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Influence of Vertical Vibrations on the Stability of a
Binary Mixture in a Horizontal Porous Layer Subjected
to a Vertical Heat Flux

Soumaya Ouadhani1,2 · Ali Abdennadher2 ·
Abdelkader Mojtabi1 · Alain Bergeon1

Abstract We present an analytical and numerical stability analysis of Soret-driven con-
vection in a porous cavity saturated by a binary fluid mixture and subjected to vertical high-
frequency and small-amplitude vibrations. Two configurations have been considered and 
compared: an infinite horizontal layer and a bounded domain with a large aspect ratio. In 
both cases, the initial temperature gradient is produced by a constant uniform heat flux 
applied on the horizontal boundaries. A formulation using time-averaged equations is used. 
The linear stability of the equilibrium solution is carried out for various Soret separation 
ratios ϕ, vibrational Rayleigh numbers Rv, Lewis numbers Le and normalized porosity. For 
an infinite horizontal layer, the critical Rayleigh number Rac is determined analytically. For 
a steady bifurcation to a one-cell solution (the critical wavenumber is zero), we obtain Rac 
= 12/(ϕ(Le + 1) + 1) for all Rv. When the bifurcation is a Hopf bifurcation or when the 
critical wavenumber is not zero, we use a Galerkin method to compute the critical values. 
Our study is completed by a nonlinear analysis of the bifurcation to one-cell solutions in an 
infinite horizontal layer that is compared to numerical simulations in bounded horizontal 
domains with large aspect ratio.
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1 Introduction

Double-diffusive convection in a saturated porous medium due to temperature and concen-
tration gradients has been widely studied because of its numerous fundamental and industrial
applications. Reviews of recent developments and publications in this field can be found in
reference Nield and Bejan (2013). Here, we study the effect of a mechanical high-frequency
vibration on this thermosolutal convection with Soret effect in a saturated porous medium.

In a binary fluid mixture subjected to a temperature gradient, the Soret effect produces
a species separation in the mixture. The mass flux J takes into account both the isothermal
diffusion and the thermodiffusion and reads:

J = −ρD∇C − ρCr (1 − Cr ) DT∇T, (1)

where D is the mass diffusion coefficient, DT is the thermodiffusion coefficient, ρ is the 
density, T is the temperature, C is the concentration of the denser species, Cr is the initial 
uniform concentration and Cr (1−Cr ) is a weighting factor (Torres et al. 2013). Motivated by 
experiments in an oscillatory microgravity environment, the effects of mechanical vibrations 
on the stability of thermal systems have been the subject of numerous studies where the 
authors considered various directions, amplitudes and frequencies of the vibrations. In their 
book, Gershuni and Lyubimov (1998) presented a detailed review of the work done on the 
vibrational effects on convection in cavities including those filled with multi-component fluid 
mixtures.

Thermo-vibration problems in porous media have also received attention. Generally, these 
studies are classified in two groups: those concerning a porous medium saturated by a pure 
fluid and those in which the fluid is a binary mixture. Hereafter, we report only works dealing 
with high-frequency and small-amplitude vibrations; for other situations, the interested reader 
can refer to Razi et al. (2008). For the high-frequency and small-amplitude case, it is well 
established analytically that vertical vibrations have a stabilizing effect increasing the critical 
Rayleigh number. The work of Zen’kovskaya and Rogovenko (1999) extended earlier works 
by considering arbitrary directions of vibration. It shows that intense horizontal vibrations can 
destabilize the system giving rise to convection in situations that would normally be stable, 
such as in a zero gravity environment or in a fluid heated from above. Similarly, Govender 
(2005) showed for the case of vertical vibrations and a fluid heated from above (which is 
normally stable), the flow could be destabilized by gravity modulation due to vibrations. Using 
a time-averaged formulation, Bardan and Mojtabi (2000) reconsidered the case of vertical 
vibrations focusing on a horizontally bounded porous medium. In addition to performing 
linear stability analysis, they conducted a weakly nonlinear study and obtained analytically 
the solution as a function of the strength of vibration close to the onset of convection. They 
showed that increasing the vibration amplitude delays the onset of convection and may affect 
the nature of the first primary bifurcation. This work is extended by Bardan et al. (2004). 
The domain of validity of the mean flow formulation is discussed, and the authors show, 
using a weakly nonlinear stability analysis, that contrary to earlier published results, the first 
bifurcation is always supercritical.

All the papers cited above dealt with porous media saturated by a pure fluid. Double-
diffusive convection caused by temperature and concentration gradients in a porous medium 
has also been widely studied due to its numerous fundamental and industrial applications. 
Some examples of interest are the migration of moisture in fibrous insulation, the transport 
of contaminants in saturated soil, drying processes and solute transfer in the mushy layer 
during the solidification of binary alloys. Soret-driven convective effects cannot be neglected 
in many of these situations. For the problems involving binary mixtures subjected to Soret



effect, Sovran et al. (2001) present a linear stability analysis of the horizontal infinite layer
without vibrations. For a cell heated from below and for a positive separation ratio, they
showed that the first primary bifurcation is a stationary one. Using a regular perturbation
method in the case of long wave disturbances, they obtained the critical Rayleigh number.
The same configuration is studied by Charrier-Mojtabi et al. (2004) who introduced high-
frequency vibrations and investigated the problem for different aspect ratio and various
directions of vibration. Their results demonstrate that for stationary and Hopf bifurcation,
the vertical vibration has a stabilizing effect on the onset of convection while the horizontal
vibration has a destabilizing effect. Elhajjar et al. (2009) revisited the problem, and their
results suggest that vibrations could be used to improve the species separation in the case of
the long wave mode. Furthermore, for the first time in this context, they performed a linear
stability analysis of the long wave mode. They found that the one-cell solution loses stability
via a Hopf bifurcation and that vibration had a stabilizing effect on it.

