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Abstract
The core is a well-known and fundamental notion
of stability in games intended to model coalition
formation such as hedonic games. The fact that the
number of deviating agents (that have to coordinate
themselves) can be arbitrarily high, and the fact that
agents may benefit only by a tiny amount from their
deviation (while they could incur in a cost for devi-
ating), suggest that the core is not able to suitably
model many practical scenarios in large and highly
distributed multi-agent systems. For this reason,
we consider relaxed core stable outcomes where the
notion of permissible deviations is modified along
two orthogonal directions: the former takes into ac-
count the size of the deviating coalition, and the
latter the amount of utility gain for each member
of the deviating coalition. These changes result in
two different notions of stability, namely, the q-size
core and k-improvement core. We investigate these
concepts of stability in fractional hedonic games,
that is a well-known subclass of hedonic games for
which core stable outcomes are not guaranteed to
exist and it is computationally hard to decide non-
emptiness of the core. Interestingly, the considered
relaxed notions of core also possess the appealing
property of recovering, in some notable cases, the
convergence, the existence and the possibility of
computing stable solutions in polynomial time.

1 Introduction
Hedonic games, introduced in [Drèze and Greenberg, 1980],
represent the most important game-theoretic approach to the
study of coalition formation problems. An outcome for these
games is a coalition structure, which is a partition of the
agents into coalitions, over which the agents have valuations.
The utility that an agent gets in a coalition structure only de-
pends on the coalition she belongs to. Fractional hedonic
games (FHGs), introduced in [Aziz et al., 2014] (see also
[Aziz et al., 2019]), embody a natural and succinct graph
representation subclass of hedonic games. In these games,
each agent has a value for any other agent, and the utility
that an agent gets for a coalition is the sum of the values
she assigns to the members of her coalition divided by the

size of the coalition. FHGs can model natural behavioral
dynamics in social environments. Real-world examples in-
clude social networks in which people organize themselves
in groups with the aim of maximizing the fraction of peo-
ple of the same ethnic or with the same interests, politicians
organizing themselves in parties with the goal of maximiz-
ing the fraction of like-minded members, countries organiz-
ing themselves in international groups, employees forming
unions, etc. Moreover, simple symmetric fractional hedonic
games (SS-FHGs), where symmetric valuations only take the
values 0 and 1, suitably model a basic economic scenario re-
ferred to in [Aziz et al., 2019] as Bakers and Millers.

Among other solution concepts, core stability plays a cen-
tral rule in hedonic games. An outcome is core stable if there
is no subset of agents T whose members all prefer T with
respect to the coalition they belong to in the outcome (the set
of agents T is called a blocking coalition for the outcome).
It is worth noticing that the members of a blocking coalition
have to coordinate in order to perform a deviation; moreover,
they could incur a proportional cost for deviating. For these
reasons, in large and highly distributed multi-agent systems,
the fact that the number of deviating agents can be arbitrar-
ily high, and the fact that agents may benefit only by a tiny
amount from their deviation suggest that the core is not able
to suitably model many practical processes of coalition struc-
ture generation. Furthermore, it is well known that there are
games that do not always admit core stable outcomes: even
for SS-FHGs, the core may be empty. Finally, it is computa-
tionally hard in general to decide non-emptiness of the core
[Aziz et al., 2019] and, even in games where the existence of
core stable outcomes is guaranteed, these outcomes could be
very inefficient or computationally intractable.

1.1 Our Contribution
Motivated by the downsides of core stability, in this work we
propose a new natural direction of investigation, which con-
sists in relaxing the stability constraints along two orthogonal
directions, in order to enrich the set of admissible solutions.
Specifically, our conceptual contributions are the notion of q-
size core stability, in which the size of a blocking coalition
is at most q, and the one of k-improvement core stability, in
which each member of a blocking coalition increases her util-
ity by a factor strictly greater than k. While the former is a
notion of stability related to the one of q-strong Nash stabil-
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ity (with the notable difference that, in the context of q-strong
Nash, the deviating agents are not forced to form a coalition
together) and was also considered in the context of hedonic
games [Carosi et al., 2019], to the best of our knowledge
the latter has never been investigated in the context of non-
cooperative games. More specifically, it is worth noticing
that, in the context of cooperative coalition formation games
in which the valuation of any coalition is not agent-specific
and has to be allocated among the agents belonging to the
considered coalition in some fair way, a related notion is the
one of strong ε-core [Shapley and Shubik, 1966], in which a
blocking coalition has a valuation that is at least the sum of
the current allocations of its agents plus ε; this definition leads
to the one of least-core [Maschler et al., 1969], that is the
strong ε-core with the smallest value of ε that makes the set
of stable solutions non-empty. Our notion of k-improvement
core stability differs from the one of strong ε-core because (i)
in the spirit of non-cooperative games, in the former the re-
quested gain is for the utility of any agent, as opposed to the
latter in which, in the spirit of cooperative games, the gain
is for the valuation of the whole blocking coalition and (ii)
in the former such a gain is given by a multiplicative factor,
while in the latter by an additive one.

