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The oscillating random walk on Z

January 4, 2022

D. T. Vo (1)

Abstract

The paper is concerned with a new approach for the recurrence property of the oscil-

lating process on Z in Kemperman’s sense. In the case when the random walk is ascending

on Z
− and descending on Z

+, we determine the invariant measure of the embedded pro-

cess of successive crossing times and then prove a necessary and sufficient condition for

recurrence. Finally, we make use of this result to show that the general oscillating process

is recurrent under some Hölder-typed moment assumptions.

Keywords: random walks, irreducible class, invariant measure

1 Introduction and notations

1.1 Introduction

In parallel with many studies of classical stochastic processes, oscillating random walks,

which was introduced systematically by Kemperman [8], have been found to be good mod-

els with several applications, see [7] for instance. This paper deals with the homogeneous

Markov chain X (α) = (X
(α)
n )n≥0 indexed by a parameter α ∈ [0, 1] such that X

(α)
0 = x0

with some fixed x0 ∈ Z and for n ≥ 1,

X
(α)
n+1 := X(α)

n +
(

ξn+11{X
(α)
n ≤−1}

+ ηn+11{X
(α)
n =0}

+ ξ′n+11{X
(α)
n ≥1}

)

, (1.1)

where

• the ξn, n ≥ 1, have common distribution µ,

• the ξ′n, n ≥ 1, have common distribution µ′,
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• the ηn, n ≥ 1, have common distribution given linearly by

P[ηn = y] := αµ(y) + (1− α)µ′(y) for any y ∈ Z,

• (ξn, ξ
′
n, ηn)n≥1 is a sequence of independent and identically distributed (abbreviate

i.i.d.) random variables.

When we want to emphasize the dependence of X (α) on the distributions µ and µ′, the

process (X
(α)
n )n≥0 is denoted by X (α)(µ, µ′) instead X (α).

It is merely to say that the excursion will be directed by µ (resp. µ′) as long as the

process stays on the negative (resp. positive) side and therefore, this present model is

often called the oscillating random walk with respect to (w.r.t.) zero level. The choice of

zero is arbitrary and can be replaced by any fixed level. In case of α ∈ {0; 1}, we use the

terminology “crossing” to mean the point 0 belongs to only one of the two half lines and

it belongs to both if 0 < α < 1. We are mainly interested in recurrence of this process on

its essential (i.e. maximal irreducible) classes.

The case µ = µ′ is well-treated by Mijatović and Vysotsky [11], except providing

detailed illustrations of the trajectory. The highlight result is an invariant measure (and a

probability) constructed in a probabilistic manner and under the additional assumption of

(topological) recurrence of the chain, it is up to a multiplicative constant finite invariant

measure. For the sake of completeness, we will study all irreducible classes of X (α) from the

simple case when ξn ≥ 0 and ξ′n ≤ 0 to the general one. Appropriately refining the formula

in [11], we obtain the exact invariant measure and then apply the idea of Knight [10] to

get its discrete version, see Section 2.

Section 3 is devoted to such an important sub-process of X (0) evolving within a definite

state space, whose elements are recorded at corresponding successive crossing times. A

particular interest will be put on the structure of (essential) irreducible classes, especially

on N , the set of isolated states which are impossible to reach from any opposite states

in a single step. Theorem 3.3 stipulates some mild conditions for N to be empty and

also yields an expression for it. In analogy to the approach for reflected random walks,

we finally compute the invariant measure for the sub-process based on some arguments

developed in the previous work of Peigné and Woess [13].

The recurrence of the general oscillating random walk X (α) is dealt with in Section

4. Some powerful tools such as the Kemperman’s criterion [8] (a divergent series repre-

sented in term of renewal functions) or the integral criterion of Rogozin and Foss [15]

(a transformation established with the help of Wiener-Hopf factorization) are mentioned

for reference. We also furnish a new approach coming from the fact that the recurrence of

the crossing sub-process implies to the recurrence of the full process. To do this, we first
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show that the process of crossing is (positive) recurrent if the tail distribution condition

+∞∑

n=0

P(ξ1 > n)P(ξ′1 < −n) < +∞

holds when ξn ≥ 0, ξ′n ≤ 0. Moreover, it can be attained under the hypothesis E[ξp1 ] < +∞

and E[(−ξ′1)
q] < +∞, where p, q ∈]0, 1[ satisfying p + q = 1. When jumps are generalized

on Z, there may have different possibilities, for instance, both ξn and ξ′n are either drifted

(positive and negative, respectively) or centered as well as mixed and by Theorem 4.8, we

will address suitable conditions to each corresponding situation.

1.2 Notations

Throughout this paper, we fix some frequently used notations

• Sµ (resp. S
′
µ) : the support of µ (resp. µ′).

• D (resp. D′) : the maximum of µ (resp. the minimum of µ′).

We adhere to the convention that D = +∞ (resp. D′ = −∞) when Sµ (resp. Sµ′)

is unbounded from above (resp. from below).

• d (resp. d′) : the greatest common divisor of Sµ (resp. S
′
µ).

• Z
+/Z− : the set of positive/negative integers (and Z

+
0 /Z

−
0 if 0 is included).

• rx: the remainder of x in the Euclidean division by δ (i.e. 0 ≤ rx < δ).

Let us end this paragraph dedicated to notations by reminding that for any fixed

0 ≤ α ≤ 1, the chain (1.1) is denoted by X (α)(µ, µ′) (and simply X (α) when there is no

ambiguity on the choices of µ and µ′).

2 Irreducible classes and invariant measure of X (0)(µ, µ′)

It is easy to check that if µ = µ′ (in this case X (0)(µ, µ′) becomes an ordinary random

walk on Z with the unique jump measure µ) then d = d′ and the irreducible classes of

X (0)(µ, µ′) are the sets r + dZ with 0 ≤ r < d. In this section, we describe the essential

classes of X (0)(µ, µ′) when µ 6= µ′.

2.1 The chain X (0)(µ, µ′) when Sµ ⊂ Z
+ and Sµ′ ⊂ Z

−

For any x ∈ Z, let I(x) be the irreducible class of x. It holds I(0) ⊂ {D′, . . . ,D − 1}.

Furthermore, for any starting point x, after finitely many steps, the chain X (0) stays for

ever a.s. in the subset {D′, . . . ,D − 1}.
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Theorem 2.1. We suppose that Sµ ⊂ Z
+ and Sµ′ ⊂ Z

−.

• Assume first D and D′ are finite. If d ∧ d′ = δ, then

i) there exist δ irreducible essential classes

{D′, . . . ,D − 1} ∩ (r + δZ) with 0 ≤ r < δ;

(in particular the irreducible class of 0 equals I(0) = {D′, . . . ,D − 1} ∩ δZ);

ii) if x ≥ D or x < D′ then x is transient and, after finitely many steps, reaches P-a.s.

the essential class {D′, . . . ,D − 1} ∩ (rx + δZ).

• If D′ = −∞ and D is finite then

i) there exist δ irreducible essential classes

]−∞,D − 1] ∩ (r + δZ) with 0 ≤ r < δ;

ii) the x ≥ D are all transient and, after finitely many steps, reaches P-a.s. the

essential class ]−∞, . . . ,D − 1] ∩ (rx + δZ).

