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A B S T R A C T
Shape-From-Focus (SFF) refers to the challenging inverse problem of recovering the scene
depth from a given set of focused images using a static camera. Standard approaches model
the interactions between neighboring pixels to get a regularized solution. Nevertheless, isotropic
regularization is known to introduce undesired artifacts and to remove early thin structures. These
structures have a small size in at least one dimension and are more numerous when considering
superpixel preprocessing. This paper addresses the improvement of SFF regularization through
the estimation of the presence of such structures and the construction of anisotropic neighbor-
hoods sticking along image edges and proposes a flexible formulation over pixels or superpixels.
A thoroughly study comparing different strategies for constructing these neighborhoods in terms
of accuracy and running time for the targeted application is provided. Notably, experiments
performed on a reference dataset show the overall superiority of the approach, e.g. a decrease of
the RMSE value by about 20%, and its robustness against generated superpixels.

1. Introduction
For many image processing problems such as image segmentation or reconstruction, low-level information

delivered by a single pixel is limited and prone to noise, corrupted data and optic phenomena altering the original
image. Therefore, taking into account a statistical relationship between spatially close pixels has been introduced
relatively early in image processing [1]. A classical way is to model the two-dimensional (2D) field of pixels as a
Markov Random Field (MRF). This allows for introducing a prior on the expected solution. Variational approaches
provide solutions by combining the prior and conditional probabilistic models into a single parametric functional to
be minimized. However, due to the dimensionality of the solution space and depending on the form of the functional,
finding a global minimizer often appears as a challenging task. The study [2] gives an insight by comparing several
minimization algorithms (including graph cuts) on typical vision problems such as image segmentation and image
reconstruction. It is established that standard Total Variation (TV) regularization (in image reconstruction [3]) or Potts
regularization (in image segmentation [4]) using isotropic neighborhoods behave poorly on thin structures. Although
they are ubiquitous in a number of applications, their detection remains very difficult because of their spatial sparsity,
their small size and their potential complex geometry. Since these structures essentially consist of discontinuities,
standard TV and Potts regularization tend to early remove them as regularization increases and are thus not adapted to
handle them correctly [5].

In parallel with algorithmic developments, the volume and the diversity of data have greatly increased over the
last years. Therefore to reduce the computational burden, superpixel decomposition methods [6] have been developed
for grouping pixels sharing similar radiometric intensities into homogeneous regions, and then drastically reducing
the number of elements to process while preserving the geometrical information that is lost with multi-resolution
approaches. For instance and specifically for segmentation problem, [7, 8] grow and merge regions from an initial set
of superpixels. A major drawback of working with superpixels is that the usual hypothesis of a regular topological lattice
is lost, as well as the regularity in size and shape of every lattice element. As a result, image segmentation approaches
taking advantage of superpixels must cope with these problems and introduce new methods and spatial relationships.
Often, superpixels are considered as neighbors when sharing a common border [9, 10, 11, 12]. The authors of [9]
propose to minimize an energy via graph cuts based on the adjacency graph obtained from the watershed segmentation,
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where edges connecting two regions are weighted upon the common border length between these regions. Similarly,
[12] proposes to ease the classification of the high-dimensional noisy hyperspectral images by building a weighted
graph based on superpixels. In [13], the authors compute saliency from MRF using the same concept of adjacency,
with second-order neighborhood to ease the propagation of information between superpixels. Some other superpixel
approaches use patches to analyze the spatial content over a neighboring window and find the nearest matches in a set
of reference patches [14]. For instance, the authors of [15] train a deep Hough forest from a set of superpixel patches
in order to detect objects in aerial images.

The solution we propose for anisotropic neighborhood can be applied to several segmentation or reconstruction
problems. However, to instantiate it, we focus on the application Shape From Focus (SFF). SFF is a popular method
used for inferring the 3D shape of an object from a set of images with varying focus settings [16]. Such an approach
only requires one fixed camera with a rather short depth of field and is able to move this camera or to change the
focal distance of the optical system. SFF is therefore applicable in many real world applications including industrial
inspection, micro manufacturing, robotic control, 3D model reconstruction, medical imaging systems and microscopy.
Specifically to superpixel-based approaches, [17] proposes a multi-focus image fusion approach where superpixels
of input focus images are computed, then either classified as “focused” or “defocused” and finally fused to form an
all-in-focus image. However, since no regularization process is involved, such as an approach is likely to fail in presence
of degraded input images. Indeed, naive pixel-level estimates are hampered by the presence of homogeneous surfaces,
thus requiring to propagate the information from reliable areas to uncertain ones, while preserving thin structures. Such
a regularization process is all the more challenging that the number of labels (i.e., the number of discrete depth values)
is important and that structures (and input data) are 3D [18]. This study allows us to propose two main contributions:

• Firstly, we propose different estimations of anisotropic neighborhoods on an irregular lattice such as the ones
provided by superpixel segmentation; for this, we first compute a guidance map, relying on vesselness operators
used for the first time (up to our knowledge) for neighborhood orientation estimation, and then, we provide and
discuss four original strategies for neighborhood estimation based on different desired neighborhood properties.

• Secondly, we propose SSF based on superpixels, that is also, to our knowledge, an original contribution. It
allows us to constraint depth estimation with color information since superpixels are computed on the all-in-
focus image as well as to illustrate the benefit of anisotropic neighborhood since SSF represents a sufficiently
complex application so that results may depend on the type of considered neighborhood.

The rest of this paper is organized as follows. In Section 2, we specify the considered problem, namely SSF using
superpixel segmentation. In Section 3, we detail the proposed path-based constructions of anisotropic neighborhoods,
based on a preliminary estimation of local anisotropy and orientation either from Tensor Voting [19], or from
RORPO [20]. Section 4 discusses the results and benefits of our approach in a comprehensive comparative study
between isotropic and anisotropic neighborhoods both in terms of accuracy and time complexity. Finally, Section 5
draws main conclusions and perspectives.

2. Superpixels-based SFF
2.1. Basics of SFF

The core idea of SFF is that the closer an object is to the object focal plane (i.e., the more it is focused), the more
it appears sharp, and the farther an object is from its focal plane, the more it appears blurred. Then, in the absence of
regularization (blind estimation), SFF relies on a sharpness operator to find the distance where each pixel maximising
the sharpness measure, and reconstructs a depth image. Specifically, [16] approximates the sharpness curve (that
represents the sharpness values versus the focus parameter values) with a Gaussian model, and interpolates (along the
optical axis) the three focus measures centered on the maximum sharpness value to allow for a better depth estimation.
Alternative interpolations, either quadratic, cubic or polynomial interpolation [21] or Gaussian interpolation [3], have
also been investigated.

Nevertheless, blind depth estimation remains prone to noise and ambiguities since, in homogeneous or poorly
textured areas, the measured sharpness will be quite low and unreliable. To overcome this limitation, some authors [22,
21, 3, 23] have reformulated SFF in the variational framework. Indeed, thanks to regularization, the information
extracted in the scene areas where SFF is reliable, such as in objects details, contours, is propagated to ambiguous
areas, such as homogeneous, overexposed or underexposed regions. However, usual (isotropic) regulation terms are
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likely to remove thin structures, so we felt the need to propose an anisotropic regularisation, especially as we work
with superpixels.
2.2. From pixel level to superpixel one

Let us consider the 3D space defined by an orthonormal basis (𝐞0, 𝐞1, 𝐞2
) such that 𝐞0 and 𝐞1 are aligned with the

image row and column dimensions and 𝐞2 represents the focus dimension. The set of input image pixels, denoted  ,
defines a cube in (

𝐞0, 𝐞1, 𝐞2
) having dimensions 𝑛row × 𝑛col × 𝑛foc, where 𝑛row, 𝑛col, and 𝑛foc are positive integers. We

also assume without loss of generality that these three dimensions are sampled with a unit step even if for focus it
implies a simple transformation.

