and melt spontaneously. Let ((¢) be the total crystallinity in a representative

8



free strand at time ¢. In view of (2), the maximal crystallinity of nuclei in the material is
(1—®)¢*(t). Without loss of generality, we assume that the melting rate and nucleation rate
per crystallinity are the same and can be given by 7. Thus, the change in nonequilibrium
crystallinity within a time increment At is equal to the difference between nucleation and

melting crystallinities, so that

CHTAN=CO) _ (g < o)

At Tn Tn

where 7, is the characteristic time of nonequilibrium crystallization nucleation and melting.
Taking the limit At — 0 and assuming ( is differentiable yield the following evolution
law for the nonequilibrium crystallinity
¢ _ (1—-®)¢

< o Tn (10)

¢(0) = 0.

The first order differential equation (10) enables interpretation of the underlying mech-
anism of crystallization under multiple situations. First, due to the additive nature of (8),
¢ = ( + (u, where (q, G are the nonequilibrium crystallinity of primary and secondary
crystallites, respectively. Thus, the same mechanisms as described in Section 3.1 take place
in dynamic loading: nucleation of primary crystallites during loading, growth and melting
of the two types of crystallites (primary and secondary) during unloading. Second, during
pure dynamic loading (i.e. without relaxation), by substituting ¢ = (j into (10), the solution

of (10) reads

glo/texp(“)“q’) ) g (1)

Tn Tn

In view of the comparison theorem, (11) indicates that the total crystallinity (2) during
dynamic stretching is lower than ({?, which is inline with experimental observation (Briining

et al., 2012).



Furthermore, during stress relaxation where (1 — ®)(® = const, the solution of (10) is

given by

C=(1— ) (1 —exp <—%)> . (12)

Dividing (12) by the the crystallinity at the starting point of relaxation (g yields the total

grown crystallinity during relaxation as

Gt = (1 — ®)Ces (exp <—i—:) —exp (—t :LRD , (13)

where the scalar tgp = 7, In(g. (13) describes the growth of tertiary crystallites from either

primary crystallites (during loading) or from both primary and secondary ones (during
unloading), see Fig.2.

Remark 1. In thermodynamic equilibrium, the differential equation (10) results in
¢ = (1 —®)¢ In view of (2), the current theory reproduces the previous equilibrium
crystallization (¢ (Khiém and Itskov, 2018b). In this case, (10) also resembles the classical
nucleation kinetics (Wakeshima, 1954).

4. Semi-crystalline network

As there are static chains and free chains corresponding to equilibrium and nonequilib-
rium crystallization in natural rubbers, we shall derive the free energy densities for the two

cases.

4.1. Equilibrium semi-crystalline chains (static chains)

According to the analytical network averaging concept (Khiém and Itskov, 2016, 2017,
2018a,b; Khiém et al., 2019), one can replace all chains in the semi-crystalline network by
a representative chain subject to a microscopic stretch and a microscopic tube contraction.
For the sake of simplicity, we neglect the energetic contribution of crystallites during loading

and consider only their entropic effect (Khiém and Itskov, 2018b). The microscopic stretch

10



can be given by (Khiém and Itskov, 2018b)
A=A (14)

where ¢ is the stretch amplification exponent approximated in the case of strain-induced

crystallization by (Khiém and Itskov, 2018b)

q=q(1+G), (15)

where ¢, = ®(;? and ¢ the stretch amplification before the onset of strain-induced crystal-

lization. The mesoscopic stretch A is given by (see Appendix A)

m 1 I1 2
— | (1=w)= A2
Zm <( wl)3 +U)Z 1)

i=1

A= (16)

Since the representative strand contains only polymer chains in series, the tube diameters
of the strand and a single chain are the same. Thus, the microscopic tube contraction is

identical to the mesoscopic one and is given by (see Appendix A)

1
m 1 I , 2
E — (I —w;) = X

m<( w)3+w ’)

i=1

(17)

Furthermore, due to the topological constraint, a polymer chain can only take part in
the crystallization of either primary or secondary crystallite. Thus, the number of chains

involved in the nucleation of the primary crystallite can be calculated as

Ne=Neo (1= ¢), (18)

where Ny is the total number of chains per unit reference volume of the rubber network,
and (. = 6P( is the fraction of misoriented chains.

The free energy of the equilibrium semi-crystalline network can be given by (Khiém and

11



Ttskov, 2018b)

T
Ul =U —Tn=Up (F,A7™) +co (T —To) — TNesp — Tcyln T (19)
0
where T' is the current (absolute) temperature, ¢y is the heat capacity per unit reference
volume, Ur and sg are the deformation-dependent part of the internal energy and entropy,
respectively (see details in Appendix C).
The deformation-dependent part of the entropy sg of a single chain is calculated as

(Khiém and Itskov, 2016)

r
/T
nsin [ —
n

where w is the tube parameter (Khiém and Itskov, 2016) and © = T is the tube contraction

sp = —kpgnkln — kpwo, (20)

(see details in Appendix A).
The end-to-end distance of the representative chain is given by (Khiém and Itskov, 2018b)

r = A/n— Gn. (21)

As seen in Section 3, there is a change in erystal morphology from the primary to the

secondary one during unloading. The change of Ur with respect to the alternation of crystal
ON,

crystal morphology 8_FC in the equilibrium network can be calculated as (Khiém and Itskov,

2018b)

%—T ON.
oF " FoF

(22)

4.2. Nonequilibrium semi-crystalline chains (free chains)

One can observe that the evolution of nonequilibrium crystallinity (10) represents a diffu-

sion process of chain segments into nuclei. Thus, the internal energy due to the translational

12



motion of the chain segments can be given by

1 .
UL = Spa*lPC, (23)

where p. denotes the density of the polymer crystallite, n is the chain length of the free
chain, [ is the segment length, and ﬁlé is the translational velocity of free chain segments.
To the best of our knowledge, such definition of internal energy is unique and has not been
postulated in the literature.

