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One-Phase and Two-Phase Flow in Highly Permeable Porous Media

Yohan Davit and Michel Quintard

Institut de Mécanique des Fluides de Toulouse (IMFT) - Université de Toulouse, CNRS-INPT-UPS, Toulouse, France

ABSTRACT
Many industrial and natural processes involve flow in highly permeable media, such as exchangers,
canopies, urban canyons. Traditional assumptions used for modeling flow equations in low perme-
ability structures may not hold for these systems with very large pores. Reynolds numbers may be
too large so that Darcy’s law is no longer valid. Large Capillary and Bond numbers may also inval-
idate the quasistatic assumptions implicit in many empirical formulations and upscaling results. In
this paper, we review several approaches developed to handle such cases, basing our analysis on
new experimental data and results from upscaling methods. For one-phase flow this has led to vari-
ous formulations of macro-scale momentum transport including generalized Forchheimer equations
and macro-scale turbulent models. For two-phase flows, we discuss possible ways toward deriving
macro-scale models from the pore-scale equations and introduce several macro-scale models: gener-
alized Darcy’s laws, models with cross terms accounting for the viscous interaction between the flow-
ing phases, formulations capturing inertial, or dynamic effects. Models suitable for describing flow in
structuredmedia like chemical exchangers containing structuredpackings are also introduced. Finally,
wepresent hybrid representations that couple approaches at twodifferent scales, for instance, ameso-
scale network approach coupled with dynamic rules obtained from pore-scale numerical simulations
or experiments. This approach proved useful in describing the diffusion of impinging jets in packed
beds, which is not described properly by capillary diffusion.

Introduction

Current trends in porous media physics involve research
on transport in structures with pores at both extremes
of the size spectrum. One extreme corresponds to small
pore sizes and very low permeabilities, such as oil-shales
or nanoporous materials. The other extreme, which is
the topic of this review, corresponds to highly perme-
able media with a pore size that can be much larger
than the capillary lengths of the fluids. This is the
case for many porous media used in chemical engi-
neering, such as trickle beds—particles larger than the
millimeter—or structured packings—pore size of about
1 cm. Other examples include fractured materials or geo-
physical formations, very coarse sands, natural and man-
made canopies, nuclear reactors as well as debris beds
in damaged nuclear cores. Although highly permeable
porous media are of interest in many different fields,
they have been given much less emphasis than low and
medium permeability media.

In classical applications, macro-scale models are
developed using a series of assumptions about the order

of magnitudes of the relevant dimensionless numbers.
For instance, one-phase flow are mostly considered in
the limit where the Reynolds number (Re) goes to zero,
this leading to the classical Darcy’s law [1]. In the case
of two-phase flow in porous media, Reynolds (Re), Bond
(Bo), and capillary (Ca) numbers are often assumed
to be small. This assumption is central to the validity
of the so-called generalized Darcy’s laws as introduced
by [2].

Can we modify the macro-scale models to describe
situations where one or all of these dimensionless num-
bers become very large? This problem has been the
subject of intensive research in the past decades. Here,
we review this work and discuss multiple aspects of the
multiscale problems associated with one- and two-phase
flow in highly permeable porous media. We put the
emphasis on the structure of macro-scale models that
have been developed and do not present other important
issues, such as numerical modeling or experimental
techniques that are specific to the highly permeable
case.
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Definitions, hypotheses, and upscaling
techniques

A variety of approaches have been proposed in the litera-
ture to obtain macro-scale representations directly from
the pore-scale problem. One may look at [3]–[6] for a
comparison between the various techniques. A repre-
sentative sample of papers includes, among hundreds of
relevant papers, the following works: [7]–[11] for vol-
ume averaging, [12]–[14] for homogenization theory, and
[15]–[17] for stochastic approaches. In general, these
methods apply to discretely hierarchical porous media
and assume the existence of a representative elementary
volume of characteristic length r0. Many conditions must
be fulfilled in order to obtain well-behaved average quan-
tities, in particular smooth and differentiable fields in
which high-frequency fluctuations have been filtered out.
One fundamental condition is the separation of length
scales, which is often written as

lp, lσ � r0 � L, (1)

where lp and lσ are pore-scale characteristic lengths and
L is the length of the macroscopic domain (see Figure 1).
Here, the subscript p in lp refers to the pore-space,
which can be filled with either one or two fluid phases.
The inequalities Eq. (1) are essentially geometrical con-
straints, which is only an order of magnitude estimate.
In a more precise presentation, the length-scales charac-
terize the variation of physical variables, such as pressure
and velocity fields, not of geometrical features of the
porous structure. For instance, L is often associated with
the characteristic length of spatially averaged quantities
and the validity of the hypothesis of separation of scales
is process and operator dependent. In the remainder of
this paper, we assume that this assumption is valid for the
different configurations and flow regimes. In addition to
the separation of scales, there are also other conditions
that are more specific to the type of averaging that is per-
formed. For spatial averaging, for example, well-behaved
averaged fields are obtained through spatial convolutions

Figure . Schematic representation of a porous medium.

and multiple averaging techniques, see more details in
[18]–[23]. This is beyond the scope of this review to pro-
vide the background about all these upscaling methods.

Here, the emphasis is on results specific to the case of
highly permeable media, with references to the relevant
literature on upscaling. In order to clarify the physical
nature of the macro-scale fields introduced in the various
models, we use the vocabulary and definitions of the vol-
ume averaging technique. We define the total and super-
ficial spatial averages using the most simple mathemati-
cal apparatus (see the cited literature for a more thorough
discussion and more general definitions using convolu-
tions), 〈

ψβ
〉 = 1

V

∫
Vβ
ψβdV, (2)

where Vβ is the volume of the β-phase contained within
V , the averaging volume represented in Figure 1, andψβ is
a physical variable associated with the β-phase (e.g., pres-
sure or concentration). The average of theβ-phase indica-
tor (a field having the value 1 in the β-phase, 0 elsewhere),
denoted γβ , yields

εβ = 〈
γβ

〉 = 1
V

∫
Vβ

dV = Vβ
V
, (3)

where εβ is the β-phase volume fraction (porosity if this
is the only phase in the pore-space). This can be used to
define the intrinsic phase average,

〈
ψβ

〉β as〈
ψβ

〉 = εβ
〈
ψβ

〉β
. (4)

Finally, the porosity, ε, is defined as

ε = 1 − εσ (5)

and the saturation of the β-phase, Sβ , by

εβ = ε Sβ (6)

with Sβ ∈ [0, 1].