In this study, we will extend SFF variational formulation to superpixel level. However, first the sharpness profiles
are computed at pixel level since sharpness evaluation requires best resolution. Specifically, in our case, we consider the
sharpness operator introduced in [24], namely the Summed Modified LAPlacian (SMLAP): 𝑓 (𝑝) = SMLAP(𝑝),∀𝑝 ∈
 . Then, a sharpness profile is a vector gathering the sharpness values varying the focus dimension for a given pair
of (row, column) coordinates: In the following, denoting by .↓ the projection on (

𝐞0, 𝐞1
), 𝐟 (𝑝↓) denotes the sharpness

profile at any pixel 𝑝↓ ∈ ↓. Then, the maximum of sharpness is estimated at any 𝑝↓ ∈ ↓ as max𝑘∈J1,𝑛focK 𝐟𝑘(𝑝↓) where
𝐟𝑘 denote the 𝑘𝑡ℎ component of sharpness profile 𝐟 . From maximum of sharpness, one can estimate the all-in-focus
image defined on ↓. This image allows us to compute the superpixels that have a good sensitivity to the sharp edges of
the scene, since in 2D space it picks the pixel that is the “sharpest”, i.e. that has the highest contrast with its neighbors.
Indeed, superpixels are groups of pixels that are both spatially and feature-wise close while sticking to object edges
(“boundary adherence” property), and usually correspond to sub-parts of objects in the scene. Let  ∈

(

𝐞0, 𝐞1
) denote

the set of superpixels. From  , the set of superpixels extended to 3D ↑3 is then derived by duplicating 𝑛foc times any
superpixel 𝑠 ∈  along the axis 𝐞2. Note that ↑3 thus defines a 3D partition of  .

The sharpness value of any element 𝑡 ∈ ↑3 is then derived as the mean sharpness values of the 3D pixels 𝑝 ∈ 𝑡,
and so, for each superpixel 𝑠 ∈  , a sharpness profile is derived (gathering sharpness value of 𝑡 ∈ ↑3 such that 𝑡↓ = 𝑠.
Finally, blind depth estimation in each superpixel 𝑠 ∈  is derived from the maximum value in 𝑠 sharpness profile.
In the following, the blind depth superpixel map is denoted �̂� = (�̂�𝑠)𝑠∈ with �̂�𝑠 ∈ ℕ assuming (without loss of
generality) that depth values are sampled as integer numbers. This depth map may be noisy and sensitive to the low
sharpness profile of homogeneous regions of the scene, which we will cope with our anisotropic neighborhood based
regularization.
2.3. Energetic formulation

Usual energetic formulations map a realisation of the random field, 𝐮, to an energy, i.e. a real number representing
𝐮 inadequacy to correspond to the observations and prior knowledge. In our case, since the neighborhoods are also
unknown, the energy depends also on a neighborhood field that maps a local anisotropic neighborhood to any field
element (superpixels in our case). In the following, 𝐮 ∈ ℕ is the researched depth field, 𝑉 is the neighborhood field
and 𝕍 is the set of possible neighborhood fields. Then, we aim at finding a minimizer of

𝐹 (𝐮, 𝑉 ) = 𝐸1(𝐮) + 𝛼𝐸2(𝐮, 𝑉 ), (1)
where 𝛼 ∈ ℝ≥0 is an hyperparameter left to the user. Specifically, for SFF application, we propose the data fidelity
term 𝐸1(𝐮) be instantiated with a quadratic distance to the blind estimate �̂�𝑠:

𝐸1(𝐮) =
∑

𝑠∈
𝑊𝑠(𝑢𝑠 − �̂�𝑠)2, (2)

where 𝑊𝑠 depends on the dynamics of the sharpness profile normalized by its averaged value:

𝑊𝑠 ∝

⎛

⎜

⎜

⎜

⎜

⎜

⎝

max
𝑘∈J1,𝑛focK

(𝐟𝑘(𝑠)) − min
𝑘∈J1,𝑛focK

(𝐟𝑘(𝑠))

1
𝑛foc

(

∑

𝑘∈J1,𝑛focK
𝐟𝑘(𝑠)

)

− min
𝑘∈J1,𝑛focK

(𝐟𝑘(𝑠)) + 𝜖

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (3)

with 𝜖 ∈ ℝ>0 set to avoid division by zero. With the weighting term 𝑊𝑠, the importance of the data fidelity term 𝐸1 is
decreased when the sharpness profile is homogeneous or when it presents a very low dynamic. Conversely, the areas
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with a sharpness profile with a precisely localized high response have high values of 𝑊𝑠 reflecting the belief that they
are trustful.

The regularization term, we propose 𝐸2(𝐮, 𝑉 ) be derived from the TV operator: For any 𝐮 ∈ ℕ and any 𝑉 ∈ 𝕍 ,
𝐸2(𝐮, 𝑉 ) =

∑

𝑠∈

∑

𝑡∈𝑉 (𝑠)
𝑊𝑠𝑡|𝑢𝑠 − 𝑢𝑡|, (4)

where 𝑊𝑠𝑡 is a weighting function such that

𝑊𝑠𝑡 =
1
2

(

1
♯𝑉 (𝑠)

+ 1
♯𝑉 (𝑡)

)

, (5)

where ♯𝑉 (𝑠) denotes the cardinality of the neighborhood at the superpixel 𝑠. The weighting term 𝑊𝑠𝑡 allows us to
normalize the regularization terms 𝐸2 with respect to the size of the considered neighborhoods since this latter is no
longer constant (as it was with usual 4 or 8-connectivity for instance at pixel level).
2.4. Optimization

Considering simultaneous estimation of 𝑉 and 𝐮, the resolution appears very complex if not intractable, and
considering alternate estimation would require an iterative scheme ensuring the convergence in a controlled number
of iterations. Therefore in this study, we rather focus on a single estimation of 𝑉 as a first attempt, with obvious
methodological and computational benefit, at the expense of defining an estimation sufficiently robust to the input data
imperfections.

Then, for a given 𝑉 (e.g., estimated as described in Section 3), we have to find the optimal label field 𝐮. Let us
recall that graph cuts optimization refers to the computation of minimum cuts/maximum-flows in a graph of appropriate
topology for minimizing functionals arising in computer vision, e.g. composed of unary and pairwise terms. Compared
to other combinatorial algorithms, graph cuts are very competitive both in terms of accuracy (global minimum is
very well approached if not reached as for many binary problems) and running time (by avoiding stochastic iterative
convergence) for a wide range of computer vision tasks [2]. Practically, graph cuts depict linear complexity in the
number of nodes [25]. Moreover, compared to continuous minimization algorithms, they are able to deal with regular
or irregular lattices without any difficulties.

Even if guarantying a global minimizer of the functional has only been established for some binary problems [25],
in the multi-labels case (such as in our case), efficient algorithmic schemes exist for finding minimizers of functionals.
Given 𝑉 , the functional 𝑢 ↦ 𝐹 (𝑢, 𝑉 ) is convex (since data fidelity and regularization terms are convex according to
Equations (2), (3), (4) and (5)). A global minimizer of this functional can then be efficiently obtained by decomposing
the problem into a set of subproblems only involving binary variables (as in the case of isotropic neighborhoods in [3]),
where each one of them is solved standard graph cuts in the binary case.

3. Anisotropic neighborhood construction
The construction of anisotropic neighborhoods can be decomposed into (i) the estimation of the presence of thin

structures (in our case performed by a vesselness operator) discussed in Sections 3.1 and 3.2, and (ii) the actual
computation of the neighbors of each superpixel discussed in Section 3.3. Let us recall that the neighborhoods are
constructed on an irregular lattice of superpixels, and that, in prevision of graph cut optimization, we formalize
neighborhood relationships through a graph whose nodes correspond to the superpixels and whose edges represent
the neighborhood relationships. The neighborhood is thus an application that maps the set of superpixels  to its
powerset 2 without any specific constraint (e.g., bound on spatial distance) at this stage. We outline that it may differ
from the notion of adjacency that refers to the existence of a common border between the superpixels and that allows
for the definition of connected components.