As mentioned in Section 3, the free chains are very long so that their entropic contribution

is negligible. Thus, the semi-crystalline free energy reads as
UV=U-Tn+ Ugwq, (24)

where the internal energy of equilibrium semi-crystalline chains U = Ug + ¢y (T — Tp).
In view of (C.4), (22) and (24), the first Piola-Kirchhoff stress of the semi-crystalline

network is given by

Osp  OU™
P, =P Pt — _TN,ZF 4 Z¢

‘OF oF (25)

Remark 2. The previous equilibrium strain-induced crystallization theory (Khiém and
Itskov, 2018b) cannot reveal the existence of the internal energy (23) because in thermody-
namic equilibrium C = 0, (23) vanishes. Furthermore, under dynamic loading, in view of
(23) and (11) the term P"? is positive indicating that the dynamic stress P is larger than
the quasistatic stress P1. This observation agrees well with experimental evidence (Brining

et al., 2012).

5. Filler-polymer interaction

To describe the Mullins effect and rate-dependent effect in filled natural rubbers, the

filler-interaction should be considered. Here, the rate-independent damage is captured by

13



an equilibrium filler-polymer network, while the rate-dependent effect is described by a

nonequilibrium filler-polymer network.

5.1. Equilibrium filler-polymer network

For the sake of simplicity, the equilibrium filler-polymer network is derived from an
isotropic damage-elastoplastic version (Khiém and Itskov, 2017) of the Gent model (Gent,
1996). Its free energy function is given by

A—1

e - \ — - 5\—1 - ]2 Mo
V5l = 6fic (1 = ny) In (1 T 1>+(1—5)uc(1 —ny)In (1 , 1) +ut§, /a, (26)

where fi. is the phantom shear modulus and § = 80% is the initial fraction of irreversible

damage Khiém et al. (2021). Due to a low filler concentration, the microstretch of the filler-
polymer network is obtained from an isotropic version of the analytical network averaging
A= % (Khiém and Itskov, 2016). More sophisticated approaches accounting for filler-poly-
mer interaction can be found in Dargazany and Itskov (2009); Khiém and Itskov (2017);
Saadedine et al. (2021). n,, and n; are the chain lengths corresponding to irreversible and
reversible disentanglements of polymer chains from filler surface, respectively. Due to such
disentanglements, n,, and n;, will increases during deformation in a similar manner as the

network alteration model (Marckmann et al., 2002)

N = N + (A — 1), (27)
np = ngp + (A 1), (28)
where ng is the initial chain length, Amax and A\°MaX are internal variables which will be

defined below. « > 0 is a material parameter representing the relative number of chain
segments disentangled from the filler surface by deformation.

To describe multiple cycles of damage in filled natural rubbers, we extend the analytical
perfect elastoplastic theory (Khiém and Itskov, 2017) by including an isotropic hardening

law (see details in Appendix D). Accordingly, the value of the internal variable will be

14



updated at the beginning of every new loading cycle as

AT — max A(7), (29)
et t]
AT (1) — ﬁc_lTer[rlfgt] A7), (30)

where the ending time of the ¢ loading cycle #¢ is defined by the local minimum of A
within the time interval 7 € (—oo,t].  is a parameter describing the irreversibility of the
disentanglement. In the example considered here, § = 1.2 and max(c) = 3 since the material

is stabilized after 3 cycles of loading (Khiém et al., 2021).

5.2. Nonequilibrium filler-polymer network

The nonequilibrium filler-polymer network is obtained on the basis of stretch multi-
plicative decomposition (Reese and Govindjee, 1998; Dal et al., 2020). Accordingly, the
microscopic stretch applied on polymer strand is decomposed into elastic and viscous part
A = X\, The physical motivation for such multiplicative decomposition could be a dif-
fusion of chain segments through entanglements (Dal et al., 2020). The flow rule for the
rate-dependent internal variable A is given by

ooy (X)

AN 31
Tf ONe (31)

where 7 is the relaxation time. The nonequilibrium free energy of the filler-polymer network

is given by

I = i (1 —ng) In (1—%’_1). (32)

n—1

Equation (32) expresses therefore the free energy of the nonequilibrium branch of the rheo-

logical model with the stretch Xe.

15



6. Constitutive formulation

6.1. Total free energy

The total free energy is a summation of entropic and energetic contribution from the

semi-crystalline chains and filler-polymer interaction. Thus, in view of (24), (23), (26) and

(32), the total free energy of filled natural rubbers takes the form

Uiotar = U — T+ UL + W5 + W (33)
The total first Piola-Kirchhoff stress tensor is therefore given by
Osp OU? “ a\pjﬁ 8\11?6‘1 T
Piota = —TN, —pF™ ", 34
tote oF ~ oF  oF @ oF * (34

where p is a Lagrange multiplier due to the incompressibility constraint. For readers conve-

nience, the material parameters of the model and their physical meaning are listed in Table

1.