(similar dual statement follows when D′ is finite and D = +∞).

• If D = +∞ and D′ = −∞ then there exist δ irreducible essential classes, which are

all essential:

r + δZ with 0 ≤ r < δ.

Proof. The proof of Kemperman based on the theory of semi-groups of Z entirely solved

for the chain X (α), 0 ≤ α ≤ 1 providing that D = −D′ = +∞ (see Remark 2.3). Back to

the current model, we will prove by induction, but let us first fix some notations.

Let T be a finite subset of Sµ ∪ Sµ′ s.t. T ∩ Sµ 6= ∅ and T ∩ Sµ′ 6= ∅; without loss of

generality, we assume 0 /∈ T .

For any x ∈ Z, we denote by OT (x) the “orbit of x under T”, that is the set of

sequences x = (xi)i≥0 defined by induction as follows: x0 = x and, for any i ≥ 1,

- if xi ≤ −1 then xi+1 = xi + s for some s ∈ T ∩ Sµ;

- if xi ≥ 0 then xi+1 = xi + s′ for some s′ ∈ T ∩ Sµ′ .

Notice that all the xi but finitely many do belong to {min(Sµ′), . . . ,max(Sµ)− 1}.

For any x, y ∈ Z, we write x
T
→ y if there exists x ∈ OT (x) s.t. x0 = x and xn = y for

some n ≥ 0. When there exists no such sequence x, we write x
T
6→ y. The notation x

T
↔ y

means x
T
→ y and y

T
→ x.

The relation
T
↔ is an equivalence relation on Z whose classes are called T -irreducible

classes. The T -irreducible class of x is denoted IT (x).

The relation
T
→ induces a partial order relation on IT , denoted again

T
→. The maximal

irreducible classes for this relation are called T -essential; a non essential irreducible class

is said T -transient.
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We now describe IT , by induction on the cardinality of T .

Step 1- Case when T = {s, s′} with s ∈ Z
+ and s′ ∈ Z

−.

• We assume first s ∧ s′ = 1, x = 0 and prove that {s′, . . . , s − 1} is the unique T -

essential class. Furthermore, IT (x) equals {x} and is T -transient when x ≥ s or x < s′.

Indeed, for any ω = (ωi)i≥0 in OT (0), the ωi all belong to Ns+Ns′ and to {s′, . . . , s−1}.

Hence, there exist j > i ≥ 1 such that ωj = ωi. Since ωi 6= ωi+1, ωj−1 6= ωj and

ωi
T
→ ωj = ωi, there exists k, ℓ ≥ 1 such that ks+ ℓs′ = 0. The condition s ∧ s′ = 1 yields

k = 0 mod(s′) and ℓ = 0 mod(s), hence k ≥ |s′| and ℓ ≥ s. Consequently, the sub-orbit

{ωi, ωi+1, . . . , ωj−1} contains at least s+ |s
′| elements; since it is included in {s′, . . . , s−1},

it holds in fact {ωi, ωi+1, . . . , ωj−1} = {s′, . . . , s − 1}. This proves that x
T
→ y for any

x, y ∈ {s′, . . . , s − 1}, hence {s′, . . . , s − 1} ⊂ IT (0). Eventually, {s′, . . . , s − 1} = IT (0)

since the elements of all the orbits of 0 remain in {s′, . . . , s − 1}. This also implies that

{s′, . . . , s− 1} is T -essential.

As a consequence of this argument, the orbit OT (0) contains a unique sequence ω,

which is is periodic with period ω0, ω1, . . . , ωs+|s′|−1 where ωi ∈ {s
′, . . . , s−1} and ωi 6= ωj

for any 0 ≤ i < j < s + |s′|. We write for short ω = ω0, . . . , ωs+|s′|−1 and emphasize that

{ω0, . . . , ωs+|s′|−1} = {s
′, . . . , s− 1}.

Now, if x ≥ s or x < s′ and x = (xi)i≥0 ∈ OT (x), then xi 6= x for any i ≥ 1; in other

words, IT (x) = {x} and x is T -transient.

• Assume now s∧s′ = δ ≥ 2. Then, the T -essential classes are {s′, . . . , s−1}∩(x+δZ).

Furthermore, if x ≥ s or x < s′, then I(x) equals {x} and is T -transient.

In this case, the set OT (0) still contains a unique sequence ω = ω0, . . . , ωk−1 with

k = s+|s′|
δ and {ω0, . . . , ωk−1} = {s′, . . . , s − 1} ∩ δZ. As a direct consequence, for any

x ∈ Z, the set OT (x) is included in x+ δZ and also contains a unique sequence x, which is

ultimately periodic with period rx+ω0, . . . , rx+ωk−1. The description of the T -irreducible

classes follows immediately.

Step 2-Case when T ⊂ Z is finite and satisfies T ∩ Z
− 6= ∅ and T ∩ Z

+ 6= ∅.

The proof is made by induction, from T to T := T ∪ {t′} with t′ ∈ Z
− ; the case when

T := T ∪ {t} with t ∈ Z
+ is studied in the same way. By Step 1, the property is true for

T = {s, s′}, s > 0 and s′ < 0.

Hypothesis of induction: Let T be a set of non-zero integers s.t. T∩Z
− 6= ∅ and T∩Z

+ 6= ∅.

We set δT := gcd(T ) and denote s (resp. s′) the largest (resp. smallest) element of T .

We assume that

- the T -essential classes are {s′, . . . , s− 1} ∩ (r + δTZ) with 0 ≤ r < δT ;

- when x ≥ s or x < s′, then IT (x) = {x} and x is T -transient; furthermore, for any

x = (xi)i≥0 ∈ OT (x), all xi but finitely many belong to the T -essential class {s′, . . . , s −

1} ∩ (x+ δTZ).
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Conclusion: For t′ ∈ Z
− then the same property holds for T = T ∪ {t′}. In other words,

setting δT := gcd(T) and mT := min(s′, t′),

- the T-essential classes are {mT, . . . , s − 1} ∩ (r + δTZ) with 0 ≤ r < δT;

- if x ≥ s or x < mT, then IT(x) = {x} and x is T-transient; furthermore, for any

x = (xi)i≥0 ∈ OT(x), all xi but finitely many belong to the T-essential class {mT, . . . , s−

1} ∩ (x+ δTZ).

The same argument as in Step 1 works to deduce the case δT ≥ 2 from the case δT = 1;

thus, we only consider the case δT = 1.

Notice that {mT,· · · , s − 1} is absorbing; in other words, for any x ∈ Z and any

x = (xi)i≥0 ∈ OT(x), all xi but finitely many belong to this set. In particular, x is

transient when x ≥ s or x < mT. It thus remains to check that {mT,· · · , s − 1} is

irreducible.

