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Abstract

Shape-From-Focus (SFF) refers to the challenging inverse problem of
recovering the scene depth from a given set of focused images using
a static camera. Standard approaches model the interactions between
neighboring pixels to get a regularized solution. Nevertheless, isotropic
regularization is known to introduce undesired artifacts and to remove
early thin structures. These structures have a small size in at least one
dimension and are more numerous when considering superpixel prepro-
cessing. This paper addresses the improvement of SFF regularization
through the estimation of the presence of such structures and the con-
struction of anisotropic neighborhoods sticking along image edges and
proposes a flexible formulation over pixels or superpixels. A thoroughly
study comparing different strategies for constructing these neighbor-
hoods in terms of accuracy and running time for the targeted application
is provided. Notably, experiments performed on a reference dataset show
the overall superiority of the approach, e.g. a decrease of the RMSE
value by about 20%, and its robustness against generated superpixels.

Keywords: Shape-From-Focus, Thin structures regularization, Anisotropic
neighborhood, Superpixel, Tensor Voting, RORPO
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1 Introduction

For many image processing problems such as image segmentation or recon-
struction, low-level information delivered by a single pixel is limited and prone
to noise, corrupted data and optic phenomena altering the original image.
Therefore, taking into account a statistical relationship between spatially close
pixels has been introduced relatively early in image processing by Geman and
Geman (1984). A classical way is to model the two-dimensional (2D) field of
pixels as a Markov Random Field (MRF). This allows for introducing a prior
on the expected solution. Variational approaches provide solutions by com-
bining the prior and conditional probabilistic models into a single parametric
functional to be minimized. However, due to the dimensionality of the solution
space and depending on the form of the functional, finding a global minimizer
often appears as a challenging task. Szeliski et al. (2008) study gives an insight
by comparing several minimization algorithms, including graph cuts, on typ-
ical vision problems such as image segmentation and image reconstruction.
Graph cuts are known to be very competitive both in terms of accuracy (global
minimum is theoretically reached for a number of problems when the func-
tional being minimized is convex) and running time (by avoiding stochastic
iterative convergence and with an empirical linear complexity in the number of
nodes). Concerning the prior term involved in the functional to minimize, stan-
dard Total Variation (TV) regularization (in image reconstruction, as in Ribal,
Lermé, and Le Hégarat-Mascle (2018)) or Potts regularization (in image seg-
mentation, as in Boykov and Jolly (2001)) using isotropic neighborhoods have
been proposed, both being able to provide a fast and exact solution to their
respective problem (modulo a quantization for the latter). However, it was
established that such regularizations behave poorly on thin structures, defined
as having very small size in at least one dimension compared to the other
one(s). In two dimensional images, thin structures are curves, that extend in
one dimension. In 3D, thin structures may also be planes, as long as their
thickness can be considered as very small compared to one of their other dimen-
sions. Although thin structures are ubiquitous in a number of applications
(vessels, rivers, cracks, etc.), their detection remains very difficult because of
their spatial sparsity, their small size and their potential complex geometry.
Since these structures essentially consist of discontinuities, standard TV and
Potts regularization tend to early remove them as regularization increases and
are thus not adapted to handle them correctly, e.g. according to Favaro (2010).
Thus, some authors (e.g., Merveille, Naegel, Talbot, and Passat (2019); Ulen,
Strandmark, and Kahl (2015) have proposed specific regularization for thin
structures depending on the application (low curvature river networks, 3D
coronary arteries and vessels in retinal images). However, these approaches are
specifically designed for thin structure detection, and not the segmentation of
images including both on large structures and thin ones.

In parallel with algorithmic developments, the volume and the diversity of
data have greatly increased over the last years. Therefore to reduce the compu-
tational burden, superpixel decomposition methods, e.g. Stutz, Hermans, and
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Leibe (2018), have been developed for grouping pixels sharing similar radio-
metric intensities into homogeneous regions, and then drastically reducing the
number of elements to process while preserving the geometrical information
that is lost with multi-resolution approaches. For instance and specifically for
segmentation problem, Arbeláez, Maire, Fowlkes, and Malik (2011); Gould,
Fulton, and Koller (2009) grow and merge regions from an initial set of super-
pixels. Only a few superpixel algorithms offer formal proof of some of their
properties (Tang, Fu, and Cao (2012)), while a lot of them widely used only
rely on heuristics to produce satisfying superpixels (Achanta et al. (2012)). A
major drawback of working with superpixels is therefore that the usual hypoth-
esis of a regular topological lattice is lost, as well as the regularity in size and
shape of every lattice element. As a result, image segmentation approaches
taking advantage of superpixels must cope with these problems and introduce
new methods and spatial relationships. Often, superpixels are considered as
neighbors when sharing a common border, e.g. Cui, Xie, Ma, Ren, and Ma
(2018); Fulkerson, Vedaldi, and Soatto (2009); Liu, Yu, Yu, and He (2016);
Stawiaski and Decencière (2011). The authors of Stawiaski and Decencière
(2011) propose to globally minimize a convex energy via graph cuts based on
the adjacency graph obtained from the watershed segmentation, where edges
connecting two regions are weighted upon the common border length between
these regions. Similarly, Cui et al. (2018) proposes to ease the classification of
the high-dimensional noisy hyperspectral images by building a weighted graph
based on superpixels. In Pei, Chang, and Shen (2014), the authors compute
saliency from MRF using the same concept of adjacency, with second-order
neighborhood to ease the propagation of information between superpixels.
Some other superpixel approaches, such as Giraud, Ta, Bugeau, Coupe, and
Papadakis (2017), use patches to analyze the spatial content over a neighbor-
ing window and find the nearest matches in a set of reference patches. For
instance, the authors of Yu, Guan, and Ji (2015) train a deep Hough forest
from a set of superpixel patches in order to detect objects in aerial images.

In this paper we propose a solution for estimating an anisotropic neighbor-
hood. This solution can be applied to several segmentation or reconstruction
problems. However, to instantiate it, we focus on the application Shape From
Focus (SFF). As described in Nayar and Nakagawa (1994), SFF is a popu-
lar method used for inferring the 3D shape of an object from a set of images
with varying focus settings. Such an approach only requires one fixed cam-
era with a rather short depth of field and is able to move this camera or to
change the focal distance of the optical system. SFF is therefore applicable in
many real world applications including industrial inspection, micro manufac-
turing, robotic control, 3D model reconstruction, medical imaging systems and
microscopy. Specifically to superpixel-based approaches, Lai and Leou (2021)
propose a multi-focus image fusion approach where superpixels of input focus
images are computed, then either classified as “focused” or “defocused” and
finally fused to form an all-in-focus image. However, since no regularization
process is involved, such an approach is likely to fail in presence of input
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images including textureless areas (see Section 2.1). Indeed, naive pixel-level
estimates are hampered by the presence of homogeneous surfaces, thus requir-
ing to propagate the information from reliable areas to uncertain ones, while
preserving thin structures. Such a regularization process is all the more chal-
lenging that the number of labels (i.e., the number of discrete depth values)
is important and that structures (and input data) are 3D, cf. Ali, Pruks, and
Mahmood (2019). This study allows us to propose two main contributions:

• Firstly, we propose different estimations of anisotropic neighborhoods on
an irregular lattice such as the ones provided by superpixel segmentation;
for this, we first compute a guidance map, relying on vesselness operators
used for the first time (up to our knowledge) for neighborhood orientation
estimation, and then, we provide and discuss four original strategies for
neighborhood estimation based on different desired neighborhood properties.

• Secondly, we propose SSF based on superpixels, that is also, to our knowl-
edge, an original contribution. It allows us to constraint depth estimation
with color information since superpixels are computed on the all-in-focus
image as well as to illustrate the benefit of anisotropic neighborhood since
SSF represents a sufficiently complex application so that results may depend
on the type of considered neighborhood.