Table 1: Physical meaning of the material constants

Parameters

Physical meaning

pe = NeokpTok
n

qo

s = NeokpTow
X

By

By

Tn

pcﬁQF

e
o

Effective phantom shear modulus at the room temperature [MPa]
Semi-crystalline chain length

Stretch amplification exponent at the room temperature
Topological shear modulus at the room temperature [MPa]
Relative ratio of surface tension

Primary crystallinity constant

Secondary crystallinity constant

Characteristic time of nonequilibrium crystallization [s]

Free chain inertia [s?MPa]

Equilibrium phantom shear modulus of the filler-polymer network [MPa]
Relative number of disentangled segments.

Filler-polymer chain length

Equilibrium topological shear modulus of the filler-polymer network [MPa]
Nonequilibrium shear modulus of the filler-polymer network [MPa]
Relaxation time [s]

16



Note that in comparison to the equilibrium crystallization theory (Khiém and Itskov,
2018b), only two new parameters 7,, and p.n%l? were introduced to characterize the nonequi-
librium crystallization response. The last six material parameters in Table 1 are related to

equilibrium and nonequilibrium filler-polymer interaction.

6.2. Thermodynamic consitency

The model includes four types of internal variables. The equilibrium internal variables
A2 (and A\¢™2%) describe the rate-independent damage-elastoplasticity, A¢™ is essential for
the description of equilibrium crystallization under unloading, whereas the nonequilibrium
internal variables are the nonequilibrium crystallinity ¢ and the viscous stretch X describ-
ing the rate-dependent filler-polymer interaction. Therefore, the total instrinsic dissipation

contains four parts as
Dtotal = D™ + D;q + D?eq + D;eq' (35>

The dissipation due to equilibrium crystallization reads as

e - oU A C max aNC A C max
D=3 (_aAgrfaxAi - TsFaAmeAi ) = 0. (36)

=1

The elastoplastic dissipation can be expressed as

G\I!eq Lmax aqjeq Lcmax
Dy =——L N L
8)\max a)\cmax

9 (f (n,y) + 20 tlz\/"_“) ah (10 f () ah >0,

3/2
non

(37)

L cmax

*1>> > 0, );\max > 0 and A > 0, whereas

i

8
—

since during loading f (x) = f. ( — +In (1 —

A=l
T—\
cmax

:0and5\ =

max

under unloading /N\

In view of (10) and (23), the dissipation due to nonequilibrium crystallization reads

po* ¢
Tn

Dneq _

; 0. (38)
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As a result of (31) and (32), the dissipation in the nonequilibrium filler-polymer network

L ®

g T (;v)2

is always positive. Thus, in view of (36), (37), (38) and (39), Diptar > 0. The proposed

model always satisfies the second law of thermodynamics.

7. Results

7.1. Uniaxial tension of filled natural rubber

In this section, parameters of the developed constitutive model are determined by com-
parison with multiple cyclic loading experimental data in uniaxial tension of a filled natural
rubber (Khiém et al., 2021). This experimental data set is obtained from four tests: pure
cyclic loading of the sample (I), cyclic loading with relaxation (II), preconditioning test
(IITa) and preconditioning with relaxation (IIIb). All the tests were performed with the
same filled natural rubber and at the same stretch rate. The volume fraction of filler in
this natural rubber is wg = 0.1, the surface tension production of bundle-like crystallite
1y = 1.39e — 11[J3m 5] (cf. Gros et al. (2015)), and the experiment was carried out at
room temperature Ty = 295[K]. For the sake of simplicity, a version of (A.1) with m = 3
is used in this section. Here, the stress-stretch and crystallinity measured in (II) and (IIIa)
will be used for model fitting, while the mechanical behavior in (I) and (IIIb), heat source
and temperature variation of all tests are utilized to verify the predictive capability of the
model. To this end, the parameters of the filler-polymer network fi., a,, ng and fi are first
obtained from the fitting to cyclic loading (IT) up to stretch 2.5, below which strain-induced
crystallization does not occur. To determine the relaxation time of filler-polymer interac-
tion 7, the model was fitted to the relaxation test (II) at stretch 2.5. Finally, by fixing the
above mentioned material constants, the parameters for the semi-crystalline network (the
first 9 parameters in Table 1) can be obtained by simultaneous fitting to the experimental

crystallinity from the infrared thermography based quantitative surface calorimetry and the
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stabilized cycle of the stress-stretch response of preconditioning test (IIIa). The so obtained

material parameters are listed in Table 2.

7.1.1. Stress-stretch behavior

The mechanical responses of the model in the four tests are demonstrated in Figure 4
versus the corresponding experimental data. As mentioned above, the model was fitted only
to the experimental data in Figure 4b and c. It can be seen that the model demonstrates
good agreement with experimental data with respect to the Mullins effect, hysteresis and
stress relaxation under both loading and unloading (see Figure 5). Note that the model
can also describe the permanent set resulting from the rate-dependent response of the filler-
polymer interaction (32). Special attention is focused on stress relaxation at A = 2.5, A =4
and A = 6 (Figure 5b and d). Since the onset of strain induced crystallization takes place
at stretch larger than Ay = 2.5, the first stress relaxation is purely due to the viscoelasticity
of filler-polymer interaction (32). At higher stretch ratios, the stress relaxation is due to
both the viscoelasticity of filler-polymer interaction and the reduction of diffusion velocity
of crystalline segments (10) in free chains. These effects will be analyzed further in the

crystallinity analysis.