Then, to estimate anisotropic neighborhoods, we rely on a guidance map, denoted 𝐠, that encodes the information of
anisotropy and orientation for every superpixel 𝑠 ∈  . Such a map must encourage the alignment of the neighborhoods
with the thin structures of the image. In the absence of knowledge of the scene objects, the estimation of 𝐠 is not trivial
at all. More specifically, we investigate two options, the Tensor Voting (TVo) as presented by [19] and the Ranking the
Orientation Responses of Path Operators (RORPO) vesselness operator as introduced by [20]. In what follows, 𝐠 is a
field of ℝ2 vectors encoding both the direction and the saliency.
Ribal et al.: Preprint submitted to Elsevier Page 4 of 18
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3.1. Tensor Voting-based guidance map
3.1.1. Tensor Voting basics

Tensor Voting (TVo) has been selected for its robustness to noise and efficiency for connecting thin structures like
edges [19]. TVo relies on the Gestalt principles of perceptual organization (such as proximity, continuity and similarity)
for designing the voting operation. Its formulation involves one scale parameter, 𝜎𝑇 ∈ ℝ>0, setting the spatial range
in which most of the energy of the TVo will be distributed. The basic idea is that casting a vote to other site locations
allows the information of each tensor to be propagated, and then thanks to the voting step, the tensors are smoothed
and their orientations refined. Voting operation is performed through voting kernels that have continuous and smoothly
varying orientations of eigenvectors and decreasing eigenvalues, except at the origin of the kernel. For implementation
purpose, the voting kernels are often discretized and stored into a precomputed field of tensors, which evaluates the
values of the tensors cast from the voter on each point of a regular lattice. In Appendix A, we specifie all the main
equations and steps useful for 3D TVo, that is much more complex than 2D one used in [26] for instance.

In [19], TVo involves the five following main steps. First step is the initial vote that requires the definition of the
initial set of voters also called tokens and the set of cast locations (for vote). In the absence of orientation information,
the set of tokens is usually converted into a sparse set of ball tensors that vote in every image site. Second step is a
refinement step. Based on the previous sparse vote, the initial set of ball tensors can be refined into a set of stick tensors.
For this, each tensor is projected on the stick tensor axis in the basis used for tensor decomposition. Third step is a
dense voting in order to propagate the stick information at every point. It yields the dense tensor map. Then, fourth step
projects the tensors on the three axes of the decomposition basis so that three saliency maps can be derived, encoding
for surface, curve and junction saliency. From these maps, the final step of the algorithm derives the probabilities of
presence of surfaces, curves and points.
3.1.2. Computation of guidance map

We adapt TVo to our SSF problem as follows. The tokens are the local maxima of sharpness profiles in every
superpixel (in (𝐞0, 𝐞1) plane). To avoid redundancy between close maxima (inducing artificial reinforcement of these
latter) of a same profile, a non-maximum suppression step is performed such that we only keep one maximum per
continuous interval of focus values associated to sharpness values greater than 80% of the maximum sharpness (the
tokens are thus all separated by a local minimum having value below 80% of the global maximum). This initialization
provides a tensor map that is sparse in 3D, but dense in 2D.

Then, since the number of pairs in (↑3×↑3) is very large, the vote for the orientation estimation is also restricted
to the set of tokens. This allows for reducing the computational burden by removing the dense voting step, at the risk
of a loss of accuracy.

Although TVo allows us to handle tensors defined in ℝ3 for the vote, at the end (for decision after voting) we have
to decide a single tensor for any 2D superpixel 𝑠 ∈  . In our experiments, we found that the most convincing results
are obtained when only considering the cumulated tensors (after voting) at the blind estimated depth �̂�𝑠. Indeed, while
this leads to irregularities when �̂� is noisy, this also allows for gaps in the orientations estimated on the edges of the
structures of the images, which could be beneficial. Then, for extracting the guidance map 𝐠, for each superpixel 𝑠 ∈  ,
we project the selected tensor (in �̂�𝑠) into image plane (𝐞0, 𝐞1) and derive the major eigenvector �̂�0𝑠 in 𝑠 and the two
eigenvalues (𝜆0𝑠, 𝜆1𝑠) ∈ ℝ2

≥0 so that the saliency and orientation of the guidance map in 𝑠 is
𝐠𝑠 = (𝜆0𝑠 − 𝜆1𝑠)�̂�0𝑠, ∀𝑠 ∈  .

3.2. RORPO-based guidance map
As an alternative to TVo, we consider RORPO, a non linear operator based on mathematical morphology and used

for thin structure detection [20].
3.2.1. RORPO basics

The idea of RORPO is to use a set of oriented filters with different orientations to analyze the image in terms
of the response to multiple morphological operations. Indeed, since, for a thin structure, at least one dimension is
substantially smaller than the other ones, determining the pixels (or sites) where only a small number of high responses
are measured among the oriented filters discriminates the thin structures. In RORPO, the oriented filters, called path
openings, are parameterized by structuring functions defining the set of connection relationships  between sites
(pixels, or superpixels in our case). Let us briefly recall how these latter work, firstly on a binary image and secondly
on a gray level image.
Ribal et al.: Preprint submitted to Elsevier Page 5 of 18
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Figure 1: Illustration of the 6 directions of  (left) and an example of path obtained with one structuring function ⇝𝜃
(right). The connectedness ⇝𝜃 is characterized by the vector 𝐯𝜃 and the angular width 𝜙𝑇 . For this illustration, we have
represented directed edges for positive displacements, but the paths are computed in both directions.

Denoting by  the set of connection relationships, for each connection relationship ⇝𝜃∈ , usually corresponding
to an imprecise orientation 𝜃, a path opening is defined for binary images in [20]: Given ⇝𝜃 and a length 𝐿 ∈ ℝ>0, the
path opening 𝕆⇝𝜃 ,𝐿(𝑋) is the union of all paths connected by ⇝𝜃 and of length 𝐿 in the set of true pixels (1-valued)
in the considered binary image 𝑋. Each path opening filters out the structures that are not consistent (i.e., usually 𝜃
aligned) with the considered orientation. Thus, a thin structure will be deleted by at least one oriented filter, conversely
to isotropic structures.

Then, to extend binary path openings to gray level images, one considers level sets, i.e. sets of sites having a gray
value greater than a given real value: for any gray level image 𝑌 and 𝜏 ∈ ℝ, the 𝜏-level set of 𝑌 is 𝑌≥𝜏 = {𝑠 ∣ 𝑌 (𝑠) ≥ 𝜏}.
Then, given ⇝𝜃 and 𝐿 ∈ ℝ>0, the gray level path opening of 𝑌 is

𝕆⇝𝜃 ,𝐿(𝑌 , 𝑠) = max
{

𝜏 ∈ ℝ>0 ∣ 𝑠 ∈ 𝕆⇝𝜃 ,𝐿(𝑌≥𝜏 )
}

.

In [20], RORPO implementation involves the following five main steps. The first step is the dilation of the gray level
input image with respect to spatial adjacency. The second step deals with direction sampling. It boils down defining a
finite set of connection relationships, denoted by ⇝𝜃 , such that two sites 𝑠 and 𝑡 are connected if and only if (i) they are
adjacent and (ii) #»𝑠𝑡 vector’s direction and the sampled direction 𝜃 are considered equal been given the imprecision angle
𝜙𝑇 threshold. The third step is the computation of the path opening results for the sampled directions and the fourth step
ranks their responses as follows: For each site, the responses to the # path openings are ranked in decreasing order
of magnitude, i.e. denoting 𝑅𝐹1 the maximum value and 𝑅𝐹# the minimum value. This ranking of the orientation
responses of the path openings gave its name to the algorithm RORPO. Then, for each site, the RORPO value is the
difference between maximum path opening value (𝑅𝐹1) and the 𝑖𝑡ℎ largest response, (𝑅𝐹𝑖). In our case, we set 𝑖 = 4.
Finally, fifth step derives, for each site, an orientation by averaging the orientations of the three largest responses.

This formulation yields higher responses for thin structures that have a small number of high responses in path
openings. Therefore, the value returned by the RORPO allows us to discriminate the saliency of thin structures.
3.2.2. Computation of guidance map

Our implementation of RORPO works with the data volume corresponding to the sharpness profiles in every
superpixel. However, for numerical convenience, path openings are only performed with 2D slices, i.e. at given focus
value, which boils down researching structures in image plane. For this, we simply restrict the connection relationships
⇝𝜃 to be within (𝐞0, 𝐞1). Then, we consider six directions 𝐯𝜃 such that 𝐯𝜃 = cos(𝜃)𝐞0+sin(𝜃)𝐞1 (see Figure 1). Besides,
extending the case of pixel lattice to superpixel one, the path length 𝐿 is a real 𝐿 ∈ ℝ>0, computed as the sum of the
distances between the superpixels’ barycenters in the path.