As a case study, we investigate the considered relaxed con-
cepts of stability in fractional hedonic games; in this context,
we can summarize the results as follows. We first focus on ex-
istential and computational aspects (Section 3), with a special
focus on the convergence of relaxed core dynamics starting
from any coalition structure. In fact, it is worth remarking that
the convergence of such dynamics is a very appealing prop-
erty in practical scenarios. We show that a 2-size core stable
outcome always exists and can be obtained through a 2-size
core dynamics (Theorem 3). For simple games, we strengthen
the previous result by extending it to 3-size core stable out-
comes, also showing that the 3-size core dynamics has poly-
nomial length (Theorem 4). On the side of k-improvement
core stability, we show that a k-improvement core stable out-
come always exists for k ≥ 2 and can be obtained through a
k-improvement core dynamics (Theorem 5). Although we are
not able to show that such dynamics has the desirable prop-
erty of polynomial length, we show that a k-improvement
core stable outcome can be still computed in polynomial time,
for any k ≥ 2(1 − 1/n), where n is the number of agents,
through a simple algorithm (Theorem 6). For simple games,
we slightly strengthen the previous result by proving that a
k-improvement core stable outcome can still be computed in
polynomial time, for any k ≥ 3/2 (Theorem 7). This latter
result has been proven by showing an intriguing relation be-
tween 3-size core stable outcomes and 3

2 -improvement core
stable outcomes; specifically, we show that every 3-size core
stable coalition structure is also 3

2 -improvement core stable
(Theorem 2). We remark that the reason for considering the
settings of q ≤ 3 and k ≥ 3

2 is twofold. On the one hand, they
represent a necessary step for understanding the cases with
higher coalition sizes or smaller improvement factor (see Sec-
tion 5 for a more detailed discussion); on the other hand, they
are also practically significant in themselves because, when
considering small values of q, it is easy to obtain coordina-
tion within small-sized coalitions, while the value of k = 3

2

is reasonably small.
Finally, we focus on the efficiency of k-improvement core

and q-size core stable outcomes (Section 4). We show that,
for every k ≥ 1, in every game the social welfare of an op-
timal outcome can be at most 2k times the social welfare of
any k-improvement core stable outcome (Theorem 8) and that
such bound is tight (Theorem 9). We also provide similar
analyses for 2-size core and 3-size core stable outcomes.

1.2 Related Work
Hedonic games have been introduced in [Drèze and Green-
berg, 1980] and then further developed in [Banerjee et
al., 2001; Bogomolnaia and Jackson, 2002; Cechlárová and
Romero-Medina, 2001] (see [Aziz and Savani, 2016] for a
nice survey on the topic).

Fractional hedonic games (FHGs) have been introduced
in [Aziz et al., 2014] (see also [Aziz et al., 2019]) where
it is shown that the core can be empty even for the special
case of simple and symmetric valuations SS-FHG, but that it
is not empty for very specific sub-classes. The authors also
show that it is computationally hard in general to decide the
non-emptiness of the core. Various computational results for
core and individual stability have been presented in [Brandl
et al., 2015]. Local core stability, where there is a structural
constraint on the blocking coalition, has been addressed in
[Carosi et al., 2019]. [Bilò et al., 2018] study the existence,
efficiency and computational complexity of Nash and strong
Nash equilibria. It is worth mentioning that a q-strong Nash
stable outcome is also q-size core stable. However, in [Bilò et
al., 2018] it is shown that, for any q ≥ 2, q-strong Nash stable
outcomes are not guaranteed to exist even for SS-FHG. No-
tice that this result gives an additional motivation for studying
the existence of 2-size core stable outcomes. Improved results
about the Nash price of stability can be found in [Kaklamanis
et al., 2020]. FHGs have been also considered under differ-
ent perspectives in [Aziz et al., 2015; Flammini et al., 2018;
Flammini et al., 2021].

Modified fractional hedonic games (MFHGs), introduced
in [Olsen, 2012], are very similar to fractional ones. A com-
parison between the two classes of games can be found in
[Monaco et al., 2020]. The existence and the performance of
natural stable outcomes like Nash, strong Nash, and core sta-
ble outcomes for MFHGs have been presented in [Monaco et
al., 2019; Monaco et al., 2020].