The rest of this paper is organized as follows. In Section 2, we specify the
considered problem, namely SSF using superpixel segmentation. In Section 3,
we detail the proposed path-based constructions of anisotropic neighborhoods,
based on a preliminary estimation of local anisotropy and orientation either
from Tensor Voting initially proposed by Medioni, Tang, and Lee (2000), or
from RORPO proposed by Merveille, Talbot, Najman, and Passat (2018).
Section 4 discusses the results and benefits of our approach in a compre-
hensive comparative study between isotropic and anisotropic neighborhoods
both in terms of accuracy and time complexity. Finally, Section 5 draws main
conclusions and perspectives.

2 Superpixels-based SFF

2.1 Basics of SFF

The core idea of SFF is that the closer an object is to the object focal plane
(i.e., the more it is focused), the more it appears sharp, and the farther an
object is from its focal plane, the more it appears blurred. Then, in the absence
of regularization (blind estimation), SFF relies on a sharpness operator to
find the distance where each pixel maximising the sharpness measure, and
reconstructs a depth image. Specifically, Nayar and Nakagawa (1994) approx-
imate the sharpness curve (that represents the sharpness values versus the
focus parameter values) with a Gaussian model, and interpolates (along the
optical axis) the three focus measures centered on the maximum sharpness
value to allow for a better depth estimation. Alternative interpolations, either
quadratic, cubic or polynomial interpolation Moeller, Benning, Schonlieb, and
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Cremers (2015) or Gaussian interpolation Ribal et al. (2018), have also been
investigated.

Nevertheless, blind depth estimation remains prone to noise and ambigui-
ties since, in homogeneous or poorly textured areas, the measured sharpness
will be quite low and unreliable. To overcome this limitation, some authors Ali
and Mahmood (2021); Gaganov and Ignatenko (2009); Moeller et al. (2015);
Ribal et al. (2018) have reformulated SFF in the variational framework. Indeed,
thanks to regularization, the information extracted in the scene areas where
SFF is reliable, such as in objects details, contours, is propagated to ambiguous
areas, such as homogeneous, overexposed or underexposed regions. However,
usual (isotropic) regulation terms are likely to remove thin structures, so we
felt the need to propose an anisotropic regularisation, especially as we work
with superpixels.

2.2 From pixel level to superpixel one

Let us consider the 3D space defined by an orthonormal basis (e0, e1, e2) such
that e0 and e1 are aligned with the image row and column dimensions and
e2 represents the focus dimension. The set of input image pixels, denoted P,
defines a cube in (e0, e1, e2) having dimensions nrow ×ncol ×nfoc, where nrow,
ncol, and nfoc are positive integers. We also assume without loss of generality
that these three dimensions are sampled with a unit step even if for focus it
implies a simple transformation.

In this study, we will extend SFF variational formulation to superpixel level.
However, first the sharpness profiles are computed at pixel level since sharpness
evaluation requires best resolution. Specifically, in our case, we consider the
sharpness operator introduced in Pertuz, Puig, and Garcia (2013), namely the
Summed Modified LAPlacian (SMLAP): f(p) = SMLAP(p),∀p ∈ P. Then, a
sharpness profile is a vector gathering the sharpness values varying the focus
dimension for a given pair of (row, column) coordinates: In the following,
denoting by .↓ the projection on (e0, e1), f(p↓) denotes the sharpness profile
at any pixel p↓ ∈ P↓. Then, the maximum of sharpness is estimated at any
p↓ ∈ P↓ as maxk∈J1,nfocK fk(p↓) where fk denote the k

th component of sharpness
profile f . From maximum of sharpness, one can estimate the all-in-focus image
defined on P↓. This image allows us to compute the superpixels that have a
good sensitivity to the sharp edges of the scene, since in 2D space it picks
the pixel that is the “sharpest”, i.e. that has the highest contrast with its
neighbors. Besides, the all-in-focus image is a color image and superpixels are
groups of pixels that are both spatially and feature-wise close (i.e., similar in
color) while sticking to object edges (“boundary adherence” property), and
usually correspond to sub-parts of objects in the scene. Then, since depth map
will be computed at superpixel-level, i.e. one depth estimate per superpixel, it
is constrained by the information on which superpixels are based, namely the
color in our case.
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Let S ∈ (e0, e1) denote the set of superpixels. From S, the set of superpixels
extended to 3D S↑3 is then derived by duplicating nfoc times any superpixel
s ∈ S along the axis e2. Note that S↑3 thus defines a 3D partition of P.

The sharpness value of any element t ∈ S↑3 is then derived as the
mean sharpness values of the 3D pixels p ∈ t, and so, for each super-
pixel s ∈ S, a sharpness profile is derived (gathering sharpness value of
t ∈ S↑3 such that t↓ = s. Finally, blind depth estimation in each superpixel
s ∈ S is derived from the maximum value in s sharpness profile. In the fol-
lowing, the blind depth superpixel map is denoted û = (ûs)s∈S with ûs ∈ N
assuming (without loss of generality) that depth values are sampled as inte-
ger numbers. This depth map may be noisy and sensitive to the low sharpness
profile of homogeneous regions of the scene, which we will cope with our
anisotropic neighborhood based regularization.

2.3 Energetic formulation

Usual energetic formulations map a realisation of the random field, u, to an
energy, i.e. a real number representing u inadequacy to correspond to the
observations and prior knowledge. In our case, since the neighborhoods are
also unknown, the energy depends also on a neighborhood field that maps a
local anisotropic neighborhood to any field element (superpixels in our case).
In the following, u ∈ NS is the researched depth field, V is the neighborhood
field and V is the set of possible neighborhood fields. Then, we aim at finding
a minimizer of

F (u, V ) = E1(u) + αE2(u, V ), (1)

where α ∈ R≥0 is an hyperparameter left to the user.
For data fidelity term, we take inspiration from previous SFF variational

formulations such as Gaganov and Ignatenko (2009); Moeller et al. (2015) that
however are not convex. In order to take advantage of fast and exact optimiza-
tion algorithms based on graph-cuts, we rather propose E1(u) be instantiated
with a quadratic distance to the blind estimate ûs:

E1(u) =
∑
s∈S

Ws(us − ûs)
2, (2)

where Ws depends on the dynamics of the sharpness profile normalized by its
averaged value:

Ws ∝


max

k∈J1,nfocK
(fk(s))− min

k∈J1,nfocK
(fk(s))

1
nfoc

( ∑
k∈J1,nfocK

fk(s)

)
− min
k∈J1,nfocK

(fk(s)) + ϵ

 , (3)

with ϵ ∈ R>0 set to avoid division by zero. With the weighting term Ws, the
importance of the data fidelity term E1 is decreased when the sharpness profile
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is homogeneous or when it presents a very low dynamic. Conversely, the areas
with a sharpness profile with a precisely localized high response have high
values of Ws reflecting the belief that they are trustful. Note that since Ws is
fixed (it does not depend on us), E1(u) is convex.

The regularization term, we propose E2(u, V ) be derived from the TV
operator: For any u ∈ NS and any V ∈ V,

E2(u, V ) =
∑
s∈S

∑
t∈V (s)

Wst|us − ut|, (4)

where Wst is a weighting function such that

Wst =
1

2

(
1

♯V (s)
+

1

♯V (t)

)
, (5)

where ♯V (s) denotes the cardinality of the neighborhood at the superpixel s.
The weighting term Wst allows us to normalize the regularization terms E2

with respect to the size of the considered neighborhoods since this latter is no
longer constant (as it was with usual 4 or 8-connectivity for instance at pixel
level).

2.4 Optimization

Considering simultaneous estimation of V and u, the resolution appears very
complex if not intractable, and considering alternate estimation would require
an iterative scheme ensuring the convergence in a controlled number of iter-
ations. Therefore in this study, we rather focus on a single estimation of V
as a first attempt, with obvious methodological and computational benefit,
at the expense of defining an estimation sufficiently robust to the input data
imperfections.