In the present paper, we use the formulation already used in Charrier-Mojtabi et al. (2004)
and Elhajjar et al. (2009) of a shallow porous cavity saturated by a binary mixture subjected
to the Soret effect. Motivated by applications of vibrations in thermogravitational columns
(Nasrabadi et al. 2007), we focus on a large aspect ratio cavity filled with a porous medium
and the limit of an infinite layer. We consider the case for which a vertical heat flux applied
on the horizontal walls is responsible for the initial vertical temperature gradient whereas
in the references Charrier-Mojtabi et al. (2004) and Elhajjar et al. (2009), the authors con-
sidered prescribed temperatures. Our thermal boundary conditions are close to those used
by Yacine et al. (2016) for the same problem without vertical vibrations. Here, we show
that vertical high-frequency and small-amplitude vibrations do not influence the stability of
the base state when the Soret separation ratio is positive. This is an important difference
with Charrier-Mojtabi et al. (2004) and Elhajjar et al. (2009). Moreover, we obtain analytical
expressions for the steady bifurcation to one-cell solutions and propose a complete stability
diagram.

In the next two sections, we present the mathematical formulation and the averaged equa-
tions. Following this, we next reconsider the linear stability analysis focusing on the one-cell
solution. In the last sections, the linear and nonlinear analytical predictions are compared to
direct numerical simulations.

2 Mathematical Model and Basic Equations

The configuration considered in this study is that of a horizontal porous layer of uniform
thickness H , width L , permeability K ∗ and porosity ε∗, and which is filled with a binary
mixture for which the Soret effect is taken into account. The origin of the coordinate system
is located at the bottom of the porous cavity with x and z being the horizontal and vertical
coordinates. All the boundaries are impermeable. We suppose that along the horizontal walls
(z = 0, H ) a uniform and constant heat flux per unit area q is applied while the vertical
walls (x = 0, L) are assumed thermally insulated. We also assume that the porous medium
is isotropic and homogeneous, that Darcy’s law is valid, and that the Oberbeck–Boussinesq
approximation is applicable: The thermophysical properties of the binary fluid are therefore
considered to be constant except for the density in the buoyancy term, which is assumed to
vary linearly with the local temperature T and concentration C :

ρ = ρr (1 − βT (T − Tr ) − βC (C − Cr )) , (2)



where ρr is the fluid mixture density and where βT and βC are, respectively, the thermal and
solutal expansion coefficients (the subscript r indicates reference values). When considering
the reference frame related to the oscillating system, the gravitational field g = −gez is
replaced by: g + bΩ2 sin(Ωt)ez , where Ω is the angular frequency of vibration, b is the
displacement amplitude and t is the time.

The reference scales are H for length, H2/(kp/(ρc)p) for time and κ/H for the velocity,
where κ = kp/(ρc) f is the effective thermal diffusivity, kp is the effective thermal con-
ductivity of the saturated porous medium, (ρc)p and (ρc) f are the heat capacities of the
saturated porous medium and of the fluid, respectively. Because of the applied heat flux, a
temperature difference ΔT = qH/kp is produced across the system and in response, the
system develops a concentration difference ΔC = −ΔTCr (1 − Cr )DT /D where D is the
isothermal diffusion coefficient and DT is the thermodiffusion coefficient. The dimensionless
temperature and concentration are taken to be (T − Tr )/ΔT and (C −Cr )/ΔC . In terms of
the above definitions, the dimensionless governing equations are given by:

∇ · V = 0, (3)

B∂tV + V = −∇P + Ra (T + ϕC) (1 − R sin(ωt)) ez, (4)

∂t T + (V · ∇) T = ∇2T, (5)

ε∂tC + (V · ∇)C = Le−1(∇2C − ∇2T ). (6)

Here, V = (u, w) is the dimensionless velocity field in (x, z) coordinates, P is the dimen-
sionless pressure and T and C are now dimensionless temperature and concentration. The
Rayleigh number Ra, the separation ratio ϕ, the Lewis number Le and the parameter R are
defined by:

Ra = K ∗gβT HΔT

κν
, ϕ = −Cr (1 − Cr )

βcDT

βT D
, Le = κ

D
, R = bΩ2

g
, (7)

where ν is the kinematic viscosity of the binary fluid. Additional parameters include the
dimensionless frequency ω = ΩH2/(kp/(ρc)p), the normalized dimensionless porosity
ε = ε∗(ρc) f /(ρc)p and the inverse Vadasz number B = Va−1 defined by:

B ≡ Va−1 = Da(ρc) f
εPr(ρc)p

, Da = K

H2 , Pr = ν

κ
, (8)

where Da is the Darcy number and Pr is the Prandtl number. In the dimensionless variables,
the domain is (x, z) ∈ Γ = [0, A] × [0; 1] where A = L/H is the aspect ratio. The
dimensionless boundary conditions are:

z = 0, 1 : w = ∂zT + 1 = ∂zT − ∂zC = 0, (9)

x = 0, A : u = ∂x T = ∂xC = 0. (10)

Figure 1 summarizes the geometry and boundary conditions. The term B∂V/∂t is usually
neglected in the momentum equation since B is of order 10−6. But in our problem, high-
frequency vibrations cause very large accelerations and this term must be taken into account
(Zen’kovskaya and Rogovenko 1999).