Finally, the price of Pareto optimality for both MFHGs and
FHGs has been studied in [Elkind et al., 2020].

2 Model and Preliminaries
For any n ∈ N, we denote by [n] the set {1, 2, . . . , n}.

A Symmetric Fractional Hedonic Game (S-FHG) G =
(N, (vi)i∈N ) is a game in which each agent i ∈ N , where
N = [n], has a valuation vi : N → R≥0, mapping ev-
ery agent to a real non-negative value. We assume that the
number of agents is n ≥ 2. We denote with vmaxi (G) =
maxj∈N vi(j) the maximum valuation of agent i for any
other agent j ∈ N in the game G. We assume that vi(i) = 0
for every i ∈ N and that the valuations are symmetric, i.e.,
vi(j) = vj(i) for every i, j ∈ N .
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If it holds that vi(j) ∈ {0, 1} for every i, j ∈ N , we
say that the game is a Simple Symmetric Fractional Hedonic
Game (SS-FHG).
Graph representation. An S-FHG has a very intuitive
graph representation. In fact, it can be expressed by a
weighted graph G = (N,E,w), where nodes in N repre-
sent the agents, and undirected edges are associated to non-
null valuations. Namely, for any i, j ∈ N , if vi(j) > 0,
an edge {i, j} of weight w({i, j}) = vi(j) = vj(i) belongs
to E. Analogously, an SS-FHG can be expressed by an un-
weighted graph G = (N,E) in which, for any i, j ∈ N , edge
{i, j} belongs to E if and only if vi(j) = 1. Given a subset
of agents C ⊆ N , we denote with G(C) the subgraph of G
induced by agents in C.
Coalitions and utilities. A coalition is a non-empty sub-
set of N . The set of all agents N is also called the grand
coalition, and a coalition of size 1 is called a singleton coali-
tion. Given a coalition C and any agent i ∈ C, let δC(i) =∑
j∈C vi(j) be the sum of valuations of agent i for every

agent belonging to coalition C. The utility or payoff µi(C)
of agent i in coalition C such that C 3 i is equal to δC(i)
divided by the total number of agents in the coalition, that
is µi(C) = δC(i)

|C| . Notice that µi(C) ≤ |C|−1
|C| v

max
i (G) ≤

n−1
n vmaxi (G) for any agent i ∈ N and coalition C of a

game G. An outcome of the game is a coalition structure
C = {C1, . . . , Ch}. C is a partition of the agents into h coali-
tions, that is,

⋃
t∈[h] Ct = N and Ct ∩ Cp = ∅ ∀t, p ∈ [h],

with t 6= p. We denote by C(i) the coalition agent i belongs
to in coalition structure C. The utility µi(C(i)) of an agent i
in coalition structure C is also denoted by µi(C).
Core stability. Given a coalition structure C, a blocking
coalition for C is a set of agents C ⊆ N such that, for every
agent i ∈ C, it holds that µi(C) > µi(C). Since vi(j) ≥ 0
and vi(i) = 0 for every i, j ∈ N , we have that |C| ≥ 2. A
coalition structure C is core stable if it does not admit a block-
ing coalition. We relax the definition of core stability along
two directions: (i) given an integer q ≥ 2, a q-size blocking
coalition for C is a blocking coalition in which |C| ≤ q and
(ii) given a real number k ≥ 1, a k-improvement blocking
coalition for C is a set of agents C ⊆ N such that, for ev-
ery agent i ∈ C, it holds that µi(C) > kµi(C). Notice that
a blocking coalition is also a 1-improvement blocking coali-
tion and an n-size blocking coalition. A coalition structure
C is q-size core stable (respectively k-improvement core sta-
ble) if it does not admit a q-size blocking coalition (respec-
tively a k-improvement blocking coalition). We notice that
if a coalition structure is q-size core stable then it is q′-size
core stable for any q′ ≤ q. Moreover, if a coalition structure
is k-improvement core stable then it is k′-improvement core
stable for any k′ ≥ k.
Dynamics and convergence. The core (respectively q-size
core and k-improvement core) dynamics D of a S-FHG
is a sequence (possibly infinite) of coalition structures
〈C0, C1, . . .〉 such that for every consecutive pair (Ct−1, Ct),
with t ≥ 1, there exists a blocking coalition (respectively
q-size blocking coalition and k-improvement blocking coali-
tion) Ct for Ct−1 = {C1, C2, . . . , Ch} whose deviation leads

to the coalition structure Ct = {Ct, C1 \ Ct, . . . , Ch \ Ct} \
{∅}. Roughly speaking, the coalition structure Ct is obtained
by letting all agents in Ct form a new coalition together, thus
leaving the coalitions they belonged to in Ct−1. We say that a
finite dynamics D = 〈C0, C1, . . . , C`〉 of length ` ≥ 1, leads
to coalition structure C` starting from the initial coalition
structure C0. A game is core (respectively, q-size core and
k-improvement core) convergent if, for any coalition struc-
ture C, every dynamics starting from C is finite.