Then, for a given V (e.g., estimated as described in Section 3), we have to
find the optimal label field u. Let us recall that graph cuts optimization refers
to the computation of minimum cuts/maximum-flows in a graph of appropriate
topology for minimizing functionals arising in computer vision, e.g. composed
of unary and pairwise terms. Compared to other combinatorial algorithms,
graph cuts are very competitive both in terms of accuracy (global minimum is
very well approached if not reached as for many binary problems) and running
time (by avoiding stochastic iterative convergence) for a wide range of com-
puter vision tasks Szeliski et al. (2008). Practically, graph cuts depict linear
complexity in the number of nodes Boykov and Kolmogorov (2004). Moreover,
compared to continuous minimization algorithms, they are able to deal with
regular or irregular lattices without any difficulties.

Even if guarantying a global minimizer of the functional has only been
established for some binary problems Boykov and Kolmogorov (2004), in the
multi-labels case (such as in our case), efficient algorithmic schemes exist for
finding minimizers of functionals. Given V , the functional u 7→ F (u, V ) is
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convex (since data fidelity and regularization terms are convex according to
Equations (2), (3), (4) and (5)). A global minimizer of this functional can
then be efficiently obtained by decomposing the problem into a set of subprob-
lems only involving binary variables (as in the case of isotropic neighborhoods
in Ribal et al. (2018)), where each one of them is solved standard graph cuts
in the binary case.

3 Anisotropic neighborhood construction

The construction of anisotropic neighborhoods can be decomposed into (i) the
estimation of the presence of thin structures (in our case performed by a
vesselness operator) discussed in Sections 3.1 and 3.2, and (ii) the actual com-
putation of the neighbors of each superpixel discussed in Section 3.3. Let
us recall that the neighborhoods are constructed on an irregular lattice of
superpixels, and that, in prevision of graph cut optimization, we formalize
neighborhood relationships through a graph whose nodes correspond to the
superpixels and whose edges represent the neighborhood relationships. The
neighborhood is thus an application that maps the set of superpixels S to its
powerset 2S without any specific constraint (e.g., bound on spatial distance)
at this stage. We outline that it may differ from the notion of adjacency that
refers to the existence of a common border between the superpixels and that
allows for the definition of connected components.

Then, to estimate anisotropic neighborhoods, we rely on a guidance map,
denoted g, that encodes the information of anisotropy and orientation for every
superpixel s ∈ S. Such a map must encourage the alignment of the neighbor-
hoods with the thin structures of the image. In the absence of knowledge of
the scene objects, the estimation of g is not trivial at all. More specifically,
we investigate two options, the Tensor Voting (TVo) as presented by Medioni
et al. (2000) and the Ranking the Orientation Responses of Path Operators
(RORPO) vesselness operator as introduced by Merveille et al. (2018). In what
follows, g is a field of R2 vectors encoding both the direction and the saliency.

3.1 Tensor Voting-based guidance map

3.1.1 Tensor Voting basics

Tensor Voting (TVo) has been selected for its robustness to noise and efficiency
for connecting thin structures like edges Medioni et al. (2000). TVo relies on
the Gestalt principles of perceptual organization (such as proximity, continu-
ity and similarity) for designing the voting operation. Its formulation involves
one scale parameter, σT ∈ R>0, setting the spatial range in which most of the
energy of the TVo will be distributed. The basic idea is that casting a vote
to other site locations allows the information of each tensor to be propagated,
and then thanks to the voting step, the tensors are smoothed and their orienta-
tions refined. Voting operation is performed through voting kernels that have
continuous and smoothly varying orientations of eigenvectors and decreasing
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eigenvalues, except at the origin of the kernel. For implementation purpose,
the voting kernels are often discretized and stored into a precomputed field of
tensors, which evaluates the values of the tensors cast from the voter on each
point of a regular lattice. In Appendix A, we specifie all the main equations
and steps useful for 3D TVo, that is much more complex than 2D one used
in Zou, Cao, Li, Mao, and Wang (2012) for instance.

In Medioni et al. (2000), TVo involves the five following main steps. First
step is the initial vote that requires the definition of the initial set of voters
also called tokens and the set of cast locations (for vote). In the absence of
orientation information, the set of tokens is usually converted into a sparse set
of ball tensors that vote in every image site. Second step is a refinement step.
Based on the previous sparse vote, the initial set of ball tensors can be refined
into a set of stick tensors. For this, each tensor is projected on the stick tensor
axis in the basis used for tensor decomposition. Third step is a dense voting
in order to propagate the stick information at every point. It yields the dense
tensor map. Then, fourth step projects the tensors on the three axes of the
decomposition basis so that three saliency maps can be derived, encoding for
surface, curve and junction saliency. From these maps, the final step of the
algorithm derives the probabilities of presence of surfaces, curves and points.

3.1.2 Computation of guidance map

We adapt TVo to our SSF problem as follows. The tokens are the local maxima
of sharpness profiles in every superpixel (in (e0, e1) plane). To avoid redun-
dancy between close maxima (inducing artificial reinforcement of these latter)
of a same profile, a non-maximum suppression step is performed such that we
only keep one maximum per continuous interval of focus values associated to
sharpness values greater than 80% of the maximum sharpness (the tokens are
thus all separated by a local minimum having value below 80% of the global
maximum). This initialization provides a tensor map that is sparse in 3D, but
dense in 2D.

Then, since the number of pairs in (S↑3 × S↑3) is very large, the vote for
the orientation estimation is also restricted to the set of tokens. This allows
for reducing the computational burden by removing the dense voting step, at
the risk of a loss of accuracy.

Although TVo allows us to handle tensors defined in R3 for the vote, at
the end (for decision after voting) we have to decide a single tensor for any
2D superpixel s ∈ S. In our experiments, we found that the most convincing
results are obtained when only considering the cumulated tensors (after voting)
at the blind estimated depth ûs. Indeed, while this leads to irregularities when
û is noisy, this also allows for gaps in the orientations estimated on the edges
of the structures of the images, which could be beneficial. Then, for extracting
the guidance map g, for each superpixel s ∈ S, we project the selected tensor
(in ûs) into image plane (e0, e1) and derive the major eigenvector ê0s in s and
the two eigenvalues (λ0s, λ1s) ∈ R2

≥0 so that the saliency and orientation of
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the guidance map in s is

gs = (λ0s − λ1s)ê0s, ∀s ∈ S.

3.2 RORPO-based guidance map

As an alternative to TVo, we consider RORPO, a non linear operator based
on mathematical morphology and used for thin structure detection Merveille
et al. (2018).

3.2.1 RORPO basics

The idea of RORPO is to use a set of oriented filters with different orienta-
tions to analyze the image in terms of the response to multiple morphological
operations. Indeed, since, for a thin structure, at least one dimension is sub-
stantially smaller than the other ones, determining the pixels (or sites) where
only a small number of high responses are measured among the oriented filters
discriminates the thin structures. In RORPO, the oriented filters, called path
openings, are parameterized by structuring functions defining the set of con-
nection relationships R between sites (pixels, or superpixels in our case). Let
us briefly recall how these latter work, firstly on a binary image and secondly
on a gray level image.

Denoting by R the set of connection relationships, for each connection
relationship ⇝θ∈ R, usually corresponding to an imprecise orientation θ, a
path opening is defined for binary images in Merveille et al. (2018): Given
⇝θ and a length L ∈ R>0, the path opening O⇝θ,L(X) is the union of all
paths connected by ⇝θ and of length L in the set of true pixels (1-valued) in
the considered binary image X. Each path opening filters out the structures
that are not consistent (i.e., usually θ aligned) with the considered orientation.
Thus, a thin structure will be deleted by at least one oriented filter, conversely
to isotropic structures.

Then, to extend binary path openings to gray level images, one considers
level sets, i.e. sets of sites having a gray value greater than a given real value: for
any gray level image Y and τ ∈ R, the τ -level set of Y is Y≥τ = {s | Y (s) ≥ τ}.
Then, given ⇝θ and L ∈ R>0, the gray level path opening of Y is

O⇝θ,L(Y, s) = max {τ ∈ R>0 | s ∈ O⇝θ,L(Y≥τ )} .