Let us first prove that

{s′, . . . , s− 1}
T
→ {s′, . . . , s − 1} (2.1)

For any x ∈ {s′, . . . , s − 1}, we choose ℓx ≥ 0 s.t. x+ t′ + ℓxs ∈ {0, . . . , s − 1} and notice

that x
T
→ x + t′ + ℓxs. Now, for any y = (yi)i≥0 ∈ OT (x + t′ + ℓxs), all yi but finitely

many belong to the T -essential class IT (x + t′) = {s, . . . , s′ − 1} ∩ (x + t′ + δTZ); thus,

{x}
T
→ {s′, . . . , s − 1} ∩ (x+ t′ + δTZ). Reiterating the argument, we get, for k ≥ 1

{x}
T
→ {s′, . . . , s− 1} ∩ (x+ kt′ + δTZ). (2.2)

Since gcd(t′, δT ) = δT = 1, the class of t′ mod(δT ) generates Z/δTZ, so

⋃

0≤k<δT

{s′, . . . , s− 1} ∩ (x+ kt′ + δTZ) = {s′, . . . , s− 1}.

This yields immediately {x}
T
→ {s′, . . . , s − 1}: indeed, for any y ∈ {s′, . . . , s − 1} there

exists ky ≥ 1 s.t. y ∈ {s′, . . . , s − 1} ∩ (x + kyt
′ + δTZ) and (2.2) readily implies x

T
→ y.

This holds for any x ∈ {s′, . . . , s − 1} and proves (2.1).

This implies {mT, . . . , s − 1}
T
→{mT, . . . , s − 1} when s′ < t′. It remains to consider

the case when t′ < s′; we fix x ∈ {t′, . . . , s′ − 1}.

The same argument as above proves that {x}
T
→ {s′, . . . , s− 1}.

Conversely, we decompose x as x = t′ + kxs + rx with kx ≥ 0 and 0 ≤ rx < s. For

any y ∈ {s′, . . . , s − 1}, property (2.1) yields y
T
→ rx since 0 ≤ rx < s; now, immediately,

rx
T
→ t′ + kxs+ rx = x so that y

T
→ x as expected.

Step 3 -Proof of Theorem 2.1

When D and D′ are finite, we set T = Sµ ∪ Sµ′ and apply Step 2.
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If D′ = −∞ and D is finite, we set T = Ts′ = Sµ ∪ (Sµ′ ∩ {s′, . . . ,−1}) with s′ ≤ −1,

apply Step 2 then let s′ → −∞. The two other cases are treated in the same way.

�

It is worth remarking that one may extend the above to adapt for X (α), that is to say,

the chain (starting at any initial point) will be absorbed after finitely many steps by the

essential class







{D′, . . . ,D − 1} if α = 0,

{D′, . . . ,D} if 0 < α < 1,

{D′ + 1, . . . ,D} if α = 1.

under the assumption of bounded jumps. The remaining statements of the theorem are

proved in an analogous way.

2.2 The chain X (0) in the general case

We start by considering the irreducible classes of X (0) on the additional assumptions

that Sµ ∩Z
− 6= ∅ and Sµ′ ∩Z

+ 6= ∅. Intuitively, the oscillating random walk X (0) starting

from 0 can visit arbitrarily large integers and so, it is quite natural to think that I(0)

contains the whole line Z in this case, under the hypothesis d ∧ d′ = 1. In fact, it is false

and depends deeply on the structure of Sµ and S′
µ. The following theorem, which is based

on the ideas developed in Step 2 above, clarifies this point.

Theorem 2.2. We write S+
µ (resp. S+

µ′) and S−
µ (resp. S−

µ′) as the positive and negative

components of Sµ (resp. S′
µ), respectively. Suppose that these subsets are all non-empty.

If d ∧ d′ = δ and d 6= d′ then

• Case when D < d′

i) if x ∈ {D, . . . , d′ − 1}+ d′Z+
0 then x is transient and its irreducible class is

I(x) = (x+ d′Z) ∩ [D,+∞[;

ii) otherwise, x is essential and its essential class is given by

I(x) = (rx + δZ) \ ({D, . . . , d′ − 1}+ d′Z+
0 ).

• Case when D′ > −d

i) if x ∈ {−d, . . . ,D′ − 1}+ dZ−
0 then x is transient and its irreducible class is

I(x) = (x+ dZ)∩ ]−∞,D′ − 1];
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ii) otherwise, x is essential and its essential class is given by

I(x) = (rx + δZ) \ ({−d, . . . ,D′ − 1}+ dZ−
0 ).

• Case when D ≥ d′ and D′ ≤ −d

There is/are δ irreducible class(es), which is/are all essential:

r + δZ with 0 ≤ r < δ.

Proof. Before delving into details, we shall pay more attention to the fact that these two

conditions cannot be attained at the same time due to −D < d′ < D′ < d and we thus

arrive at a contradiction. In particular, if D < d′ then −D′ ≥ d and vice versa.

• Case when D′ < d

i) The converse is easily done since x
Sµ∪Sµ′

←→ x+ kd′ for any k ∈ Z satisfying x+ kd′ ≥ D.

Indeed, the assumption of Sµ′ leads to the semi-group generated by Sµ′ , says Tµ′ , is

equal to d′Z. One can write kd′ =
∑

s′i as the finite sum of elements in Sµ′ . Selecting

first the positive elements (if any) and then the negative ones, it immediately follows

that (x + d′Z) ∩ [D,+∞[⊂ C(x). Now, we will show by contraposition that C(x) ⊂

(x + d′Z) ∩ [D,+∞[. Suppose z ∈] −∞,D − 1] ∩ C(x). Let τ be the last time entering

to the set {0, . . . ,D − 1} of X (0) before visiting x for the first time. Since z
Sµ∪Sµ′

−→ x,

we have Pz[τ < +∞] = 1 and then put X
(0)
τ = y ∈ {0, . . . ,D − 1}. Observe that

x− y ∈ {1, . . . , d′− 1}+ d′Z+
0 , i.e. x− y /∈ d′N and thus, z

Sµ∪Sµ′

6−→ x (contradiction). When

z ≥ D, the crossing process starting at z is directed only by Sµ′ and therefore, z ∈ x+d′Z.

ii) A reasoning similar to the above yields that

y
Sµ∪Sµ′

←→ y + kd′ if y ∈ {0, . . . ,D − 1}+ d′Z+
0 ,

where k ∈ Z s.t. y + kd′ ≥ 0.

Moreover, by Theorem 2.1

{D′, . . . ,D − 1} ∩ (rx + δZ)
S+
µ ∪S−

µ′

−→ {D′, . . . ,D − 1} ∩ (rx + δZ). (2.3)

Now, we fixed t ∈]−∞,D′[∩ (rx+δZ), then there is some zt ∈ {D
′,· · · ,−1}∩(rx+δZ)

s.t. zt ≡ t(mod d) due to −D′ ≥ d. Combining (2.3) with the fact that Tµ = dZ, we get

{t}
Sµ∪Sµ′

←→ {D′,· · · ,D − 1} ∩ (rx + δZ).
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This property holds for every choice of t, so

{]−∞,D′[∩ (rx + δZ)}
Sµ∪Sµ′

←→ {D′,· · · ,D − 1} ∩ (rx + δZ)

which achieves the proof.

•We finish by mentioning that, suitably modified, the above argument applies to the other

cases. �

Remark 2.3. Suppose that Sµ is unbounded from above (D = +∞) and Sµ′ is unbounded

from below (D′ = −∞). In such situation, all states connect and it is in fact possible that

the process X (0) with a positive probability will never reach a given neighborhood of 0 due to

infinitely many extremely large jumps across 0. Consequently, there exists (with a positive

probability) an orbit between every two points, which has no intermediary state belonging

to a given finite set F , even if 0 /∈ F (see [8]).