Social welfare. The social welfare of a coalition structure
C = {C1, . . . , C`} is given by the sum of the agent utili-
ties, i.e., SW (C) =

∑
i∈N µi(C). By extending the previ-

ous definition, given a coalition C, we denote by SW (C)
the sum of utilities of the agents belonging to C. Notice that
SW (C) =

∑
C∈C SW (C) =

∑
C∈C

∑
i∈C µi(C).

Efficiency. Given a game G, let C∗(G) be the outcome
maximizing the social welfare, and let q-SIZE CORE(G)
and k-IMPR CORE(G) be the set of coalition structures
that are q-size core stable and k-improvement core sta-
ble, respectively. The q-size core price of anarchy (re-
spectively k-improvement core price of anarchy) of a sym-
metric fractional hedonic game G is defined as the ra-
tio between the social welfare of the optimal outcome
C∗(G) and the one of the worst q-size core stable (re-
spectively k-improvement core stable) outcome. Formally,
q-SIZE CPOA(G) = maxC∈q-SIZE CORE(G)

SW(C∗(G))
SW(C) (respec-

tively k-IMPR CPOA(G) = maxC∈k-IMPR CORE(G)
SW(C∗(G))
SW(C) ).

2.1 Preliminary Results
We first present an interesting relation between 2-size core
stable and 2-improvement core stable coalition structures.
Specifically, we show that, for every S-FHG, any 2-size core
stable coalition structure is 2-improvement core stable.

Theorem 1. For every S-FHG, any 2-size core stable coali-
tion structure is 2-improvement core stable.

It is also possible to show that the analysis of Theorem 1 is
tight even for SS-FHG.

We also show that, for every SS-FHG, any 3-size core sta-
ble coalition structure is 3

2 -improvement core stable.

Theorem 2. For every SS-FHG, any 3-size core stable coali-
tion structure is 3

2 -improvement core stable.

Proof. In this proof we exploit the graph representation intro-
duced in Section 2; since we are considering SS-FHG, the re-
lated graph G is unweighted. Given an SS-FHG G, let us as-
sume that C is a 3-size core stable coalition structure of G. Let
us suppose, by contradiction, that C admits a 3

2 -improvement
blocking coalition C. Remind that µi(C) ≤ n−1

n for any
i ∈ C. First notice that, for any i ∈ C, it holds that µi(C) < 2

3

(because they belong to the 3
2 -improvement blocking coali-

tion C and in any coalition structure each agent gets utility of
at most n−1n ). It implies that the subgraph G(C) induced by
agents in C does not contain a triangle. In fact, if three agents
of a triangle form a new coalition together, each of them gets
utility of 2

3 and this is a contradiction to the fact that C is a
3-size core stable coalition structure of G.
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Consider any edge {i, j} in G(C). It holds that either
µi(C) ≥ 1

2 or µj(C) ≥ 1
2 because otherwise i and j to-

gether form a 2-size blocking coalition for C, and this is a
contradiction to the fact that C is a 3-size core stable coali-
tion structure of G. Without loss of generality, let us assume
that µi(C) ≥ 1

2 . Then, since i belongs to C, we have that
µi(C) > 3

2
1
2 = 3

4 . It implies that agent i has more than
three adjacents in G(C). We now show an upper bound to
the utility of each agent j adjacent to i in G(C). Given that
G(C) does not contain triangles, any pair of adjacents of i
is not connected by an edge. Let x be the number of agents
connected to i in G(C). We have that µi(C) = x

|C| >
3
4 .

Thus, any agent j connected to i in G(C) gets utility of at
most |C|−x|C| < 1

4 . Since j is a member of the 3
2 -improvement

blocking coalition C, we get that µj(C) < 1
6 .

By summarizing, there must exist two agents j and z that
together with i form in G a star of three nodes centered in i
such that µj(C) < 1

6 , µz(C) < 1
6 and µi(C) < 2

3 . Therefore,
agents i, j and z together form a 3-size blocking coalition for
C. This is a contradiction to the fact that C is a 3-size core
stable coalition structure of G.

It is possible to show that the analysis of Theorem 2 is tight.
As a last remark, it is possible to show that the converses

of Theorems 1 and 2 do not hold.