One-phase flow

Let us consider the flow of a fluid (β-phase) within a
porous structure (solid phase σ ) with the fluid filling the
entire pore space. The pore-scale problem describing the
flow may be written for a Newtonian fluid with constant
density, ρβ , and viscosity, μβ , as

∇ · vβ = 0 in Vβ (7)

ρβ
∂vβ
∂t

+ ρβvβ · ∇vβ = −∇pβ + ρβg + μβ∇2vβ in Vβ
(8)

B.C.1 vβ = 0 at Aβσ , (9)

where vβ and pβ are the fluid velocity and pressure,
respectively, g is the gravitational acceleration, and Aβσ



represents the interface between the fluid and solid
phases.

The macro-scale variables needed for describing the
flow of the β-phase are the intrinsic phase averaged pres-
sure

Pβ = 〈
pβ

〉β (10)

and the filtration velocity, Vβ , or intrinsic velocity, Uβ ,
defined as

Vβ = 〈
vβ

〉 = εβ
〈
vβ

〉β = εβUβ. (11)

For one-phase flow of a Newtonian fluid, the important
dimensionless parameter characterizing the flow is the
pore-scale Reynolds number, which can be defined as

Re = ρβUrlβ
μβ

, (12)

where Ur is a reference velocity, often the intrinsic aver-
age velocity, and lβ a pore-scale characteristic length. We
can use the Reynolds number to distinguish different
flow regimes [24] corresponding to different macro-scale
models.

Creeping flow

In the limit Re → 0 (creeping flow), there is a broad con-
sensus for Darcy’s law [1], provided that the separation of
scales holds. This reads

Vβ = − 1
μβ

K · (∇Pβ − ρβg
)
, (13)

where K is the intrinsic permeability tensor. This equa-
tion, together with the macro-scale version of the mass
balance equation,

∇ · Vβ = 0 (14)

can be used to calculate themacro-scale velocity and pres-
sure fields.

Thismacro-scale law is supported bymany experimen-
tal results, in particular by Darcy’s own experiments. It
is also confirmed by theoretical developments. Upscal-
ing Stokes equations at the pore-scale (Eqs. (7)–(9)) via
homogenization theory [25] or volume averaging [20],
[26] yields a sound physical basis for the use of Darcy’s
law. Key steps of the mathematical developments are as
follows.

� Linearization of the Navier–Stokes equations in the
limit Re → 0 to obtain Stokes’ problem,

� Introduction of a coupled problem for macro-scale
values and pore-scale deviations defined as

pβ = Pβ + p̃β ; vβ = Uβ + ṽβ (15)
� Simplifications of the problem based on the separa-
tion of spatial scales,

� Introduction of an approximated solution of the cou-
pled problem through a closure, which emerges from
themathematical structure of the Stokes problem. At
first-order, this closure reads

p̃β = μβ b · Uβ ; ṽ = B · Uβ, (16)

where the vector b and tensor B are called mapping
variables. These are solutions of a local problem that
is usually solved over a representative unit cell (see
the Appendix),

� Derivation of the macro-scale equation from the
averaged equations and the closure: one obtains
Darcy’s law, Eq. (13) and the intrinsic permeability,
given by

K−1 = −ε−2
β

1
V

∫
Aβσ

nβσ · (−Ib + ∇B) dA, (17)

which is calculated from the solution of the clo-
sure problemover the representative unit cell. Nowa-
days, this is almost a routine operation to calcu-
late such effective properties from reconstructed
3D images, such as those obtained using X-ray
microtomography.

Inertial effects formoderate Reynolds numbers

When the Reynolds number becomes sufficiently large,
inertial effects start to predominate and the relation
between the pressure drop and the average velocity
becomes nonlinear. While the exact definition of the dif-
ferent regimes is still a matter of controversy [27]–[31],
the apparent permeability thatwould reproduce the actual
pressure–velocity relation may be roughly described as
in Figure 2. The first nonlinear regime corresponds to a
cubic dependence of the pressure drop upon the Reynolds
number ∝ Re3. This regime is often called the weak iner-
tial regime, as inertial effects affect the drag but the flow
is still laminar and steady. As the Reynolds number is
increased beyond this regime, a strong inertial regime is
usually observed that also corresponds to a steady flow
but for which the pressure drop can be approximated as
∝ Ren with 1 ≤ n ≤ 2. The exact value of n is difficult
to evaluate. In the literature so far, n seems to depend
upon the structure and order of the porous medium.
For instance, the work in [31] indicates that the value
of n is closer to 2 for disordered media than for order
ones. Further, for some porous structures—maybe most
of them—a single value of n cannot be defined [32] and
the strong inertial regime seems to correspond to a tran-
sition regime. For even larger Reynolds numbers, a tran-
sition to unsteady flow occurs. When this happens, time
fluctuations of the pressure and velocities must be consid-
ered. In this section, we limit our analysis to the onset of



Figure . Various flow regimes characterized by the apparent per-
meability, k∗, as a function of the Reynolds number.

unsteady flows and small temporal fluctuations.We there-
fore neglect time fluctuations and concentrate on spatial
averaging (we will see in Section Towards Turbulence in
Porous Media how to deal with large temporal fluctu-
ations.). Recent work in [32] suggests that the onset of
unsteady flow corresponds to a quadratic regime and to
a classical Forchheimer equation.

This has led to the proposal of heuristic laws having the
form of a Forchheimer equation, which can be written in
a very general manner as

0 = −∇Pβ + ρβg − μβK−1 · Vβ − F
(
Vβ

) · Vβ, (18)

where the term F(Vβ ) · Vβ is called a generalized Forch-
heimer term in reference to the work in [33]. If one solves
the upscaling problem using an asymptotic expansion in
terms of Reynolds number, we can recover theoretically
the first correction to Darcy’s law, i.e., cubic terms in the
weakly inertial regime [27]–[29], [31], [34],

F
(
Vβ

) ∼ ∥∥〈
vβ

〉∥∥2
. (19)

The correction to Darcy’s law in the steady inertial regime
is often relatively small (but it can bemeasured with accu-
rate experimental data [35]–[37]). In many situations,
only the quadratic correction has a significant impact and
inertial effects are often well approximated macroscopi-
cally by a quadratic term, i.e.,

F
(
Vβ

) ∼ ∥∥〈
vβ

〉∥∥ . (20)

This is supported by experimental data [33], [35]–[39] as
well as numerical predictions [31], [40]. However, from a
fundamental perspective, the quadratic expression of the
drag is only an approximate description of momentum
transport. Calculations over simple unit cells [31] indicate

that there are, in fact, many transitional regimes. This
implies that, in general, a careful analysis of the regime
and the accuracy required in a specific application must
be performed before deciding whether to use a simple
quadratic correction or more complex descriptions.