2.3 On the invariant measure for X (0) when Sµ ⊂ Z
+ and Sµ′ ⊂ Z

−

The concept of invariant measure plays a crucial role in the study in the long-time

behaviour and asymptotic properties of a Markov chain. To adapt for the current situation,

a proper adjustment to the invariant measure in [11] is indispensable and what we found

is the following

Lemma 2.4. Assume Sµ ⊂ Z
+ and Sµ′ ⊂ Z

−. The measure λ on R given by

λ(dx) =
(
1]−∞,0[(x)P[ξ′1 < x] + 1[0,+∞[(x)P[ξ1 > x]

)
dx,

where dx is Lebesgue measure, is invariant for X (0).

Proof. For any a ≥ 0, it follows without difficulty that

λP ]a,+∞[ = lim
N→+∞

∫ 0

−N
P[ξ′1 < x]P[x+ ξ1 > a] dx+ lim

N→+∞

∫ N

0
P[ξ1 > x]P[x+ ξ′1 > a] dx

= lim
N→+∞

∫ 0

−N
P[ξ′1 < x]P[ξ1 > a− x] dx+ lim

N→+∞

∫ N

0
P[ξ1 > x]P[ξ′1 > a− x] dx

= lim
N→+∞

∫ N+a

a
P[ξ′1 < a− y]P[ξ1 > y] dy + lim

N→+∞

∫ N

a
P[ξ1 > y]P[ξ′1 > a− y] dy

= lim
N→+∞

∫ N

a
P[ξ1 > y] dy + lim

N→+∞

∫ N+a

N
P[ξ′1 < a− y]P[ξ1 > y] dy

= λ]a,+∞[

since

∫ N+a

N
P[ξ′1 < a− y]P[ξ1 > y] dy ≤

∫ a

0
P[ξ1 > z +N ] dz → 0 as N → +∞.
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The same computation yields λP ]−∞,−a[= λ]−∞,−a[ and thus, the proof is complete.

�

As a direct consequence, we obtain the following result.

Corollary 2.5. Assume Sµ ⊂ Z
+ and Sµ′ ⊂ Z

−. Then X (0) is positive recurrent on each

essential class iff both measures µ and µ′ have finite first moment.

Lemma 2.6. Assume Sµ ⊂ Z
+ and Sµ′ ⊂ Z

−. The discrete measure ν on Z given by

ν(m) :=

{

µ′]−∞,m] if m ≤ −1

µ[m+ 1,+∞[ if m ≥ 0.
(2.4)

is invariant for the homogeneous random walk X (0). Moreover, for arbitrary x0 ∈ Z, it

induces a corresponding invariant measure νx0 on I(rx0) by its restriction on this essential

class (in other words, if A ⊂ I(rx0) then νx0(A) =
∑

x∈A

ν(x)).

Proof. At first, we briefly outline the idea of the result. Let X be a measurable space

that is compatible with the Borel σ−algebra B. Suppose we have successfully founded an

invariant measure λ on (X,B) with the corresponding transition operator P . Let ∼ be

an equivalence relation on X and denote by
∼
X := X/∼ the quotient space of X (whose

equivalence classes belong to B) under this relation. We assume
∼
X is countable and holds

for any elements Ci, Cj ∈
∼
X,

P (x,Cj) = P (y,Cj) for any x, y ∈ Ci. (*)

Then the kernel P induces a Markov transition
∼
P on

∼
X s.t.

∼
P (Ci, Cj) := P (x,Cj)

with x ∈ Ci; furthermore, the measure
∼
λ on

∼
X defined by

∼
λ(Ci) := λ(Ci) is

∼
P - invariant.

Indeed, for any C ′ ∈
∼
X

∼
λ
∼
P (C ′) =

∑

C

∼
λ(C)

∼
P (C,C ′)

=
∑

C

∫

C
P (x,C ′)λ(dx)

=

∫

X
P (x,C ′)λ(dx)

=
∼
λ(C ′).

Let us now explain how to apply this general principle to get the exact formula of

the invariant measure for the oscillating random walk. Consider the following equivalence
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relation

x ∼ y ⇐⇒ ∃n ∈ Z s.t. x, y ∈ [n, n+ 1[,

which apparently satisfies the condition (*). Taking X = R and Cj := [j, j + 1[ for any

j ∈ Z, one admits ν(m) := λ(Cm) (compare (2.4)) as the discrete invariant measure of

X (0).

�

Remark 2.7. When the state 0 is supposed to be merged to the negative side (α = 1),

we replace Cj by C∗
j =]j − 1, j] and the resulting invariant measure ν∗ is given by

ν∗(m) :=

{

µ′]−∞,m− 1] if m ≤ 0

µ[m,+∞[ if m ≥ 1.

3 On the crossing sub-process of X (0) when Sµ ⊂ Z
+ and

Sµ′ ⊂ Z
−

In this section, we would like to study the recurrence and the invariant measure of

the embedding process of X (0), which contains only states at the crossing times. For

convenience, let us define the random variables (Sn)n≥0 and (S′
n)n≥0, the simple random

walks associated with laws µ and µ′ respectively by S0 = S′
0 = 0 and for n ≥ 1,

Sn = ξ1 + ξ2 + · · · + ξn,

and

S′
n = ξ′1 + ξ′2 + · · · + ξ′n.

Denote by µ∗n the n-fold convolution of µ with itself (also the distribution of Sn) and

U =
∑

n≥0

µ∗n its potential kernel; similarly for µ′∗n and U ′. Now we consider the sequence

of crossing times C = (Ck)k≥0 at which the process changes its sign whenever crossing 0.

Assume that C0 = 0 and we designate Ck as the time of kth- crossing given by

Ck+1 := inf{n > Ck : X
(0)
Ck

+ (ξCk+1 + ξCk+2 +· · ·+ ξn) ≥ 0 if X
(0)
Ck
≤ −1 (3.1)

or X
(0)
Ck

+ (ξ′Ck+1 + ξ′Ck+2 +· · ·+ ξ′n) < 0 if X
(0)
Ck
≥ 0}

This forms a sequence of stopping times with respect to the filtration F := (Fn)n≥0 where

Fn := σ (ξk, ξ
′
k | k ≤ n). By the law of large number, one gets Sn → +∞ and S′

n → −∞

P-almost surely and thus, Px[Ck < +∞] = 1 for all x ∈ Z.

Lemma 3.1. Assume Sµ ⊂ Z
+ and Sµ′ ⊂ Z

−. The sub-process (X
(0)
Ck

)k≥0 is a (time-
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homogeneous) Markov chain on Z with its transition kernel determined by

C(x, y) =







−x−1∑

t=0

µ(y − x− t)U(t) if x < 0 and y ≥ 0,

0∑

t=−x

µ′(y − x− t)U ′(t) if x ≥ 0 and y < 0,

0 otherwise.

(3.2)

The process X
(0)
C

:= (X
(0)
Ck

)k≥0 is called the crossing sub-process of X (0).

Proof. The Markov property is obvious.