7.1.2. Crystallinity

The total crystallinities predicted by the model are demonstrated in Figure 6 versus
experimental data. There, only the loading branch in Figure 6¢ was fitted to the experimental
data, while all remaining curves are pure model predictions. It can be seen that the onset of
strain-induced crystallization for the specific filled natural rubber is at A, = 3.5. It is earlier

than that of unfilled natural rubber (A. = 4) due to the strain amplification effect (Rault

Table 2: Material constants of the proposed model for the filled natural rubber in Khiém et al. (2021).

u[MPa] n 7 e [MPa]  x By B Tals]  pen1?[s*MPa]
0.1484 16.313 0.9276 0.3410 2 0.7 0.859 25 leb

f.]MPa] « o f[MPa]  g[MPa] 7¢[s]

0.1389 1.02 1.2718 0.05 0.9 60
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Figure 4: Stress vs. stretch predicted by the proposed model in the four situations: (a) Cyclic loading
without preconditioning; (b) Cyclic relaxation without preconditioning; (c¢) Preconditioning step; (d) Cyclic
relaxation after preconditioning.

et al., 2006b), and this effect is captured in the model via (1). Furthermore, the crystallinity
in the loading branch of all testing situations is approximately the same (i.e. up to 14%).
However, the behaviors under unloading and especially when stress relaxation takes place
deviate strongly from the quasi-static (equilibrium) situation (Khiém and Itskov, 2018b).
First, it is observed that not all crystallites melt under unloading, which is indicated by a
permanent crystallity &~ 1% at the end of unloading (Figure 6). Second, the stress relaxation

seems to promote the development of new crystallites, as an increase of crystallinity can be
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seen during the stress relaxation at A = 6 (Figure 6b and d).

Remark 3. In the unloading case, two types (primary and secondary) o] crystallite oc-
cur in the rubber network. Since those crystallites have dijferent melting rates (indicated by
(3) and (6)), the unloading curve of the crystallinity is non-monotonic. The branch before
the kink in Figure 6 is dominated by the melling of the primary crystallites, while the one
afterwards represents the melting of the secondary crystallites.

To understand better the evolution of crystallinity under dynamic loading, especially in
stress relaxation, the equilibrium and nonequilibrium parts of the crystallinity are plotted
versus time in two loading scenarios (I) cyclic loading without stress relaxation and (II) cyclic
loading with stress relaxation (Figure 7). One observes that there is no nonequilibrium
crystallinity during the stress relaxation at the stretch below the onset of strain-induced
crystallization (from 40-160s). Conversely, the tertiary crystallinity grows from the primary
nuclei during the relaxation at stretch 4 (from 220-380s) and stretch 6 (from 490-605s) in
Figure 7b, since the erystal nuclei already occur before (at A. = 3.5). This leads to higher

total crystallinity at A = 4 in the test with relaxation, in comparison to the nonrelaxation one
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Figure 6: Total crystallinity predicted by the proposed model in four situations: (a) Cyclic loading with-

out preconditioning; (b) Cyclic relaxation without preconditioning; (c) Preconditioning step; (d) Cyclic
relaxation after preconditioning.

(Figure 7a). Furthermore, both the nucleation and melting rates of equilibrium crystallites
are significantly higher than those of the nonequilibrium ones. The residual crystallinity is
only due to nonequilibrium crystallization, which is clearly depicted in Figure 7a at 190s,
238s and 291s, and in Figure 7b at 405s and 460s. More specifically, since the melting of
nonequilibrium crystallites is much slower than that of the equilibrium one (Figure 7), the

residual crystallites will be nonzero if the non-stretching time (i.e. the duration of unloading

or stress relaxation) is insufficient. At the relaxation at stretch A; = 6, the growth of tertiary
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crystallites is tremendous (as shown by the nonequilibrium crystallinity ¢ in Figure 7b) since
the number of nuclei is high (about 14%, see Figure 6b). Thus, the kinetics of nonequilibrium
crystallinity favors stress relaxation during loading. This observation can be easily verified
by recalling the solution of nonequilibrium crystallinity evolution (10). Due to the growth
of tertiary crystallites, the magnitude of nonequilibrium crystallinity is significantly larger
than during pure loading (cf. (11) and (12)). During the stress relaxations under unloading
(600-720s) and (745-865s) there is a competition between the growth of tertiary crystallites
and the melting of their nuclei (in non-stretching situation, Figure 2). In contrast to the
situation under pure cyclic loading (I), all crystallites can melt at the end of the experiment

(IT) since the stress relaxation lengthens the total non-stretching time, see Figure 7b.
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Figure 7: Time evolution of equilibrium and nonequilibrium crystallinity in two loading scenarios: (a) Cyclic
loading without preconditioning; (b) Cyclic relaxation without preconditioning.
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7.1.3. Local heat source

In view of (33) and (C.10), the local heat source for filled natural rubbers can be decom-

posed as

S:

OF OF

. ou . .
(P 8UF ¢ > :F—f—D?eq-i-AHCtOtal. (40)

The first term in (40) represents the entropic power, the second term is the intrinsic dissi-
pation due to nonequilibrium crystallization, and the last term is the internal heat supply
due to phase transition.