In Merveille et al. (2018), RORPO implementation involves the following
five main steps. The first step is the dilation of the gray level input image with
respect to spatial adjacency. The second step deals with direction sampling.
It boils down defining a finite set of connection relationships, denoted by ⇝θ,
such that two sites s and t are connected if and only if (i) they are adjacent and
(ii)

#»
st vector’s direction and the sampled direction θ are considered equal been

given the imprecision angle ϕT threshold. The third step is the computation of
the path opening results for the sampled directions and the fourth step ranks
their responses as follows: For each site, the responses to the #R path openings
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Fig. 1: Illustration of the 6 directions of R (left) and an example of path
obtained with one structuring function ⇝θ (right). The connectedness ⇝θ is
characterized by the vector vθ and the angular width ϕT . For this illustration,
we have represented directed edges for positive displacements, but the paths
are computed in both directions.

are ranked in decreasing order of magnitude, i.e. denoting RF1 the maximum
value and RF#R the minimum value. This ranking of the orientation responses
of the path openings gave its name to the algorithm RORPO. Then, for each
site, the RORPO value is the difference between maximum path opening value
(RF1) and the ith largest response, (RFi). In our case, we set i = 4. Finally,
fifth step derives, for each site, an orientation by averaging the orientations of
the three largest responses.

This formulation yields higher responses for thin structures that have a
small number of high responses in path openings. Therefore, the value returned
by the RORPO allows us to discriminate the saliency of thin structures.

3.2.2 Computation of guidance map

Our implementation of RORPO works with the data volume corresponding
to the sharpness profiles in every superpixel. However, for numerical conve-
nience, path openings are only performed with 2D slices, i.e. at given focus
value, which boils down researching structures in image plane. For this, we
simply restrict the connection relationships⇝θ to be within (e0, e1). Then, we
consider six directions vθ such that vθ = cos(θ)e0 + sin(θ)e1 (see Figure 1).
Besides, extending the case of pixel lattice to superpixel one, the path length
L is a real L ∈ R>0, computed as the sum of the distances between the
superpixels’ barycenters in the path.

Each of the connection relationships yields a path opening result. From
this set of path openings, we firstly compute the RORPO index that is fur-
ther interpreted as a saliency index and secondly the structure orientation.
For the latter, we use a specific average operation such that orthogonal vec-
tors cancel and vectors of opposite directions would not. The trick consists
in considering polar coordinates, doubling the argument value of the vectors
before averaging them, and dividing the argument of the averaged result by
two. Mathematically, with complex notations, and omitting the normalization
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coefficient useless here, it is as follows:

vRO(s) ∝

ϵ+ ∑
⇝θ∈R′(s)

O⇝θ,L(Y, s) exp(2iθ)

 1
2

,

where ϵ > 0 is a very small real number used for numerical stability of the
expression, and R′(s) ⊂ R is the set of orientations of the three first answers
(according to rank filter) at site s.

The proposed RORPO implementation provides a 3D volume of vectors
with the same dimensions as the input data. The 2D guidance map g is then
derived by performing a final average operation along depth dimension:

gs =

 ∑
t∈S↑3,t↓=s

|gt| exp(2i arg(gt))

 1
2

, ∀s ∈ S,

where t↓ is the result of the projection of 3D site t on the 2D image plane
and arg(c) denotes the argument of any complex number c ∈ C. In previous
equation, the angles are weighted by the norm gt to to take into account the
significance of the orientation.

Compared to TVo, RORPO allows for a faster computation of the guidance
map and is consistent with the notion of path-based neighborhood introduced
in Section 3.3 that specifies the construction of the neighborhoods from g.

3.3 Path-based neighborhoods

This section depicts the proposed construction of anisotropic neighborhoods,
V ∈ V.

We propose path-based neighborhoods to fit into thin structures of the
image, possibly only one superpixel width. Being based on the adjacency graph
A, our neighborhood construction ensures that the neighbors of a superpixel
define a single connected component. Two superpixels being adjacent when
they share a common border at pixel level, the adjacency is a symmetric rela-
tionship: s ∈ A(t) ⇐⇒ t ∈ A(s), ∀s, t ∈ S. Then, a path of length n ∈ N is
an ordered list (s0, . . . , sn) of consecutive adjacent superpixels.

More formally, let ΠK(s, t) denote the set of paths joining any pair of
superpixels (s, t) ∈ S2, without any loop, and having length K: ΠK(s, t) =
(s0, . . . , sK) ⊂ SK+1, such that ∀k ∈ J0,KJ, sk+1 ∈ A(sk), s0 = s, sK = t,
and ∀j, k ∈ J0,KK, sj ̸= sk. Similarly, we also define Π(s, t), the set of paths
joining superpixels s, t with any length:

Π(s, t) =
⋃
K∈N

ΠK(s, t). (6)
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The proposed path-based neighborhoods rely on previously estimated guid-
ance map g that contains the information about the orientation and saliency
of the structures of the scene. In particular, when the norm ∥gs∥ at a given
superpixel s is below a fixed threshold, the neighborhood in s is V (s) = A(s),
i.e. an isotropic neighborhood that ensures adjacency. Otherwise, the set of
neighbors is given by the union of the elements of two paths that expand from
s to the two opposite directions corresponding to the orientation of gs. In
the next subsections, we present the two options investigated for constructing
these path-based neighborhoods.

In order to illustrate the benefit of the two proposed path-based neighbor-
hoods, Figure 2 provides a toy example with, on the first row, two kinds of
usual neighbourhoods and, on the second row, the two variants of path-based
neighborhoods. Considering Disc neighborhood, a superpixel is a neighbor if
its barycenter is included in a disc centered on the reference site s. The fact
that the union of the neighborhood with the site V (s) ∪ {s} would constitute
a single connected component is not ensured, as shown with the green site in
the upper left corner. Considering Stawiasky’s isotropic neighborhood Staw-
iaski and Decencière (2011), a superpixel is a neighbor if it is adjacent to the
reference one. Therefore, the union of the neighborhood with the site is always
a single connected component, but the actual shape of the neighborhood is
not controlled since some sites may extend spatially far away from their actual
neighbor.

3.3.1 Target-based neighborhood

Target-Based Neighborhood (TBN) gather the elements of two paths that join,
starting from a source superpixel s ∈ S, two “targets” corresponding to distant
superpixels (t∗0, t

∗
1) ∈ (S \ {s})2. Specifically, for j ∈ {0, 1}, the targets are

selected with

t∗j ∈ argmin
t∈S s.t. (−1)j⟨gs,

#»
st⟩>0

∥I(s)− I(t)∥22 − η∥ #»
st∥2 ×

∣∣⩽ gs,
#»
st ⩾

∣∣ , (7)

where ⟨., .⟩ denotes the dot product between two vectors so that the constraint
(−1)j⟨gs,

#»
st⟩ > 0 refers to an half-space domain, ⩽ ., . ⩾ stands for the cosine

similarity (also called normalized dot product) between two vectors, ∥.∥2 is
the Euclidean norm of a vector, |.| is the absolute value of a real number, and
η ∈ R>0 an hyperparameter set to η = 30 in our experiments.

In Equation (7), the first term favors the superpixels s and t to share similar
image intensities while the second one favors far targets being aligned with gs.
Note that, for computational convenience, the range of search (of those target
superpixels) is restricted to an ellipse centered at s with major axis aligned
with gs and that solutions are derived by Dynamic Programming (DP).

Then, the paths are selected among the two sets Π(s, t∗0) and Π(s, t∗1) (cf.
Equation 6). Path selection itself relies on a cost function that the optimal
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path (denoted by p∗j , j ∈ {0, 1}), has to minimize:

p∗j ∈ argmin
p∈Π(s,t∗j )

|p|−1∑
k=0

∥I(p(k))− I(p(k + 1))∥22, (8)

where |p| stands for the length of the path p, and p(k) denotes the kth element
of it. The term to minimize in Equation (8) is large when the gray levels of
successive superpixels along a path are dissimilar and small otherwise. We
also use DP to derive a minimizer of previous equation, and the neighborhood
V (s) is finally constructed as the set of the superpixels in p∗0 or in p∗1, but
s: V (s) = (p∗0 ∪ p∗1) \ {s}. The adjacency along these paths being ensured by
construction, the derived neighborhood forms a single connected component.