If x < 0 and y ≥ 0 (similar to x ≥ 0, y < 0) then we have

C(x, y) = P[XC1 = y | X0 = x]

=

+∞∑

n=1

P[x+ Sn−1 ≤ −1, x+ Sn = y]
︸ ︷︷ ︸

since (Sn)n≥1 is increasing

=
+∞∑

n=1

−x−1∑

t=0

P[Sn−1 = t]P[ξn = y − x− t]

=

−x−1∑

t=0

P[ξ1 = y − x− t]

+∞∑

n=1

P[Sn−1 = t]

=

−x−1∑

t=0

µ(y − x− t)U(t).

�

3.1 Irreducible classes of X (0)
C

In case of reflected random walk, it is well-known in [13] that the full process and its

process of reflections possess the common essential classes. Since the reflected random walk

is regarded as the anti-symmetric case of our general model in which we identify the points

themselves and their mirror images relative to 0, it comes naturally a question whether

this phenomenon possibly occurs. There is no solid information to give an exact answer

other than the intuitive relationship IC(x) ⊂ I(x), where IC(x) represents the irreducible

class of x with respect to the crossing sub-process X
(0)
C

starting at any given x ∈ Z. Thus

it is reasonable to attempt, using the below construction, to gain an understanding of the

structure of IC.

Lemma 3.2. Assume Sµ ⊂ Z
+ and Sµ′ ⊂ Z

−, and, for any fixed 0 ≤ r < δ, let us

12



decompose I(r) into I+(r)∪I−(r) where I+(r) := I(r)∩Z
+
0 and I−(r) := I(r)∩Z

−. Set

I+
C
(r) := {y ∈ I+(r) : (y − Sµ) ∩ I

−(r) 6= ∅}, (3.3)

and

I−
C
(r) := {y ∈ I−(r) : (y − Sµ′) ∩ I+(r) 6= ∅}. (3.4)

Then IC(r) = I
+
C
(r)∪I−

C
(r) is an essential class of the crossing sub-process X

(0)
C

. Further-

more, all the X
(0)
Ck

but finitely many belong to IC(rx0) P-a.s for any initial point x0 ∈ Z.

Proof. For any x, y ∈ IC(r), we write x ❀ y to indicate that the crossing process X (0)

starting at x, reaches y (with a positive probability) at certain crossing time Ck. Equiv-

alently, there is such z ∈ I(r) and n ∈ N that x
n
→ z

1
→ y 2, where y and z have the

opposite signs.

The attractive property is immediate from the definition, so it remains to check that

IC(r) is an irreducible class for X
(0)
C

, i.e. x ❀ y for any given x, y ∈ IC(r). Without

loss of generality, we suppose x, y ∈ I+
C
(r). There exists some s ∈ Sµ and n ≥ 0 s.t.

y− s ∈ I−(r) and p(n)(x, y− s) > 0. Then in a single step from y− s, the crossing process

X (0) reaches y with the probability µ(s) > 0 at a crossing time as desired. �

Theorem 3.3. Let (ai)i≥1 and (bj)j≥1 be strictly increasing sequences of positive integers.

Set Sµ = (ai)i≥1 and Sµ′ = (−bj)j≥1. For any 0 ≤ r < δ, the structure of IC(r) and its

complement will be completely revealed in view of the following conditions:

(i). D = +∞ =⇒ I−
C
(r) = I−(r).

(ii). D′ = −∞ =⇒ I+
C
(r) = I+(r).

(iii). If −D′ < +∞ and D = +∞ then

I+
C
(r) = I+(r)⇐⇒ sup

k≥1
{ak − ak−1} ≤ −D

′ with a0 = 0.

(iv). If D′ = −∞ and D < +∞ then

I−
C
(r) = I−(r)⇐⇒ sup

ℓ≥1
{bℓ − bℓ−1} ≤ D with b0 = 0.

(v). If D < +∞ and −D′ < +∞ then

I+
C
(r) = I+(r)⇐⇒ max

1≤k≤m
{ak − ak−1} ≤ −D

′,

2The notation means that p(n)(x, z) > 0 and p(z, y) > 0.
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and

I−
C
(r) = I−(r)⇐⇒ max

1≤ℓ≤n
{bℓ − bℓ−1} ≤ D,

where a0 = b0 = 0;D = am and D′ = −bn for some m,n ≥ 1.

(vi). Set I+ := {k ≥ 1 | ak − ak−1 > −D
′} and I− := {ℓ ≥ 1 | bℓ − bℓ−1 > D} in case (v)

is violated. For every choice of k ∈ I+ and ℓ ∈ I−, we define

N+
k (r) :=

{

ak−1 + r + δs : 0 ≤ s ≤
ak − ak−1 +D′

δ
− 1

}

,

and

N−
ℓ (r) :=

{

−bℓ−1 + r + δs :
bℓ−1 − bℓ +D

δ
≤ s ≤ −1

}

.

Then N (r) :=
⋃

(k,ℓ)∈I+×I−
N+

k (r) ∪N−
ℓ (r) is the set of non-crossing points.

Proof. (i)-(ii). By definition.

(iii)-(iv). Note that (3.3) and (3.4) can be rewritten as

I+
C
(r) = I+(r) ∩

⋃

k≥1

Ak with Ak := {ak +D′ + r, . . . , ak + r − δ}

and

I−
C
(r) = I−(r) ∩

⋃

ℓ≥1

Bℓ with Bℓ := {−bℓ + r, . . . ,−bℓ +D + r − δ}.

To cover I+(r) by countably many same length sub-intervals, it requires r ∈ A1 and

further, no point in the form r + δZ stays inside the gap between Ak and Ak+1 since

{ak +D′ + r}k≥1 is a strictly increasing sequence. More precisely,

I+
C
(r) = I+(r)⇐⇒

{

a1 +D′ + r ≤ r

ak+1 +D′ + r ≤ ak + r,∀k ≥ 1
⇐⇒

{

a1 ≤ −D
′

ak+1 − ak ≤ −D
′,∀k ≥ 1

Identically, we also infer

I−
C
(r) = I−(r)⇐⇒

{

−b1 +D + r − δ ≥ r − δ

−bℓ + r ≤ −bℓ+1 +D + r,∀ℓ ≥ 1
⇐⇒

{

b1 ≤ D

bℓ+1 − bℓ ≤ D,∀ℓ ≥ 1.

(v). This is a direct consequence of (iii) and (iv).

(vi). A straightforward argument yields

(N+
k (r)− Sµ) ∩ I

−(r) = (N−
ℓ (r)− Sµ′) ∩ I+(r) = ∅

for every pair (k, ℓ) ∈ I+ × I− and it is enough to end the proof. �
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Example 3.4. We simply deal with the case when D,−D′ < +∞ by, for instance, taking

Sµ := {2, 4, 10} and S′
µ := {−4,−1}. Obviously, D = 10,D′ = −4, d = 2, d′ = 1 and

the chain X (0) has the unique essential class I(0) := {−4, . . . , 9}. An easy verification on

(v) would lead to I−
C
(0) = I−(0) while I+

C
(0)  I+(0) and its complement N+

3 = {4, 5}

according to (vi). Hence, equality is achieved only by replacing Sµ by {2, 6, 10}.

