
HAL Id: hal-03510861
https://hal.science/hal-03510861v1

Preprint submitted on 4 Jan 2022 (v1), last revised 3 Oct 2022 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Thin structures retrieval using anisotropic
neighborhoods of superpixels: Application to

Shape-From-Focus
Christophe Ribal, Sylvie Le Hégarat-Mascle, Nicolas Lermé

To cite this version:
Christophe Ribal, Sylvie Le Hégarat-Mascle, Nicolas Lermé. Thin structures retrieval using anisotropic
neighborhoods of superpixels: Application to Shape-From-Focus. 2022. �hal-03510861v1�

https://hal.science/hal-03510861v1
https://hal.archives-ouvertes.fr


Journal of Visual Communication and Image Representation (2022)

Contents lists available at ScienceDirect

Journal of Visual Communication and
Image Representation

journal homepage: www.elsevier.com/locate/jvci

Thin structures retrieval using anisotropic neighborhoods of superpixels:
Application to Shape-From-Focus

Christophe Ribala, Sylvie Le Hégarat-Masclea, Nicolas Lerméa,∗
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A B S T R A C T

Shape-From-Focus (SFF) refers to the challenging inverse problem of recovering the
scene depth from a given set of focused images using a static camera. Standard ap-
proaches model the interactions between neighboring pixels to get a regularized solu-
tion. Nevertheless, isotropic regularization is known to introduce undesired artifacts
and to remove early thin structures. These structures have a small size in at least one
dimension and are more numerous when considering superpixel preprocessing. This
paper addresses the improvement of SFF regularization through the estimation of the
presence of such structures and the construction of anisotropic neighborhoods sticking
along image edges and proposes a flexible formulation over pixels or superpixels. A
thoroughly study comparing different strategies for constructing these neighborhoods
in terms of accuracy and running time for the targeted application is provided. Notably,
experiments performed on a reference dataset show the overall superiority of the ap-
proach and its robustness against generated superpixels.

© 2022 Elsevier B. V. All rights reserved.

1. Introduction

For many image processing problems such as image segmen-
tation or reconstruction, low-level information delivered by a
single pixel is limited and prone to noise, corrupted data and all
kinds of optic phenomena altering the original image. There-
fore, taking into account a statistical relationship between spa-
tially close pixels has been introduced relatively early in image
processing [1]. A classical way to handle this is to model the
two-dimensional (2D) field of pixels as a Markov Random Field
(MRF). This allows for introducing a prior on the expected so-
lution. Variational approaches are particularly used to provide
solutions, by combining the prior and conditional probabilis-
tic models into a single parametric functional to be minimized.
However, due to the dimensionality of the solution space and
depending on the form of the functional, finding a global min-
imizer of it often appears as a challenging task. The study [2]
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gives an insight by comparing several minimization algorithms
(including graph cuts) on typical vision problems (including
image segmentation and image reconstruction). It is well estab-
lished and documented that standard Total Variation (TV) reg-
ularization (e.g. in image reconstruction [3]) or Potts regular-
ization (e.g. in image segmentation [4]) using isotropic neigh-
borhoods behave poorly on thin structures. Although they are
ubiquitous in a number of applications, their detection remains
very difficult because of their spatial sparsity, their small size
and their potential complex geometry. Since these structures es-
sentially consist of discontinuities, standard TV and Potts regu-
larization tend to early remove them as regularization increases
and are thus not adapted to handle them correctly [5].

In parallel with algorithmic developments, the volume and
the diversity of data to exploit have greatly increased over the
last years, therefore preprocessing have been proposed to re-
duce the computational burden. For instance, superpixel de-
composition methods [6] have been developed for grouping
pixels sharing similar radiometric intensities into homogeneous
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regions, and then drastically reducing the number of elements
to process while preserving the geometrical information that is
lost with multi-resolution approaches. For instance and specif-
ically for segmentation problem, [7, 8] grow and merge re-
gions from an initial set of superpixels that they call an over-
segmentation of the initial image. A major drawback of a su-
perpixel segmentation is that the usual hypothesis of a regular
topological lattice is lost, as well as the regularity in size and
shape of every lattice element. As a result, image segmenta-
tion approaches taking advantage of superpixels must cope with
these problems and introduce new methods and spatial relation-
ships. Often, superpixels are considered as neighbors when
sharing a common border [9, 10, 11, 12]. The authors of [9]
propose to minimize an energy via graph cuts based on the adja-
cency graph obtained from the watershed segmentation, where
edges connecting two regions are weighted upon the common
border length between these regions. Similarly, [12] propose to
ease the classification of the high-dimensional noisy hyperspec-
tral images by building a weighted graph based on superpixels.
In [13], the authors compute saliency from MRF using the same
concept of adjacency, and take into account in their algorithm
the second-order neighborhood to ease the propagation of infor-
mation between superpixels. Other superpixel approaches use
patches to analyze the spatial content over a neighboring win-
dow and find the nearest matches in a set of reference patches
[14]. In [15], the authors train a deep Hough forest from a set
of superpixel patches in order to detect objects in aerial images.

Although our work on anisotropic neighborhood can be ap-
plied to several segmentation or reconstruction problems, we
focus on the application Shape From Focus (SFF) in this paper.
SSF is a popular method used for inferring the 3D shape of an
object from a set of images with varying focus settings [16].
Such an approach only requires one fixed camera with a rather
short depth of field and is able to move this camera or to change
the focal distance of the optical system. SSF is therefore appli-
cable in many real world applications including industrial in-
spection, micro manufacturing, robotic control, 3D model re-
construction, medical imaging systems and microscopy. In ad-
dition to its intrinsic interest, we focus on this application to
illustrate the benefit of anisotropic neighborhoods since naive
pixel-level estimates are hampered by the presence of homoge-
neous surfaces, thus definitively requiring some regularization
to propagate the information from reliable areas to uncertain
ones, while preserving thin structures. However, the regulariza-
tion is all the more challenging that the number of labels (i.e.,
the number of discrete depth values) is important and that struc-
tures (and input data) are 3D.

Our first contribution is to propose different estimations of
anisotropic neighborhoods on an irregular lattice such as the
ones provided by superpixel segmentation. Our second con-
tribution is to propose SSF based on superpixels. It allows us
to illustrate the benefit of anisotropic neighborhood since SSF
represents a sufficiently complex application so that results may
depend on the type of considered neighborhood.

The rest of this paper is organized as follows. In Section 2,
we specify the considered problem, namely SSF using super-
pixel segmentation. In Section 3, we detail the proposed path-

based constructions of anisotropic neighborhoods, based on a
preliminary estimation of local anisotropy and orientation ei-
ther from Tensor Voting [17], or from RORPO [18]. Section 4
discusses the results and benefits of our approach in a compre-
hensive comparative study between isotropic and anisotropic
neighborhoods both in terms of accuracy and time complexity.
Finally, Section 5 draws main conclusions and perspectives.

2. Superpixels-based SFF

2.1. Basics of SSF

The core idea of SSF is that the closer an object is to the ob-
ject focal plane (i.e., the more it is focused), the more it appears
sharp. Conversely, the farther an object is from this object focal
plane, the more it appears blurred. Therefore, SSF relies on a
sharpness operator to find the depth where each point appears
the more sharp, and reconstructs a depth image: In the absence
of regularization (blind estimation), the depth of each pixel of
the 2D scene maximizes the pixel’s sharpness measure. Specif-
ically, [16] approximates the sharpness curve (that represents
the sharpness values versus the focus parameter values) with
a Gaussian model, and interpolates (along the optical axis) the
three focus measures centered on the maximum sharpness value
to allow for a better depth estimation. To reduce the sensitiv-
ity to noise, some authors do the sharpness curve interpolation
by using quadratic, cubic or polynomial interpolation [19] or
Gaussian interpolation [3].