Figure 2c provides an illustration of TBN. While this neighborhood ensures
that the set of neighbors of a superpixel s forms a single connected component
and favors paths oriented in the estimated direction of thin structures, there
is no guarantee concerning the cardinality of these paths. Depending on the
image content that influences the location of the target sites, one site may have
a very small amount of neighbors in a very contrasted location, or conversely
could possibly have a large number of neighbors if there exists an arbitrary
long path with constant radiometry.

3.3.2 Cardinal-based neighborhood

Cardinal-Based Neighborhood (CBN) is also a path-based neighborhood. How-
ever, instead of constraining the path extremities like TBN, it constraints path
cardinality (and thus neighborhood cardinality): ∀s ∈ S, V (s) is the union
(excepting element s) of two length-fixed paths p∗0, p

∗
1 ∈ ΠK(s, ·), with ΠK(s, ·)

denoting the set of paths of length K ∈ N>1 starting from s. Additionally,
these paths are encouraged to expand in opposite directions.

As previously, we define a cost function presenting a tradeoff between
fidelity to the thin structure orientation and fidelity to the gray level of
originating superpixel s. For any j ∈ {0, 1},

p∗j ∈ argmin
p∈ΠK(s,·)

∑
t∈p

∥I(s)− I(t)∥22 + η′ψj(
#»
st,gs),

where η′ ∈ R>0 is an hyperparameter set to η′ = 100 along with K = 3, in
our experiments, and

ψj(
#»u , #»v ) =

{
arccos (|⩽ #»u , #»v ⩾|) if (−1)j⟨ #»u , #»v ⟩ > 0,
+∞ otherwise,

measures the angle between the vectors #»u and #»v and discriminates whether
the dot product is positive or not.

Note that, in CBN, the cost function compares gray level and positions of
each site of the path versus the site s instead of computing these differences



16 Thin Structures Retrieval Using Anisotropic Neighborhoods of Superpixels

(a) Disk Neighborhood (b) Stawiasky’s Neighborhood

(c) Target-Based Neighborhood (d) Cardinal-Based Neighbor-
hood

Fig. 2: Toy example of usual and path-based neighborhoods. The neighbors of
the site s (in grey) are pictured in green. When considered, the arrow indicates
the orientation of gs and superpixels of neighborhood are shown in color. For
“Disk” and Stawiasky’s neighborhoods, the orientation is not considered but
distance or connectivity to superpixel s. For TBN, two “targets” (in red) are
selected in an ellipse centered on the source superpixel s (in grey). For CBN,
two paths with K = 3 elements are built to be aligned with gs, taking into
account radiometric similarity with the site s.

between adjacent sites on the path (like TBN), to allow for local deviations
while ensuring global neighborhood orientation and gray level value. Figure 2d
shows an example of CBN. Ideally, the two paths are aligned with gs, but the
energy term allows for deviations from this axis for following thin structures
in the image.

4 Experiments and results

4.1 Data

We tested our approach on some scenes extracted from the public1 Middle-
bury College dataset Scharstein and Pal (2007), used in stereo matching and
also in SFF (Kumar G. & Sahay, 2017; Ribal et al., 2018). For each scene, a
ground truth depth map and an all-in-focus RGB image are provided. Both
images have 360 × 360 pixels. These images come along with the defocusing
algorithm Pertuz et al. (2013), that is currently available as a Matlab source

1https://vision.middlebury.edu/stereo/data/

https://vision.middlebury.edu/stereo/data/
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on MathWorks file exchange, that enable us to simulate the desired set of
blurred images, corresponding to different focal object plane depths. For sim-
plicity and readability, focus values were regularly sampled with step equal to
the unit. The maximum depth, denoted by ∆h ∈ N, is therefore equal to nfoc
that we set equal to 50. However, some images taken at irregular steps could
be considered as well without loss of generality.

Then, the set of defocused images was assumed to be the only input data
available, and we reconstructed depth values based on the following steps.
Firstly, we computed the sharpness profiles in each pixel independently and
from maximum of these profiles, we derived the blind estimate of all-in-focus
image. Secondly, we computed the superpixels from this blind all-in-focus
image. The number of superpixel algorithms proposed in the literature is rather
important, including different kinds of superpixels that embed different prop-
erties, such as the adherence to the boundaries of the objects, the compactness
or convexity of the resulting superpixels, their regularity, or the smoothness of
their boundaries. We refer the reader to Stutz et al. (2018) to have an overview
of the variety of superpixel algorithms. In practice, after a few comparisons,
we focused on the superpixels provided by an algorithm called ETPS Yao,
Boben, Fidler, and Urtasun (2015), since it was energy based (as the general
framework adopted for our work) and offered smooth and regular superpixels.
Thirdly, as described in Section 2.2, the sharpness profile in each superpixel as
well as the blind superpixel depth map û were derived. Fourthly, we computed
the guidance map g and constructed the neighborhood field {V (s),∀s ∈ S},
based on the chosen method as described in Sections 3.1.2, 3.2.2, 3.3.1 and
3.3.2. Fifthly, V and û allowed us to instantiate our anisotropic regularization
and to derive the regularized depth map results presented in the following next
sections.

4.2 Evaluation criteria

The Ground Truth (GT) provided in Middlebury College dataset Scharstein
and Pal (2007) is at pixel level. To perform evaluation, we duplicated the depth
estimated for a given superpixel to each of its pixels. Then, we also denote by
u the estimated depth map at pixel level (the element lattice P or S removing
ambiguity if any) and by ũ the GT.

Evaluation metrics

We focus on three complementary global metrics, namely RMSE (Root Mean
Square Error) that has good additive properties, PSNR (Peak Signal to
Noise ratio) derived from RMSE and SSIM (Structural Similarity Index Mea-
sure Wang and Sheikh (2004)) that is based on perception-model to measure
the similarity between two images:

RMSE(u, ũ) =

√
1

#P
∑
p∈P

(up − ũp)2,
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PSNR(u, ũ) = 20 log10

(
∆h

RMSE(u, ũ)

)
,

SSIMΩ(u, ũ) =
1

♯P
∑
p∈P

(2µu,pµũ,p + C1) (2σu,ũ,p + C2)(
µ2
u,p + µ2

ũ,p + C1

)(
σ2
u,p + σ2

ũ,p + C2

) ,
where ♯P stands for the cardinality of P, Ω is a window centered at any pixel
p and of size 7×7 in our case, µu,p, µũ,p are the means over Ω centered at p of
u and ũ values respectively, σ2

u,p, σ
2
ũ,p, and σu,ũ,p are the variances and covari-

ance, respectively. Finally, the constants C1 and C2 are computed from ∆h as
C1 = (0.01∆h)

2
and C2 = (0.03∆h)

2
for numerical stability. This is the ver-

sion of SSIM specified in Wang and Sheikh (2004) with (according to author’s
notations) α = β = γ = 1. By computing the variances, covariance and mean
values on a set of windows covering the whole image, SSIM incorporates com-
parison measurements of luminance, contrast and structure of images that
allows to take into account important perceptual phenomena in its evaluation.

For result comparison, we remind that the lower the RMSE values are (in
[0,∆h]), the better the results are while for PSNR and SSIM criteria, higher
values (in R≥0 and [0, 1] respectively) reflect better performance.

Evaluation maps

Three complementary kinds of maps allow us to visualize the difficult areas.
Firstly, depth error map, called E, will stress the image areas with poorest
reconstruction. Secondly, neighborhood orientation map will represent saliency
and direction information extracted from the guidance map, that allows us
to evaluate qualitatively this latter. Thirdly, depth dynamic within neighbor-
hoods, called QV , provides a measure of the neighborhood consistency in terms
of depth. Pixel values of E and QV maps are computed as follows:

E(p) = |up − ũp|, ∀p ∈ P,

QV (p) = max
q∈V (p)

|ũq − ũp|, ∀p ∈ P,

where V (p) at pixel level is simply the set of pixels that belong to any
superpixel neighbors of the superpixel including p.