Remark 3.5. We do emphasize that it fails to let I+
C
(r)  I+(r) and I−

C
(r)  I−(r)

simultaneously occur due to (v). In other words, IC(r) always has at least one side which

coincides with I(r). The case when Sµ ⊂ Z and Sµ′ ⊂ Z is much complicated since

the behaviour of the chain now is significantly affected by many factors. However, in

connection with Theorem 2.2 and the above theorem, one may derive some properties of

IC, for instance, IC(r) = I(r) if and only if D = −D′ = +∞.

3.2 Invariant measure for X (0)
C

Use of the explicit formula (2.4) of ν enables us to derive the invariant measure of the

sub-process X
(0)
C

. In particular

Theorem 3.6. Assume Sµ ⊂ Z
+ and Sµ′ ⊂ Z

−. Let ρ be the measure on Z defined by

ρ(n) :=







+∞∑

k=1

µ(k)µ′[n− k + 1, n] if n ≤ −1,

+∞∑

k=1

µ′(−k)µ[n + 1, n + k] if n ≥ 0.

(3.5)

Then, for any x0 ∈ Z, the restriction ρx0 of ρ to IC(rx0) is an invariant measure for

X
(0)
C

.

Proof. Consider the signed measures A and A′ defined by A(m) = δ0(m)−µ(m) if m ≥ 0

and A′(m) = δ0(m)− µ′(m) if m ≤ 0. It is easily seen that

A ∗ U = U ∗ A = δ0 and A′ ∗ U ′ = U ′ ∗ A′ = δ0. (3.6)

In addition, we also have

ρ(n) :=







+∞∑

k=0

A(k) ν(n − k) if n ≤ −1,

+∞∑

k=0

A′(−k) ν(n + k) if n ≥ 0.

(3.7)
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Indeed, if n ≥ 0 then we get

+∞∑

k=0

A′(−k) ν(n + k) =

+∞∑

k=0

(
δ0(−k)− µ′(−k)

)
ν(n+ k)

= (1− µ′(0)) ν(n)−
+∞∑

k=1

µ′(−k)ν(n+ k)

=

+∞∑

k=1

µ′(−k) (µ[n+ 1,+∞[−µ[n+ k + 1,+∞[)

=
+∞∑

k=1

µ′(−k)µ[n + 1, n+ k].

Conversely, ν can be represented in terms of ρ and U ′ directly from (3.6) and (3.7),

that is, for n ≥ 0

+∞∑

k=0

U ′(−k) ρ(n + k) =
+∞∑

k=0

U ′(−k)
+∞∑

ℓ=0

A′(−ℓ) ν(n + k + ℓ)

=

+∞∑

k=0

U ′(−k)
+∞∑

s=k

A′(k − s)ν(n+ s)

=
+∞∑

s=0

ν(n+ s)
s∑

k=0

U ′(−k)A′(−s+ k)

︸ ︷︷ ︸

δ0(−s)

= ν(n)

and the same property holds for n ≤ −1. Briefly, one may write

ν(n) := 1]−∞,0[(n)

(
+∞∑

k=0

U(k) ρ(n − k)

)

+ 1[0,+∞[(n)

(
+∞∑

k=0

U ′(−k) ρ(n + k)

)

. (3.8)

We claim that

νx0(n) := Eρx0





C1−1∑

j=0

1n(X
(0)
j )



 , if n ∈ I(rx0) (3.9)

where Eρx0
(.) =

∑

w∈IC(r0)

ρx0(w)Ew(.) indicates the expectation governed by ρx0 .

If n ∈ I−(rx0) then the crossing process can reach n before the first crossing time if

and only if X
(0)
0 = ω ∈ I−

C
(rx0) and ω ≤ n. In other words, there is k ∈ Z

+
0 and i ≥ 1 s.t.
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Si = k and ω = n− k. Since

C1−1∑

j=0

1n(X
(0)
j ) =

+∞∑

j=0

1n(X
(0)
j )1{C1>j},

Eρx0





C1−1∑

j=0

1n(X
(0)
j )



 =

+∞∑

k=0

ρx0(n− k)En−k





+∞∑

j=0

1n(X
(0)
j )1{C1>j}





=

+∞∑

k=0

ρx0(n− k)

+∞∑

j=0

Pn−k[X
(0)
j = n,C1 > j]

=

+∞∑

k=0

ρx0(n− k)

+∞∑

j=0

P[Sj = k]

=
+∞∑

k=0

ρx0(n− k)U(k)

= νx0(n).

Hence, (3.9) is true for every n ∈ I(rx0) and yields that

∑

m∈I(rx0 )

νx0(m) p(m,n) = Eρx0





C1∑

j=1

1n(X
(0)
j )



 .

Since νx0 is invariant on I(rx0), i.e. νx0 = νx0 P , we again apply (3.9) and simplify as

Eρx0

(

1n(X
(0)
0 )
)

= Eρx0

(

1n(X
(0)
C1

)
)

.

The left hand side is ρx0(n) and the right hand side is the sum
∑

m∈IC(rx0)

ρx0(m)C(m,n),

which prove that ρx0 is an invariant measure for X
(0)
C

on IC(rx0). �

4 Criteria for the recurrence of X (α), 0 ≤ α ≤ 1

From now on, we assume d = d′ = 1 and keep in mind that the recurrence of X (α)

always means the recurrence of the state 0 since X (α) has an unique irreducible class

in this case.

17



4.1 Classical approach

In this subsection, we consider the first passage of (Sn)n≥0 to the subset ]0,+∞[ and

of (S′
n)n≥0 to the subset ]−∞, 0[, namely

ℓ+ := inf{k > 0 : Sk > 0} and ℓ′− := inf{k > 0 : S′
k < 0}

(with the convention inf ∅ = +∞). The random variables ℓ+ and ℓ′− are stopping times

with respect to the canonical filtration (σ(ξk, ξ
′
k, 1 ≤ k ≤ n))n≥1 In the sequel, we

only consider cases when these random variables are P -as finite i.e. equivalently when

P[lim supSn = +∞] = P[lim inf S′
n = −∞] = 1; hence, the random variables Sℓ+ and

S′
ℓ′−

are well defined in these cases and we denote by µ+ and µ′
− their respective

distributions

Let us define also, for h ≥ 1, the renewal functions associated with the ladder heights

Sℓ+ and Sℓ−, respectively by

C(h) :=

+∞∑

n=1

P[Sn = h, min
1≤i≤n

Si > 0],

C ′(−h) :=
+∞∑

n=1

P[S′
n = −h, min

1≤j≤n
S′
j > 0].

We now get a glimpse of the following well-known criterion of recurrence of X (α)

Theorem 4.1. (Kemperman) The general oscillating random walk X (α) is recurrent if

and only if

+∞∑

h=1

C(h)C ′(−h) = +∞. (4.1)

However, it is quite theoretical and difficult to check in several cases. Next, we will take

into consideration an equivalent condition to (4.1), which has the additional advantage of

being easily computable.

Theorem 4.2. (Rogozin-Foss) If for some ǫ > 0

∫ ǫ

−ǫ

1

|1− E[eitSℓ+ ]| |1− E[e
itS′

ℓ′
− ]|

dt < +∞, (4.2)

then the original crossing process is transient.