Each of the connection relationships yields a path opening result. From this set of path openings, we firstly compute
the RORPO index that is further interpreted as a saliency index and secondly the structure orientation. For the latter,
we use a specific average operation such that orthogonal vectors cancel and vectors of opposite directions would not.
The trick consists in considering polar coordinates, doubling the argument value of the vectors before averaging them,
and dividing the argument of the averaged result by two. Mathematically, with complex notations, and omitting the
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normalization coefficient useless here, it is as follows:

𝐯𝑅𝑂(𝑠) ∝
⎛

⎜

⎜

⎝

𝜖 +
∑

⇝𝜃∈′(𝑠)
𝕆⇝𝜃 ,𝐿(𝑌 , 𝑠) exp(2𝑖𝜃)

⎞

⎟

⎟

⎠

1
2

,

where 𝜖 > 0 is a very small real number used for numerical stability of the expression, and ′(𝑠) ⊂  is the set of
orientations of the three first answers (according to rank filter) at site 𝑠.

The proposed RORPO implementation provides a 3D volume of vectors with the same dimensions as the input
data. The 2D guidance map 𝐠 is then derived by performing a final average operation along depth dimension:

𝐠𝑠 =
⎛

⎜

⎜

⎝

∑

𝑡∈↑3,𝑡↓=𝑠

|𝐠𝑡| exp(2𝑖 arg(𝐠𝑡))
⎞

⎟

⎟

⎠

1
2

, ∀𝑠 ∈  ,

where 𝑡↓ is the result of the projection of 3D site 𝑡 on the 2D image plane and arg(𝑐) denotes the argument of any
complex number 𝑐 ∈ ℂ. In previous equation, the angles are weighted by the norm 𝐠𝑡 to to take into account the
significance of the orientation.

Compared to TVo, RORPO allows for a faster computation of the guidance map and is consistent with the notion
of path-based neighborhood introduced in Section 3.3 that specifies the construction of the neighborhoods from 𝐠.
3.3. Path-based neighborhoods

This section depicts the proposed construction of anisotropic neighborhoods, 𝑉 ∈ 𝕍 .
We propose path-based neighborhoods to fit into thin structures of the image, possibly only one superpixel width.

Being based on the adjacency graph, our neighborhood construction ensures that the neighbors of a superpixel define
a single connected component. Two superpixels being adjacent when they share a common border at pixel level, the
adjacency is a symmetric relationship: 𝑠 ∈ (𝑡) ⟺ 𝑡 ∈ (𝑠), ∀𝑠, 𝑡 ∈  . Then, a path of length 𝑛 ∈ ℕ is an ordered
list (𝑠0,… , 𝑠𝑛) of consecutive adjacent superpixels.

More formally, let Π𝐾 (𝑠, 𝑡) denote the set of paths joining any pair of superpixels (𝑠, 𝑡) ∈ 2, without any loop,
and having length 𝐾: Π𝐾 (𝑠, 𝑡) = (𝑠0,… , 𝑠𝐾 ) ⊂ 𝐾+1, such that ∀𝑘 ∈ J0, 𝐾J, 𝑠𝑘+1 ∈ (𝑠𝑘), 𝑠0 = 𝑠, 𝑠𝐾 = 𝑡, and
∀𝑗, 𝑘 ∈ J0, 𝐾K, 𝑠𝑗 ≠ 𝑠𝑘. Similarly, we also define Π(𝑠, 𝑡), the set of paths joining superpixels 𝑠, 𝑡 with any length:

Π(𝑠, 𝑡) =
⋃

𝐾∈ℕ
Π𝐾 (𝑠, 𝑡). (6)

The proposed path-based neighborhoods rely on previously estimated guidance map 𝐠 that contains the information
about the orientation and saliency of the structures of the scene. In particular, when the norm ‖𝐠𝑠‖ at a given superpixel
𝑠 is below a fixed threshold, the neighborhood in 𝑠 is 𝑉 (𝑠) = (𝑠), i.e. an isotropic neighborhood that ensures
adjacency. Otherwise, the set of neighbors is given by the union of the elements of two paths that expand from 𝑠 to
the two opposite directions corresponding to the orientation of 𝐠𝑠. In the next subsections, we present the two options
investigated for constructing these path-based neighborhoods.
3.3.1. Target-based neighborhood

Target-Based Neighborhood (TBN) gather the elements of two paths that join, starting from a source superpixel
𝑠 ∈  , two “targets" corresponding to distant superpixels (𝑡∗0, 𝑡∗1) ∈ ( ⧵ {𝑠})2. Specifically, for 𝑗 ∈ {0, 1}, the targets
are selected with

𝑡∗𝑗 ∈ argmin
𝑡∈ s.t. (−1)𝑗⟨𝐠𝑠, #»𝑠𝑡⟩>0

‖𝐼(𝑠) − 𝐼(𝑡)‖22 − 𝜂‖
#»𝑠𝑡‖2 × |

|

⩽ 𝐠𝑠,
#»𝑠𝑡 ⩾|

|

, (7)

where ⟨., .⟩ denotes the dot product between two vectors so that the constraint (−1)𝑗⟨𝐠𝑠, #»𝑠𝑡⟩ > 0 refers to an half-space
domain, ⩽ ., . ⩾ stands for the cosine similarity (also called normalized dot product) between two vectors, ‖.‖2 is the
Euclidean norm of a vector, |.| is the absolute value of a real number, and 𝜂 ∈ ℝ>0 an hyperparameter set to 𝜂 = 30 in
our experiments.

Ribal et al.: Preprint submitted to Elsevier Page 7 of 18



Anisotropic neighborhoods for superpixels

(a) Target-Based Neighborhood (b) Cardinal-Based Neighborhood

Figure 2: Toy example of path-based neighborhoods. The arrow indicates the orientation of 𝐠𝑠 and superpixels of
neighborhood are shown in color. For TBN, two “targets” (in red) are selected in an ellipse centered on the source
superpixel 𝑠 (in grey). For CBN, two paths with 𝐾 = 3 elements are built to be aligned with 𝐠𝑠, taking into account
radiometric similarity with the site 𝑠.

In Equation (7), the first term favors the superpixels 𝑠 and 𝑡 to share similar image intensities while the second one
favors far targets being aligned with 𝐠𝑠. Note that, for computational convenience, the range of search (of those target
superpixels) is restricted to an ellipse centered at 𝑠 with major axis aligned with 𝐠𝑠 and that solutions are derived by
Dynamic Programming (DP).

Then, the paths are selected among the two sets Π(𝑠, 𝑡∗0) and Π(𝑠, 𝑡∗1) (cf. Equation 6). Path selection itself relies on
a cost function that the optimal path (denoted by 𝑝∗𝑗 , 𝑗 ∈ {0, 1}), has to minimize:

𝑝∗𝑗 ∈ argmin
𝑝∈Π(𝑠,𝑡∗𝑗 )

|𝑝|−1
∑

𝑘=0
‖𝐼(𝑝(𝑘)) − 𝐼(𝑝(𝑘 + 1))‖22, (8)

where |𝑝| stands for the length of the path 𝑝, and 𝑝(𝑘) denotes the 𝑘𝑡ℎ element of it. The term to minimize in Equation (8)
is large when the gray levels of successive superpixels along a path are dissimilar and small otherwise. We also use DP
to derive a minimizer of previous equation, and the neighborhood 𝑉 (𝑠) is finally constructed as the set of the superpixels
in 𝑝∗0 or in 𝑝∗1, but 𝑠: 𝑉 (𝑠) = (𝑝∗0∪𝑝

∗
1)⧵{𝑠}. The adjacency along these paths being ensured by construction, the derived

neighborhood forms a single connected component.
Figure 2a provides an illustration of TBN. While this neighborhood ensures that the set of neighbors of a superpixel

𝑠 forms a single connected component and favors paths oriented in the estimated direction of thin structures, there is
no guarantee concerning the cardinality of these paths. Depending on the image content that influences the location of
the target sites, one site may have a very small amount of neighbors in a very contrasted location, or conversely could
possibly have a large number of neighbors if there exists an arbitrary long path with constant radiometry.
3.3.2. Cardinal-based neighborhood

Cardinal-Based Neighborhood (CBN) is also a path-based neighborhood. However, instead of constraining the path
extremities like TBN, it constraints path cardinality (and thus neighborhood cardinality): ∀𝑠 ∈  , 𝑉 (𝑠) is the union
(excepting element 𝑠) of two length-fixed paths 𝑝∗0, 𝑝∗1 ∈ Π𝐾 (𝑠, ⋅), with Π𝐾 (𝑠, ⋅) denoting the set of paths of length
𝐾 ∈ ℕ>1 starting from 𝑠. Additionally, these paths are encouraged to expand in opposite directions.