To justify the prediction of crystallinity under unloading and stress relaxation, the local

heat source calculated by the model (40) is depicted in Figure 8. The evolution of heat
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Figure 8: Local heat source vs. stretch predicted by the proposed model in the four situations: (a) Cyclic
loading without preconditioning; (b) Cyclic relaxation without preconditioning; (c¢) Preconditioning step;
(d) Cyclic relaxation after preconditioning.
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source before the crystallization starts can be well captured. It can be seen that the upturn
(during loading) and downturn (during unloading) of the heat source are correctly predicted
by the model in all loading situations. Thus the predicted onset of crystallization (A. = 3)
and the equilibrium melting point (A, = 2.5) are accurate. Nevertheless, the model always
overestimate the local heat source after the onset of crystallization. It is due to the omission
of an energetic contribution of crystallinity under loading (Section 4). The model can also

reproduce the variation of heat source between different loading cycles. Accordingly, due to
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the Mullins effect, the heat production in the virgin loading is significantly higher than that
in the subsequent loading. It is in good agreement with the discussion in Part I (Khiém
et al., 2021). One should note that the heat absorption at stretch A = 4 after the stress
relaxation (Figure 80 and d) is much stronger than that in the test without relaxation (Figure
8a), and such effect does not appear at stretch A = 6. Thus, the evolution of crystallization
after stress relaxation (Khiém et al., 2021) at two stretches A = 4 and A = 6 appears to be
different.

To reveal the origin of the change in heat source during such deformation, the three
contributions of the local heat source (40) should be analyzed. It can be easily seen that the
dissipation due to unequilibrium crystallization is always positive, however its magnitude
is almost zero due to a very slow rate of unequilibrium crystallization (7,, = 25s) in (38).
Furthermore, such dissipation is related to heat production (positive) so it cannot explain
the heat absorption (negative). Thus only two significant contributions of the local heat
source, the entropic power and the internal heat supply are plotted in two loading scenarios:
cyclic loading without (I) and with stress relaxation (II) (Figure 9).

It can be seen that the entropic contribution of heat source in both cases are more or
less the same. Thus, the deviation in the heat absorption at the stretch A = 4 between
the two experiments (I) and (II) is solely due to the difference in internal heat supply (see
Figure 9b and d). It can be explained by an increase of equilibrium crystallinity at the
beginning of unloading (around time 355s) after the stress relaxation at A = 4 in Figure 7b.
It is due to the fact that at stretch A = 4, the attachment of chain segments on the nuclei
surface (B.8) is faster than the melting of the nuclei (B.7). Furthermore, such increase in
equilibrium crystallinity is not observed after the stress relaxation at A = 6 (around time
600s) because at higher stretch the melting of the nuclei is faster and hinder crystallization
growth. Note that although there is a large nonequilibrium crystallinity (about 5%) during
stress relaxation at A = 6, its rate is much slower than that of equlibrium crystallinity
(Figure 7b), so the contribution of nonequilibrium crystallinity to the heat source at A = 6
is insignificant.

Finally, it is observed that during last phases of stress relaxation (from time 490s),
25
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Figure 9: Two contributions of the local heat source predicted by the proposed model in two loading
situations: (a,b) Cyclic loading without stress relaxation; (c,d) Cyclic loading with stress relaxation.

the heat production remains strictly positive throughout the relaxation time (490-605s),

while the heat absorption under the unloading remains strictly negative until the end of

the unloading (Figure 10). It is due to the appearance of nonequilibrium crystallites in

stress relaxation phases (Figure 7b), which prevent the internal heat supply from returning

to zero. At the end of unloading in the experiment (II), all crystallites melt so that the heat

absorption returns to zero. As seen in Figure 100, the internal heat supply due to phase

transition plays a major role in the change of heat absorption of natural rubber, especially

during the stress relaxation.
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Figure 10: Time evolution of local heat source during the cyclic loading with relaxation: (a) Total heat
source; (b) Internal heat supply.

7.1.4. Temperature variation of filled natural rubbers in uniaxial tension

For the sake of simplicity, the specimen temperature was determined from an 1D thermal
diffusion problem to predict the calorimetric response. We assume that the deformation of
specimen is homogeneous, and there is only a variation of temperature along the thickness
direction X3. This assumption is realistic since thin specimens were used in the experiment
(Khiém et al., 2021).

In this situation, (C.9) can be simplified as

1 0T

T(Xat) =ky—s —
coT' (Xs,1) koAgaxgaxg

+ PiAy — Up — U + AH(™. (41)

mW
mmK

The thermal conductivity of natural rubber is ko = 0.2] | and the heat capacity per

unit reference volume ¢y = 1.645[-"4=], the latent heat of fusion AH = 59.9(1 — wy)[-2Z%]
(Khiém et al., 2021).

In uniaxial tension, the thinner the sample, the more efficient the heat transfer to the
environment is. Thus, the film coefficient of natural rubber to the air is assumed proportional
to the change of sample thickness, h = hoAs™!, where hg is the initial film coefficient. By

Nanson’s formula, the Lagrangian version of the convection boundary condition reads as

OT (X, 1)

H
Xy = — 42
0x, = T (42)

hoAs™" - (T(X3,t) — Tp) = —koA3*

where H = 2[mm)] is the thickness of the sample and hy = 0.0174[-20] (Sae-oui et al.,
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1999). A symmetric boundary condition is applied at the center of the specimen (X3 = 0)

due the the symmetry of the temperature distribution. Given the initial condition
H
T (X3,0) =Ty, VX3 € {O, 5} , (43)

the partial differential equation (41) can be solved for T (X3, t) using the finite difference

method. The average temperature change can be calculated as

T

0(t) = %/T (X, 8)dX5 — T, (44)

where Ty = 295[K] in the uniaxial tension test.