If, in addition, Re ((1 − E[eitSℓ+ ])(1 − E[e
itS′

ℓ′
− ])) ≥ 0 for |t| < ǫ for some ǫ > 0 and the
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below condition holds

∫ ǫ

−ǫ
Re




1

(1− E[eitSℓ+ ]) (1 − E[e
itS′

ℓ′
− ])



 dt = +∞, (4.3)

then X (α) is recurrent.

We also refer to the recent paper [2], Proposition 4.4 for a luminous proof.

In the simple case when µ = µ, in other words when X (α) is an homogeneous classical

random walk on Z, these conditions turn into the above conditions turn into

∫ ǫ

ǫ
|1− µ̂(t)|−1dt < +∞, (4.4)

and

∫ ǫ

ǫ
Re

(
1

1− µ̂(t)

)

dt = +∞, (4.5)

In fact, (4.5) is a necessary and sufficient condition for (Sn)n≥0 be recurrent; see Kesten,

Spitzer [9], [14] and [2] for proofs and comments. In [2], Proposition 2.2, the reader will

find an explicit and simple relation between the integral of the function Re

(
1

1− µ̂(t)

)

and the Green function of the random walk (Sn)n which enlightens the above statement.

In the next subsection we develop another approach to identify quite general conditions

which ensure that X (α) is recurrent. We first consider the case when Sµ ⊂ Z
+ and Sµ′ ⊂ Z

−

then the general case, replacing the couple (µ, µ′) by (µ+, µ
′
−).

4.2 Tail condition criterion for the recurrence of X (0) when Sµ ⊂ Z
+ and

Sµ′ ⊂ Z
−

An easy observation gives that the crossing sub-process X
(0)
C

is positive recurrent on

IC(0) (equivalently, ρ(IC(0)) < +∞) whenD andD′ are both finite. Thus, it is reasonable

to study the recurrence of X
(0)
C

in the non-trivial cases.

Proposition 4.3. Assume that Sµ ⊂ Z
+ and Sµ′ ⊂ Z

−. Then the total mass of ρ on

IC(0) is finite if and only if

+∞∑

n=0

H(n)H ′(−n) < +∞, (4.6)

where H(n) = µ]n,+∞[ and H ′(−n) = µ′]−∞,−n[ respectively stands for the tail distri-

butions of µ and µ′.
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In this case, the Markov chain X
(0)
C

is positive recurrent and X (0)(µ, µ′) is recurrent

on its essential class.

Proof. We compute ρ(Z+) by substituting the formula (3.5)

+∞∑

n=0

ρ(n) =
+∞∑

n=0

+∞∑

k=1

µ′(−k)µ[n+ 1, n + k]

=

+∞∑

k=1

µ′(−k)
+∞∑

n=0

[H(n)−H(n+ k)]

=

+∞∑

k=1

µ′(−k)

[
k−1∑

n=0

H(n)− lim
N→+∞

(H(N + 1) + . . .+H(N + k))

]

=

+∞∑

n=0

H(n)

+∞∑

k=n+1

µ′(−k)

=

+∞∑

n=0

H(n)H ′(−n).

One also obtains

−1∑

n=−∞

ρ(n) =

+∞∑

n=0

H(n)H ′(−n) which immediately implies (4.6). �

Apparently, (4.6) holds providing that the first moment of either ξn or −ξ′n is finite.

This assumption can be sharpen by constraining finite Hölder moments as below

Corollary 4.4. Assume that Sµ ⊂ Z
+, Sµ′ ⊂ Z

− and E[ξp1 ],E[(−ξ
′
1)

q] < +∞ with p, q ∈

]0, 1[ satisfying p+ q = 1. Then (4.6) holds and the Markov chain X (0) is recurrent on its

unique essential class (and positive recurrent when E[ξ1],E[−ξ
′
1] < +∞ by Corollary 2.5).

Proof. The formula E[Xk] := k

∫ +∞

0
tk−1

P[X ≥ t] dt yields

k

+∞∑

n=0

(n+ 1)k−1
P[X ≥ n+ 1] ≤ E[Xk] (4.7)

so that, by the Markov’s inequality for Hp(n) and H ′q(n), we get

+∞∑

n=0

H(n)H ′(−n) =
+∞∑

n=0

Hq(n)H ′p(−n)
[
Hp(n)H ′q(−n)

]

≤ E [ξp1 ]
p

E[(−ξ′1)
q]q

+∞∑

n=0

[

(n+ 1)−q2Hq(n) (n + 1)−p2H ′p(−n)
]

.
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The product inside the bracket can be transformed into sum by using the Young’s inequal-

ity and then together with (4.7), it yields

+∞∑

n=0

H(n)H ′(−n) ≤ E [ξp1 ]
p

E[(−ξ′1)
q]q

(

q
+∞∑

n=0

(n+ 1)−qH(n) + p
+∞∑

n=0

(n+ 1)−pH ′(−n)

)

≤ E [ξp1 ]
p

E[(−ξ′1)
q]q
(
q

p
E [ξp1 ] +

p

q
E[(−ξ′1)

q]

)

< +∞.

�

Remark 4.5. The condition E[ξp1 ],E[(−ξ
′
1)

q] < +∞ with p+q = 1 is a sufficient condition

for the recurrence of X (0). Notice that it is not far to be sharp. We refer to Proposition

5.12 in [13] for an example in the case of the reflected random walk on N, which corresponds

to the antisymmetric case, i.e. S = −S′ (with p = q = 1/2 there). The reader can find

other examples in [15] Theorem 2 in the case when S and S′ are stable random walks on

Z but S 6= −S′.

4.3 Recurrence of X 0) in the general case

To treat this model, let us first introduce the basic decomposition of ξn and ξ′n, namely

ξn = ξ+n − ξ−n and ξ′n = ξ′+n − ξ′−n ,

where ξ±n = max{±ξn, 0} and ξ′±n = max{±ξ′n, 0}.

Consider the following assumptions

(H)
(
E[ξ−

1
] < E[ξ+

1
] ≤ +∞

)
or
(
E[ξ−1 ] = E[ξ+1 ] < +∞

)
;

(H′) (E[(ξ′
1
)+] < E[(ξ′

1
)−] ≤ +∞) or (E[(ξ′1)

−] = E[(ξ′1)
+] < +∞) .

Lemma 4.6. If H (resp. H′) is satisfied then lim supSn = +∞ (resp. lim inf S′
n = −∞)

almost surely.

Hence, when both H and H′ hold, the random variables ℓ+ and ℓ′− are P-a.s. finite;

more generally, there are infinitely many P-a.s. finite crossing times in this case. Let us

introduce the ladder times (tk)k≥0 defined recursively by: t0 = 0 and, for k ≥ 1,

tk+1 :=







inf{n > tk | ξtk+1 + . . . + ξn > 0} if X
(0)
tk
≤ −1,

inf{n > tk | ξ
′
tk+1 + . . . + ξ′n < 0} if X

(0)
tk
≥ 0.

(4.8)

Notice that, in the first line, the random variable tk+1 is an ascending ladder epoch of

S, while, in the second line, it is a descending ladder epoch of S′. These random times are

21



P-a.s. finite and the increments (tk+1 − tk)k≥0 form a sequence of independent random

variables with laws

L(tk+1 − tk | X
(0)
tk

< 0) = L(t1 | X
(0)
0 = x) and L(tk+1 − tk | X

(0)
tk
≥ 0) = L(t1 | X

(0)
0 = y)

for any x < 0 ≤ y. Similarly,

L(Stk+1
− Stk | X

(0)
tk

< 0) = L(St1 | X
(0)
0 = x) = µ+,

and

L(S′
tk+1
− S′

tk
| X

(0)
tk
≥ 0) = L(S′

t1 | X
(0)
0 = y) = µ′

−.