Nevertheless, blind depth estimation remains prone to noise
and ambiguities since, in homogeneous or poorly textured ar-
eas, the measured sharpness will be quite low and unreliable.
To overcome this limitation, some authors [20, 19, 3] have con-
sidered SFF in the variational framework. With regularization,
the information extracted in the scene areas where SFF is re-
liable, such as in objects details, contours, is propagated from
neighbors to ambiguous areas, such as homogeneous, overex-
posed or underexposed regions. As stated in Section 1, to over-
come the alteration of thin structures, there is however a need
for anisotropic regularization, all the more critical that we work
with superpixels.

2.2. From pixel level to superpixel one

Let us consider the 3D space defined by an orthonormal ba-
sis (e0, e1, e2) such that e0 and e1 are aligned with the image row
and column dimensions and e2 will represent the focus dimen-
sion. The set of input image pixels, denotedP, defines a cube in
(e0, e1, e2) having dimensions nrow ×ncol ×nfoc, where nrow, ncol,
and nfoc are positive integers. We also assume without loss of
generality that these three dimensions are sampled with a unit
step even if for focus it implies a simple transformation.

Then, we assume that superpixels are invariant with focus di-
mension and we thus define them equivalently in 2D ((e0, e1)
plane) or 3D by replicating them along the focus dimension
(e2). In the following, we denote by S the set of superpixels
defined in 2D and by S↑3 the set of superpixels extended to 3D.

In this study, we aim at extending SSF variational formula-
tion to superpixel level. However, the sharpness profiles and
the superpixels themselves have to be preliminary computed at
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pixel level. Specifically, any sharpness value shall be computed
at pixel level by nature. A sharpness operator is a function
computed at every pixel p ∈ P and a sharpness profile is a
vector gathering the sharpness values obtained by varying the
focus dimension for a given pair of (row, column) coordinates
in (e0, e1, e2). In the following, we denote by f (p) the sharp-
ness operator defined in pixel p ∈ P and by .↓ the projection on
(e0, e1) such that P↓ and p↓ are the projections of P and p re-
spectively, and f(p↓) denotes the sharpness profile at any pixel
p↓ ∈ P↓. Then, the maximum of sharpness is estimated at any
p↓ ∈ P↓ as maxk∈⟦1,nfoc⟧ fk(p↓) where fk denote the kth compo-
nent of sharpness profile f. From maximum of sharpness, one
can estimate the all-in-focus image defined on P↓. This image
allows us to compute the superpixels, S, that have a good sensi-
tivity to the sharp edges of the scene, since in 2D space it picks
the pixel that is the “sharpest”, i.e. that has the highest con-
trast with its neighbors. The chance of constructing superpixels
on blurred edges of the objects is minimized this way. From
S, the set of superpixels extended to 3D S↑3 is then derived by
duplicating nfoc times any superpixel s ∈ S along the axis e3.

The sharpness values of S↑3 elements can then be derived
from the mean sharpness values of the 3D pixels p ∈ P that
compose it, and, for each superpixel in S, a blind depth es-
timation is derived from the maximum of sharpness varying
focus (S↑3 elements derived from a given superpixel s ∈ S).
In the following, the blind depth superpixel map is denoted
û = (ûs)s∈S with ûs ∈ N assuming (without loss of generality)
that depth values are sampled as integer numbers. This depth
map may be noisy and sensitive to the low sharpness profile
of homogeneous regions of the scene, which we cope with our
anisotropic neighborhood based regularization.

Finally, let us specify that, in our case, we consider the sharp-
ness operator introduced in [21], namely the Summed Modified
LAPlacian (SMLAP): f (p) = SMLAP(p),∀p ∈ P.

2.3. Energetic formulation

Usual energetic formulations map a realisation of the random
field we search, i.e. u in SFF application, to a real number rep-
resenting its inadequacy to correspond to the observations and
prior knowledge. In our case, since the neighborhoods are also
unknown, we made the energy depend also on a neighborhood
field that maps a local anisotropic neighborhood to any field el-
ement (superpixels in our case). In the following, u ∈ NS is the
researched depth field, V is the neighborhood field and V is the
set of possible neighborhood fields. Then, we aim at finding a
minimizer of

F(u,V) = E1(u) + αE2(u,V), (1)

where α ∈ R≥0 is an hyperparameter that need to be later tuned
by the user. Specifically, the data fidelity term E1(u) is instanti-
ated with a quadratic distance to the blind estimate ûs:

E1(u) =
∑
s∈S

Ws(us − ûs)2, (2)

where Ws depends on the dynamics of the sharpness profile nor-
malized by its averaged value:

Ws ∝


max

k∈⟦1,nfoc⟧
(fk(s)) − min

k∈⟦1,nfoc⟧
(fk(s))

1
nfoc

( ∑
k∈⟦1,nfoc⟧

fk(s)
)
− min

k∈⟦1,nfoc⟧
(fk(s)) + ϵ

 , (3)

with ϵ ∈ R>0 a small positive real number. With the weighting
term Ws, the importance of the data fidelity term E1 is decreased
when the sharpness profile is homogeneous or when it presents
a very low dynamic. Conversely, the areas with a sharpness
profile with a precisely localized high response have high values
of Ws reflecting the belief that they are trustful.

The regularization term E2(u,V) is derived from the TV op-
erator. For any u ∈ NS and any V ∈ V, it is defined as

E2(u,V) =
∑
s∈S

∑
t∈V(s)

Wst |us − ut |, (4)

where Wst is a weighting function depending on the neighbor-
hood field V:

Wst =
1
2

(
1

♯V(s)
+

1
♯V(t)

)
, (5)

where ♯V(s) denotes the cardinality of the neighborhood at the
superpixel s. The weighting term Wst aims at normalizing the
regularization terms E2 with respect to the size of the consid-
ered neighborhoods since this latter is no longer constant (as it
was with usual 4 or 8-connectivity for instance at pixel level).

2.4. Optimization
Graph cuts optimization refers to the computation of min-

imum cuts/maximum-flows in a graph of appropriate topol-
ogy for minimizing functionals arising in computer vision, e.g.
composed of unary and pairwise terms. Compared to other
combinatorial algorithms, graph cuts are very competitive both
in terms of accuracy (global minimum is very well approached
if not reached as for many binary problems) and running time
(by avoiding stochastic iterative convergence) for a wide range
of computer vision tasks [2]. Practically, graph cuts depict lin-
ear complexity in the number of sites of S [22]. Moreover,
compared to continuous minimization algorithms, they are able
to deal with regular or irregular lattices without any difficulties.

In the binary case, the key idea of graph cuts is to construct
a two-terminals graph, where nodes are sites of S and edges
encode relationships between nodes, in a such a way that any
cut separating these terminals is equal to the value of the func-
tional on the underlying binary labeling. In particular, when
all pairwise terms are submodular, polynomial-time maximum-
flow algorithms allow for efficiently finding the minimum-cut in
a graph and thus a global minimizer of the functional for binary
problems [22].

In the multi-labels case (such as in our case), efficient algo-
rithmic schemes exist for finding minimizers of functionals. As
explained in Section 3, we intend as a first attempt in this pa-
per to minimize F (see Equation (1)) with V fixed. It is not
difficult to see that the functional u 7→ F(u,V) is convex based
on Equation (2), (3), (4) and (5). In such a situation, a global
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minimizer of this functional can be be efficiently obtained by
decomposing the problem into a set of subproblems only in-
volving binary variables (as in the case of isotropic neighbor-
hoods in [3]), where each one of them is solved standard graph
cuts in the aforementioned binary case.