Concerning the interpretation of these maps, the lower the E values (in
[0,∆h]), the better the depth estimation at considered pixel. The orientation
map is expected to be relatively smooth while following the sharp edges of the
objects and aligning with the thin structures. Finally, in QV , low values (in
[0,∆h]) reflect a consistent neighborhood (without implying uniqueness of the
solution). Note that a major benefit of QV criterion is that it does not require
any neighborhood ground truth (which we obviously do not have).

4.3 Alternative approaches considered for comparison

To evaluate the benefits of our approach compared against isotropic neigh-
borhoods or simplest anisotropic ones, we focused on the following alternative
approaches.
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Stawiaski’s isotropic neighborhood

In Stawiaski and Decencière (2011), an isotropic neighborhood is computed
such that the superpixels that share a common border are neighbors and their
interactions are weighted by the length of this common border. This neigh-
borhood corresponds to the adjacency relationship, with a weighting function.
This formulation ensures that the set constituted by a superpixel and its
neighbors is a single connected component, but it does not ensure that the
barycenters of neighboring superpixels are close from each other.

Shape-based neighborhood inspired from Giraud et al. (2017)

Shape-based neighborhood is an intuitive method for building anisotropic
neighborhoods. The “shape” refers to the approximation of the neighborhood
as a parametric shape, namely ellipse in our case. The neighbors of a super-
pixel s are then the superpixels whose barycenter is included in the “shape”
centered in s. We considered in our case parametric ellipses whose major semi
axis directions are given by the guidance map in s. Practically, when saliency
in superpixel s is very low, i.e. ∥gs∥ is lower a given threshold (0.05), the direc-
tion is not reliable so that we rather define neighborhood as a disc, which boils
down to the isotropic superpatch neighborhood of Giraud et al. (2017). Note
that we do not exploit further saliency information that appears noisier than
direction, and set the eccentricity as a constant parameter of the model.

Perfect neighborhood

For having an estimation of the possibly best performance brought by an
anisotropic approach, we propose a so-called perfect anisotropic neighborhood.
The latter is computed with respect to GT depth map ũ as follows. Per-
fect neighborhood is implemented as a shape-based neighborhood with a disc
of given radius centered in s ∈ S, where we remove the neighbors present-
ing a depth difference between the depths of GT and s higher than a fixed
threshold DV = ∆h

10 + 1. Additionally, elements that do not belong to the s
connected component are removed from the neighbors. Thus, perfect neighbor-
hood refers to a neighborhood having good properties in terms of homogeneity,
connectivity and shape, even if it is not unique.

4.4 Results

4.4.1 Global performance analysis

Let us first consider global performance obtained considering the whole Middle-
bury college dataset. Figure 3 shows the results achieved using 5000 superpixels
(ETPS Yao et al. (2015)), in terms of RMSE (allowing summing individual
image performance), varying the regularization parameter α. We notice that
the perfect neighborhood and the CBN, either from RORPO or TVo, yield
the lowest RMSE values meaning they outperform all the other approaches
for a wide range of regularization coefficients. Since perfect neighborhood was
designed to evaluate the performance gain specifically related to anisotropic
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Fig. 3: Comparison of neighborhood anisotropy benefit measured through
RMSE (y-axis) on the whole dataset. The results are achieved using 5000
ETPS superpixels Yao et al. (2015) and different neighborhood estimations.

neighborhood (leaving apart the question of its estimation) with respect to
isotropic one (represented by Stawiaski’s approach), the results clearly under-
line the benefit of anisotropic neighborhood for regularization. A satisfactory
result is that CBN provides almost as good results as perfect neighborhood
(which we remind is unrealistic since it requires GT), stressing the perfor-
mance of neighborhood estimation itself. Comparing with “ellip” that refers to
the “Shape-based neighborhood inspired from Giraud et al. (2017)”, we notice
that these latest results are much worse, underlining the importance of a fine
(not too simplistic) estimation. About TBN estimation, we notice it only leads
to interesting results for low regularization (α < 1). Finally, we also note that
RORPO or TVo use for g estimation does not really impact the results, but a
very slight advantage for RORPO. In conclusion, according to Figure 3, best
performance is achieved by RORPO CBN, with a very noticeable robustness of
the results with respect to regularization coefficient, α ∈ [2, 16]. This robust-
ness of CBN to the regularization parameter that is also confirmed by visual
inspection of error maps, is one of the strengths of this approach against its
alternatives.

We now check the result dependency to superpixel segmentation. However,
to investigate how results are dependent on ETPS superpixels, we consider, as
an alternative to ETPS superpixels Yao et al. (2015), the WaterPixels (WP)
proposed in Machairas et al. (2015). Figure 4 shows curves analogous to those
in Figure 3 considering either 5000 (like with ETPS superpixels) or 2000 WP,
respectively. With respect to Figure 3, we notice the curves and conclusions
are remarkably similar, but a slight loss of performance when the number
of superpixels is lower (it can be seen looking at the lowest value achieved
considering perfect neighborhood) and a more distinct advantage for RORPO
with respect to TVo (when looking at the CBN curves).

To further investigate the performance variability with respect to scene
and/or superpixels, Figure 5 and Figure 6 respectively show the PSNR and the
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Fig. 4: Comparison of neighborhood anisotropy benefit measured through
RMSE (y-axis) on the whole dataset. The results are achieved using either
5000 WP (left) or 2000 WP (right) using different neighborhood estimations.
The legend is the same as in Figure 3.

SSIM obtained on each scene, for the best result obtained with a varying α.
First of all, the remarks concerning the robustness to the two kinds of consid-
ered superpixels (ETPS and WP) or their number (5000 and 2000) still hold:
Difficult scenes are the same and CBN achieves very interesting performance
in most cases. Indeed, on some scenes such as Aloe1, Books1, Wood11, all
approaches yield equivalent results, whereas in other scenes such as Lampshade,
Plastic1 or Reindeer, achieved results appear more sensible to neighborhood
estimation. We also note that the two criteria PSNR and SSIM are complemen-
tary since differences of performance can be visible in only one of them, such as
with scene Midd11 or Moebius1. However, let us underline that in most scenes,
the top trio is RORPO-CBN, TVo-CBN and quite obviously perfect neighbor-
hood. These approaches outperform both isotropic neighborhood (represented
by Stawiaski’s approach) and naive anisotropic one (ellipse-based). Neverthe-
less we also confirm the fact that an isotropic neighborhood assumption is
preferable to too naive anisotropic neighborhood estimation. In conclusion,
despite the scene disparity inducing variable performance, the main conclu-
sions concerning the benefit of anisotropic neighborhood fine estimation can
also be drawn at scene level.

4.4.2 Detailed analysis of two cases

For further analysis, we present the corresponding error maps and neighbor-
hood quality maps, focusing on some cases where the performance highly
depends on the type of neighborhood, such as with the Lampshade scene and
the Reindeer one.

Let us first consider the neighborhood estimation quality. As specified in
Section 4.2, the values of the depth dynamic within a neighborhood are in
[0,∆h], with low values reflecting a consistent estimation of neighborhood.
From Figure 7, we clearly see that most of the heterogeneous neighborhoods
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Fig. 5: Per scene best results in terms of PSNR measure (y-axis) for each
neighborhood construction using either 5000 ETPS superpixels (top) or 2000
WP (bottom). The higher the value is, the better the result is.
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Fig. 6: Per scene best results in terms of SSIM (y-axis) for each neighborhood
construction; 5000 ETPS superpixels (top) or 2000 WP (low). The higher the
value is, the better the result is.

are located at the borders of thin structures such as the lampshade rod or the
reindeer antlers. We also note that lowest values are achieved for the perfect
neighborhood (by construction) and then by CBN (either from TVo or RORPO
guidance map) whereas both TBN and Stawiaski’s neighborhood are much
worse in terms of homogeneity.