The average temperature variations (44) predicted by the model in the four tests are
plotted in Figure 11. One observes very good agreement between the model prediction and
experimental data. It is easily seen that the thermodynamic process is non-adiabatic. There
is a discrepancy between the temperature variation predicted by the model and the experi-
mental data during the relaxation phase of Figure 11d, since a very simple viscoelastic model
was used for the nonequilibrium branch of the filler-polymer interaction (32). Furthermore,
the temperature variation under the stress relaxation is very sensitive to the magnitude of
the heat source, a slight difference in the predicted heat source can lead to such deviation

in the temperature.

7.2. Validation and prediction of the model in biazial tension

In this section, to further study the model, its predictions of heat source, crystallinity and
temperature variation in a biaxial tension test (Part I - Khiém et al. (2021)) are evaluated
at the center of the specimen.

To this end, the local heat source is calculated as

S = PiA; + Py — Up — U + AH(', (45)
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Figure 11: Time evolution of temperature variation predicted by the proposed model in four situations: (a)
Cyclic loading without preconditioning; (b) Cyclic relaxation without preconditioning; (c¢) Preconditioning
step; (d) Cyclic relaxation after preconditioning.

where the latent heat of fusion is assumed independent of the deformation state (Khiém
et al., 2021).

The predicted heat source (45) is plotted in Figure 12. To reduce the noise, a smoothing
algorithm was applied on the measured deformation field (Figure 13b). In contrast to the
uniaxial tension result, very good agreement between model prediction and experimentally
measured values can be observed, both in the virgin loading and the subsequent cycles. It is
due to the fact that the deformation is in the vicinity of onset of strain-induced crystallization
(A ~ ABT = 3), the crystallinity is small so that the energetic contribution of crystallinity
(Section 4) is negligible. It can be seen that the heat source after the second loading cycle
is significantly lower than that of the first cycle. It is due to the Mullins effect and a large
amount of crystallinity disappears in the subsequent cycles due to lower maximum values
of principal stretches (Figure 13b). It turns out that the crystallization is very sensitive in
this specific biaxial tension, since in the vicinity of the crystallization onset, a small change
in stretch leads to a significant change in the crystallinity. These effects can be seen in

the plot of predicted crystallinity (Figure 13). Furthermore, it can be seen that the heat
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Figure 12: Average heat source predicted by the model in biaxial tension.

source during the constant displacement phase (301-361s, see details in Part I - Khiém et al.
(2021)) is positive (Figure 12). It is due to the growth of tertiary crystallites, which can be
revealed in the crystallinity-stretch plot (Figure 14b). Furthermore, it should be noted that
the crystallinity experimentally detected by the infrared thermography based quantitative
surface calorimetry was evaluated using the second loading curve, therefore good agreement
between the predicted crystallinity and the experimental data can be only observed on the
second cycle. The maximal crystallinity in this case is about 2%. For the first cycle, the
model predicts higher value of crystallinity since the principal stretches are higher there
(Figure 13b).
The heat diffusion equation for the biaxial tension takes the form

1 0°T

. . . . © ne “total
CQT(Xg,t):k’QA—ga—X,S—f-PlAl—’—PQAQ—UF—UC q—i-AHCtt . (46)

As the biaxial tension was carried out from the initial temperature Ty = 300[K], the film
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Figure 13: Crystallinity predicted by the model (a) under the (smoothed) deformation history (b).

coefficient is assumed to be hg, the convection boundary condition reads as

0T (X3,t)

X _ A -1
ho - (T'(X35,t) — Tp) koA; X,

H
on X3 = 5 (47)
A symmetric boundary condition is applied at the center of the specimen (X3 = 0) due to
the symmetry of temperature distribution. Using the same initial condition (43), the heat
diffusion equation (46) can be solved for 7' (X3,t) using the finite difference method. The

average temperature variation (44) at the center of the specimen is plotted in Figure 15.
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One observes good agreement between the numerical result and the experimental data.
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Remark 4. Note that the predicted calorimetric responses (temperature variation and
heat source) in the current work is independent of the 0D approximation in Part I (Khiém
et al., 2021). While the 0D approach predicts the heat source from the measured temperature

variation (i.e. from the left hand side of (C.9)), the numerical prediction here based directly
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on the local heat source at a continuum material point (i.e. from the right hand side of
(C.9)). Good agreement with all experimentally measured quantities under different loading

cases validates the modeling assumptions utilized here.

8. Conclusions

In this paper, a theoretical modeling of strain-induced crystallization has been developed.
This work thoroughly explains the physical picture of strain-induced crystallization in nat-
ural rubbers beyond thermodynamic equilibrium: 1) the stress-strain hysteresis loop is due
to both equilibrium and nonequilibrium crystallization. The hysteresis part of equilibrium
crystallization results from the internal energy change due to the appearance of a new crys-
tal morphology, whereas the part corresponding to nonequilibrium crystallization is due to
the change in the internal energy of crystalline segments, 2) the intrinsic dissipation due to
the equilibrium crystallinity is zero, whereas that of the nonequilibrium one is positive, 3) a
new type of crystallite (tertiary one) occurs in dynamics loading whose kinetics favors stress
relaxation 4) the decrease in stress of natural rubbers during stress relaxation is not only
due to viscoelasticity but also the reduction of diffusion velocity of crystalline segments, 5)
there is strain-induced crystallization in multiaxial tension, and the crystallinity in this case
is larger than that in uniaxial tension at the same macroscopic stretch. Good agreement
of the model predictions with abundant experimental evidence under sophisticated loading
scenarios (Part I - Khiém et al. (2021)) validates the physical ground of the proposed model.