The above expression of macro-scale momentum
transport, which involves a tensorial expression of F, also
suggests the potential existence of anisotropy effects for
the Forchheimer term. Simpler expressions are often used
in the engineering practice, like Ergun’s equation [35]
which reads

0 = −∇Pβ + ρβg − μβK−1Vβ − ρβη
−1 ∥∥Vβ∥∥Vβ,

(21)
where η is called the passability. Based on collected exper-
imental data, Ergun proposed the following correlations
for K and η in the case of packed beds which are used fre-
quently in the engineering practice

K = ε3d2

hK (1 − ε)2
; η = ε3d

hη (1 − ε)
, (22)

where d is the equivalent particle diameter and hK = 150
and hη = 1.75. Such formulas must be corrected for par-
ticles that are not spherical, as shown in [37].

In conclusion, Forchheimer’s law is an attractive
macro-scale model that is broadly used to study many
problems [41]–[45], but it also has its limitations, in par-
ticular regarding the expression of the quadratic drag law,
as discussed above.

Toward turbulence in porousmedia

When the Reynolds number becomes very large, a fun-
damental question is whether the flow can structure on
large length scales, larger than several pores, or whether
the porous structure imposes a cut-off in the cascade of
length scales. This is important because this implies very
different macro-scale models. If the vortices and turbu-
lent structures are localized in a single unit-cell, then we
may be able to use the general Forchheimer equation, only
adapting the form of the drag (see [30], [46]). If this is
not the case, the macro-scale model will need to account
for other effects. For instance, are terms in Vβ · ∇Vβ or
macroscale turbulence models needed? Direct numerical
simulations in [47] indicate that spatial correlations of the
velocity field decrease very rapidly and that the flow is
almost periodic. This suggests that the porous medium
indeed induces a cut-off in the length scales character-
izing the structures of the flow. Therefore, performing
calculations of the flow over several unit-cells with peri-
odic boundary conditions will reproduce accurately the
flow. On the other hand, it has been observed using direct
numerical simulations that turbulence generated in a fluid



layer or at the interface between fluid and porous lay-
ers may penetrate a distance of several unit cells into the
porous domain and that in this area a macro-scale tur-
bulence model is needed [48]. Transition and bifurca-
tions may also be a lot more sensitive upon the size of the
domain considered, as is shown for the unsteady transi-
tion in [49], and calculations over a single unit-cell do not
yield accurate results for the critical Reynolds numbers.
There are still very few studies on this problem and these
seminal works open the way toward understanding and
modeling truly turbulent situations.

At any rate, for large Reynolds numbers, temporal and
spatial fluctuations are both important and time averaging
must also be introduced. While the operators for spatial
and time averaging may in principle commute [50], the
application in a sequential manner, as illustrated below

I. vβ → 〈
vβ

〉 → 〈
vβ

〉
(23)

II. vβ → vβ (RANS, ...) → 〈
vβ

〉
, (24)

where RANS stands for Reynolds-averaged Navier–
Stokes equations, 〈ϕ〉 stands for the spatial averaging of a
variable ϕ while ϕ stands for the time average, may lead to
different macro-scale models. The fundamental reason is
that each upscaling or averaging step introduces approx-
imations that do not in general commute. Scheme I,
favored by [51] and [52] among others, involves first spa-
tial averaging and then, assuming that the closed macro-
scale equations have the form of a generalized Forch-
heimer equation, it is subsequently time averaged. Since it
was found that the assumption of a Forchheimer equation
is difficult to justify theoretically, most researchers fol-
low scheme II. In this case, it is assumed that the Navier–
Stokes equations may be time averaged and the resulting
equations are then spatially averaged [50], [53]–[55]). The
result is in general some sort of effective RANS (Reynolds-
averaged Navier–Stokes equations) macro-scale model. It
must be emphasized that, in the two procedures, it is dif-
ficult to justify the possibility of a decoupled closure for
both averages. Also, a complete validation through exper-
iments or numerical modeling is still an open problem
and the need for suchmodels requires to be fully assessed.

Meso-scalemodels for one-phase flowwith
pore-scale rough surfaces

In many geometries, the simple multi-scale scheme illus-
trated in Figure 1 cannot be used directly in direct numer-
ical simulations or in the upscaling algorithms because of
the existence of sub-scale heterogeneities. This is the case
for instance if the solid–fluid interface displays rough-
nesses of wavelengths much smaller than the pore-scale
characteristic length, lβ , as is illustrated in Figure 3.

Figure . Porous medium with rough surfaces (from []).

In that case, one approach consists in developing a
meso-scale model, intermediate between the pore-scale
and the Darcy-scale. The idea is illustrated in Figure 4.
The picture on the left-hand side shows the pore-scale
with the flow of the fluid satisfying a no-slip condition
on the rough solid–fluid interface. If the impact of the
roughness is localized to the vicinity of the wall, and if
several other assumptions are satisfied (see [32] for more
detail), the complex flow field near the rough interface
can be approximated. When that is the case, the flow
problem can be replaced by a meso-scale representation
involving a smooth effective surface. The boundary con-
dition applying to this surface is an effective boundary
condition constructed so that the bulk flow in the pores
is correctly approximated by the effective surface mod-
eling. This smooth modeling is illustrated in Figure 4
(right). Various methodologies have been proposed to
develop such effective boundary conditions. For the case
ofNavier–Stokes equations, the reader is referred toworks
in [56], [57], [58], and [32]. In these studies, the effective
boundary condition becomes a generalized, anisotropic
Navier conditions which may be written as

vs = M · [
n · (∇vs + (∇vs)T

) · (I − nn)
]
, (25)

which is satisfied on the smooth effective surface. Here, vs
is the velocity on the effective surface, n is the normal to
the interface, I is the unity tensor, andM is theNavier ten-
sor. TheNavier tensor can be obtained from the resolution

Figure . Porous medium with small-scale rough surfaces: rough
(left) and effective surface simulation (right), adapted from [].



of an ancillary problem over a representative portion of
the roughness. This tensor depends on the position of the
effective surface, which can be fixed arbitrarily—although
there is an optimal position minimizing the error [32],
[57]. In general, the tensor does not reduce to a scalar,
for instance, in the case of anisotropic corrugated surfaces
[32]. This theory has been applied to simple unit cells
and structured packings with rough surfaces. The results,
compared with direct numerical simulations, suggest that
the approach is accurate in the weak and strong inertial
regime, but fails when unsteady flow develops. When this
happens the effect of the roughness is not localized to a
boundary layer, but propagates through the whole pore,
an effect that cannot be captured by the effective surface.
Of course, this is for roughnesses that are larger than the
laminar sublayer, otherwise the effect remains localized.