3. Anisotropic neighborhood construction

The construction of anisotropic neighborhoods can be de-
composed into (i) the estimation of the presence of thin struc-
tures (in our case performed by a vesselness operator) discussed
in Sections 3.1 and 3.2, and (ii) the actual computation of the
neighbors of each superpixel discussed in Section 3.3. Let us
recall that the neighborhoods are constructed on an irregular lat-
tice of superpixels, and that a neighborhood relationship can be
formalized on a graph representing the superpixels by vertices,
by the edges interconnecting some vertices. The neighborhood
is thus an application that maps the set of superpixels S to its
powerset 2S without any specific constraint (e.g., bound on spa-
tial distance) at this stage. We want to outline that it may thus be
different to the notion of adjacency that refers to the existence
of a common border between the superpixels and that allows
for the definition of connected components.

Then, to estimate anisotropic neighborhoods, we will rely on
a guidance map, denoted g, that encodes the information of
anisotropy and orientation for every superpixel s ∈ S. Such
a map must encourage the alignment of neighborhoods with the
thin structures of the image. In the absence of knowledge of the
scene objects, the estimation of g is not trivial at all. Indeed,
considering simultaneous estimation of g and the segmentation
or reconstruction, the resolution appears very complex if not in-
tractable, and considering alternate estimation would require an
iterative scheme ensuring the convergence in a controlled num-
ber of iterations. Therefore in this study, we rather focus on a
single estimation of g as a first attempt, with obvious method-
ological and computational benefit, at the expense of defining
an estimation sufficiently robust to the input data imperfections
to yield some trustworthy guidance map. Simultaneous estima-
tion of u and V is left for future work. More specifically, if the
estimation of g bases on local estimates, its construction must
be robust to noise in these latter. We investigate two options, the
Tensor Voting (TVo) as presented by [17] and the Ranking the
Orientation Responses of Path Operators (RORPO) vesselness
operator as introduced by [18]. In what follows, g is a field of
R2 vectors encoding both the direction and the saliency.

3.1. Tensor Voting-based guidance map
3.1.1. Tensor Voting basics

Tensor Voting (TVo) has been selected for its robustness
to noise and efficiency for connecting thin structures like
edges [17]. TVo relies on the Gestalt principles of perceptual
organization (such as proximity, continuity and similarity) for
designing the voting operation. Its formulation involves one
scale parameter, σT ∈ R>0, setting the spatial range in which
most of the energy of the TVo will be distributed. The basic idea
is that casting a vote to other site locations allows the informa-
tion of each tensor to be propagated, and then thanks to the vot-
ing step, the tensors are smoothed and their orientations refined.

Voting operation is performed through voting kernels that have
continuous and smoothly varying orientations of eigenvectors
and decreasing eigenvalues, except at the origin of the kernel.
For implementation purpose, the voting kernels are often dis-
cretized and stored into a precomputed field of tensors, which
evaluates the values of the tensors cast from the voter on each
point of a regular lattice. Appendix A specifies and gathers all
the main equations useful for 3D TVo, that is much more com-
plex than 2D one used in [23] for instance.

In [17], TVo involves the five following main steps. First step
is the initial vote that requires the definition of the initial set of
voters also called tokens and the set of cast locations (for vote).
In the absence of orientation information, the set of tokens is
usually converted into a sparse set of ball tensors that vote in
every image site. Second step is a refinement step. Based on
the previous sparse vote, the initial set of ball tensors can be re-
fined into a set of stick tensors. For this, each tensor is projected
on the stick tensor axis in the basis used for tensor decompo-
sition. Third step is a dense voting in order to propagate the
stick information at every point. It yields the dense tensor map.
Then, fourth step projects the tensors on the three axes of the
decomposition basis so that three saliency maps can be derived,
encoding for surface, curve and junction saliency. From these
maps, the final step of the algorithm derives the probabilities of
presence of surfaces, curves and points.

3.1.2. Computation of guidance map
We adapt TVo to our SSF problem as follows. The tokens

are the local maxima of sharpness profiles in every superpixel
(in (e0, e1) plane). To avoid redundancy between close maxima
(inducing artificial reinforcement of these latter) of a same pro-
file, a non-maximum suppression step is performed on sharp-
ness profiles: Specifically, we only keep one maximum per con-
tinuous interval of focus values associated to sharpness values
greater than 80% of the maximum sharpness. This way, we en-
sure that the tokens are all separated by a local minimum having
value below 80% of the global maximum. This initialization
provides a tensor map that is sparse in 3D, but dense in 2D.

Then, since the number of pairs in (S↑3 × S↑3) is very large,
the vote for the orientation estimation is also restricted to the
set of tokens. This allows for reducing the computational bur-
den by removing the dense voting step, at the risk of a loss of
accuracy when the initial depth estimations (and thus tokens)
are erroneous.

Although TVo allows us to handle tensors defined in R3 for
the vote, at the end (for decision after voting) we have to decide
a single tensor for any 2D superpixel s ∈ S. In our experi-
ments, we found that the most convincing results are obtained
when only considering the cumulated tensors (after voting) at
the blind estimated depth ûs. Indeed, while this leads to irreg-
ularities when û is noisy, this also allows for gaps in the orien-
tations estimated on the edges of the structures of the images,
which could be beneficial. Then, for extracting the guidance
map g, for each superpixel s ∈ S, we project the selected ten-
sor (in ûs) into image plane and derive the major eigenvector
ê0s in s and the two eigenvectors (λ0s, λ1s) ∈ R2

≥0 so that the
saliency and orientation of the guidance map in s is computed
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as follows:
gs = (λ0s − λ1s)ê0s, ∀s ∈ S.

3.2. RORPO-based guidance map
As an alternative to TVo, we consider RORPO, a non linear

operator based on mathematical morphology and used for thin
structure detection (see [18] for more details).

3.2.1. RORPO basics
The idea of RORPO is to use a set of oriented filters with

different orientations to analyze the image in terms of the re-
sponse of multiple morphological operations. Indeed, for a
thin structure, at least one dimension is substantially smaller
than the other ones by definition. Thus, determining the image
areas where only a small number of high responses are mea-
sured among the oriented filters discriminates the thin struc-
tures. These oriented filters, called path openings, are param-
eterized by structuring functions defining the set of connec-
tion relationships R between sites (pixels, or superpixels in our
case). Since the RORPO is based on these path openings, let
us briefly recall how these latter work, firstly on a binary image
and secondly on a gray level image.

Denoting by R the set of connection relationships, for each
connection relationship⇝θ∈ R, we remind how a path opening
is defined for binary images in [18]: Given ⇝θ and a length
L ∈ R>0, the path opening O⇝θ ,L(X) is the union of all paths
connected by ⇝θ and of length L in the set of true pixels (1-
valued) in the considered binary image X. Each path opening
filters out the structures that are not aligned with the considered
orientation. Thus, a thin structure will be deleted by at least one
oriented filter, conversely to isotropic structures that will have
an homogeneous answer to the set of path openings.

Then, to extend binary path openings to gray level images,
one considers level sets, i.e. sets of sites having a value greater
than the considered gray level: Given⇝θ and a length L ∈ R>0,
the gray level path opening of an image Y is defined as

O⇝θ ,L(Y, s) = max
{
τ ∈ R>0|s ∈ O⇝θ ,L(Y≥τ)

}
,

where Y≥τ is the level set of Y at level τ.
In [18], RORPO implementation involves the following five

main steps. The first step is the dilation of the gray level input
image with respect to spatial adjacency. The second step deals
with direction sampling. It boils down defining a finite set of
connection relationships, denoted by ⇝θ, such that two sites
s and t are connected if and only if (i) they are adjacent and
(ii) #»st vector’s direction and the sampled direction θ are con-
sidered equal been given the imprecision angle ϕT threshold.
The third step is the computation of the path opening results for
the sampled directions and the fourth step ranks their responses
as follows: For each site, the responses to the #R path open-
ings are ranked in decreasing order of magnitude, i.e. denoting
RF1 the maximum value and RF#R the minimum (last in the or-
dering) value. This ranking of the orientation responses of the
path openings gave its name to the algorithm RORPO. Then, for
each site, the RORPO value is the difference between maximum
path opening value (RF1) and the i largest response, (RFi). In
our case, we set i = 4. Finally, fifth step derives, for each site,

Fig. 1: Illustration of the 6 directions ofR (left) and an example of path obtained
with one structuring function⇝θ (right). The connectedness⇝θ is character-
ized by the vector vθ and the angular width ϕT . For this illustration, we have
represented directed edges for positive displacements, but the paths are com-
puted in both directions.

an orientation by averaging the orientations of the three largest
responses.