The results strongly confirm that the strain-induced crystallization in natural rubbers
should be studied from neither solely equilibrium nor solely nonequilibrium thermodynamics.

It should be investigated on both.

Appendix A. Analytical network averaging concept

The analytical network averaging concept (Khiém and Itskov, 2016, 2017, 2018a,b; Khiém
et al., 2019) assumes the existence of an orientational distribution function of polymer

strands in rubber-like materials. This distribution function can be derived from a series of
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probability density functions p; related to a set of predefined unit vectors E; (i = 1,2,..,m)

as follows

m

:Z% ,5 Z% (92,%, i)- (A-l)

i=1 i=1

Therein, m is the number of equidistant collocation points on a half-sphere specifying the
deformation-induced anisotropy. Each constituent p; (6;,<;, E;) of the probability density
(A.1) is defined on the basis of the even von Mises-Arnold-Fisher distribution function

(Fisher, 1953)

Si

Pi (ezy Sis 7,) 47‘{' sinh (§l> COS ( COSH ) ( )

where 6; indicates the angle between the directional unit vector m and the vector E;, g;
denotes the concentration parameter.

According to the analytical network-averaging concept, the mesoscopic stretch at a ma-
terial point is evaluated as the root mean square of the macroscopic stretch over the unit
sphere by taking the directional distribution of polymer strands into account (Khiém and

Itskov, 2016, 2017, 2018a,b; Khiém et al., 2019)

o=

- 27 T B
A = /p(n)A2 ds| = |C: Z%//m (n) n ® n sinb;db;dp;
S =L 0 0
= _ii- (1—w~)£+ A7 E (A.3)
- = m 7 3 W; i ) .

where 6; € [0, 7] and ¢; € [0,27] are spherical coordinates of the vector n with respect to
orthonormal vectors based on the collocation directions E;. I; denotes the first principal
invariant of the right Cauchy-Green tensor C = FTF, and A? = C : E; ® E; is the square
of the macro-stretch in direction F;.

Furthermore, the mesoscopic tube contraction is evaluated as the root mean square of

the macroscopic tube contraction. Thus, it can be obtained similar to (A.3) as (Khiém and
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Itskov, 2016, 2017, 2018a,b; Khiém et al., 2019)

5, (A4)

1= | [p(mnas - [i% (=00 +w?)

S i=1

where I denotes the second principal invariant of the right Cauchy-Green tensor C, T; =

VcofC : E; ® E; is the macro tube contraction in direction ¢, and cofC = C~"detC is the
cofactor of C.
The coefficient w; is expressed by

2T T
2 —3coth (¢;) ¢ +3
w; = //p, (0:,5:, E;) (cosgei sin@,;—sinSQicongoi) db;dp; = X €0 2(g)§ + . (A.D)
0 0

Si

w; represent fractions of oriented strands (Murthy et al., 1995; Pazur and Prud’homme,

1996) in each direction ¢ (i = 1,2,..,m) (Khiém and Itskov, 2018a,b; Khiém et al., 2019).

Appendix B. Equilibrium crystallization

Equilibrium phase transition in natural rubbers is governed by two steps: formation of
a solid cluster of polymer segments (nucleus) in the amorphous network and growth of such
cluster (Khiém and Itskov, 2018b). These steps are referred to as crystallization nucleation
and growth, respectively. In this appendix, the evolution of the equilibrium crystallinities
during cyclic loading of natural rubbers will be derived from its corresponding directional

values.

Appendixz B.1. Crystallization nucleation

The primary nucleus is assumed here to be bundle-like with a cylindrical geometry. Each
primary nucleus is built by C' neighbouring polymer strands. The change in the free energy

of a strand due to the formation of a nucleus in a direction 7 of the microsphere is given by

AG = 7,2Cs + y.2V7Csl — CslAY;, i=1,2,..,m, (B.1)
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where ; is the surface tension at the top surfaces of the crystallite. 7, is the surface tension
at the side of the crystallite. AW; is the difference in bulk free energies between the semi-
crystalline and the amorphous strands. s is the cross-section area of a single polymer chain,
and [ is the length of the crystallite.

Thus, according to the Lauritzen-Hoffman nucleation theory (Hoffman and Lauritzen,
1961), the critical number of molecules C* in the nucleus can be obtained by maximizing

(B.1) with respect to C'

B 477752
N

*

(B.2)

Nuclei with the number of molecules larger than this critical value are likely to form
solid crystallites. The free energy barrier required for the crystal nucleation is obtained by

substituting C* into (B.1) as

8myyy2
AGr = T
N

(B.3)

By means of statistical mechanics, the equilibrium primary crystallinity in each direction

can be given by (Khiém and Itskov, 2018b)

; AG; 812 .
(il = Byexp <— kBT()) = Biexp (_kBT—i\If? , i=1,2,..,m, (B.4)

where B is the primary crystallinity constant.
The total secondary crystallinity is a summation of directional crystallinities and is given

by
=G (B.5)
=1

Appendixz B.2. Crystallization growth

Under unloading, some crystallites melt and the sample temperature decreases. Due

to the reduction of temperature, mobility of molecules reduces and the secondary crystals
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grow by aggregation of polymer segments into the critical nuclei (Khiém and Itskov, 2018b).
The probability of the crystallization growth in a direction 7 is a joint probability of the
crystal nucleation P, and the likelihood P, that the polymer segments can overcome the
aggregation barrier. In other words, the number of secondary crystallites in the direction
1, 1 = 1,2,...,m, is a multiplication of the number of nuclei n, and the number of grown

crystallites ng from each nucleus as
Nei = N * Mg (B.6)

In view of (B.4)

~

ny = nuf (A), (B.7)

where ny is the maximum number of nuclei involved in the crystallization growth and
£ el N _ .