As previously, we define a cost function presenting a tradeoff between fidelity to the thin structure orientation and
fidelity to the gray level of originating superpixel 𝑠. For any 𝑗 ∈ {0, 1},

𝑝∗𝑗 ∈ argmin
𝑝∈Π𝐾 (𝑠,⋅)

∑

𝑡∈𝑝
‖𝐼(𝑠) − 𝐼(𝑡)‖22 + 𝜂

′𝜓𝑗(
#»𝑠𝑡, 𝐠𝑠),

where 𝜂′ ∈ ℝ>0 is an hyperparameter set to 𝜂′ = 100 along with 𝐾 = 3, in our experiments, and

𝜓𝑗(
#»𝑢 , #»𝑣 ) =

{

arccos (|⩽ #»𝑢 , #»𝑣 ⩾|) if (−1)𝑗⟨ #»𝑢 , #»𝑣 ⟩ > 0,
+∞ otherwise,

measures the angle between the vectors #»𝑢 and #»𝑣 and discriminates whether the dot product is positive or not.
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Note that, in CBN, the cost function compares gray level and positions of each site of the path versus the site 𝑠
instead of computing these differences between adjacent sites on the path (like TBN), to allow for local deviations
while ensuring global neighborhood orientation and gray level value. Figure 2b shows an example of CBN.

4. Experiments and results
4.1. Data

We test our approach on some scenes extracted from the public1 Middlebury College dataset [27], used in stereo
matching and also in SFF [28, 3] For each scene, a ground truth depth map and an all-in-focus RGB image are provided.
Both images have 360 × 360 pixels. These images come along with the defocusing algorithm [24], that is currently
available as a Matlab source on MathWorks file exchange, that enable us to simulate the desired set of blurred images,
corresponding to different focal object plane depths.For simplicity and readability, focus values have been regularly
sampled with step equal to the unit. The maximum depth, denoted by Δℎ ∈ ℕ, is therefore equal to 𝑛foc that we set
equal to 50. However, images taken at irregular steps could be considered as well without loss of generality.

Then, the set of defocused images is assumed to be the only input data available, and we reconstruct depth values
based on the following steps. Firstly, we compute the sharpness profiles in each pixel independently and from maximum
of these profiles, we derive the blind estimate of all-in-focus image. Secondly, we compute the superpixels from this
blind all-in-focus image. The number of superpixel algorithms proposed in the literature is rather important, including
different kinds of superpixels that embed different properties, such as the adherence to the boundaries of the objects, the
compactness or convexity of the resulting superpixels, their regularity, or the smoothness of their boundaries. We refer
the reader to [6] to have an overview of the variety of superpixel algorithms. In practice, after a few comparisons, we
focus on the superpixels provided by an algorithm called ETPS [29], since it is energy based (as the general framework
adopted for our work) and offers smooth and regular superpixels. Thirdly, as described in Section 2.2, the sharpness
profile in each superpixel as well as the blind superpixel depth map �̂� are derived. Fourthly, we compute the guidance
map 𝐠 and construct the neighborhood field {𝑉 (𝑠),∀𝑠 ∈ }, based on the chosen method as described in Sections 3.1.2,
3.2.2, 3.3.1 and 3.3.2. Fifthly, 𝑉 and �̂� allow us to instantiate our anisotropic regularization and to derive the regularized
depth map results presented in the following next sections.
4.2. Evaluation criteria

The Ground Truth (GT) provided in Middlebury College dataset [27] is at pixel level. To perform evaluation, we
duplicate the depth estimated for a given superpixel to each of its pixels. Then, we also denote by 𝐮 the estimated depth
map at pixel level (the element lattice  or  removing ambiguity if any) and by �̃� the GT.
Evaluation metrics We focus on three complementary global metrics, namely RMSE (Root Mean Square Error) that
has good additive properties, PSNR (Peak Signal to Noise ratio) derived from RMSE and SSIM (Structural Similarity
Index Measure [30]) that is based on perception-model to measure the similarity between two images:

RMSE(𝐮, �̃�) =
√

1
#

∑

𝑝∈
(𝑢𝑝 − �̃�𝑝)2,

PSNR(𝐮, �̃�) = 20 log10

(

Δℎ
RMSE(𝐮, �̃�)

)

,

SSIMΩ(𝐮, �̃�) =
1
♯

∑

𝑝∈

(

2𝜇𝑢,𝑝𝜇�̃�,𝑝 + 𝐶1
) (

2𝜎𝑢,�̃�,𝑝 + 𝐶2
)

(

𝜇2𝑢,𝑝 + 𝜇
2
�̃�,𝑝 + 𝐶1

)(

𝜎2𝑢,𝑝 + 𝜎
2
�̃�,𝑝 + 𝐶2

) ,

where ♯ stands for the cardinality of  , Ω is a window centered at any pixel 𝑝 and of size 7 × 7 in our case, 𝜇𝑢,𝑝, 𝜇�̃�,𝑝
are the means over Ω centered at 𝑝 of 𝐮 and �̃� values respectively, 𝜎2𝑢,𝑝, 𝜎2�̃�,𝑝, and 𝜎𝑢,�̃�,𝑝 are the variances and covariance,
respectively. Finally, the constants 𝐶1 and 𝐶2 are computed from Δℎ as 𝐶1 =

(

0.01Δℎ
)2 and 𝐶2 =

(

0.03Δℎ
)2 for

numerical stability. This is the version of SSIM specified in [30] with (according to author’s notations) 𝛼 = 𝛽 = 𝛾 = 1.
By computing the variances, covariance and mean values on a set of windows covering the whole image, SSIM

1https://vision.middlebury.edu/stereo/data/
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incorporates comparison measurements of luminance, contrast and structure of images that allows to take into account
important perceptual phenomena in its evaluation.

For result comparison, we remind that the lower the RMSE values are (in [0,Δℎ]), the better the results are while
for PSNR and SSIM criteria, higher values (in ℝ≥0 and [0, 1] respectively) reflect better performance.
Evaluation maps Three complementary kinds of maps allow us to visualize the difficult areas. Firstly, depth error
map, called 𝐸, will stress the image areas with poorest reconstruction. Secondly, neighborhood orientation map will
represent saliency and direction information extracted from the guidance map, that allows us to evaluate qualitatively
this latter. Thirdly, depth dynamic within neighborhoods, called 𝑄𝑉 , provides a measure of the neighborhood
consistency in terms of depth. Pixel values of 𝐸 and 𝑄𝑉 maps are computed as follows:

𝐸(𝑝) = |𝑢𝑝 − �̃�𝑝|, ∀𝑝 ∈  ,

𝑄𝑉 (𝑝) = max
𝑞∈𝑉 (𝑝)

|�̃�𝑞 − �̃�𝑝|, ∀𝑝 ∈  ,

where 𝑉 (𝑝) at pixel level is simply the set of pixels that belong to any superpixel neighbors of the superpixel including
𝑝.