The development of such meso-scale models is a
very attractive methodology to deal with highly complex
multiple-scale pore structures. This approach will also be
discussed in the case of two-phase flows.

Two-phase flow

The pore-scale problem for two-phase flows in porous
media involves mass and momentum balance equations
for both phases, denoted β and γ , and boundary condi-
tions. For simplicity and clarity, the full upscaling problem
is not developed here. However, it is interesting to detail
just the condition at the interface between both fluids, in
order to present the physics of the problem and links with
upscaling. The boundary condition for the momentum
equation reads

− nβγ pβ + μβnβγ ·
(
∇vβ + (∇vβ

)T)
=

−nβγ pγ + μγnβγ ·
(
∇vγ + (∇vγ

)T)
+ 2σHβγnβγ at Aβγ , (26)

where σ is the interfacial tension,Hβγ is the interface cur-
vature, andnβγ is the normal. During upscaling using vol-
ume averaging, we often need to evaluate the effects of
all points x + y in the averaging volume on the average
value of the field at the centroid x. To do so, we can intro-
duce Taylor series approximation (when the average field
is differentiable [18], [19], [23]). For instance, the pressure
reads

pβ
(
x + yβ

)
= (

Pβ
∣∣
x + yβ · ∇ Pβ

∣∣
x + O (

y2β
)) + p̃β

(
x + yβ

)
, (27)

where yβ describes the position of a point in the
β-phase relative to the centroid of some averaging volume
at position x. Neglecting second-order terms in O(y2β ),

the boundary condition then reads

nβγ
(
Pγ

∣∣
x − Pβ

∣∣
x

) + nβγ yβ
· [(∇Pγ

∣∣
x − ργ g

) − (∇Pβ
∣∣
x − ρβg

) + (
ργ − ρβ

)
g
]

= −nβγ
(
p̃γ − p̃β

) + μγnβγ ·
(
∇vγ + (∇vγ

)T)
−μβnβγ ·

(
∇vβ + (∇vβ

)T)
+ 2σHβγnβγ on Aβγ . (28)

Here, we see that the curvature within the averaging vol-
ume will depend on (i) the capillary pressure (Pγ |x −
Pβ |x), (ii) gravity effect, (iii) viscous effects, (iv) dynamic
effects (important values of the pressure deviations related
to the flow or of terms like (∇Pγ |x − ργ g)− (∇Pβ |x −
ρβg)). Further, another important parameter that does
not appear when considering the pointwise fluid–fluid
boundary condition is the wettability of the solid phase,
which can deeply influence the spatial distribution of the
two phases in the pore-space, invasion patterns, and the
curvature of the interface [59], [60]. Depending on the
assumptions used in the upscaling, several models can
be developed. Their physical meaning and mathematical
structure are discussed in the next sections.

Quasistatic models for low capillary, Bond and
Reynolds numbers

The first class of models that we consider assumes that the
boundary condition Eq. (28) can be replaced, for small
capillary and Bond numbers (surface tension dominated)
defined as

Ca = μrUr

σ
; Bo =

∣∣(ρβ − ργ
)
g
∣∣ r20

σ
, (29)

by

Pγ
∣∣
x − Pβ

∣∣
x = 2σHβγ . (30)

As a result, the interface curvature is considered locally
constant. We further assume that the temporal evolution
of the interface at the pore-scale is fast compared to that of
macro-scale phenomena, i.e., that characteristic times of
the interface movement are small compared to the relax-
ation of the pressure and velocity field at macro-scale.
Under such a quasistatic assumption, we can introduce a
macro-scale capillary pressure condition as

Pγ − Pβ = pc(Sβ, . . .), (31)

where pc is the capillary pressure relationship, Sβ is the
saturation defined by Eq. (6) and “. . .” is here as a
reminder that the capillary pressure can depend on other
macro-scale parameters. Triple line and wettability effects



are taken into account in the expressions for the capil-
lary and relative permeability, which are treated as non-
linear functions of the saturation. The quasistatic assump-
tion is a hypothesis underlyingmost heuristic generalized
Darcy’s laws model classically used in engineering prac-
tice [2]. The whole model reads (with also Eq. (31))

∂εSβ
∂t

+ ∇ · Vβ = 0 (32)

Vβ = − 1
μβ

Kβ · (∇Pβ − ρβg
)

(33)

∂εSγ
∂t

+ ∇ · Vγ = 0 (34)

Vγ = − 1
μγ

Kγ · (∇Pγ − ργ g
)

(35)

Sβ + Sγ = 1 (36)

with phase permeabilities generally written with relative
permeabilities krβ (Sβ ) and krγ (Sγ ) as

Kβ = K krβ (Sβ ) ; Kγ = K krγ (Sγ ). (37)

The actual repartition of the phases within a porous
medium is necessarily a transient process and the qua-
sistatic assumption is not always valid. Transitions
between steady-states, and therefore the steady-states
themselves, are affected by a variety of dynamic mech-
anisms such as Haines jumps [61], [62], snap-off [63],
[64], viscous entrainment of droplets through constric-
tions [65], and a variety of other mechanisms [66], [67].
As a consequence, relative permeabilities and capillary
pressures, even in the quasistatic assumption, showmem-
ory and hysteresis properties and the saturation is not
the only state variable [68]. For example, using volume
averaging and principles of the thermodynamics of irre-
versible processes, several authors proposed to use the
interfacial area, aβγ , defined as

aβγ = 1
V

∫
Aβγ

dA (38)

as an additional independent variable [69]–[72].
From an upscaling point of view, the major conse-

quence of these various mechanisms is that the pore-
scale repartition of the phases involves several time and
length scales, with different flow patterns affecting more
than a single pore. This is most obvious when studying
meso-scale representations of a porous medium, in par-
ticular network models [73]—even though there is also
an issue of representativity of a network model as being
a realistic representation of complex porous media such
as rocks. Recall that, in the absence of macro-scale iner-
tia terms (i.e., very small Reynolds numbers, while one
should not forget that many pore-scale mechanisms, such
as Haines jumps, may exhibit inertial effects in the tran-
sition from one quasistatic state to another) and gravity

effects (small Bond numbers), the flow pattern depends
on a capillary number and the viscosity ratio, as well as
other geometrical and topological characteristics of the
network model, including its large-scale length. Results
show different flow patterns including viscous fingering,
stable displacement, capillary fingering as illustrated by
theCa-viscosity ratio diagrams published in [59], [74] and
other works including [60]. The consequence of this com-
plexity is that it is difficult to develop a formal upscaling
methodology for all cases.