This formulation yields higher responses for thin structures
that have a small number of high responses in path openings.
Therefore, the value returned by the RORPO allows us to dis-
criminate the saliency of thin structures. Let us now present the
estimation of orientations used to derive the guidance map g.

3.2.2. Computation of guidance map
Like TVo, our implementation of RORPO works with the

data volume corresponding to the sharpness profiles in every
superpixel. The choice of these input data is fully relevant for
the RORPO that will detect structures presenting high gray level
values and indeed we want to detect highest sharpness values.

For numerical convenience, path openings are only per-
formed with 2D slices, i.e. at given focus value, which boils
down researching structures in image plane. This is simply
performed by restricting the connection relationships⇝θ to be
within image plane. Then, we consider six directions vθ in the
image plane, characterized by their positive angle θ with the e0
axis: vθ = cos(θ)e0 + sin(θ)e1 (see Figure 1). Note that, al-
though usually the length L is a positive integer expressed in
pixel unit, extending the case of pixel lattice to superpixel one,
we instead consider that the length of the path is a real L ∈ R>0,
computed as the sum of the distances between the superpixels’
barycenters in the path.

Each of the connection relationships yields a path opening
result. From this set of path openings, we firstly compute the
RORPO index that is further interpreted as a saliency index and
secondly the structure orientation. For the latter, we use a spe-
cific average operation such that orthogonal vectors cancel and
vectors of opposite directions would not. The trick consists in
considering polar coordinates and doubling the argument value
of the vectors before averaging them, and dividing the argu-
ment of the averaged result by two. Mathematically, with com-
plex notations, and omitting the normalization coefficient use-
less here, it is as follows:

vRO(s) ∝

ϵ + ∑
⇝θ∈R

′(s)

O⇝θ ,L(Y, s) exp(2iθ)


1
2

,

where ϵ > 0 is a very small real number used for numerical sta-
bility of the expression, and R′(s) ⊂ R is the set of orientations
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of the three first answers in the rank filter at site s.
With this construction, we obtain a 3D volume of vectors that

has the same dimensions as the grayscale input data and from
which the 2D guidance map g is finally computed. For this, we
average the vRO directions varying the depth:

gs =

 ∑
t∈S↑3,t↓=s

|gt | exp(2i arg(gt))


1
2

, ∀s ∈ S,

where t↓ is the result of the projection of 3D site t on the 2D
image plane and arg(c) denotes the argument of any complex
number c ∈ C. In previous equation, the angles are simply
weighted by the norm gt, but more sophisticated weighting may
also consider the distance with respect to the blind depth, e.g.
using a weighting coefficient equal to |gt | exp(− 2(t−ûs)2

∆h
).

Compared to TVo, RORPO allows for a faster computation
of the guidance map and is consistent with the notion of path-
based neighborhood introduced in Section 3.3 that specify the
construction of the neighborhoods from g.

3.3. Path-based neighborhoods

This section depicts our contribution concerning the con-
struction of anisotropic neighborhoods, i.e. the neighborhood
field V ∈ V (see Section 2.3).

We propose path-based neighborhoods to fit into thin struc-
tures of the image, possibly one superpixel width. Being based
on the adjacency graph A, the neighborhood construction en-
sures that the neighbors of a superpixel defines a single con-
nected component. We recall that two superpixels are adjacent
when they share a common border at pixel level, thus the ad-
jacency is a symmetric relationship: s ∈ A(t) ⇐⇒ t ∈ A(s),
∀s, t ∈ S. Then, a path of length n ∈ N is an ordered list
(s0, . . . , sn) of consecutive adjacent superpixels.

More formally, let us denote by ΠK(s, t) the set of paths join-
ing any pair of superpixels (s, t) ∈ S2, without any loop, and
having length K: ΠK(s, t) = (s0, . . . , sK) ⊂ SK+1, such that ∀k ∈
⟦0,K⟦, sk+1 ∈ A(sk), s0 = s, sK = t, and ∀ j, k ∈ ⟦0,K⟧, s j , sk.
Similarly, we also define Π(s, t), the set of paths joining super-
pixels s, t with any length, by extension:

Π(s, t) =
⋃
K∈N
ΠK(s, t).

The proposed path-based neighborhoods relies on previously
estimated guidance map g that contains the information about
the orientation and saliency of the structures of the scene, useful
to define neighborhoods in every superpixel. In particular, when
the norm ∥gs∥ at a given superpixel s is below a fixed threshold,
the neighborhood in s is V(s) = A(s), i.e. an isotropic neigh-
borhood that ensures adjacency. Otherwise, the set of neighbors
is given by the union of the elements of two paths that expand
from s to the two opposite directions corresponding to the orien-
tation of gs. In the next subsections, we present the two options
investigated for constructing the path-based neighborhoods.

3.3.1. Target-based neighborhood
Target-Based Neighborhood (TBN) is derived from paths

that join, starting from a source superpixel s ∈ S, two “tar-
gets” corresponding to distant superpixels (t∗0, t

∗
1) ∈ (S \ {s})2.

Specifically, for j ∈ {0, 1}, the targets are selected with

t∗j ∈ argmin
t∈S s.t. (−1) j⟨gs,

#»st ⟩>0
∥I(s)− I(t)∥22 −η∥

#»st∥2 ×
∣∣∣⩽ gs,

#»st ⩾
∣∣∣ , (6)

where ⟨., .⟩ denotes the dot product between two vectors so that
the constraint (−1) j⟨gs,

#»st⟩ > 0 refers to an half-space domain,
⩽ ., . ⩾ stands for the cosine similarity (also called normalized
dot product) between two vectors, ∥.∥2 is the Euclidean norm of
a vector, |.| is the absolute value of a real number, and η ∈ R>0
an hyperparameter to set.

In Equation (6), the first term favors the superpixels s and t
to share similar image intensities while the second one favors
far targets being aligned with gs. Note that, for selecting close
neighbors, the range of search is restricted to an ellipse cen-
tered at s with major axis aligned with gs and that solutions are
derived by Dynamic Programming (DP).

Then, the paths are selected among the two sets Π(s, t∗0) and
Π(s, t∗1) joining s to t∗0 and t∗1, respectively. For doing so, we
formulate a cost function that the optimal path (denoted by p∗j),
j ∈ {0, 1}, has to minimize:

p∗j ∈ argmin
p∈Π(s,t∗j )

|p|−1∑
k=0

∥I(p(k)) − I(p(k + 1))∥22, (7)

where |p| stands for the length of the path p, and p(k) denotes
the kth element of it. The term to minimize in Equation (7)
is large when the gray levels of successive superpixels along
a path are dissimilar and small otherwise. We also use DP to
derive a minimizer of previous equation, and the neighborhood
V(s) is finally constructed as the set of the superpixels in p∗0 or
in p∗1, but s: V(s) = (p∗0 ∪ p∗1) \ {s}. The adjacency along these
paths being ensured by construction, the derived neighborhood
forms a single connected component.

We give an illustration of this kind of neighborhood in Fig-
ure 2a. While this neighborhood ensures that the set of neigh-
bors of a superpixel s forms a single connected component and
favors paths oriented in the estimated direction of thin struc-
tures, there is no guarantee concerning the cardinality of these
paths. Depending on the image content that influences the loca-
tion of the target sites, one site may have a very small amount
of neighbors in a very contrasted location, or conversely could
possibly have a large number of neighbors if there exists an ar-
bitrary long path with constant radiometry. In our experiments,
we set η = 30.