Secondly, we compare the guidance maps provided by TVo and by RORPO.
Figure 8 shows these maps in the cases of the two considered scenes, Lampshade
and Reindeer. In both cases, we notice that the direction of the structures
is rather well estimated although we also observe some noise. Comparing the
two estimators, we note that while TVo looks smoother in terms of orientation
(especially on Reindeer scene), RORPO both better detects the isotropic areas
(in white) and highlights well the sharp areas of the scene. However, these
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All-in-focus Perfect TVO CBN RORPO CBN TVO TBN RORPO TBN Stawiaski

Fig. 7: Comparison of neighborhood quality QV for Lampshade (top row)
and Reindeer (bottom row) scenes, from left to right: All-In-Focus image, QV
maps for perfect neighborhood, TVo CBN, RORPO CBN, TVo TBN, RORPO
TBN and Stawiaski’s neighborhood. Dynamics has been reversed and spread
in the interval [0, 255] so that dark areas represent bad performance.

Fig. 8: Comparison of guidance maps g for Lampshade and Reindeer scenes,
using use a color representation, such that the saturation and the hue encode
respectively the saliency and the orientation; from left to right: Color wheel,
TVo Lampshade, RORPO Lampshade, TVo Reindeer, RORPO Reindeer.

observed differences seems to have only little impact on the neighborhood
consistency as depicted in Figure 7 or on depth map reconstruction. In what
follows, we now focus on RORPO algorithm.

Finally, let us observe the error maps versus regularization parameter α
for our two scenes and the three methods of neighborhood estimation: Perfect
(reference for benefit of anisotropic neighborhood), RORPO CBN and Staw-
iaski (reference for isotropic neighborhood). For Lampshade scene, we notice
the very high noise level in the absence of regularization (α = 0) that is pro-
gressively corrected by increasing α before new errors this time due to the
removal of thin structures appear. This phenomena can be clearly seen in
the case of Stawiaski’s neighborhood with apparition of errors located on the
vertical thin bar or rod for α > 1. From this scene, we also notice that the opti-
mal α values vary with the considered neighborhood; as expected, anisotropic
neighborhoods allow for higher α values without reconstruction degradation
(in particular for the thin structures). Specifically, in Lampshade scene, α val-
ues providing best results are equal to 4, 8 and 2 for the Perfect, RORPO CBN
and Stawiaski’ neighborhoods, respectively. Reindeer scene is much less noisy
than Lampshade scene. However, regularization is again required to remove
the blind estimation errors in the vertical right strip and in the bottom tri-
angle, both been part or subparts of objects presenting a very homogeneous
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Superpixels segmentation RORPO TVo Neighbohood construction Depth optimization
13.2 28.1 94.6 19.0 1.3

Table 1: Mean running times (in seconds) of the main steps of the proposed
depth reconstruction of a scene at superpixel level.

radiometry. Due to this lower initial level of noise, α “optimal” values are
lower than in Lampshade scene, namely they are equal to 1, 2 and 0.5 for the
Perfect, RORPO CBN and Stawiaski’ neighborhoods, respectively. We notice
that for higher values, regularization introduce depth errors on the antlers
of the reindeer figure, all the more quickly as the neighborhood is isotropic
(indeed with Stawiaski, bottom triangle errors cannot be corrected without
degrading reindeer antlers). Using anisotropic neighborhoods, either Perfect or
RORPO CBN, the degradation of thin structures is delayed so that we observe
the existence of α values allowing for the correction of blind errors without
introduction of new errors.

4.4.3 Superpixel versus pixel level

Finally, let us investigate the benefit of considering the superpixel level rather
than the pixel one. For doing so, we consider again global performance
statistics, namely the RMSE computed on the whole dataset.

In terms of complexity, the number of pixels is 360 × 360 versus 5000
superpixels (ETPS) in the considered experiments. Table 1 gives the mean run-
ning times in seconds computed over all the scenes of the Middlebury college
dataset, for the four main steps of our approach: (i) superpixel segmentation,
(ii) guidance map estimation (either based on RORPO or on TVo), (iii) neigh-
borhood construction, and (iv) depth map optimization. These running times
have been obtained on an Intel core i9-10900X @ 4.7 GHz, with 64 Go of RAM.
Table 1 firstly confirms that RORPO is much faster (3 times) than TVo. Sec-
ondly, considering RORPO instead of TVo, the average running time for the
global algorithm is 61.6 secs, i.e. about 1 minute per image. We consider this
time as very encouraging since it was achieved with standard programming
code, i.e. without optimization using GPU for instance. Thirdly, the running
time for depth map optimization (using graph cuts) is very low thanks to
the complexity reduction working with superpixels instead of pixels. For com-
parison, running the isotropic neighborhood depth map optimization at pixel
level, the average running time is 36.8s, i.e. about 30 times slower. Thus, even
without code optimization, the additional running time for anisotropic neigh-
borhood estimation steps is compensated by the running time decrease for
depth map optimization step.

In terms of performance, Figure 10 allows for comparison of the RMSE
curves for three kinds of neighborhoods, namely Stawiaski (i.e., isotropic),
RORPO CBN or RORPO TBN (representing best candidate for anisotropic
neighborhoods) and Perfect, either at superpixel level (using 5000 ETPS super-
pixels) or at pixel level. First of all, from Figure 10, we notice an improvement
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RORPO CBNPerfect Stawiaski RORPO CBNPerfect Stawiaskiα

0

0.25

0.5

1

2

4

8

Fig. 9: Maps of depth error obtained for the scenes Lampshade (left) and
Reindeer (right), for three neighborhood construction strategies (Perfect,
RORPO CBN and Stawiaski) and different values of regularization parameter
α ∈ {0., 0.25, 0.5, 1, 2, 4, 8}. For better visualization, error value dynamic has
been bounded to 2∆h

5 .

of performance at superpixel level with respect to pixel one. This improvement
is a very strong point since one could have expected that superpixels would
introduce some spatial imprecision (at the benefit of complexity decrease),
especially since the RMSE is measured at pixel level. Nevertheless, at least
on the considered dataset, this preprocessing step is beneficial for the pre-
cise image reconstruction. This comment is confirmed in most cases when we
examine individual scenes. For instance, for the two detailed cases Lampshade
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Lampshade Reindeer
PSNR SSIM PSNR SSIM

RORPO-CBN ETPS 57.78 86.33 63.83 97.89
4-connectivity pix. lev. 54.61 83.81 63.94 96.40
RORPO-CBN pix. lev. 53.32 83.00 64.62 97.18

Table 2: Results obtained for the scenes Reindeer and Lampshade with our
proposed anisotropic neighborhood at superpixel level (first row), compared to
isotropic neighborhood at pixel level (second row) and RORPO-CBN neigh-
borhood at pixel level (last row). SSIM values are indicated in percentage. For
each scene, best result is in bold and second best is underlined.

and Reindeer, the two first lines of Table 2 show the performance indica-
tors PSNR and SSIM achieved by RORPO-CBN on ETPS superpixels and
isotropic (4-connectivity) and we see that RORPO-CBN yields to significantly
better result except in terms of PSNR on Reindeer scene where nevertheless
the performance values are very close.

Then, we notice the potential benefit of anisotropic neighborhood with
respect to isotropic one (at pixel level, Stawiaski’s neighborhood boils down
to 4-connectivity neighborhood) since Perfect neighborhood yields the best
results. However, we also notice that, at pixel level, the difference of perfor-
mance is very small, and that isotropic neighborhood yields slightly better
result than RORPO TBN or RORPO CBN. A possible explanation is that
the requirement to take into account anisotropic neighborhood is less preg-
nant at pixel level (due to the size of neighborhood with respect to objects in
pixel numbers as well as the regularity of the lattice) and that neighborhood
estimation is less efficient. Indeed it is based on blind depth estimation that
may be much noisier at pixel level that at superpixel one. Besides, the per-
formance may depend on the considered scene. For instance, Table 2 shows
that on the Reindeer scene, RORPO-CBN at pixel level slightly outperforms
isotropic pixel level both in terms of PSNR and SSIM indicators. These obser-
vations also open perspectives to understand the relationship between scene
feature and scale of analysis (from pixel level to superpixel ones).