Concerning the interpretation of these maps, the lower the 𝐸 values (in [

0,Δℎ
]), the better the depth estimation

at considered pixel. The orientation map is expected to be relatively smooth while following the sharp edges of the
objects and aligning with the thin structures. Finally, in 𝑄𝑉 , low values (in [

0,Δℎ
]) reflect a consistent neighborhood

(without implying uniqueness of the solution). Note that a major benefit of 𝑄𝑉 criterion is that it does not require any
neighborhood ground truth (which we obviously do not have).
4.3. Alternative approaches considered for comparison

To evaluate the benefits of our approach compared against isotropic neighborhoods or simplest anisotropic ones,
we focus on the following alternative approaches.
Stawiaski’s isotropic neighborhood In [9], an isotropic neighborhood is computed such that the superpixels that
share a common border are neighbors and their interactions are weighted by the length of this common border. This
neighborhood corresponds to the adjacency relationship, with a weighting function. This formulation ensures that
the set constituted by a superpixel and its neighbors is a single connected component, but it does not ensure that the
barycenters of neighboring superpixels are close from each other.
Shape-based neighborhood inspired from [14] Shape-based neighborhood is an intuitive method for building
anisotropic neighborhoods. The “shape” refers to the approximation of the neighborhood as a parametric shape, namely
ellipse in our case. The neighbors of a superpixel 𝑠 are then the superpixels whose barycenter is included in the
“shape” centered in 𝑠. We considered in our case parametric ellipses whose major semi axis directions are given by the
guidance map in 𝑠. Practically, when saliency in superpixel 𝑠 is very low, i.e. ‖𝐠𝑠‖ is lower a given threshold (0.05), the
direction is not reliable so that we rather define neighborhood as a disc, which boils down to the isotropic superpatch
neighborhood of [14]. Note that we do not exploit further saliency information that appears noisier than direction, and
set the eccentricity as a constant parameter of the model.
Perfect neighborhood For having an estimation of the possibly best performances brought by an anisotropic
approach, we propose a so-called perfect anisotropic neighborhood. The latter is computed with respect to GT depth
map �̃� as follows. Perfect neighborhood is implemented as a shape-based neighborhood with a disc of given radius
centered in 𝑠 ∈  , where we remove the neighbors presenting a depth difference between the depths of GT and 𝑠
higher than a fixed threshold 𝐷𝑉 = Δℎ

10 + 1. Additionally, elements that do not belong to the 𝑠 connected component
are removed from the neighbors. Thus, perfect neighborhood refers to a neighborhood having good properties in terms
of homogeneity, connectivity and shape, even if it is not unique.
4.4. Results
4.4.1. Global performance analysis

Let us first consider global performance obtained considering the whole Middlebury college dataset. Figure 3
shows the results achieved using 5000 superpixels (ETPS [29]), in terms of RMSE (allowing summing individual
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Figure 3: Comparison of neighborhood anisotropy benefit measured through RMSE (y-axis) on the whole dataset. The
results are achieved using 5000 ETPS superpixels [29] and different neighborhood estimations.

image performance), varying the regularization parameter 𝛼. We notice that the perfect neighborhood and the CBN,
either from RORPO or TVo, yield the lowest RMSE values meaning they outperform all the other approaches for a
wide range of regularization coefficients. Since perfect neighborhood was designed to evaluate the performance gain
specifically related to anisotropic neighborhood (leaving apart the question of its estimation) with respect to isotropic
one (represented by Stawiaski’s approach), the results clearly underline the benefit of anisotropic neighborhood for
regularization. A satisfactory result is that CBN provides almost as good results as perfect neighborhood (which we
remind is unrealistic since it requires GT), stressing the performance of neighborhood estimation itself. Comparing
with “ellip” that refers to the “Shape-based neighborhood inspired from [14]”, we notice that these latest results are
much worse, underlining the importance of a fine (not too simplistic) estimation. About TBN estimation, we notice
it only leads to interesting results for low regularization (𝛼 < 1). Finally, we also note that RORPO or TVo use for
𝐠 estimation does not really impact the results, but a very slight advantage for RORPO. In conclusion, according to
Figure 3, best performance is achieved by RORPO CBN, with a very noticeable robustness of the results with respect
to regularization coefficient, 𝛼 ∈ [2, 16]. This robustness of CBN to the regularization parameter that is also confirmed
by visual inspection of error maps, is one of the strengths of this approach against its alternatives.

We now check the result dependency to superpixel segmentation. However, to investigate how results are dependent
on ETPS superpixels, we consider, as an alternative to ETPS superpixels [29], the WaterPixels (WP) proposed in [31].
Figure 4 shows curves analogous to those in Figure 3 considering either 5000 (like with ETPS superpixels) or 2000
WP, respectively. With respect to Figure 3, we notice the curves and conclusions are remarkably similar, but a slight
loss of performance when the number of superpixels is lower (it can be seen looking at the lowest value achieved
considering perfect neighborhood) and a more distinct advantage for RORPO with respect to TVo (when looking at
the CBN curves).

To further investigate the performance variability with respect to scene and/or superpixels, Figure 5 and Figure 6
respectively show the PSNR and the SSIM obtained on each scene, for the best result obtained with a varying 𝛼. First of
all, the remarks concerning the robustness to the two kinds of considered superpixels (ETPS and WP) or their number
(5000 and 2000) still hold: Difficult scenes are the same and CBN achieves very interesting performance in most cases.
Indeed, on some scenes such as Aloe1, Books1, Wood11, all approaches yield equivalent results, whereas in other
scenes such as Lampshade, Plastic1 or Reindeer, achieved results appear more sensible to neighborhood estimation.
We also note that the two criteria PSNR and SSIM are complementary since differences of performance can be visible
in only one of them, such as with scene Midd11 or Moebius1. However, let us underline that in most scenes, the
top trio is RORPO-CBN, TVo-CBN and quite obviously perfect neighborhood. These approaches outperform both
isotropic neighborhood (represented by Stawiaski’s approach) and naive anisotropic one (ellipse-based). Nevertheless
we also confirm the fact that an isotropic neighborhood assumption is preferable to too naive anisotropic neighborhood
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Figure 4: Comparison of neighborhood anisotropy benefit measured through RMSE (y-axis) on the whole dataset. The
results are achieved using either 5000 WP (left) or 2000 WP (right) using different neighborhood estimations. The legend
is the same as in Figure 3.
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Figure 5: Per scene best results in terms of PSNR measure (y-axis) for each neighborhood construction using either 5000
ETPS superpixels (top) or 2000 WP (bottom). The higher the value is, the better the result is.

estimation. In conclusion, despite the scene disparity inducing variable performance, the main conclusions concerning
the benefit of anisotropic neighborhood fine estimation can also be drawn at scene level.
4.4.2. Detailed analysis of two cases

For further analysis, we present the corresponding error maps and neighborhood quality maps, focusing on some
cases where the performance highly depends on the type of neighborhood, such as with the Lampshade scene and the
Reindeer one.

Let us first consider the neighborhood estimation quality. As specified in Section 4.2, the values of the depth
dynamic within a neighborhood are in [0,Δℎ], with low values reflecting a consistent estimation of neighborhood. From
Figure 7, we clearly see that most of the heterogeneous neighborhoods are located at the borders of thin structures such
as the lampshade rod or the reindeer antlers. We also note that lowest values are achieved for the perfect neighborhood
(by construction) and then by CBN (either from TVo or RORPO guidance map) whereas both TBN and Stawiaski’s
neighborhood are much worse in terms of homogeneity.
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Figure 6: Per scene best results in terms of SSIM (y-axis) for each neighborhood construction; 5000 ETPS superpixels
(top) or 2000 WP (low). The higher the value is, the better the result is.

All-in-focus Perfect TVO CBN RORPO CBN TVO TBN RORPO TBN Stawiaski

Figure 7: Comparison of neighborhood quality 𝑄𝑉 for Lampshade (top row) and Reindeer (bottom row) scenes, from left
to right: All-In-Focus image, 𝑄𝑉 maps for perfect neighborhood, TVo CBN, RORPO CBN, TVo TBN, RORPO TBN and
Stawiaski’s neighborhood. Dynamics has been reversed and spread in the interval [0, 255] so that dark areas represent bad
performance.

Secondly, we compare the guidance maps provided by TVo and by RORPO. Figure 8 shows these maps in the cases
of the two considered scenes, Lampshade and Reindeer. In both cases, we notice that the direction of the structures
is rather well estimated although we also observe some noise. Comparing the two estimators, we note that while TVo
looks smoother in terms of orientation (especially on Reindeer scene), RORPO both better detects the isotropic areas
(in white) and highlights well the sharp areas of the scene. However, these observed differences seems to have only
little impact on the neighborhood consistency as depicted in Figure 7 or on depth map reconstruction. In what follows,
we now focus on RORPO algorithm.