It should be mentioned that because of the Neumann boundary conditions for T and C ,
additional conditions must be specified to solve the equations. In particular, the mass flow
rate through any vertical cross section should be zero and the species are also conserved in
time: ∫ 1

0
u(z) dz = 0,

∫
Γ

C(z) dΓ = 0. (11)



Fig. 1 Schematic view of the geometry with the dimensionless boundary conditions indicated

In the following, we will also consider an unbounded horizontal layer. In this case, the total
heat and species transfer through any vertical cross section should be zero:

∫ 1

0
(uT − ∂x T ) dz =

∫ 1

0
(uC − ∂x (C − T )) dz = 0. (12)

3 The Averaged Equations

In the limiting case of high-frequency and small-amplitude vibrations, the averaging method
can be applied to study thermal vibrational convection (Charrier-Mojtabi et al. 2004; Razi
et al. 2009; Elhajjar et al. 2009). According to this method, each field (V, P, T,C) is written
as the sum of two contributions. The first one, denoted by (V̄, P̄, T̄ , C̄), is the averaged
field (the mean value calculated over the period τ = 2π/ω) and varies slowly with time
(the characteristic time is large with respect to the period of the vibrations). The second one,
denoted by (V′, P ′, T ′,C ′), is the periodic rapidly varying part (the characteristic time is of
the order of magnitude of the vibrational period). Writing:

(V, P, T,C) = (V̄, P̄, T̄ , C̄)(t) + (V′, P ′, T ′,C ′)(ωt), (13)

andusing thehigh-frequency and low-amplitudehypothesis, the variables (V′, P ′,T ′,C ′) can
be expressed as functions of the averaged variables (V̄, P̄, T̄ , C̄) (Jounet and Bardan 2001).
The details of the derivation and the theoretical justifications are presented in Simonenko and
Zenkovskaya (1966), Simonenko (1972), Gershuni and Lyubimov (1998). We only mention
here that the decoupling between the slow and rapidly varying fields requires introducing a
Helmholtz decomposition of the averaged buoyancy term: (T̄ + ϕC̄)ez = H+ ∇ξ where H
is the solenoidal part satisfying:

∇ · H = 0, ∇ × (T̄ + ϕC̄)ez = ∇ × H, (14)

and H · n = 0 on ∂Γ . The averaged equations read:

∇ · V̄ = 0, (15)

B∂t V̄ + V̄ = − ∇ P̄ +
(
Ra(T̄ + ϕC̄) + Rv ((H · ∇) T̄ + ϕ

ε
H · ∇)C̄)

)
ez, (16)

∂t T̄ + (V̄ · ∇)T̄ = ∇2T̄ , (17)

ε∂t C̄ + (V̄ · ∇)C̄ = Le−1 (∇2C̄ − ∇2T̄
)
, (18)

with the boundary conditions (9,10) applied to the mean fields. The parameter Rv =
(Ra2R2 B)/(2(B2 ω2 + 1)) is the modified vibrational Rayleigh number.



4 Linear Stability of the Equilibrium Solution in an Infinite Horizontal
Porous Layer

The stability of the equilibrium solution of (15–18) was studied in Charrier-Mojtabi et al.
(2004) in an infinite horizontal domain with prescribed temperatures along the horizontal
boundaries. The authors restricted their work to the case Le = 2 for which the fluid is in the
gaseous state. Here, we consider the situation inwhich the temperature difference is produced
by a heat flux applied on the horizontal boundaries. We also consider the case of a high Lewis
number, and we focus on the transition from the equilibrium solution to the mono-cellular
flow. The conduction state:

V̄0 = 0, T̄0 = − z + cst, C̄0 = − z + 1

2
, H0 = 0, (19)

is an equilibrium for all values of Ra. In order to investigate its stability, we introduce
the stream-functions Ψ̄ and Ψ̄0, respectively, associated to the velocity fields V̄ and V̄0.
Additionally, we define the solenoidal stream-functions Ψs and Ψs0 , respectively, associated
to H and H0. We look for normal modes and expand the variables as:

(Ψ̄ , T̄ , C̄, Ψs)(x, z, t) = (Ψ̄0, T̄0, C̄0, Ψs0) + (Ψ̃ , θ̃ , c̃, Ψ̃s)e
σ t+ikx + c.c. (20)

where Ψ̄0 = 0, Ψs0 = 0 and (Ψ̃ , θ̃ , c̃, Ψ̃s) are complex functions of z. Note that even though
the vibrations do not affect the base state (19), they may affect its stability and are therefore
included in the perturbation expansion. We define η̃ = c̃–θ̃ and linearize equations (15–18)
and (14) about the conduction state to get:

(Bσ + 1)(D2 − k2)Ψ̃ + Raik((1 + ϕ)θ̃ + ϕη̃) − RvΨ̃sk2(1 + ϕ
ε
) = 0,

(D2 − k2)θ̃ − σ θ̃ − ikΨ̃ = 0,
Le−1(D2 − k2)η̃ − εσ (η̃ + θ̃ ) − ikΨ̃ = 0,

(D2 − k2)Ψ̃s + ik((1 + ϕ)θ̃ + ϕη̃) = 0,

(21)

where D = d/dz. The boundary conditions now become:

z = 0, 1 : Ψ̃ = Ψ̃s = ∂z θ̃ = ∂z η̃ = 0. (22)

4.1 The Limiting Case of Long Wave Disturbances

In this part, we look for steady bifurcations. We study analytically the special case of the
long wave mode. In some related studies in fluid media (Gershuni et al. 1997, 1999; Razi
et al. 2008), the authors showed that asymptotic analysis results in a closed form relation for
the stability threshold. In order to obtain such a relation, a regular perturbation method with
the wavenumber as the small parameter is performed. We expand (Ψ̃ , θ̃ , η̃, Ψ̃s, σ ) as:

(Ψ̃ , θ̃ , η̃, Ψ̃s, σ ) =
∞∑
n=0

kn(Ψ̃n, θ̃n, η̃n, Ψ̃sn , σn). (23)

Substituting these expressions in Eqs. (21, 22) and separating the orders in k, we find a
sequential system of equations. For the zeroth order (k0):

Ψ̃0 = 0, Ψ̃s0 = 0, θ̃0 = cst, η̃0 = cst, σ0 = 0. (24)

At order 1, we get:

Ψ̃1 = − i
2 Ra (1 + ϕ(Le + 1)) θ̃0(z2 − z), Ψ̃s1 = − i

2 (1 + ϕ(Le + 1)) θ̃0(z2 − z),
(25)

θ̃1 = cst, η̃1 = cst, σ1 = 0, 



and at order 2:
Ψ̃ ′′
2 (z) = − iRa

(
(1 + ϕ)θ̃1 + ϕη̃1

)
,

θ̃ ′′
2 (z) = iΨ̃1 + θ̃0(σ2 + 1),

η̃′′
2(z) = iLeΨ̃1 + η̃0,

Ψ̃ ′′
s2(z) = − i

(
(1 + ϕ)θ̃1 + ϕη̃1

)
,

(26)

where ′′ is the second derivative with respect to z. After using the solvability condition, we
find:

σ2 = Ra

12
(ϕ(Le + 1) + 1) − 1. (27)

We note that σ2 is real indicating that the conductive solution loses stability through a sta-
tionary bifurcation. For marginal stability, σ2 is set equal to zero and we obtain the critical
Rayleigh number:

Rac ≡ 12

1 + ϕ(Le + 1)
. (28)

4.2 The General Case

The linear stability is investigated using a Galerkin method. The perturbations (Ψ̃ , θ̃ , η̃, Ψ̃s)

of the conduction state are expanded in series of polynomial functions satisfying all the
boundary conditions:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ψ̃ =
N∑

n=1
an (1 − z) zn

θ̃ = b1 + b2
(
z2 − 2

3 z
3
) +

N∑
n=1

bn+2 (1 − z)2 zn+1

η̃ = c1 + c2
(
z2 − 2

3 z
3
) +

N∑
n=1

cn+2 (1 − z)2 zn+1

Ψ̃s =
N∑

n=1
en (1 − z) zn

(29)

These expressions are introduced into system (21). The resulting algebraic system of equa-
tions has a non-trivial solution when its determinant is zero. In general, the determinant is
complex. The procedure that we used to calculate the value of the critical Rayleigh number
is the same as that described in Ouattara et al. (2012). Table 1 demonstrates its accuracy for
N = 5.

For stationary bifurcations (σ = 0), the results obtained using a Galerkin method with
N = 4 (with an accuracy of less than 1 %) indicate that:

0 ≤ Rv ≤ Rv0 = 640(Le + 1)

7(Le − 1)2
, Rac = 12

1 + ϕ(Le + 1)
, kc = 0, (30)

whereas for Rv > Rv0, there exist ϕ1, ϕ2 roots of :

(Le + 1)Rvϕ2 + (3 + Le)Rv

2
ϕ + 40

7
+ Rv

2
= 0, (31)

such that for ϕ in the interval of the two roots [ϕ1, ϕ2], kc 	= 0 (and therefore Rac 	=
12/(1 + ϕ(Le + 1))). It can be shown that ϕ2 < − 1/(1 + Le). We do not have analytical
expressions for the critical wavenumber and Rayleigh number in this interval of ϕ. The
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Table 1 Comparison between
the exact values of the critical
Rayleigh number associated to
the first (i.e., lowest Ra) primary
steady bifurcation when kc = 0
to the values obtained using the
Galerkin method at order 5 with
Le = 100

ϕ Rac (Exact) Rac (Galerkin)

−0.1 −1.319 − 1.319

−0.05 −2.963 − 2.963

0 12 12.000

0.1 1.081 1.081

0.2 0.566 0.566

0.5 0.233 0.233

Table 2 Critical wavenumber kc
and corresponding critical
Rayleigh number Rac(kc). The
right column is the critical
Rayleigh number Rac(kc = 0)
(one-cell solution)