3.3.2. Cardinal-based neighborhood
Cardinal-Based Neighborhood (CBN) is also a path-based

neighborhood. However, instead of constraining the path ex-
tremities like TBN (see Section 3.3.1), it constraints path car-
dinality (and thus neighborhood cardinality): ∀s ∈ S, V(s)
is the union (excepting element s) of two length-fixed paths
p∗0, p∗1 ∈ ΠK(s, ·), with ΠK(s, ·) denoting the set of paths of
length K ∈ N>1 starting from s. Additionally, these paths are
encouraged to expand in opposite directions.



Christophe Ribal et al. / Journal of Visual Communication and Image Representation (2022) 7

(a) Target-Based Neighborhood (b) Cardinal-Based Neighborhood

Fig. 2: Toy example of path-based neighborhoods. The arrow indicates the
orientation of gs and superpixels of neighborhood are shown in color. For TBN,
two “targets” (in red) are selected in an ellipse centered on the source superpixel
s (in grey). For CBN, two paths with K = 3 elements are built to be aligned
with gs, taking into account radiometric similarity with the site s.

As previously, we define a cost function presenting a tradeoff
between fidelity to the thin structure orientation and fidelity to
the gray level of originating superpixel s. For any j ∈ {0, 1},

p∗j ∈ argmin
p∈ΠK (s,·)

∑
t∈p

∥I(s) − I(t)∥22 + η
′ψ j(

#»st, gs),

where η′ ∈ R>0 is an hyperparameter to set, and

ψ j( #»u , #»v ) =
{

arccos (|⩽ #»u , #»v ⩾|) if (−1) j⟨ #»u , #»v ⟩ > 0,
+∞ otherwise,

measures the angle between the vectors #»u and #»v and discrimi-
nates whether the dot product is positive or not.

Note that, in CBN, the cost function compares gray level
and positions of each site of the path versus the site s instead
of computing these differences on the adjacent sites on the
path (as with TBN), to allow local deviations while ensuring
global neighborhood orientation and gray level value. Figure 2b
shows an example of neighborhood constructed with such an
approach. In our experiments, we set η′ = 100 and K = 3.

4. Experiments and results

4.1. Data

We test our approach on some scenes extracted from the pub-
lic1 Middlebury College dataset [24]. For each scene, a ground
truth depth map and an all-in-focus RGB image are provided.
Both images have 360 × 360 pixels. These images enable us to
simulate the desired set of blurred images thanks to the defocus-
ing algorithm [21], that is currently available as a Matlab source
on MathWorks file exchange. In our simulations, the multiple
images correspond to different focal object plane depths along
the axis e2 (whereas (e0, e1) is a basis for image plane). For
simplicity and readability, we simulate images at focus values
regularly sampled and set this step to be the unit. The maximum
depth, denoted by ∆h ∈ N, is therefore equal to nfoc that we set
equal to 50. However, images taken at irregular steps could be
considered as well without loss of generality.

1https://vision.middlebury.edu/stereo/data/

Then, the set of defocused images is assumed to be the only
input data available, and we reconstruct depth values based on
the following steps. Firstly, we compute the sharpness profiles
in each pixel independently and from maximum of these pro-
files, we derive the blind estimate of all-in-focus image. Sec-
ondly, we compute the superpixels from this blind all-in-focus
image. The number of superpixel algorithms proposed in the
literature is rather important, including different kinds of su-
perpixels that embed different properties, such as the adherence
to the boundaries of the objects, the compactness or convex-
ity of the resulting superpixels, their regularity, or the smooth-
ness of their boundaries. We refer the reader to [6] to have an
overview of the variety of superpixel algorithms. In practice,
after a few comparisons, we focus on the superpixels provided
by an algorithm called ETPS [25], since it is energy based (as
the general framework adopted for our work) and offers rela-
tively smooth and regular superpixels. Thirdly, as described
in Section 2.2, the sharpness profile in each superpixel as well
as the blind superpixel depth map û are derived. Fourthly, we
compute the guidance map g and construct the neighborhood
field {V(s),∀s ∈ S}, based on the chosen method as described
in Sections 3.1.2, 3.2.2, 3.3.1 and 3.3.2. Fifthly, V and û allow
us to instantiate our anisotropic regularization and to derive the
regularized depth map results presented in the following next
sections.

4.2. Evaluation criteria
The Ground Truth (GT) provided in Middlebury College

dataset [24] is at pixel level. To perform evaluation, we du-
plicate the depth estimated for a given superpixel to each of its
pixels. In the following, for the sake of clarity, we prefer not
to change the variable name so that we also denote by u the
estimated depth map at pixel level (the element lattice P or S
removing ambiguity if any) and by ũ the GT.

Evaluation metrics. We focus on three complementary global
metrics, namely RMSE (Root Mean Square Error) that has
good additive properties, PSNR (Peak Signal to Noise ratio) de-
rived from RMSE and SSIM (Structural Similarity Index Mea-
sure [26]) that bases on perception-model to measure the sim-
ilarity between two images. The mathematical expressions of
these metrics are as follows:

RMSE(u, ũ) =

√
1

#P

∑
p∈P

(up − ũp)2,

PSNR(u, ũ) = 20 log10

(
∆h

RMSE(u, ũ)

)
,

SSIMΩ(u, ũ) =
1
♯P

∑
p∈P

(
2µu,pµũ,p +C1

) (
2σu,ũ,p +C2

)(
µ2

u,p + µ
2
ũ,p +C1

) (
σ2

u,p + σ
2
ũ,p +C2

) ,
where ♯P stands for the cardinality of P, Ω is a window cen-
tered at any pixel p and of size 7 × 7 in our case, µu,p, µũ,p are
the means over Ω centered at p of u and ũ values respectively,
σ2

u,p, σ2
ũ,p, and σu,ũ,p are the variances and covariance, respec-

tively. Finally, the constants C1 and C2 are computed from ∆h

as C1 = (0.01∆h)2 and C2 = (0.03∆h)2 for numerical stability.

https://vision.middlebury.edu/stereo/data/
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This is the version of SSIM specified in [26] with (according to
their notations) α = β = γ = 1. By computing the variances,
covariance and mean values on a set of windows covering the
whole image, SSIM incorporates comparison measurements of
luminance, contrast and structure of images that allows to take
into account important perceptual phenomena in its evaluation.

For result comparison, we remind that the lower the RMSE
values are (in [0,∆h]), the better the results are while for PSNR
and SSIM criteria, higher values (in R≥0 and [0, 1] respectively)
reflect better performance.

Evaluation maps. Three complementary kinds of maps allow
us to visualize the difficult areas. Firstly, depth error map, called
E, will stress the image areas with poorest reconstruction. Sec-
ondly, neighborhood orientation map will represent saliency
and direction information extracted from the guidance map, that
allows us to evaluate qualitatively this latter. Thirdly, depth dy-
namic within neighborhoods, called QV , provides a measure of
the neighborhood consistency in terms of depth. Pixel values of
E and QV maps are computed as follows:

E(p) = |up − ũp|, ∀p ∈ P,

QV (p) = max
q∈V(p)

|ũq − ũp|, ∀p ∈ P,

where V(p) at pixel level is simply the set of pixels that belong
to any superpixel neighbors of the superpixel including p.

Concerning the interpretation of these maps, the lower the E
values (in [0,∆h]), the better the depth estimation at considered
pixel. The orientation map is expected to be relatively smooth
while following the sharp edges of the objects and aligning with
the thin structures. Finally, in QV , low values (in [0,∆h]) reflect
a consistent neighborhood (without implying uniqueness of the
solution). Note that a major benefit of QV criterion is that it does
not require any neighborhood ground truth (which we obviously
do not have).