For example, if we keep the viscosity terms in Eq. (28)
while making the assumption of quasistaticity, small
Bond andReynolds numbers, [26], [75]–[78]macro-scale
momentum balance equations read

Vα = − 1
μα

Kαα · (∇Pα − ραg
) + Kακ · Vκ

α, κ = β, γ α �= κ, (39)

which are different from the classical Generalized Darcy’s
laws. In particular, the cross terms Kακ in these equa-
tions account for the viscous interaction between the fluid
phases. These cross terms further satisfy the following
relations:

μβKβγ · Kγ γ = μγKββ · KT
γβ . (40)

These equations can also be rearranged into the follow-
ing form [78]

Vβ = − 1
μβ

K∗
ββ · (∇Pβ − ρβg

) − 1
μγ

K∗
βγ

· (∇Pγ − ργ g
)

(41)

Vγ = − 1
μγ

K∗
γ γ · (∇Pγ − ργ g

) − 1
μβ

K∗
γβ

· (∇Pβ − ρβg
)
, (42)

where the new multiphase permeability tensors are given
by

K∗
ββ = [

I − Kβγ · Kγβ
]−1 · Kββ (43)

K∗
βγ = [

I − Kβγ · Kγβ
]−1 · (

Kβγ · Kγ γ
)

(44)

K∗
γβ = [

I − Kγβ · Kβγ
]−1 · (

Kγβ · Kββ
)

(45)

K∗
γ γ = [

I − Kγβ · Kβγ
]−1 · Kγ γ . (46)

The reciprocity relation Eq. (40) becomes

μβK∗
βγ = μγK∗T

γβ . (47)

These equations are obtained following the upscaling
framework described in Section One-phase flow. Repre-
sentations of the deviations have a structure similar (albeit
extended to two phases) to Eq. (16), and closure prob-
lems are similar to the one described in the Appendix.



The permeability tensors in Eqs. (39) or (42) can also be
calculated from closure variables (see [26] and [78] for a
detailed description).

The importance attributed to cross terms has been the
subject of multiple controversies [76], [77], [79]–[81]. So
far, these coupling terms have been discarded in applica-
tions related to petroleum engineering and many other
fields. In low permeability rocks with a large variance
of the pore sizes, this may be the consequence of the
wetting phase having a tendency to flow in pores of small
diameter while the non-wetting phase will flow in large
pores. This phase repartition tends to minimize the inter-
facial area between the fluid phases, thus decreasing the
importance of cross terms relative to the friction occur-
ring at the solid/liquid interface. This may explain why
measurements inmedia with a relatively low permeability
have produced low values of the cross terms [80].

But the cross terms cannot be discarded in more struc-
turedmediawith high permeability. For instance, they can
be computed for flow in capillaries of square [69], [77]
or circular [82] sections. Assuming annular flow of two
phases in a tube of radius R, as is illustrated in Figure 5,
we can derive analytically the effective permeabilities. In
the limit μγ

μβ
� 1 [83], we get

Kββ ≈ K(1 − Sγ )3 (48)

Kβγ ≈ μg

μl

(1 − Sγ )2

Sγ
(49)

Figure . Schematic representation of an annular creeping
two-phase flow.

Figure . Plot of the different ratios Ki j/K for
μ
γ

μ
β

= 0.001.

Kγ γ ≈ KS2γ (50)

Kγβ ≈ Sγ
1 − Sγ

, (51)

whereK = R2

8 is the tube permeability. Using the transfor-
mations provided by Eqs. (43) through (46), we have plot-
ted the effective parameters in Figure 6. Importantly, we
see that the permeability cross terms, K∗

γβ , are not negli-
gible compared to the standard permeabilities. It was also
emphasized recently that they account for a drag force
necessary to explain the retention of water observed in a
vertical column subject to an upward gas flow in the case
of a high permeabilitymedium [34], [83]–[87]. This effect
is particularly important in chemical engineering or in
nuclear safety (debris bed reflooding) applications. This
question will be further discussed in Section Macro-scale
models with inertial effects.

Macro-scale dynamicmodels

To get rid of the constraining assumptions of the previ-
ous section, in particular the quasistatic assumption, sev-
eral studies have proposed dynamic models which can be
summarized as follows:

1. Dynamic effects can be captured by introducing
additional nonlinear dependencies in the capil-
lary pressure and relative permeabilities, which are
called pseudo-functions [88]–[92]. This approach
is mostly used in petroleum engineering,

2. Several models account for dynamic effects
induced by Darcy-scale heterogeneities and
multi-zones [93], multi-zones [94], meniscus
propagation [95],



3. The theory of irreversible thermodynamics yields
models where the specific area of the fluid–fluid
interface becomes a primary variable [69–72],

4. Macro-scale versions of Cahn–Hilliard models
have also been proposed [96].

This is beyond the scope of this review to provide
a comprehensive literature survey of dynamic models.
Here, our goal is essentially to emphasize that, besides dif-
ferences in the mathematical structure, dynamic effects
are often captured by introducing additional dependen-
cies of the effective properties upon terms related to the
flow velocity, gravity, and transient effects. As an example,
the equations from [93] read

Vβ = − 1
μβ

K∗
β · (∇Pβ − ρβg

) − u∗
β

∂εSβ
∂t

−U∗
β · ∇ ∂εSβ

∂t
− 1
μβ

M∗
β : ∇∇Pβ

− 1
μβ

�β − 1
μβ

R∗
β : ∇�β (52)

for the β-phase macro-scale momentum equation and

pc = F
(
Sβ,

(
ργ − ρβ

)
g,∇Pβ,

∂εSβ
∂t

, . . .

)
(53)

for the capillary pressure relationship. Here, several terms
have been introduced to account for dynamic effects. �β

is a source of momentum due to the heterogeneities (see
Eq. (2.28) in [93]), new effective properties (u∗

β , U
∗
β , M

∗
β ,

R∗
β) have been introduced and a gravity term is present

to account for large Bond numbers. Similar theoretical
results from [69], [71] are available with, besides an equa-
tion for the evolution of the interfacial specific area, a cap-
illary pressure relationshipwith a relaxation term such as

Pγ − Pβ = pc − L1
∂εSβ
∂t

, (54)

where L1 is a phenomenological parameter.
Before going on to discuss inertia effects in the macro-

scale models, we want to make a fundamental remark.
Most models in the literature are based on quasistatic
assumptions, which are not always satisfied by the micro-
scale physics. Even if time appears explicitly in several
dynamic models, the underlying assumption is that the
motion of the interface is relatively slow, so that only spa-
tial averaging is needed to derive macro-scale equations.
Why then are these quasistatic models so popular and
why are they satisfactory in many cases? We believe that
there ismore to this problem.One hypothesis is that, since
meso-scale results have shown that a macro-scale rep-
resentative state requires a large number of pores, some
ergodicity between time and space averaging is at play.
Hence, just averaging in spacemay be sufficient to smooth
out high-frequency fluctuations of the pore-scale fields in

time and space. If this hypothesis of ergodicity is incor-
rect, then this probablymeans that averagingmust be per-
formed in space and time: a great scientific challenge for
future research.