ϕ kc Rac(kc) Rac(kc = 0)

−0.2398 0 − 27.347 −27.347

−0.26 0.931 − 21.280 −21.428

−0.28 1.218 − 17.290 −17.647

−0.30 1.374 − 14.509 −15

−0.32 1.449 − 12.516 −13.043

−0.34 1.459 − 11.058 −11.538

−0.36 1.406 − 9.973 −10.344

−0.38 1.280 − 9.143 −9.37

−0.40 1.047 − 8.476 −8.571

−0.4267 0 − 7.691 −7.691

Parameters are Le = 5 and
Rv = 50. As demonstrated by the
table, the first (i.e., lowest Ra)
primary bifurcation corresponds
to a solution with kc 	= 0 only
when ϕ ∈ [ϕ1, ϕ2] with
ϕ1 ≈ − 0.4267 and
ϕ2 ≈ − 0.2398. Resolution is
N = 4

Fig. 2 Figure shows the
variations with Rv of the interval
[ϕ1, ϕ2] (in the cup) in which the
first (i.e., lowest Ra) primary
bifurcation corresponds to
kc 	= 0. Calculations are carried
out for Le = 5. The vertical
asymptotes ϕ = − 0.5 and
ϕ = −1/(1+Le) are indicated in
the figure. Writing ϕ1 = ϕ2 in
Eq. (31) gives the coordinates of
the minimum ϕ ≈ − 0.333.
Relation (30) gives Rv0 ≈ 34.28  0

 250

 500

-0.6 -0.5 -0.333  0

Rv

ϕ

Rv0

−1
1+Le

critical values are obtained with the Galerkin method (Ouattara et al. 2012). Table 2 shows 
the values obtained for Le = 5, Rv = 50. We get ϕ1 ≈ − 0.4267, ϕ2 ≈ − 0.2399 and a 
value of kc varying from 0.931 to 1.459. Figure 2 shows the variations of ϕ1 and ϕ2 with Rv. 
The interval [ϕ1, ϕ2] for which the first (i.e., lowest Ra) primary bifurcation corresponds to 
kc 	= 0 is increasing with Rv but is contained in [− 0.5, − 1/(1 + Le)] (see Fig. 2).

For the oscillatory instability (σ = iωH , ωH 	= 0), the results are presented in Fig. 3 and 
Table 3. We used  N = 4 with Le fixed and for different values of ϕ and Rv. We calculated
the critical Rayleigh number Rac, the critical Hopf frequency ωHc and the associated critical 
wavenumber kc. These results show that, for values of ϕ less than − 1/(Le + 1) and positive 
Ra, the conductive state loses stability through a Hopf bifurcation.



-100

 0

 100

 200

 300

-0.2 -0.1  0  0.1
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ϕ

Fig. 3 Stability diagram for Le = 5,Rv = 0 and different normalized porosity values ε. The continuous line
corresponds to the steady bifurcation to a one-cell structure for which the critical Rayleigh number does not
depend on ε. The vertical dotted line corresponds to ϕ = − 1/(Le + 1) and is a vertical asymptote for the
steady bifurcation curves. The three other curves correspond to the Hopf bifurcation for ε = 0.5 (squares), 0.7
(circles) and 0.9 (triangles). Each symbol corresponds to a value obtained with the Galerkin method at fourth
order

Table 3 Critical Rayleigh
numbers Rac , critical Hopf
frequency ωHc and critical
wavenumber kc associated to the
primary Hopf bifurcation for
various ϕ, Rv and ε

ϕ Rv = 0 Rv = 10

ε =0.5 ε =0.7 ε =0.5 ε =0.7

−0.16

kc 4.62 4.63 4.58 4.58

Rac 233.73 188.97 236.02 191.58

ωHc 19.49 16.73 19.25 16.47

−0.18

kc 4.61 4.63 4.58 4.58

Rac 251.40 198.00 253.55 200.51

ωHc 22.12 18.58 21.91 18.29

−0.20

kc 4.61 4.63 4.58 4.58

Rac 271.89 207.93 273.99 210.33

ωHc 24.89 20.42 24.66 20.10

−0.22

kc 4.60 4.63 4.58 4.59

Rac 296.29 218.90 298.15 221.20

ωHc 26.24 22.28 27.54 22.00

The results are obtained using the
Galerkin method at order 6 with
Le = 5

5 Analytical Solution of the Mono-cellular Flow

In the case of a shallow cavity (A � 1), we solve the full nonlinear problem analytically using
the parallel flow approximation (Bennacer et al. 2003; Elhajjar et al. 2009). More precisely,
we assume that the streamlines are parallel to the horizontal walls except in the vicinity
of the vertical walls. So aside from these regions, the vertical component of the velocity
can be neglected. The temperature and concentration are written as the sum of two terms: a
first contribution corresponding to a linear longitudinal variation and a second contribution
producing the transverse distribution. The solution can be written as follow:



V̄ = ū (z) ex , T̄ = mT x + g (z) , C̄ = mCx + h (z) , H = hs(z)ex , (32)

wheremT andmC are, respectively, the unknown constant temperature gradient and concen-
tration gradient in the x direction. In the stationary case and using the boundary conditions,
we obtain:

ū(z) = − f0(2z − 1), hs(z) = − f0
Ra

(2z − 1), (33)

and:

f0 = 1

2
Ra(mT + ϕmC ), (34)

g(z) = −1

3
f0mT z

3 + 1

2
f0mT z

2 − z + cte, (35)

h(z) = f0(mCLe + mT )(6z2 − 4z3 − 1)

12
+ 1 − mC A

2
− z, (36)

mT = 5 f0
f02 + 30

, mC = −Le f0(mT f0 − 5) − 30mT

Le2 f02 + 30
. (37)

Replacing the expressions of mT and mC of (37) in Eq. (34) we obtain :

f0

(
Le2 f0

4 − 5

2
d1 f0

2 − 25

16
d2

)
= 0, (38)

where:
d1 = Le2Ra − 12Le2 − 12, d2 = 48(Ra(1 + ϕ(Le + 1)) − 12). (39)

The solutions of (38) are f0 = 0 or:

f0 = ±
√
5

2Le

(
d1 ±

√
d12 + Le2d2

) 1
2

. (40)

Of course, the number of solutions depends on the signs of d12 + Le2d2 and d1 ±√
d12 + Le2d2 and these signs also depend on Ra at fixed Le and ϕ. But if a one-cell solution

exists, there also exists another counter-rotating solution.
In the following, we focus on the configuration Ra > 0. It is clear that if d12 +Le2d2 < 0

no one-cell solution appears and we are left with the conduction state corresponding to
f0 = 0. Solving d12 + Le2d2 = 0 in terms of Ra gives two values Ra2±:

Ra = Ra2± ≡ 12(Le + 1)

Le2

(
Le − 2ϕ − 1 ± 2

√
ϕ(1 − Le + ϕ)

)
. (41)

In between these two roots d12 + Le2d2 < 0. Therefore, Ra < Ra2− and Ra > Ra2+ are
necessary conditions for the existence of one-cell solutions. To ensure these solutions exist,
we must have in addition at least one of this two conditions: d1 ±

√
d12 + Le2d2 > 0 when

Ra = Ra2+. We calculated the expression ϕsub of ϕ below which this occurs:

ϕsub = − 1

1 + Le + Le2 + Le3
. (42)

This Soret separation coefficient corresponds to the value below which the supercritical 
primary bifurcation to the one-cell solutions becomes subcritical. For Le = 5, it gives ϕsub 

=



−1
1+Le

0

ϕ

ϕsub = −1
1+Le+Le2+Le3

Rasub = 12 1 + Le−2

Rac =
12

1+ϕ(Le+1)

Rac,PT = 12

RaSN =
12(Le+1)

Le2 Le − 2ϕ − 1 + 2 ϕ(1− Le + ϕ)

Rac =
12

1+ϕ(Le+1)

Ra

Ra
0

Ra
0

Ra
0
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Fig. 4 a In the parameter space (ϕ,Ra), the figure shows the stability diagram and the various analytical
expressions obtained in the text. The figure is restricted to steady bifurcation points (primary bifurcations and
saddle-nodes) associated to one-cell solutions. Three intervals of ϕ referred to as intervals 1, 2, 3 are identified.
For ϕ chosen in an interval, the corresponding schematic bifurcation diagram reporting Ψ̄max = ± maxΓ |Ψ̄ |
as a function of Ra is shown on the right side of the figure. Interval 1 corresponds to ϕ ∈ [ϕsub,+ ∞], and the
primary bifurcation is a supercritical pitchfork. The second interval corresponds to ϕ ∈ [− 1/(1+Le), ϕsub],
and for ϕ chosen in this interval, the primary steady bifurcation is subcritical and associated to the existence
of saddle-nodes. The last interval corresponds to ϕ ∈ [−∞, − 1/(1 + Le)]. The primary steady bifurcation
has disappeared for Ra > 0 and is replaced by a Hopf bifurcation not shown here (see Fig. 3). On the other
hand, for Ra < 0, there exists a primary steady bifurcation. b shows the figure for Le = 5. c is a closer view
of b showing in particular ϕsub = − 0.00641 below which the primary bifurcation to one-cell solutions is
subcritical

− 0.00641. When ϕ < ϕsub, the value RaSN = Ra2+ corresponds to the saddle-node along
the branch of one-cell solutions. It is also possible to obtain ϕSN = ϕ(RaSN):

ϕSN = − 1

48

(
Le2(RaSN − 12) + 12

)2
Le2RaSN(Le + 1)

. (43)