4.3. Alternative approaches considered for comparison

To evaluate the benefits of our approach compared against
isotropic neighborhoods or simplest anisotropic ones, we focus
on the following alternative approaches.

Stawiaski’s isotropic neighborhood. In [9], an isotropic neigh-
borhood is computed such that the superpixels that share a com-
mon border are neighbors and their interactions are weighted
by the length of this common border. This neighborhood corre-
sponds to the adjacency relationship, with a weighting function.
This formulation ensures that the set constituted by a superpixel
and its neighbors is a single connected component, but it does
not ensure that the barycenters of neighboring superpixels are
close from each other: Very large superpixels may therefore be
included in the neighborhood of a given superpixel s while most
of the pixels that constitute them are actually far from s. Fortu-
nately, such configurations are rare for regular superpixels.

Shape-based neighborhood inspired from [14]. Shape-based
neighborhood is an intuitive method for building anisotropic
neighborhoods. The “shape” refers to the approximation of the
neighborhood as a parametric shape, namely ellipse in our case.
The neighbors of a superpixel s are then the superpixels whose
barycenter is included in the “shape” centered in s. We con-
sidered in our case parametric ellipses whose major semi axis
directions are given by the guidance map in s. Practically, when
saliency in superpixel s is very low, i.e. ∥gs∥ is lower a given
threshold (0.05), the direction is not reliable so that we rather
define neighborhood as a disc, which boils down to the isotropic
superpatch neighborhood of [14]. Note that we do not exploit
further saliency information that appears noisier than direction,
and set the eccentricity as a constant parameter of the model.

Finally, let us underline that since such neighborhoods are
computed from barycenters positions, they do not enforce ad-
jacency of the neighbors. In particular, when the superpix-
els are highly irregular, concave, or with low compactness,
they may yield neighborhoods with disconnected components.
However, with compact, regular and convex superpixels, shape-
based neighborhood provides an efficient and intuitive method
for building anisotropic neighborhoods.

Perfect neighborhood. For having an estimation of the possibly
best performances brought by an anisotropic approach, we pro-
pose a “so-called” perfect anisotropic neighborhood. The latter
is computed with respect to GT depth map ũ as follows. Perfect
neighborhood is implemented as a shape-based neighborhood
with a disc of given radius centered in s ∈ S, where we remove
the neighbors presenting a depth difference between the depths
of GT and s higher than a fixed threshold DV =

∆h
10+1. Addition-

ally, elements that do not belong to the s connected component
are removed from the neighbors. Thus, perfect neighborhood
refers to a neighborhood having good properties in terms of ho-
mogeneity, connectivity and shape, even if it is not unique.

4.4. Results

4.4.1. Global performance analysis
Let us first consider global performance obtained consider-

ing the whole Middlebury college dataset. Figure 3 shows the
results achieved using 5000 superpixels (ETPS [25]), in terms
of RMSE (allowing summing individual image performance),
varying the regularization parameter α. We notice that the per-
fect neighborhood and the CBN, either from RORPO or TVo,
yield the lowest RMSE values meaning they outperform all the
other approaches for a wide range of regularization coefficients.
Since perfect neighborhood was designed to evaluate the per-
formance gain specifically related to anisotropic neighborhood
(leaving apart the question of its estimation) with respect to
isotropic one (represented by Stawiaski’s approach), the results
clearly underline the benefit of anisotropic neighborhood for
regularization. A satisfactory result is that CBN provides al-
most as good results as perfect neighborhood (which we remind
is unrealistic since it requires GT), stressing the performance
of neighborhood estimation itself. Comparing with “ellip” that
refers to the “Shape-based neighborhood inspired from [14]”,
we notice that these latest results are much worse, underlining
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Fig. 3: Comparison of neighborhood anisotropy benefit measured through
RMSE on the whole dataset. The results are achieved using 5000 ETPS su-
perpixels [25] and different neighborhood estimations.

the importance of a fine (not too simplistic) estimation. About
TBN estimation, we notice it only leads to interesting results for
low regularization (α < 1). Finally, we also note that RORPO
or TVo use for g estimation does not really impact the results,
but a very slight advantage for RORPO. In conclusion, accord-
ing to Figure 3, best performance is achieved by RORPO CBN,
with a very noticeable robustness of the results with respect to
regularization coefficient, α ∈ [2, 16]. This robustness of CBN
to the regularization parameter that is also confirmed by visual
inspection of error maps, is one of the strengths of this approach
against its alternatives.

We now check the result dependency to superpixel segmen-
tation. However, to investigate how results are dependent on
ETPS superpixels, we consider, as an alternative to ETPS su-
perpixels [25], the WaterPixels (WP) proposed in [27]. Figure 4
shows curves analogous to those in Figure 3 considering either
5000 (like with ETPS superpixels) or 2000 WP, respectively.
With respect to Figure 3, we notice the curves and conclusions
are remarkably similar, but a slight loss of performance when
the number of superpixels is lower (it can be seen looking at the
lowest value achieved considering perfect neighborhood) and a
more distinct advantage for RORPO with respect to TVo (when
looking at the CBN curves).

To further investigate the performance variability with re-
spect to scene and/or superpixels, Figure 5 and Figure 6 respec-
tively show the PSNR and the SSIM obtained on each scene,
for the best result obtained with a varying α. First of all, the
remarks concerning the robustness to the two kinds of consid-
ered superpixels (ETPS and WP) or their number (5000 and
2000) still hold: Difficult scenes are the same and CBN achieves
very interesting performance in most cases. Indeed, on some
scenes such as Aloe1, Books1, Wood11, all approaches yield
equivalent results, whereas in other scenes such as Lampshade,
Plastic1 or Reindeer, achieved results appear more sensible to
neighborhood estimation. We also note that the two criteria
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Fig. 4: Comparison of neighborhood anisotropy benefit measured through
RMSE on the whole dataset. The results are achieved using either 5000 WP
(left) or 2000 WP (right) using different neighborhood estimations. The legend
is the same as in Figure 3.

PSNR and SSIM are complementary since differences of per-
formance can be visible in only one of them, such as with scene
Midd11 or Moebius1. However, let us underline that in most
scenes, the top trio is RORPO-CBN, TVo-CBN and quite ob-
viously perfect neighborhood. These approaches outperform
both isotropic neighborhood (represented by Stawiaski’s ap-
proach) and naive anisotropic one (ellipse-based). Nevertheless
we also confirm the fact that an isotropic neighborhood assump-
tion is preferable to too naive anisotropic neighborhood estima-
tion. In conclusion, despite the scene disparity inducing vari-
able performance, the main conclusions concerning the benefit
of anisotropic neighborhood fine estimation can also be drawn
at scene level.

4.4.2. Detailed analysis of two cases
For further analysis, we present the corresponding error maps

and neighborhood quality maps, focusing on some cases where
the performance highly depends on the type of neighborhood,
such as with the Lampshade scene and the Reindeer one.

Let us first consider the neighborhood estimation quality. As
specified in Section 4.2, the values of the depth dynamic within
a neighborhood are in [0,∆h], with low values reflecting a con-
sistent estimation of neighborhood. From Figure 7, we clearly
see that most of the heterogeneous neighborhoods are located at
the borders of thin structures such as the lampshade rod or the
reindeer antlers. We also note that lowest values are achieved
for the perfect neighborhood (by construction) and then by
CBN (either from TVo or RORPO guidance map) whereas both
TBN and Stawiaski’s neighborhood are much worse in terms of
homogeneity.

Secondly, we compare the guidance maps provided by TVo
and by RORPO. Figure 8 shows these maps in the cases of the
two considered scenes, Lampshade and Reindeer. In both cases,
we notice that the direction of the structures is rather well es-
timated although we also observe some noise. Comparing the
two estimators, we note that while TVo looks smoother in terms
of orientation (especially on Reindeer scene), RORPO both bet-
ter detects the isotropic areas (in white) and highlights well the
sharp areas of the scene. However, these observed differences
seems to have only little impact on the neighborhood consis-
tency as depicted in Figure 7 or on depth map reconstruction.
In what follows, we now focus on RORPO algorithm.