Macro-scalemodels with inertial effects

So far, the most complicated dynamic models (see
Section Macro-scale dynamic models) have not been
extended for flowswith strong inertia effects. The simplest
proposals to take these effects into account are based on
variants [97], [98] of a generalized Ergun’s law, such as

0 = −∇Pβ + ρβg − μβ
1

K krβ
Vβ − ρβ

η ηβ

∥∥Vβ∥∥Vβ,
(55)

where krβ is the relative permeability of the β-phase and
where the Forchheimer term involves a relative passabil-
ity ηβ . A similar equation may be written for the γ -phase.
The effective parameters, krβ and ηβ , depend on the satu-
ration and are often assigned the following forms:

krβ = (
1 − Sγ

)n ; ηβ = (
1 − Sγ

)m (56)
krγ = Spγ ; ηγ = Sqγ (57)

with different values for the exponents [99]–[101].
While this form may account for the increase in pres-

sure drop due to inertial effects, it does not fully describe
the drag between both phases and the resulting reten-
tion effects. Several models have been proposed to repro-
duce fluid–fluid interactions, for instance, [86] proposed
the following equations (the original equations have been
casted into a form suitable for comparison with general-
ized Darcy’s law):

0 = −∇Pβ + ρβg − μβ
1

K krβ
Vβ

− ρβ

η ηβ

∥∥Vβ∥∥Vβ + FSβγ
εSβ

(58)

0 = −∇Pγ + ργ g − μβ
1

K krβ
Vβ

− ρβ

η ηβ

∥∥Vβ∥∥Vβ − FSβγ
ε(1 − Sβ )

, (59)

where the term FSβγ accounts for the interfacial interac-
tion.

A generalized form of two-phase flow equations
accounting for cross terms and inertia effects has been
obtained theoretically through upscaling by [102] and
reads

Vα = − 1
μα

Kα · (∇Pα − ραg
) − Fαα · Vα

+Kακ · Vκ − Fακ · Vκ α, κ = β, γ α �= κ.

(60)



The first two terms in the right-hand side of these equa-
tions correspond to a fully anisotropic generalization of
themultiphase Ergun’s law. The third term corresponds to
viscous interactions, as already discussed in Section Qua-
sistatic models for low capillary, Bond, and Reynolds
numbers, and the last term is a cross term mainly asso-
ciated with the inertial correction. These models require
the determination of several effective properties which
depend nonlinearly upon saturations and velocities, as
well as on the viscosity ratio and geometrical features
of the porous space. All these dependencies are not
well understood today and determining these effective
properties from direct numerical simulations or exper-
iments remains an open problem and a challenging
task.

To illustrate the capabilities of the various models, let
us consider two-phase flow in a vertical column of high
permeability (and hence small capillary effects). Initially,
the porous medium is saturated by a liquid phase, β ,
and an upward flow of a gas phase, γ , is imposed. The
fluid phase will be progressively ejected by the top of
the column until the situation reaches steady-state and
Vβ = 0. Using the more general form Eq. (60), we have
that

0 = − 1
μβ

Kβ
(
∂Pβ
∂z

− ρβg · ez
)

+ (
Kβγ − Fβγ

)
Vγ .

(61)
On the other hand, using only the classical generalized
Darcy’s laws, i.e., (Kβγ − Fβγ ) = 0, one gets

∂Pβ
∂z

= ρβg · ez. (62)

The result of the generalizedDarcy’s laws does not agree
with experimental data [87], [103]. This is illustrated in
Figure 7, which represents the data obtained from experi-
ments through a cylindrical porous columnby [83], [104],
as well as theoretical results. In these experiments, the col-
umn was initially saturated by water (β-phase), then gas
(γ -phase) was injected from below. Liquid flowed out of

Figure . Experimental and modeling results for the normalized
pressure drop versus the gas velocity atVβ = 0 (from Clavier et al.
in []).

Figure . Experimental andmodeling results for the gas saturation
versus the gas velocity atVβ = 0 (from Clavier et al. in []).

the column from the top until a quasi-steady macro-scale
situation was obtained. The figure shows the pressure gra-
dient normalized by the liquid hydrostatic pressure gra-
dient versus the gas velocity, for a liquid average velocity
equal to zero. The simple generalized Darcy’s law models
with Ergun’s type inertia term (Eq. (62)), as proposed by
[105], [106], or [101], yield completely erroneous results.
Below a critical velocity, the fluid is lifted by the gas and
has a decreasing apparent weight. This corresponds to
the viscous interactions, which in the model are captured
by the term involving Kβγ . When the velocity is further
increased, inertial effects, as taken into account in Eq. (61)
by the extra term involving Fβγ , tend to reduce the lift and
increase the apparent weight.

In summary, keeping the extra terms in Eq. (61) allows
to account for liquid retention due to the drag force
imposed on the liquid by the upward flow for a large
range of Reynolds number. Various expressions have been
proposed in the literature for the effective parameters
[83], [86], [107] and their application to [87] experiments
are reported in Figures 7 and 8. High nonlinearity, lack
of data, and the large number of parameters that needs
to be determined lead to strong difficulties in the iden-
tification procedure. This may explain the discrepancy
observed between data and predictions [87], [108], [109]
as is shown in Figures 7 and 8 adapted from [87]. Further
research is therefore necessary to better parameterize the
models.

Two-phase flows: Special models

In this section, we review two-phase flow models that
have been proposed to reproduce specific mechanisms
observed at high capillary and Bond numbers. In such
cases, the time and length-scale constraintswhich are nec-
essary to develop macro-scale two-phase flow models are
not fulfilled. Therefore, specific treatments and assump-
tions are needed. Two types ofmodels have been proposed
and are the subject of current research. They are briefly
presented below.



Figure . Photograph of structured packings (Wikimedia Com-
mons, author: Luigi Chiesa).

Models with a splitting of phase

Structured packings have been extensively used in the past
decades in absorption and distillation columns or chemi-
cal reactors. They are often made of assemblies of corru-
gated metal sheets, alternating the orientation from one
sheet to another, thus creating a porous medium hav-
ing the honeycomb structure illustrated in Figure 9. The
resulting material has a relatively high surface area and
small pressure drops. The characteristic length for the
pores is severalmillimeters (sometimes up to the centime-
ter), thus pore-scale flow in such devices is sensitive to
effects of gravity and inertia.