It is perhaps worth remarking that, by setting Yk := Stk − Stk−1
when X

(0)
tk

< 0 and

Y ′
k := S′

tk
− S′

tk−1
when X

(0)
tk
≥ 0, the sub-process (X

(0)
tk

)k≥0 turns out to be an crossing

process associated with the distributions µ+ and µ′
− of Yk and Y ′

k respectively. In other

words, the process (X
(0)
tk

)k≥0 has the same distribution as X (0)(µ+, µ
′
−).

Lemma 4.7. Assume that both H and H′ hold. Then, the oscillating process X (0)(µ, µ′)

is recurrent if and only if the oscillating process X (0)(µ+, µ
′
−) is recurrent.

A proof of this statement for the process X (1) appears in the recent paper [2] of J.

Bremont, lemma 4.2 (ii). For the sake of completeness, we detail the argument below,

introducing the first return time at 0 of X (α), 0 ≤ α ≤ 1, which will be useful latter on.

Proof. For any 0 ≤ α ≤ 1, let τ(α) be the first return time at 0 of X (α) given by

τ
(α) := inf{n ≥ 1 : X(α)

n = 0}.

In the present proof, we only consider the case when α = 0.

Starting at 0, we know that τ
(0) < +∞ almost surely and since X

(0)

τ
(0) = 0, there

are only two possibilities: if X
(0)

τ
(0)−1

≥ 1 then τ
(0) must be a ladder time while the case

X
(0)

τ
(0)−1

≤ −1 will imply the existence of some k ≥ 1 s.t. τ
(0) = Ck, the kth-crossing time

of X (0) and of course that τ
(0) is also a ladder time. This means (X

(0)
tk

)k≥0 is recurrent

ans so does X (0)(µ+, µ
′
−). The converse is obvious. �

It is easily seen that X (0) and (X
(0)
tk

)k≥0 admit a common crossing sub-process since

there is at most a crossing moment between two consecutive ladder times tk and tk+1

happening when X
(0)
tk

< 0 and X
(0)
tk+1
≥ 0 or vice versa. Therefore, we can take advantage

of Corollary 4.4 (applied to the process X (0)(µ+, µ
′
−)) to deduce the recurrence of (X

(0)
tk

)k≥0

and finally that of X (0) by Lemma 4.7.
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Theorem 4.8. Let p, q ∈]0, 1[ s.t. p+ q = 1. Then each of the following is sufficient for

the oscillating process X (0)(µ, µ′) to be recurrent on its essential class

(a)
(
E[ξ−1 ] < E[ξ+1 ], E[(ξ+1 )

p] < +∞
)
and

(
E[(ξ′1)

+] < E[(ξ′1)
−], E[(ξ′−1 )q] < +∞

)
;

(b)
(
E[ξ−1 ] = E[ξ+1 ], E[(ξ+1 )

1+p] < +∞
)
and

(
E[(ξ′1)

+] = E[(ξ′1)
−], E[(ξ′−1 )1+q] < +∞

)
;

(c)
(
E[ξ−1 ] < E[ξ+1 ], E[(ξ+1 )

p] < +∞
)
and

(
E[(ξ′1)

+] = E[(ξ′1)
−], E[(ξ′−1 )1+q] < +∞

)
.

The similar condition holds when swapping the roles of ξ1 and ξ′1.

Proof. As mentioned above, it remains to check that E[(Yn)
p] < +∞ and E[(−Y ′

n)
q] < +∞.

The set of conditions (a) means that the chain moves with positive drift on the left and

negative drift on the right while (b) represents the center case which was already done by

Chow and Lai (see [3]). The others are partly mixed from both of (a) and (b), so we will

leave the proof only for the first case.

Notice that 0 < p < 1 and by the Wald’s identity, we obtain

E[(ξ1 + . . . + ξt1)
p | X

(0)
0 = x < 0] ≤ E[(ξ+1 + . . .+ ξ+t1)

p | X
(0)
0 = x < 0]

≤ E[(ξ+1 )
p + . . .+ (ξ+t1)

p | X
(0)
0 = x < 0]

= E[(ξ+1 )
p]E[t1 | X

(0)
0 = x < 0] < +∞

due to E[t1 | X
(0)
0 = x < 0] < +∞. Indeed, if E[ξ+1 ] < +∞ then E[ξ1] > 0 and E[|ξ1|] < +∞

and the Feller’s result tells us that E[t1 | X
(0)
0 = x < 0] < +∞ (see [5]). On the other

hands, if E[ξ+1 ] = +∞ then there is L > 0 s.t. ξ
(L)
n = min{ξn, L} (which has finite first

moment) satisfies E[ξ
(L)
n ] = E[ξ

(L)
1 ] > 0. The first ascending ladder time t

(L)
1 associated

with S
(M)
n = ξ

(L)
1 + . . .+ ξ

(L)
n has finite expectation by what we just said. Therefore, t1 is

integrable since t1 ≤ t
(L)
1 . The argument showing E[(−ξ′1−. . .−ξ

′
t1)

q | X
(0)
0 = x ≥ 0] < +∞

goes exactly the same line. �

Remark 4.9. As a direct consequence of the above proof and Corollary 2.5, we deduce

that when E[ξ−1 ] < E[ξ+1 ] < +∞ and E[(ξ′1)
+] < E[(ξ′1)

−] < +∞ then the process X (0) is

positive recurrent. Indeed, in this case, E[τ (0)] < +∞ and the result follows by a classical

theorem of induced processes.

4.4 Recurrence of X (α) with 0 ≤ α ≤ 1

We end this section by proving our main result

Corollary 4.10. If at least one of the assumptions of Theorem 4.8 is satisfied, then the

general oscillating process X (α)(µ, µ′) is recurrent.
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Proof. It is clear that X (0) and X (1) (suitably modified) are recurrent. Now, we have

P0[τ
(α) = n] = P0[X

(α)
1 6= 0,X

(α)
2 6= 0, . . . ,X

(α)
n−1 6= 0,X(α)

n = 0]

=
+∞∑

k=1

P0[X
(α)
1 = k]Pk[X

(α)
1 6= 0,X

(α)
2 6= 0, . . . ,X

(α)
n−1 6= 0,X

(α)
n−1 = 0]

+

−1∑

k=−∞

P0[X
(α)
1 = k]Pk[X

(α)
1 6= 0,X

(α)
2 6= 0, . . . ,X

(α)
n−1 6= 0,X

(α)
n−1 = 0]

= α
∑

k 6=0

µ(k)Pk[τ
(1) = n− 1]

︸ ︷︷ ︸

P0[τ(1)=n]

+(1− α)
∑

k 6=0

µ′(k)Pk[τ
(0) = n− 1]

︸ ︷︷ ︸

P0[τ(0)=n]

.

Summing over n ≥ 1 in both sides, it readily implies P0[τ
(α) < +∞] = 1 as expected.

�
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