Finally, let us observe the error maps versus regularization parameter 𝛼 for our two scenes and the three methods
of neighborhood estimation: Perfect (reference for benefit of anisotropic neighborhood), RORPO CBN and Stawiaski
(reference for isotropic neighborhood). For Lampshade scene, we notice the very high noise level in the absence of
regularization (𝛼 = 0) that is progressively corrected by increasing 𝛼 before new errors this time due to the removal of
thin structures appear. This phenomena can be clearly seen in the case of Stawiaski’s neighborhood with apparition of
errors located on the vertical thin bar or rod for 𝛼 > 1. From this scene, we also notice that the optimal 𝛼 values vary with
the considered neighborhood; as expected, anisotropic neighborhoods allow for higher 𝛼 values without reconstruction
degradation (in particular for the thin structures). Specifically, in Lampshade scene, 𝛼 values providing best results are
equal to 4, 8 and 2 for the Perfect, RORPO CBN and Stawiaski’ neighborhoods, respectively. Reindeer scene is much
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Figure 8: Comparison of guidance maps 𝐠 for Lampshade and Reindeer scenes, using use a color representation, such
that the saturation and the hue encode respectively the saliency and the orientation; from left to right: Color wheel, TVo
Lampshade, RORPO Lampshade, TVo Reindeer, RORPO Reindeer.

Superpixels segmentation RORPO TVo Neighbohood construction Depth optimization
13.2 28.1 94.6 19.0 1.3

Table 1
Mean running times (in seconds) of the main steps of the proposed depth reconstruction of a scene at superpixel level.

Lampshade Reindeer
PSNR SSIM PSNR SSIM

RORPO-CBN ETPS 57.78 86.33 63.83 97.89
4-connectivity pix. lev. 54.61 83.81 63.94 96.40
RORPO-CBN pix. lev. 53.32 83.00 64.62 97.18

Table 2
Results obtained for the scenes Reindeer and Lampshade with our proposed anisotropic neighborhood at superpixel level
(first row), compared to isotropic neighborhood at pixel level (second row) and RORPO-CBN neighborhood at pixel level
(last row). SSIM values are indicated in percentage. For each scene, best result is in bold and second best is underlined.

less noisy than Lampshade scene. However, regularization is again required to remove the blind estimation errors in
the vertical right strip and in the bottom triangle, both been part or subparts of objects presenting a very homogeneous
radiometry. Due to this lower initial level of noise, 𝛼 “optimal” values are lower than in Lampshade scene, namely
they are equal to 1, 2 and 0.5 for the Perfect, RORPO CBN and Stawiaski’ neighborhoods, respectively. We notice
that for higher values, regularization introduce depth errors on the antlers of the reindeer figure, all the more quickly
as the neighborhood is isotropic (indeed with Stawiaski, bottom triangle errors cannot be corrected without degrading
reindeer antlers). Using anisotropic neighborhoods, either Perfect or RORPO CBN, the degradation of thin structures
is delayed so that we observe the existence of 𝛼 values allowing for the correction of blind errors without introduction
of new errors.
4.4.3. Superpixel versus pixel level

Finally, let us investigate the benefit of considering the superpixel level rather than the pixel one. For doing so, we
consider again global performance statistics, namely the RMSE computed on the whole dataset.

In terms of complexity, the number of pixels is 360 × 360 versus 5000 superpixels (ETPS) in the considered
experiments. Table 1 gives the mean running times in seconds computed over all the scenes of the Middlebury college
dataset, for the four main steps of our approach: (i) superpixel segmentation, (ii) guidance map estimation (either based
on RORPO or on TVo), (iii) neighborhood construction, and (iv) depth map optimization. These running times have
been obtained on an Intel core i9-10900X @ 4.7 GHz, with 64 Go of RAM. Table 1 firstly confirms that RORPO is
much faster (3 times) than TVo. Secondly, considering RORPO instead of TVo, the average running time for the global
algorithm is 61.6 secs, i.e. about 1 minute per image. We consider this time as very encouraging since it was achieved
with standard programming code, i.e. without optimization using GPU for instance. Thirdly, the running time for depth
map optimization (using graph cuts) is very low thanks to the complexity reduction working with superpixels instead
of pixels. For comparison, running the isotropic neighborhood depth map optimization at pixel level, the average
running time is 36.8𝑠, i.e. about 30 times slower. Thus, even without code optimization, the additional running time
for anisotropic neighborhood estimation steps is compensated by the running time decrease for depth map optimization
step.
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In terms of performance, Figure 10 allows for comparison of the RMSE curves for three kinds of neighborhoods,
namely Stawiaski (i.e., isotropic), RORPO CBN or RORPO TBN (representing best candidate for anisotropic
neighborhoods) and Perfect, either at superpixel level (using 5000 ETPS superpixels) or at pixel level. First of all, from
Figure 10, we notice an improvement of performance at superpixel level with respect to pixel one. This improvement
is a very strong point since one could have expected that superpixels would introduce some spatial imprecision (at
the benefit of complexity decrease), especially since the RMSE is measured at pixel level. Nevertheless, at least on
the considered dataset, this preprocessing step is beneficial for the precise image reconstruction. This comment is
confirmed in most cases when we examine individual scenes. For instance, for the two detailed cases Lampshade and
Reindeer, the two first lines of Table 2 show the performance indicators PSNR and SSIM achieved by RORPO-CBN
on ETPS superpixels and isotropic (4-connectivity) and we see that RORPO-CBN yields to significantly better result
except in terms of PSNR on Reindeer scene where nevertheless the performance values are very close.

Then, we notice the potential benefit of anisotropic neighborhood with respect to isotropic one (at pixel level,
Stawiaski’s neighborhood boils down to 4-connectivity neighborhood) since Perfect neighborhood yields the best
results. However, we also notice that, at pixel level, the difference of performance is very small, and that isotropic
neighborhood yields slightly better result than RORPO TBN or RORPO CBN. A possible explanation is that
the requirement to take into account anisotropic neighborhood is less pregnant at pixel level (due to the size of
neighborhood with respect to objects in pixel numbers as well as the regularity of the lattice) and that neighborhood
estimation is less efficient. Indeed it is based on blind depth estimation that may be much noisier at pixel level that at
superpixel one. Besides, the performance may depend on the considered scene. For instance, Table 2 shows that on
the Reindeer scene, RORPO-CBN at pixel level slightly outperforms isotropic pixel level both in terms of PSNR and
SSIM indicators. These observations also open perspectives to understand the relationship between scene feature and
scale of analysis (from pixel level to superpixel ones).

In conclusion, the benefit of presegmenting the scene in superpixels and then handling anisotropic neighborhood
appears both in terms of global performance and in terms of robustness with respect to regularization parameter 𝛼.
Besides the additional complexity introduced by neighborhood estimation (RORPO-CBN according to this study) is
compensated by the complexity decrease when handling much less superpixels than pixels.

5. Conclusion and perspectives
In this paper, we propose some new anisotropic neighborhoods that offer a flexible and generic formulation with

respect to the site lattice (i.e., possibly irregular). For doing so, we select and customize two vesselness operators and
we show their efficiency thanks to their properties of noise robustness or adaptability to thin structures. Finally, we
evaluate and study the benefit of the constructed anisotropic neighborhoods in particular for thin structure preservation.
Specifically, we consider SFF application and we evaluate our results on a reference dataset both according to
quantitative criterion but also based on qualitative observation of evaluation maps.

Future works will involve the following perspectives. Firstly, we aim at studying the relationships between the
hyperparameters characterizing the neighborhoods and the superpixel ones (regularity, number), also relating these
parameters to the scale of scene main features and objects. Secondly, focusing on RORPO-CBN approach that
appears to provide best performance and based on the evaluation of the running times per process, we will focus
on the code optimization of the RORPO module. Thirdly, since the proposed anisotropic neighborhood construction
can be useful for many energetic formulations of discrete inverse problem as confirmed by preliminary tests on
binary segmentation [32], we aim at considering segmentation of thin structures such as frequently encountered in
medical imaging (e.g., vessels) or remote sensing imagery (e.g., roads, rivers). Fourthly, in the proposed approach,
neighborhood construction relies on guidance map itself estimated from a first (blind) evaluation of the solution. We
aim at evaluating the benefit of using a current evaluation of the solution for our neighborhood construction process.
Although such an alternate minimization seems attractive, first tests showed that the risk of divergence from the GT
solution is real so that we will have to define rigorously the convergence conditions.