Further, the alternating directions of the structure
may create preferential flowpaths which are followed
by only a portion of the fluid. For such geometries, a
single macro-scale equation describing the liquid phase
flow is often not very accurate, as it fails to account for
the bimodal distribution of flow angles. Models with
a liquid phase decomposed into two pseudo-phases,
i.e., one macro-scale equation for the gas phase but two
macro-scale equations for the liquid, have been proposed
to handle such cases [110]–[113]. The result is a set of
balance equations for the gas phase (a single effective
phase is enough in the context of structured packings),
γ , and two sets of balance equations, one for liquid
phase part 1, β1, and one for liquid phase part 2, β2. For
instance, the three mass balance equations read

ε
∂Sγ
∂t

+ ∇ · Vγ = 0, (63)

ε
∂Sβ1
∂t

+ ∇ · Vβ1 = ṁ, (64)

ε
∂Sβ2
∂t

+ ∇ · Vβ2 = −ṁ, (65)

Figure . Saturation Sβ1 + Sβ2 showing the spreading at three dif-
ferent times of a top of column impinging jet (from []).

where ṁ is the mass exchange term which must be mod-
eled in terms of the three “phases” saturations, pressures,
and velocities.

While there were attempts to develop these models
through volume averaging, part of the resulting mod-
els are still heuristic. In particular, the description of the
exchange of mass (and momentum) between the two
macro-scale liquid phases remains an open problem. To
illustrate this, let us consider the spreading of a single
jet impinging such a porous medium as described by
these models (Figures 10 and 11 taken from [113]). We
see in Figure 10 that the impinging jet tends to be dis-
tributed in two jets along the two directions of the cor-
rugated sheets. On the other hand, exchange between the
phases, as expressed by the term ṁ in Eqs. (64) and (65),
tends to smear out this double jet structure. Depend-
ing on the intensity of the exchange term, the two liq-
uid phases show a distinct shape with two separate jets
when there is barely no exchange, or amore classical solu-
tion when the exchange is strong. These two shapes have
been observed experimentally [111], [114]. The results
obtained by [114] are presented in Figure 11a. This figure
is a plot of Sβ1 + Sβ2 at a given cross-section of the experi-
mental column. It clearly shows the anisotropic spreading
of the jet due to the peculiar geometry of the structured
medium. Figures 11b to 11h show predictions obtained in
[115], for increasing values of the exchange term. These
results demonstrate that such models have the potential
for representing experimental data. However, the accurate
determination of the effective properties needed in such
models requires further investigations.

Dynamicmeso-scale and hybridmodels

In porous media with low capillarity effects, the liquid
moves by a series of different mechanisms:

� films developing over the grain surfaces,
� bridges forming between films when close to contact
points,

� bulging films due to either instabilities or the effect
of high Bond numbers.

This flow complexity is illustrated by the CFD results
from [116], which are presented in Figure 12. The results
show the spreading of a liquid film from a jet impacting
the north pole of the top sphere in a vertical stack. The



Figure . Saturation Sβ1 + Sβ2 showing the spreading at a given column cross-section of an impinging jet at the top of the column (from
[]): a), experimental results from [], b–h), numerical results with increasing mass exchange from [].

liquid then spreads as a film, reaches the contact point
where films develop on the adjacent spheres, and goes on
to the next sphere. As a consequence of the diversity of
mechanisms at play, several flow regimes may develop as
illustrated, for instance, in [117], [118], [119], and [120].
Such regimes can be easily observed when studying
the quasi-2D flow of a liquid in a bundle of cylinders
as illustrated in Figure 13 (left) taken from [121]. The
porous medium is a micromodel with pillars, and the
photograph shows the distribution of phases resulting
from a jet impacting the upper part of the cylinder in the
middle. The jet spreads laterally because of bulging film
contacting adjacent pillars, a mechanism that cannot be
described easily at the macro-scale by capillary diffusion
effect embedded in the classical Generalized Darcy’s laws.
In addition, the length-scale constraints (Eq. (1)) neces-
sary to develop a macro-scale theory are not satisfied.

The flow complexity can be captured by direct numer-
ical modeling [122] as illustrated in Figure 13 (right)

where the flow between the cylinders is obtained using
a Volume of Fluids method [121]. Two limitations arise
for a direct application of CFD to complex systems.
First, it is difficult to obtain deterministic predictions
since many of the mechanisms involved are subject to
unpredictability (e.g., instabilities, sensitivity to small
geometrical features). Second, it is very difficult to get
accurate, converged, and stable numerical solutions,
even for a limited number of pores. Nowadays, accurate
calculations for a large amount of pores, especially in 3D,
is beyond the capabilities of modern computers. Indeed,
even for a porous medium with a correlation length of
the order of the grain size, the phase repartition pattern
develops over dozens of pores. In such cases, we are faced
with the following difficulties:

1. The complexity of pore-scale mechanisms and
the broad range of time and spatial characteris-
tic scales, make the development of a macro-scale
model very difficult to achieve,

Figure . Illustration of D simulations for ethanol/alumina systems (mesh and liquid volume fraction snapshots). The fluid flows from
the north pole of the top sphere. Taken from [], Figure .



Figure . Experimental data (a) and numerical solution (b) for
two-phase flow in a bundle of cylinders, from [].

Figure . Schematic representation of amesoscale hybridmodel.

2. Direct Numerical Solution (DNS) is equally very
difficult to carry on because of the number of pores
involved.

As discussed in SectionQuasistaticmodels for low cap-
illary, Bond, and Reynolds numbers, it is often convenient
to use a simplified meso-scale description of the porous
medium as a pore networkmodel. This is particularly true
when complex percolation mechanisms are encountered.
Rules describing the flow between and within nodes must
be introduced. This is relatively straightforward for classi-
cal percolation problems (Poiseuille like pressure drop for
describing the flow between nodes and quasistatic capil-
lary effects [73], [123]), but these rules must be adapted
for dynamic cases. Dynamic rules may be introduced
directly in the network model [40], [120], [124]–[126]
under the form of dynamic pressure drop relationships
or even a stochastic distribution of the phase entering a
node into the adjacent links. These rules can be obtained
heuristically, experimentally, or with the help of local-
ized (i.e., over a small number of pores) direct numeri-
cal simulations. In that last case, meso-scale simulations
are coupled with pore-scale simulations, so that we often
refer to such models as hybrid models. The idea of such
approaches is to couple the pore-network descriptionwith
local pore-scale simulations carried out with, for instance,
a Volume Of Fluid numerical model. The local VOF sim-
ulations provides the dynamic rules necessary to advance
the fluid flow in the pore network model. This hybrid
modeling is schematically illustrated in Figure 14.