Figure 4a summarizes the various expressions obtained for the one-cell solution and shows
the corresponding schematic bifurcation diagrams (restricted to steady states). Figure 4b, c
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Fig. 5 a, b Bifurcation diagram showing | f0| (relation (40)) as a function of Ra for different values of ϕ 
indicated in the figures. The dashed line correspond to ϕ = 0. Parameters are Le = 5, Rv = 0. The domain 
is infinite in the horizontal direction

shows the stability diagram for Le = 5, and Fig. 5a, b shows the bifurcation diagram obtained 
with Eq. (40) when Le  = 5 and Ra  > 0. We identified three regions in the stability diagram 
of Fig. 4a. If ϕ ∈ [ϕsub, +∞], the primary bifurcation is a pitchfork. The corresponding 
bifurcation diagram is shown schematically on the right side of Fig. 4 and in Fig. 5b for various 
ϕ. Ifϕ ∈ [− 1/(1+Le), ϕsub], the branch of one-cell solution bifurcates subcritically from the 
base state and turns around at larger amplitude via a saddle-node bifurcation at RaSN < Rac. 
This behavior is shown schematically on the right side of Fig. 4 and in Fig. 5a. Finally, for 
ϕ ∈ [−∞, − 1/(1+Le)] the branches of one-cell solution are completely disconnected from 
the base state in the region Ra > 0 (see for instance Fig. 5a with ϕ = − 0.5 or − 1) whereas 
a supercritical bifurcation to one-cell solutions has appeared for Rac < 0. The analysis of 
this stability diagram and related bifurcation diagrams in the general context of binary fluid 
convection is conducted by Tuckerman (2001) using a low-dimensional dynamical system 
approach.

6 Numerical Simulations

We use a numerical continuation method to follow steady states emerging from small ampli-
tude near the primary instability threshold to large amplitudes. Our numerical continuation 
method is based on a Newton solver for the time-independent version of the averaged equa-
tions and boundary conditions. The implementation of the method follows that of Mamun 
and Tuckerman (1995). The discretization in space is a spectral element method in which 
the domain is decomposed into ne spectral elements of size nx × nz . In each element, the 
fields are approximated by a high-order interpolant through the Gauss–Lobatto–Legendre 
points. The Newton solver uses a first-order time integration scheme for the equations. The 
diffusive linear part is treated implicitly, and the nonlinear part, explicitly. Since the latter 
requires the velocity, in the absence of vibrations, a Poisson problem is formulated for the 
stream-function and is solved subjected to Dirichlet boundary conditions. When Rv = 0,
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Fig. 6 a Bifurcation diagram showing the vicinity of the four first primary bifurcations from the conduction
state in terms of the maximum horizontal component of the velocity ūmax as a function of the Rayleigh
number. Continuous (dashed) lines refer to linearly stable (unstable) solutions. Squares indicate primary and
secondary bifurcation points. b same as a over a larger Rayleigh number interval. c same as b but in terms
of the kinetic energy Ek as a function of the Rayleigh number. The secondary bifurcation along L2 occurs at
Ra = 12.94, and the successive secondary bifurcations along L3 occur at Ra = 13.93 and 13.98 and along
L4 at Ra = 14.96, 15.0 and 15.05. d Isovalues of the stream-function of the solutions at Ra ≈ 20 along the
branches Ln where n is the number of rolls. Parameters are ϕ = 0,Rv = 0 and A = 20
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Le bifurcating from the
conduction state for Lewis numbers Le = 10, 20, 50, 100 with ϕ = 1. The dashed line corresponds to L1 (the 
fluid is not a binary mixture). Other parameters are Rv = 0 and  A = 20

each timestep, therefore, requires the inversion of two Helmholtz problems and one Poisson 
problem. This is carried out using a Schur factorization procedure on the weak form of the 
equations. The linear stability of the solutions obtained during the continuation process is 
calculated using an Arnoldi method as described in Mamun and Tuckerman (1995). More 
details on the code and its adaptation to other physical problems can be found in Lo Jacono 
et al. (2011, 2013) and Beaume et al. (2013a, b).

We consider in this part a bounded domain. Since we also wish to compare the results 
for this geometry to those obtained for the infinite layer, we consider a large aspect ratio
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Fig. 9 Two solutions for two Rayleigh numbers: Ra = 0.123 which is close to the threshold and Ra = 19.801
which corresponds to a regime dominated by the thermally induced buoyancy force. The snapshots show the
isovalues of the stream-function, temperature and concentration. The isovalues are equidistant between the
minimum and maximum values. For T̄ and C̄ , 7 isovalues are drawn between (T̄ , C̄)min = (− 0.4,− 2)
and (T̄ , C̄)max = (0.4, 2) for Ra = 0.123 and (T̄ , C̄)min = (− 4,− 0.15) and (T̄ , C̄)max = (4, 0.15) for
Ra = 19.801. Parameters are Le = 100, ϕ = 0.1,Rv = 0 and A = 20

A = 20. All results are computed with Rv = 0, B = 0 and ε = 1 for various Lewis numbers
Le and Soret separation ratios ϕ. We used ne = 20 spectral elements with a resolution in
each element ranging from nx = nz = 17 for Le = 10 to nx = nz = 31 for Le = 100. Some
results have been compared to those obtained with the COMSOL Multiphysics software
(Comsol Inc 2012), and an excellent agreement was observed.

Figure 6 shows the bifurcation diagram in the pure thermal case corresponding to ϕ = 0.
Figure 6a–c reports the variationswith theRayleigh number of themaximumof the horizontal

velocity component and of the kinetic energy Ek = (1/2)
∫
Γ
V̄
2
dΓ . The first four primary

bifurcations are computed, and the emerging branches are referred as Ln where n is the
number of cells of the associated solutions (Fig. 6d). The first one corresponds to the one-cell
structure. It bifurcates supercritically and is stable over the computational domain. The other
bifurcating branches Ln (n > 1) are n − 1 times unstable close to the threshold. But along
each branch, n−1 secondary bifurcations occur. As a consequence, all branches progressively
regain stability to finally become linearly stable. This explains why in Fig. 6 we observe an
interval of Rayleigh numbers where the four branches are linearly stable (note that along the
branch L2 the two secondary bifurcations are very close one another).