A) =e —————* ). Therein, 7; and 4, are the surface tension at the top and
() = exp ( ke ToAT? (A;) T P
the side of the new type of crystallite, respectively.

The number of grown crystallites n, can be calculated by subtracting the number of

melted segments from the number of segments diffused into the crystal nucleus as Khiém

and Itskov (2018b)
ng = na (A5 = F (0]
— e |exp | — 877%73_ —exp | — 87,72 _
¢ kpToAUZ, (Ama) ksToAWE, (A;)

The equilibrium secondary crystallinity in each direction is proportional to the number

. (B.8)

of grown crystallites and therefore reads
= Baf (M) [FAF™) = F ()], i=12,m, (B.9)

where B, is the secondary crystallinity constant.

The total secondary crystallinity is a summation of directional crystallinities and is given
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=) G (B.10)
=1

Appendix C. Thermomechanical framework

The local form of the first law of thermodynamics for a semi-crystalline polymer is given

in the Lagrangian description by (Khiém and Itskov, 2018b)
U=P:F-DivQ + R, (C.1)

where Q is the heat influx per unit reference area, R = AH(™" denotes the internal heat
supply per unit reference volume due to phase transition (Khiém and Itskov, 2018b), P is
the first Piola-Kirchhoff stress tensor and the superposed dot indicates the material time
derivative. AH is the latent heat of fusion and (™! is the crystallinity. Assuming Fourier’s
law, the heat influx per unit current area is given by g = —kograd7’. Pulling back to the
reference state yields Q@ = —koC~'detFGradT.

The second law of thermodynamics can be given in the form of the Clausius-Planck

inequality by (Khiém and Itskov, 2018b)
Dy =P:F —U+Tn>0. (C.2)

Therein, D;,; is the mechanical dissipation, which is usually referred to as the intrinsic
dissipation in calorimetric studies.

The rate of mechanical dissipation can be further expressed as

o U U . U OO0 e 0N
D =P:F = ol —on i B e o i B T T+ Ton  F 4 Tos 5,

[1-

(C.3)

where E is the generalized internal variable.

By means of the Coleman-Noll procedure (Coleman and Noll, 1963), the sufficient con-
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dition for (C.2) can be given by

oU on

_ ov on 7
P = op - Tow—oF ", (C.4)
ou on
ar ~ Tor (C5)
ou an -
Dy = —  E4+T—:E2>0, C.6
t o= = o= (C6)

where p denotes a Lagrange multiplier arising from the incompressibility constraint. For
the sake of simplicity, we neglect the change in volume of natural rubber, and consider it as
incompressible.

For the sake of simplicity, we assume that the heat capacity of natural rubbers is a

constant, so that its internal energy is given by (Khiém and Itskov, 2018b)
U=c (T —-Tp) +Ur(F,E), (C.7)

where ¢y = poC is the heat capacity per unit reference volume and Ty is the reference
temperature. pg is the reference mass density and C is the heat capacity (per unit mass) of

natural rubber. Thus, in view of (C.5), the entropy of natural rubber read

n=coln (%) + Nesy (F,E), (C.8)

0

where N, is the number of active chains per unit reference volume and sy the deformation-
dependent entropy of a single chain.

In view of (C.7) the first law can be reformulated as
T — DivQ = (P . UF) + At (C.9)
Therein, the local heat source of unfilled natural rubber is defined as

S = <P P UF) + Aot (C.10)
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Appendix D. Analytical damage-elastoplasticity

According to Khiém and Itskov (2017), the yield criterion for damage-elastoplasticity in

rubber-like materials can be given by
y <T,T) =T-T<0 VY admissible T, (D.1)

where the thermodynamic driving force reads

- o .- -

T:T(AW):—~ <MWA) (D.2)
aAmax

Therein, the internal variable Amax — Amax] and the observable variable A = AI are used

due to the isotropic damage assumption in the current work (cf. Khiém and Itskov (2017)).

Since the material should optimize its dissipation due to damage-elastoplastic deforma-

tion (Hill, 1948), by maximizing T : A subject to the yield condition, the associated flow
rule reads (Khiém and Itskov, 2017)

+ max 8
A =ﬂ@%=7, (D.3)
S\max (O) — I, <D4)

where 7 is the damage-elastoplasticity Lagrange multiplier.
To obtain a rate-independent evolution law, ~ (5\, 5\> should be a linear function with re-
spect to the deformation rate. Thus, in view of (D.3), the damage-elastoplasticity Lagrange

multiplier should read

. max dxmax -
=\ = — . D.5
g i (D.5)

The optimality condition is given by (Khiém and Itskov, 2017)

y:¥=0; ¥=20; y<O0. (D.6)
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~ = dimax
According to (D.6), under loading ~y ()\, A> O) > 0, so that in view of (D.5), X >0

* max

VA. Furthermore, under neural loading or unloading ~y <5\,5\ < 0) = A = 0. It can

be easily seen that the analytical solution ™ (t) = 3°°! max A(7), with the constant

TE[—00,t

£ > 1 and c is a positive natural number, fulfils both conditions. In contrast to Khiém and
Ttskov (2017), the solution of internal variable A™** (¢) here introduces an isotropic hardening
law into the analytical damage-elastoplasticity theory, and 3°~! controls the change of the

damage surface after a load reversal.
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