As an illustration of the meso-scale approach,
Figure 15 represents the saturation and pressure field
obtained by [126] for gas–liquid trickle flows inside
fixed beds of spherical particles. The geometry is first

Figure . Results from [] for saturation (a) and pressure (b) fields.



obtained using X-ray micro-tomography. Then the flow
in the throats between pores is described using the results
for the annular two-phase flow in tubes described in
Section Quasistatic models for low capillary, Bond, and
Reynolds numbers, i.e., the model with cross terms.
Finally, the flow distribution between pores and throats
is obtained by solving mass and momentum balance
equations. While results are promising, further work is
needed to make these models operational in engineer-
ing practice. It must also be reminded that meso-scale
models need more computational resources than macro-
scale representations. Therefore, efforts to obtain more
dynamic purely macro-scale models must also continue.

Conclusions

In this paper, we have reviewed one- and two-phase flows
in highly permeable porous media, with an emphasis on
macro-scale modeling at high Reynolds, capillary, and
Bond numbers.

For one-phase flow, we have shown that moderate
inertial effects can be captured by modifications of
Darcy’s law. For large Reynolds numbers, however, when
time fluctuations becomes important, there are still many
unanswered questions regarding the time averaging
procedure, the form of the drag, the localization of the
flow structures, and the development of fully macro-scale
turbulent models. For two-phase flows in the creeping
limit, we have shown that the generalized Darcy’s law
can be extended to account for couplings between the
two phases via cross terms. In the case of high Reynolds
numbers, several models were proposed that can be
classified in two categories. First, there are extensions
of Ergun’s one-phase model to the two-phase flow case,
with relative permeabilities and passabilities as the main
effective parameters. Second, several models with addi-
tional interaction terms have been obtained heuristically
or via upscaling procedures. These models reproduce the
experimental results available with relatively good accu-
racy. However, it is clear from the comparison between
predictions and experimental data that additional work
should be done to yield better estimates of the various
nonlinear expressions for the effective parameters used in
these models. This review also shows that many problems
remain largely open for two-phase flow at large Bond and
capillary numbers. For this case, classical quasistatic for-
mulations seem to work in the situation where, in theory,
they should not, as dynamic effects are important. An
hypothesis is that of a time/space ergodicity, which would
eliminate the need for temporal averaging, although this
needs to be explored more thoroughly. We have also
shown that hybrid models have been proposed in the lit-
erature, which couple solutions of the problem at different

scales. Such formulations represent an interesting alterna-
tive to macro-scale models with the potential to be more
accurate and capture more dynamic phenomena. Because
of their computational cost, they are often limited and
cannot supplant macro-scale formulations, but can this
change with the advent of high performance computing?

There are also many open problems that are specific
to given porous structures, such as those inducing bi-
structured flows with almost independent behaviors of
different portions of the liquid phase. Models with a split-
ting of the liquid (or gas) flow into two macro-scale fluids
have shown their ability to reproduce results qualitatively
but, once again, much work should be devoted to the
validation of the mathematical structure of such models
and the estimation of the relevant effective transport
properties.

Nomenclature

aβγ specific interfacial area, m−1

Aβσ interface between the fluid and solid phases
B mapping variable
b mapping variable, m−1

Bo Bond number
Ca capillary number

CFD Computational fluid dynamics
d particle diameter, m

DNS Direct numerical solution
FSακ inertia multiphase effective properties
FSβγ interfacial interaction, Pa · m−1

F inertia term, Pa · s · m−2

g gravity acceleration, m · s−2

hη passability correction factor
hk permeability correction factor

Hβγ interface curvature, m−1

K intrinsic permeability tensor, m2

Kακ cross term
K∗
ακ modified multiphase permeability tensor, m2

krα α-phase relative permeability
L large-scale characteristic length, m
L1 phenomenological parameter, Pa · s
lσ pore-scale characteristic length, m
lp pore-scale characteristic length, m
ṁ mass exchange term, kg · m−3 · s−1

M Navier tensor, m
M∗
β new effective property, Eq. (52), m3 · s−2

V averaging volume
nβσ normal to Aβσ
p̃β pressure deviation, Pa
pc capillary pressure, Pa
Pβ intrinsic phase average pressure, Pa
pβ β-phase pressure, N · m−2

R∗
β new effective property, Eq. (52), m
r0 averaging volume characteristic length, m

RANS Reynolds-averaged Navier–Stokes equations
Re Reynolds number
Sβ β-phase saturation
t time, s

Uβ β-phase intrinsic velocity, m · s−1



U∗
β new effective property, Eq. (52)

u∗
β new effective property, Eq. (52), m

Ur reference velocity, m · s−1

Vβ β-phase filtration velocity, m · s−1

vβ β-phase velocity, m · s−1

vs velocity on effective surface, m · s−1

Vβ β-phase volume
ṽβ velocity deviation, m · s−1

x current point, m
y position relative to the centroid of the averaging vol-

ume, m

Greek Symbols

βi refers to the split β-phase
η passability, m
ηβ relative passability
γβ β-phase indicator〈
ψβ

〉
β-phase average〈

ψβ
〉β

β-phase intrinsic average
μβ β-phase dynamic viscosity, Pa · s
ψβ time average
ψβ β-phase variable
ρβ β-phase density, kg · m−3

σ interfacial tension, N · m−1

ε porosity
εβ β-phase volume fraction

Subscripts

β β-phase property
βγ refers to βγ interface
γ γ -phase property
σ σ -phase property
p pore-scale property
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Appendix: Closure problem for Darcy’s law

There are several possible versions of the closure prob-
lems. The one corresponding to the mapping given by
Eqs. (16) is described by the following PDEs

∇.B = 0 (A1)

−∇b + ∇2B = ε−1
β

1
V

∫
Aβσ

nβσ � (−Ib + ∇B) dA (A2)

B = −I at Aβσ (A3)
〈b〉β = 0 (A4)

b(r + li) = b(r) B(r + li) = B(r). (A5)

The mapping tensor B has the following property

〈B〉β = 0 (A6)

which, together with Eq. (A4), ensure that the averages of
the deviations are zero.

Other forms can be developed to eliminate the integro-
differential terms in the closure problem, see [78] for such
transformations. This generally leads to problems that are
similar to a Stokes problem over a periodic unit cell with
a constant source term (the gradient of the averaged pres-
sure). Such a form can readily be used to calculate the
permeability tensor from a classical CFD software. The
use of periodicity conditions is correct for periodic sys-
tems. This approximation, however, may pose problems
for systems which are not truly periodic. This point is not
discussed further in this paper and the reader may look
at the literature on the subject, for instance, in [127], for
indications on how to overcome this difficulty.
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