Figure 7a shows the bifurcation diagram when ϕ = 0.01. The figure indicates that the
stabilization mechanism persists for the branch L2 when ϕ 	= 0. We should mention that
the stability of the solutions may be affected by the value of ε. But a complete study of this
dependence is beyond the scope of this paper.

Hereafter, we only focus on the one-cell solution. Figure 7b shows the variations of the
kinetic energy with the Rayleigh number for various Soret separation ratios ϕ. As expected,
whenϕ increases the threshold decreases. Thefigure reveals that for small positive values ofϕ,
the transition from low to large kinetic energy happens once the Rayleigh number exceeds the
pure thermal threshold Rac,PT = 12. Beyond this value, the thermal and solutal contributions
to the buoyancy force are both destabilizing. More precisely, if the Soret separation ratio is



not too large (between 0 and 10−2), the thermal contribution is dominant as soon as Ra is 
larger than Rac,PT. This is clear  in  Fig.  7b where the bifurcating branch approaches the pure 
thermal branch (ϕ = 0, dashed curve) for ϕ = 0.1 and 0.01. On the other hand, below Rac,PT, 
only the solutal part is responsible for the onset of convection and for small values of ϕ, it  
produces a very weak flow.

Figure 8 shows the bifurcation diagram of the one-cell solutions for positive Soret sep-
aration ratio ϕ = 1 and various Lewis numbers Le = 10, 20, 50 and 100. The branches 
are labeled L1

Le and are all linearly stable in the computational domain. These results show 
that the behavior identified in the previous paragraph for small Soret separation ratios and 
moderate Lewis numbers, also appears with large Soret separation ratios and large Lewis 
numbers. For Le = 100, Fig. 8 shows that the instability produces a weak convection regime 
close to the threshold followed by a more intense flow for Rayleigh numbers larger than 
the pure thermal threshold Rac,PT = 12. The physical reason is, however, slightly differ-
ent than in the case of small Soret separation ratios. The flow is produced by the thermal 
and solutal gradients. When Ra > Rac,PT, and for large Lewis numbers, the concentration 
becomes almost constant everywhere forming boundary layers. The comparison of the two 
regimes Ra < Rac,PT and Ra > Rac,PT is illustrated in Fig. 9. The figure shows that when 
Ra > Rac,PT the flow becomes driven mainly by the thermally induced buoyancy force.

7 Conclusion

We have conducted a numerical and analytical study of the onset of Soret-driven convection in 
an isotropic homogeneous porous medium saturated by a binary fluid mixture and subjected 
to vertical high-frequency and small-amplitude vibrations. Two configurations have been 
considered and compared: an infinite horizontal layer and a bounded domain with a large 
horizontal extension. In both cases, the initial temperature gradient is produced by a constant 
uniform heat flux applied on the horizontal boundaries. In response, the system develops 
a concentration difference adding a solutal contribution to the thermally induced buoyancy 
force. The relative effect of these two forces depends on the sign of the Soret separation ratio 
ϕ and the sign of the temperature difference between top and bottom (Ra can be positive or 
negative).

In the first part, we studied the influence of the sign of the Soret separation ratio ϕ and 
the influence of the (normalized) porosity on the onset of convection using an averaged 
formulation of the equations. A very good agreement was obtained between the analytical 
critical values and the values obtained with a Galerkin numerical procedure. For steady 
bifurcation, the threshold does not depend on the normalized porosity; this is not the case 
for Hopf bifurcations. The stability properties differ from the classical constant temperature 
Soret–Horton–Rogers–Lapwood problem for which the critical Rayleigh number associated 
to the onset of one-cell solution is equal to 12/(ϕLe). Here, the steady bifurcation occurs for 
Rac = 12/(ϕ(Le + 1) + 1) when ϕ > − 1/(1 + Le). More precisely, we demonstrated that 
the vibrations have no effect on the critical Rayleigh number Rac and critical wavenumber 
(kc = 0) when ϕ > − 1/(1 + Le). But the vibrations have an effect on the Hopf bifurcation 
threshold (positive Rac and ϕ < − 1/(1 + Le)) and on the steady bifurcation when Rac < 0 
and ϕ < − 1/(1 + Le). The present configuration differs from that in which the initial 
temperature gradient is produced by prescribed temperatures along the horizontal boundaries 
(Elhajjar et al. 2009).



In the second part, direct numerical simulations were carried out in order to corroborate
the results obtained with the linear stability analysis of the base state. More precisely, using
a numerical continuation method, the results for a bounded domain with large aspect ratio
were compared to an analytical approach carried out for an infinite horizontal domain and
restricting the comparison to the one-cell structure. Despite expected differences close to the
threshold, an excellent agreement was observed when the velocity in the vertical mid-plane
of the domain is compared. Finally, we computed the bifurcation diagrams for various Soret
separation ratios and various Lewis numbers restricting our study to steady states with a
particular focus on the one-cell solution. Even though our results of Sect. 6 are obtained with
Rv = 0, they are expected to capture the nonlinear behavior of the solutions when Rv ≈ 0.
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