Finally, let us observe the error maps versus regulariza-
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Fig. 5: Per scene best results in terms of PSNR measure for each neighborhood
construction using either 5000 ETPS superpixels (top) or 2000 WP (bottom).
The higher the value is, the better the result is.

tion parameter α for our two scenes and the three methods
of neighborhood estimation: Perfect (reference for benefit of
anisotropic neighborhood), RORPO CBN and Stawiaski (ref-
erence for isotropic neighborhood). For Lampshade scene, we
notice the very high noise level in the absence of regulariza-
tion (α = 0) that is progressively corrected by increasing α
before new errors this time due to the removal of thin struc-
tures appear. This phenomena can be clearly seen in the case
of Stawiaski’s neighborhood with apparition of errors located
on the vertical thin bar or rod for α > 1. From this scene,
we also notice that the optimal α values vary with the consid-
ered neighborhood; as expected, anisotropic neighborhoods al-
low for higher α values without reconstruction degradation (in
particular for the thin structures). Specifically, in Lampshade
scene, α values providing best results are equal to 4, 8 and 2
for the Perfect, RORPO CBN and Stawiaski’ neighborhoods,
respectively. Reindeer scene is much less noisy than Lamp-
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Fig. 6: Per scene best results in terms of SSIM for each neighborhood construc-
tion; 5000 ETPS superpixels (top) or 2000 WP (low). The higher the value is,
the better the result is.

shade scene. However, regularization is again required to re-
move the blind estimation errors in the vertical right strip and
in the bottom triangle, both been part or subparts of objects
presenting a very homogeneous radiometry. Due to this lower
initial level of noise, α “optimal” values are lower than in Lamp-
shade scene, namely they are equal to 1, 2 and 0.5 for the Per-
fect, RORPO CBN and Stawiaski’ neighborhoods, respectively.
We notice that for higher values, regularization introduce depth
errors on the antlers of the reindeer figure, all the more quickly
as the neighborhood is isotropic (indeed with Stawiaski, bot-
tom triangle errors cannot be corrected without degrading rein-
deer antlers). Using anisotropic neighborhoods, either Perfect
or RORPO CBN, the degradation of thin structures is delayed
so that we observe the existence of α values allowing for the
correction of blind errors without introduction of new errors.
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All-in-focus Perfect TVO CBN RORPO CBN TVO TBN RORPO TBN Stawiaski

Fig. 7: Comparison of neighborhood quality QV for Lampshade (top row) and Reindeer (bottom row) scenes, from left to right: All-In-Focus image, QV maps for
perfect neighborhood, TVo CBN, RORPO CBN, TVo TBN, RORPO TBN and Stawiaski’s neighborhood. Dynamics has been reversed and spread in the interval
[0, 255] so that dark areas represent bad performance.

Fig. 8: Comparison of guidance maps g for Lampshade and Reindeer scenes, using use a color representation, such that the saturation and the hue encode respectively
the saliency and the orientation; from left to right: Color wheel, TVo Lampshade, RORPO Lampshade, TVo Reindeer, RORPO Reindeer.

4.4.3. Superpixel versus pixel level

Finally, let us investigate the benefit of considering the super-
pixel level rather than the pixel one. For doing so, we consider
again global performance statistics, namely the RMSE com-
puted on the whole dataset.

In terms of complexity, the number of pixels is 360 × 360
versus 5000 superpixels (ETPS) in the considered experiments.
Table 1 gives the mean running times in seconds computed over
all the scenes of the Middlebury college dataset, for the four
main steps of our approach: (i) superpixel segmentation, (ii)
guidance map estimation (either based on RORPO or on TVo),
(iii) neighborhood construction, and (iv) depth map optimiza-
tion. These running times have been obtained on an Intel core
i9-10900X @ 4.7 GHz, with 64 Go of RAM. Table 1 firstly con-
firms that RORPO is much faster (3 times) than TVo. Secondly,
considering RORPO instead of TVo, the average running time
for the global algorithm is 61.6 secs, i.e. about 1 minute per
image. We consider this time as very encouraging since it was
achieved with standard programming code, i.e. without opti-
mization using GPU for instance. Thirdly, the running time for
depth map optimization (using graph cuts) is very low thanks
to the complexity reduction working with superpixels instead
of pixels. For comparison, running the isotropic neighborhood
depth map optimization at pixel level, the average running time
is 36.8s, i.e. about 30 times slower. Thus, even without code
optimization, the additional running time for anisotropic neigh-
borhood estimation steps is compensated by the running time
decrease for depth map optimization step.

In terms of performance, Figure 10 allows for comparison
of the RMSE curves for three kinds of neighborhoods, namely

Superpixels RORPO TVo Neighbohood Depth
segmentation construction optimization

13.2 28.1 94.6 19.0 1.3

Table 1: Mean running times (in seconds) of the main steps of our approach for
computing segmentation of a scene at superpixel level.

Lampshade Reindeer
PSNR SSIM PSNR SSIM

RORPO-CBN ETPS 57.78 86.33 63.83 97.89
4-connectivity pix. lev. 54.61 83.81 63.94 96.40
RORPO-CBN pix. lev. 53.32 83.00 64.62 97.18

Table 2: Results obtained for the scenes Reindeer and Lampshade with our
proposed anisotropic neighborhood at superpixel level (first row), compared to
isotropic neighborhood at pixel level (second row) and RORPO-CBN neigh-
borhood at pixel level (last row). SSIM values are indicated in percentage. For
each scene, best result is in bold and second best is underlined.
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RORPO CBNPerfect Stawiaski RORPO CBNPerfect Stawiaskiα

0

0.25

0.5

1

2

4

8

Fig. 9: Maps of depth error obtained for the scenes Lampshade (half left) and Reindeer (half right), for three neighborhood construction strategies (Perfect, RORPO
CBN and Stawiaski) and different values of regularization parameter α ∈ {0., 0.25, 0.5, 1, 2, 4, 8}. For better visualization, error value dynamic has been bounded to
2∆h

5 .
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Stawiaski (i.e., isotropic), RORPO CBN or RORPO TBN (rep-
resenting best candidate for anisotropic neighborhoods) and
Perfect, either at superpixel level (using 5000 ETPS superpix-
els) or at pixel level. First of all, from Figure 10, we notice an
improvement of performance at superpixel level with respect
to pixel one. This improvement is a very strong point since
one could have expected that superpixels would introduce some
spatial imprecision (at the benefit of complexity decrease), es-
pecially since the RMSE is measured at pixel level. Neverthe-
less, at least on the considered dataset, this preprocessing step
is beneficial for the precise image reconstruction. This com-
ment is confirmed in most cases when we examine individual
scenes. For instance, for the two detailed cases Lampshade
and Reindeer, the two first lines of Table 2 show the perfor-
mance indicators PSNR and SSIM achieved by RORPO-CBN
on ETPS superpixels and isotropic (4-connectivity) and we see
that RORPO-CBN yields to significantly better result except in
terms of PSNR on Reindeer scene where nevertheless the per-
formance values are very close.