Appendix A 3D Tensor Voting
Let ℝ3×3 with an origin coordinate 𝑂 in ℝ3 be the considered vector space, endowed with a voting function

𝑉 𝐹 ∶ ℝ3×3 ×ℝ3 ↦ ℝ3×3. A tensor can be represented by a matrix 𝕋 ∈ ℝ3×3. The voting operation 𝑉 𝐹 builds a new
tensor 𝕋 ′ to the cast location 𝑃 ∈ ℝ3 and adds it to the tensor at this location, since tensors have good summation
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properties. The tensor 𝕋 ′ is a combination of rotation and scaling of the source tensor 𝕋 , combinations that are all
derived from the stick kernel. Indeed, tensors can be decomposed in a basis of tensors, in which the stick tensor is the
simplest element. Then, the stick kernel refers to the voting operation of this stick tensor.

In tensor voting, a tensor is a second order symmetric tensor that can be represented by a positive semidefinite
diagonalizable matrix 𝕋 ∈ ℝ3×3, whose eigenvectors are orthogonal. In addition to its coordinates, one tensor can be
characterized either from six scalar values corresponding to the coefficients of the symmetric matrix or, from three
eigenvalues and a rotation. This rotation defines the transformation of the orthonormal basis (𝐞0, 𝐞1, 𝐞2) to align with
(�̂�0, �̂�1, �̂�2) ∈ ℝ3×3 the set of eigenvectors sorted by decreasing eigenvalue. The decomposition of the matrix into a
set of diagonal matrices is a key point introduced by [19]. By definition, the tensor is a diagonal matrix in the system
(�̂�0, �̂�1, �̂�2), so that:

⎛

⎜

⎜

⎝

𝜆0 0 0
0 𝜆1 0
0 0 𝜆2

⎞

⎟

⎟

⎠

= (𝜆0 − 𝜆1)𝕋𝑠𝑡𝑖𝑐𝑘 + (𝜆1 − 𝜆2)𝕋𝑝𝑙𝑎𝑡𝑒 + 𝜆2𝕋𝑏𝑎𝑙𝑙, (9)

where 𝕋𝑠𝑡𝑖𝑐𝑘, 𝕋𝑝𝑙𝑎𝑡𝑒 and 𝕋𝑏𝑎𝑙𝑙 are respectively the stick tensor, the plane one and the ball one, named according to their
representations as ellipsoids (see figure in [33]), and each of them represents a different type of structure: The stick
component encodes the saliency of surfaces that are normal to �̂�0, the plate component is encoding some curves with
tangent direction �̂�2, and the ball component is encoding points, e.g. corresponding to thin structure junctions.

The stick kernel that allows for the vote cast by a stick tensor, 𝕋𝑠𝑡𝑖𝑐𝑘 ∈ ℝ3×3, involves a multiplication of 𝕋𝑠𝑡𝑖𝑐𝑘 by
a decay function 𝐷𝐹 , and a rotation by a vector 𝛀. Specifically, 𝐷𝐹 is as follows:

𝐷𝐹 (𝑟, 𝜙, 𝜎𝑇 ) = exp

(

−
𝑟2 + 𝑣𝜙2

𝜎2𝑇

)

,

where 𝜎𝑇 is the scale parameter, 𝑣 is a constant that controls the decay with curvature, 𝑟 ∈ ℝ>0 is the length of the
circle arc between 𝑂 and 𝑃 on the osculating circle joining 𝑂 and 𝑃 with normal �̂�0 at point 𝑂 and 𝜙 ∈] − 𝜋, 𝜋] the
angle between the tangent to the same osculating circle in 𝑂 and #   »𝑂𝑃 . The decay function allows for a smooth voting
kernel whose support can be bounded to a sphere of radius 3𝜎𝑇 . Along with the term 𝑣𝜙2 used for increasing the decay
with curvature, [19] proposes also to restrict vote to the area where 𝜙 < 𝜋

4 and consider that the term 𝐷𝐹 (𝑟, 𝜙, 𝜎𝑇 ) is
null otherwise.

The rotation 𝐑(𝛀) ∈ ℝ3×3 is defined by the rotation vector 𝛀 ∈ ℝ3, that transforms the vector �̂�0 into the vector �̂�′0with �̂�′0 and �̂�0 symmetrical with respect to the mediator of the segment 𝑂𝑃 . This allows for computing the cast tensor
𝕋 ′
𝑠𝑡𝑖𝑐𝑘 ∈ ℝ3×3 as follows:

𝕋 ′
𝑠𝑡𝑖𝑐𝑘 = 𝐷𝐹 (𝑟, 𝜙, 𝜎𝑇 )𝐑(𝛀)𝕋𝑠𝑡𝑖𝑐𝑘𝐑𝑇 (𝛀).

where ⋅𝑇 is the transposition operation.
Plate tensor can be written 𝕋𝑝𝑙𝑎𝑡𝑒 = �̂�0�̂�𝑇0 + �̂�1�̂�𝑇1 , while ball tensor is written 𝕋𝑏𝑎𝑙𝑙 = �̂�0�̂�𝑇0 + �̂�1�̂�𝑇1 + �̂�2�̂�𝑇2 . The plate

and ball kernels are derived from the stick kernel by integration of stick tensors. Approximating these integrals as sums
of tensors,

𝕋 ′
𝑝𝑙𝑎𝑡𝑒 ≈

𝐼
∑

𝑖=0
𝐷𝐹 (𝑟, 𝜙, 𝜎𝑇 )𝐑(𝛀)𝕋𝑠𝑡𝑖𝑐𝑘(𝑖Δ𝜌)𝐑𝑇 (𝛀)Δ𝜌,

𝕋 ′
𝑏𝑎𝑙𝑙 ≈

∑𝐼
𝑖=0

∑𝐽∕2
𝑗=−𝐽∕2 𝐷𝐹 (𝑟, 𝜙, 𝜎𝑇 )𝐑(𝛀)𝕋𝑠𝑡𝑖𝑐𝑘(𝑖Δ𝜌, 𝑗Δ𝜓 )

𝐑𝑇 (𝛀) sin(𝑗Δ𝜓 )Δ𝜓Δ𝜌,

where Δ𝜌 = Π
𝐼 and Δ𝜓 = Π

𝐽 , and 𝐼, 𝐽 ∈ ℕ are arbitrary constants. Note that these kernels are usually precomputed for
computational efficiency.
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Then, any tensor 𝕋𝑠 at location 𝑠 ∈ ℝ3 can be decomposed from Equation (9) in a basis (�̂�0, �̂�1, �̂�2) as 𝕋 (𝑠) =
(𝜆0 − 𝜆1)�̂�0�̂�𝑇0 + (𝜆1 − 𝜆2)�̂�1�̂�𝑇1 + 𝜆2�̂�2�̂�𝑇2 , and the vote cast at location 𝑡 ∈ ℝ3 is written:

𝑉 𝐹 (𝕋 , #»𝑠𝑡) = (𝜆0 − 𝜆1)𝑉 𝐹 (𝕋𝑠𝑡𝑖𝑐𝑘(𝑡),
#»𝑠𝑡)

+ (𝜆1 − 𝜆2)𝑉 𝐹 (𝕋𝑝𝑙𝑎𝑡𝑒(𝑡),
#»𝑠𝑡)

+ 𝜆2𝑉 𝐹 (𝕋𝑏𝑎𝑙𝑙(𝑡),
#»𝑠𝑡)

Having introduced the voting operation for one tensor, let us specify the global voting process.
From 0,1 ⊂  the sets of voters and the cast locations respectively, ∀𝑠 ∈  ,
{

∀𝑝 ∉ 1, 𝕋 ′(𝑝) = 𝕋 (𝑝),
∀𝑝 ∈ 1, 𝕋 ′(𝑝) = 𝕋 (𝑝) +

∑

𝑠∈0
𝑉 𝐹 (𝕋 (𝑠), #»𝑠𝑝),

where 𝕋 ′(𝑠) is the tensor at location 𝑠 after vote and 𝕋 (𝑠) before.
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Figure 9: Maps of depth error obtained for the scenes Lampshade (left) and Reindeer (right), for three neighborhood
construction strategies (Perfect, RORPO CBN and Stawiaski) and different values of regularization parameter 𝛼 ∈
{0., 0.25, 0.5, 1, 2, 4, 8}. For better visualization, error value dynamic has been bounded to 2Δℎ
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Figure 10: Superpixel versus pixel level: Comparison in terms of RMSE (y-axis) computed on the whole dataset, for three
kinds of neighborhoods.
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