In conclusion, the benefit of presegmenting the scene in superpixels and
then handling anisotropic neighborhood appears both in terms of global per-
formance and in terms of robustness with respect to regularization parameter
α. Besides the additional complexity introduced by neighborhood estimation
(RORPO-CBN according to this study) is compensated by the complexity
decrease when handling much less superpixels than pixels.

5 Conclusion and perspectives

In this paper, we propose some new anisotropic neighborhoods that offer a
flexible and generic formulation with respect to the site lattice. In particular,
we show that it allows us to handle irregular lattices such as those associated
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Fig. 10: Superpixel versus pixel level: Comparison in terms of RMSE (y-axis)
computed on the whole dataset, for three kinds of neighborhoods.

to superpixel segmentation. For doing so, we select and customize two vessel-
ness operators and we show their efficiency thanks to their properties of noise
robustness or adaptability to thin structures. Finally, we evaluate and study
the benefit of the constructed anisotropic neighborhoods in particular for thin
structure preservation. Specifically, we considered SFF application and we eval-
uated our results on a reference dataset both according to quantitative criterion
but also based on qualitative observation of evaluation maps. We showed that
our approach, based on superpixel segmentation allowing to constraint depth
estimation with color information and on anisotropic neighborhoods, provides
an interesting alternative to classic SFF methods.

Future works will involve the following perspectives. Firstly, we aim at
studying the relationships between the hyperparameters characterizing the
neighborhoods and the superpixel ones (regularity, number), also relating these
parameters to the scale of scene main features and objects. This study will
help in the setting of these hyperparameters. Secondly, focusing on RORPO-
CBN approach that appears to provide best performance and based on the
evaluation of the running times per process, we will focus on the code opti-
mization of the RORPO module. We will then provide an optimized open
source code. Thirdly, since the proposed anisotropic neighborhood construc-
tion can be useful for many energetic formulations of discrete inverse problems
as confirmed by preliminary tests on binary segmentation, e.g. Ribal, Lermé,
and Le Hégarat-Mascle (2020), our work can be applied to the segmentation
of thin structures such as frequently encountered in medical imaging (e.g., ves-
sels) or remote sensing imagery (e.g., roads, rivers). Fourthly, in the proposed
approach, neighborhood construction relies on guidance map itself estimated
from a first (blind) evaluation of the solution. Now, this blind estimation can
be hampered by the presence of noise on the images in the cases where acqui-
sition conditions would be more tricky than in our dataset. Note that classic
low-pass filtering will not help since it can either add blur which will prevent
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accurate sharpness profile estimation or remove small objects and thin struc-
tures. Thus, the definition either of a specific filter for SFF image stack or the
use of metaheuristic techniques such as alternate minimization has to be the
subject of a forthcoming study.

Appendix A 3D Tensor Voting

Let R3×3 with an origin coordinate O in R3 be the considered vector space,
endowed with a voting function V F : R3×3 × R3 7→ R3×3. A tensor can be
represented by a matrix T ∈ R3×3. The voting operation V F builds a new
tensor T′ to the cast location P ∈ R3 and adds it to the tensor at this location,
since tensors have good summation properties. The tensor T′ is a combination
of rotation and scaling of the source tensor T, combinations that are all derived
from the stick kernel. Indeed, tensors can be decomposed in a basis of tensors,
in which the stick tensor is the simplest element. Then, the stick kernel refers
to the voting operation of this stick tensor.

In tensor voting, a tensor is a second order symmetric tensor that can be
represented by a positive semidefinite diagonalizable matrix T ∈ R3×3, whose
eigenvectors are orthogonal. In addition to its coordinates, one tensor can be
characterized either from six scalar values corresponding to the coefficients of
the symmetric matrix or, from three eigenvalues and a rotation. This rotation
defines the transformation of the orthonormal basis (e0, e1, e2) to align with
(ê0, ê1, ê2) ∈ R3×3 the set of eigenvectors sorted by decreasing eigenvalue.
The decomposition of the matrix into a set of diagonal matrices is a key point
introduced by Medioni et al. (2000). By definition, the tensor is a diagonal
matrix in the system (ê0, ê1, ê2), so that:λ0 0 0

0 λ1 0
0 0 λ2

 = (λ0 − λ1)Tstick + (λ1 − λ2)Tplate + λ2Tball, (A1)

where Tstick, Tplate and Tball are respectively the stick tensor, the plane one
and the ball one, named according to their representations as ellipsoids (see
figure in Medioni, Mordohai, and Nicolescu (2005)), and each of them repre-
sents a different type of structure: The stick component encodes the saliency
of surfaces that are normal to ê0, the plate component is encoding some curves
with tangent direction ê2, and the ball component is encoding points, e.g.
corresponding to thin structure junctions.

The stick kernel that allows for the vote cast by a stick tensor, Tstick ∈
R3×3, involves a multiplication of Tstick by a decay functionDF , and a rotation
by a vector Ω. Specifically, DF is as follows:

DF (r, ϕ, σT ) = exp

(
−r

2 + vϕ2

σ2
T

)
,
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where σT is the scale parameter, v is a constant that controls the decay with
curvature, r ∈ R>0 is the length of the circle arc between O and P on the
osculating circle joining O and P with normal ê0 at point O and ϕ ∈]− π, π]
the angle between the tangent to the same osculating circle in O and

#    »

OP . The
decay function allows for a smooth voting kernel whose support can be bounded
to a sphere of radius 3σT . Along with the term vϕ2 used for increasing the
decay with curvature, Medioni et al. (2000) proposes also to restrict vote to the
area where ϕ < π

4 and consider that the term DF (r, ϕ, σT ) is null otherwise.
The rotation R(Ω) ∈ R3×3 is defined by the rotation vector Ω ∈ R3, that

transforms the vector ê0 into the vector ê′0 with ê′0 and ê0 symmetrical with
respect to the mediator of the segment OP . This allows for computing the cast
tensor T′

stick ∈ R3×3 as follows:

T′
stick = DF (r, ϕ, σT )R(Ω)TstickRT (Ω).

where ·T is the transposition operation.
Plate tensor can be written Tplate = ê0ê

T
0 + ê1ê

T
1 , while ball tensor is writ-

ten Tball = ê0ê
T
0 + ê1ê

T
1 + ê2ê

T
2 . The plate and ball kernels are derived from

the stick kernel by integration of stick tensors. Approximating these integrals
as sums of tensors,

T′
plate ≈

I∑
i=0

DF (r, ϕ, σT )R(Ω)Tstick(i∆ρ)R
T (Ω)∆ρ,

T′
ball ≈

∑I
i=0

∑J/2
j=−J/2 DF (r, ϕ, σT )R(Ω)Tstick(i∆ρ, j∆ψ)

RT (Ω) sin(j∆ψ)∆ψ∆ρ,

where ∆ρ = Π
I and ∆ψ = Π

J , and I, J ∈ N are arbitrary constants. Note that
these kernels are usually precomputed for computational efficiency.

Then, any tensor Ts at location s ∈ R3 can be decomposed from
Equation (A1) in a basis (ê0, ê1, ê2) as T(s) = (λ0−λ1)ê0êT0 +(λ1−λ2)ê1êT1 +
λ2ê2ê

T
2 , and the vote cast at location t ∈ R3 is written:

V F (T, #»
st) = (λ0 − λ1)V F (Tstick(t),

#»
st)

+ (λ1 − λ2)V F (Tplate(t),
#»
st)

+ λ2V F (Tball(t),
#»
st)

Having introduced the voting operation for one tensor, let us specify the
global voting process.

From S0,S1 ⊂ S the sets of voters and the cast locations respectively,
∀s ∈ S, {

∀p ̸∈ S1, T′(p) = T(p),
∀p ∈ S1, T′(p) = T(p) +

∑
s∈S0

V F (T(s), #»sp),

where T′(s) is the tensor at location s after vote and T(s) before.
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