Then, we notice the potential benefit of anisotropic neigh-
borhood with respect to isotropic one (at pixel level, Staw-
iaski’s neighborhood boils down to 4-connectivity neighbor-
hood) since Perfect neighborhood yields the best results. How-
ever, we also notice that, at pixel level, the difference of per-
formance is very small, and that isotropic neighborhood yields
slightly better result than RORPO TBN or RORPO CBN. A
possible explanation is that the requirement to take into account
anisotropic neighborhood is less pregnant at pixel level (due to
the size of neighborhood with respect to objects in pixel num-
bers as well as the regularity of the lattice) and that neighbor-
hood estimation is less efficient. Indeed it is based on blind
depth estimation that may be much noisier at pixel level that
at superpixel one. Besides, the performance may depend on
the considered scene. For instance, Table 2 shows that on the
Reindeer scene, RORPO-CBN at pixel level slightly outper-
forms isotropic pixel level both in terms of PSNR and SSIM
indicators. These observations also open perspectives to under-
stand the relationship between scene feature and scale of anal-
ysis (from pixel level to superpixel ones).

In conclusion, the benefit of presegmenting the scene in su-
perpixels and then handling anisotropic neighborhood appears
both in terms of global performance and in terms of robust-
ness with respect to regularization parameter α. Besides the
additional complexity introduced by neighborhood estimation
(RORPO-CBN according to this study) is compensated by the
complexity decrease when handling much less superpixels than
pixels.

5. Conclusion and perspectives

In this paper, we propose some new anisotropic neighbor-
hoods that offer a flexible and generic formulation with respect
to the site lattice (i.e. possibly irregular). For doing so, we
select and customize two vesselness operators and we show
their efficiency thanks to their properties of noise robustness
or adaptability to thin structures. Finally, we evaluate and study
the benefit of the constructed anisotropic neighborhoods in par-
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Stawiasky pixels
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Fig. 10: Superpixel versus pixel level: Comparison in terms of RMSE com-
puted on the whole dataset, for three kinds of neighborhoods.

ticular for thin structure preservation. Specifically, we con-
sider SFF application and we evaluate our results on a reference
dataset both according to quantitative criterion but also based on
qualitative observation of evaluation maps.

Future works will involve the following perspectives. Firstly,
we aim at studying the relationships between the hyperparam-
eters characterizing the neighborhoods and the superpixel ones
(regularity, number), also relating these parameters to the scale
of scene main features and objects. Secondly, focusing on
RORPO-CBN approach that appears to provide best perfor-
mance and based on the evaluation of the running times per
process, we will focus on the code optimization of the RORPO
module. Thirdly, since the proposed anisotropic neighborhood
construction can be useful for many energetic formulations of
discrete inverse problem as confirmed by preliminary tests on
binary segmentation [28], we aim at considering segmentation
of thin structures such as frequently encountered in medical
imaging (e.g., vessels) or remote sensing imagery (e.g., roads,
rivers). Fourthly, in the proposed approach, neighborhood con-
struction relies on guidance map itself estimated from a first
(blind) evaluation of the solution. We aim at evaluating the ben-
efit of using a current evaluation of the solution for our neigh-
borhood construction process. Although such an alternate min-
imization seems attractive, first tests showed that the risk of di-
vergence from the GT solution is real so that we will have to
define rigorously the convergence conditions.

Appendix A 3D Tensor Voting

Let R3×3 with an origin coordinate O in R3 be the considered
vector space, endowed with a voting function VF : R3×3×R3 7→

R3×3. A tensor can be represented by a matrix T ∈ R3×3. The
voting operation VF builds a new tensor T′ to the cast location
P ∈ R3 and adds it to the tensor at this location, since tensors
have good summation properties. The tensor T′ is a combina-
tion of rotation and scaling of the source tensor T, combinations
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that are all derived from the stick kernel. Indeed, tensors can be
decomposed in a basis of tensors, in which the stick tensor is the
simplest element. The stick kernel refers to the voting operation
of this stick tensor.

In tensor voting, a tensor is a second order symmetric tensor
that can be represented by a positive semidefinite diagonaliz-
able matrix T ∈ R3×3, whose eigenvectors are orthogonal. In
addition to its coordinates, one tensor can be characterized ei-
ther from six scalar values corresponding to the coefficients of
the symmetric matrix or, from three eigenvalues and a rotation.
This rotation defines the transformation of the orthonormal ba-
sis (e0, e1, e2) to align with (ê0, ê1, ê2) ∈ R33, the set of eigen-
vectors sorted by decreasing eigenvalue. The decomposition of
the matrix into a set of diagonal matrices is a key point intro-
duced by [17]. By definition, the tensor is a diagonal matrix in
the system (ê0, ê1, ê2), so that:λ0 0 0

0 λ1 0
0 0 λ2

 = (λ0 − λ1)Tstick + (λ1 − λ2)Tplate + λ2Tball, (8)

where Tstick, Tplate and Tball are respectively the stick tensor,
the plane one and the ball one, named according to their rep-
resentations as ellipsoids (see figure in [29]), and each of them
represents a different type of structure: The stick component
encodes the saliency of surfaces that are normal to ê0, the plate
component is encoding some curves with tangent direction ê2,
and the ball component is encoding points, e.g. corresponding
to thin structure junctions.

The stick kernel that allows for the vote cast by a stick ten-
sor, Tstick ∈ R3×3, involves a multiplication of Tstick by a decay
function DF, and a rotation by a vector Ω. Specifically, DF is
as follows:

DF(r, ϕ, σT ) = exp
− r2 + vϕ2

σ2
T

 ,

where σT is the scale parameter, v is a constant that controls
the decay with curvature, r ∈ R>0 is the length of the circle arc
between O and P on the osculating circle joining O and P with
normal ê0 at point O and ϕ ∈] − π, π] the angle between the
tangent to the same osculating circle in O and

#   »
OP. The decay

function allows for a smooth voting kernel whose support can
be bounded to a sphere of radius 3σT . Along with the term
vϕ2 used for increasing the decay with curvature, [17] proposes
also to restrict vote to the area where ϕ < π

4 and consider that
the term DF(r, ϕ, σT ) is null otherwise.

The rotation R(Ω) ∈ R3×3 is defined by the rotation vector
Ω ∈ R3, that transforms the vector ê0 into the vector ê′0 with ê′0
and ê0 symmetrical with respect to the mediator of the segment
OP. This allows for computing the cast tensor T′stick ∈ R

3×3 as
follows:

T′stick = DF(r, ϕ, σT )R(Ω)TstickRT (Ω).

where ·T is the transposition operation.
Plate tensor can be written Tplate = ê0êT

0 + ê1êT
1 , while ball

tensor is written Tball = ê0êT
0 + ê1êT

1 + ê2êT
2 . The plate and ball

kernels are derived from the stick kernel by integration of stick
tensors. Approximating these integrals as sums of tensors,

T′plate ≈

I∑
i=0

DF(r, ϕ, σT )R(Ω)Tstick(i∆ρ)RT (Ω)∆ρ,

T′ball ≈
∑I

i=0
∑J/2

j=−J/2 DF(r, ϕ, σT )R(Ω)Tstick(i∆ρ, j∆ψ)
RT (Ω) sin( j∆ψ)∆ψ∆ρ,

where ∆ρ = ΠI and ∆ψ = ΠJ , and I, J ∈ N are arbitrary constants.
Note that these kernels are usually precomputed for computa-
tional efficiency.

Then, any tensor Ts at location s ∈ R3 can be decomposed
from Equation (8) in a basis (ê0, ê1, ê2) as T(s) = (λ0−λ1)ê0êT

0 +

(λ1 − λ2)ê1êT
1 + λ2ê2êT

2 , and the vote cast at location t ∈ R3 is
written:

VF(T, #»st) = (λ0 − λ1)VF(Tstick(t), #»st)
+ (λ1 − λ2)VF(Tplate(t), #»st)
+ λ2VF(Tball(t),

#»st)

Having introduced the voting operation for one tensor, let us
specify the global voting process.

From S0,S1 ⊂ S the sets of voters and the cast locations
respectively, ∀s ∈ S,{

∀p < S1, T′(p) = T(p),
∀p ∈ S1, T′(p) = T(p) +

∑
s∈S0

VF(T(s), # »sp),

where T′(s) is the tensor at location s after vote and T(s) before.
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