3 Existence and Computation
In this section, we focus on existence and convergence issues
of relaxed core solutions. We start by showing that any 2-size
dynamics of every S-FHG converges to a stable solution.
Theorem 3. Every S-FHG is 2-size core convergent.

Sketch of Proof. We exploit a potential function argument.
Consider any 2-size core dynamicsD starting from any coali-
tion structure C0. We show that D = 〈C0, C1 . . .〉 has finite
length, i.e., that a 2-size core stable coalition structure is even-
tually reached. For any t ≥ 0, let ~xt be the vector obtained by
listing the utilities of all agents involved in some of the first t
improvement deviations of D in non-increasing order (notice
that these agents belong to a coalition of cardinality at most 2
in any coalition structure Cp with p ≥ t). As usual, given two
n-dimensional vectors ~y and ~y′, the first one is smaller than
the second one for the lexicographical order (and we write
~y ≺ ~y′) if either yp is a prefix of y′p or yp < y′p for the first
component p such that yp 6= y′p. It is possible to show that,
for any t ≥ 1, ~xt−1 ≺ ~xt.

We are also able to provide a similar result holding for 3-
size dynamics in the context of simple games (i.e., games
with valuations in {0, 1}).
Theorem 4. Every SS-FHG is 3-size core convergent within
a polynomial number of deviations.

Sketch of Proof. In this proof, it is convenient to exploit the
graph representation introduced in Section 2; since we are
considering SS-FHGs, the related graphs are unweighted.
Consider any 3-size core dynamicsD starting from any coali-
tion structure C0. We show that D = 〈C0, C1 . . .〉 has finite

length, i.e., that a 3-size core stable coalition structure is even-
tually reached. For any t ≥ 1, let Ct be the 3-size blocking
coalition for Ct−1 whose deviation leads to Ct. It is worth
noticing that, for any t ≥ 1, G(Ct) is (i) either to a trian-
gle (i.e., a clique of 3 nodes), (ii) a path of 3 nodes, or (iii) a
clique of 2 nodes.

Given any coalition structure C, let α(C) (respectively β(C)
and γ(C)) be the number of coalitions in C being triangles
(respectively path of 3 nodes and cliques of 2 nodes).

For any t ≥ 0, let ~xt be the triple defined as
(α(Ct), β(Ct) + γ(Ct), β(Ct)). It is possible to show, by
performing a case-by-case analysis, that, for any t ≥ 0,
~xt−1 ≺ ~xt, i.e., the considered triple always lexicographi-
cally increases after each deviation. Since the cardinality of
the set of possible triples polynomial in the number of agents,
the claim directly follows.

Our last result concerns the convergence of k-improvement
dynamics, for any k ≥ 2. It is obtained by proving that, in
this case, the social welfare is indeed a potential function for
the game, i.e., every deviation of a blocking coalition implies
an increase of the social welfare.

Theorem 5. Every S-FHG is k-improvement core conver-
gent, for every k ≥ 2.

Notice that, by Theorem 5, we directly get that every
S-FHG admits a k-improvement core stable coalition struc-
ture, for every k ≥ 2, that can be obtained by running a k-
improvement core dynamics starting from any coalition struc-
ture. Analogously, by combining Theorem 1 and Theorem 3,
we can obtain, for any given S-FHG, a k-improvement core
stable coalition structure, for every k ≥ 2, by running a 2-size
core dynamics starting from any coalition structure. How-
ever, in both cases, we are not guaranteed that the dynamics is
convergent within a polynomial number of deviations. In the
following, we show a polynomial time algorithm that, given
any instance of S-FHG, computes a coalition structure which
is k-improvement core stable, for every k ≥ 2(1− 1/n).

Theorem 6. Every S-FHG admits a k-improvement core sta-
ble coalition structure that can be computed in polynomial
time, for every k ≥ 2(1− 1/n).

Proof. We show a simple algorithm that computes in poly-
nomial time a 2(1− 1/n)-improvement core stable coalition
structure. We notice that the same algorithm has been used
to show the existence of core stable outcomes in modified
fractional hedonic games [Monaco et al., 2020]. The algo-
rithm works in phases t = 1, 2, . . . . Let G0 = G. For any
t ≥ 1, let Gt = (N t, (vi)

t
i∈Nt) be the resulting sub-game

obtained after phase t. In any phase t ≥ 1, a new coali-
tion isomorphic to a clique of size 2 is added to C as fol-
lows: Let vt−1max = vi(j) = vj(i), for some i, j ∈ N t−1,
be the maximum valuation of two agents in Gt−1, that is,
vt−1max = maxi∈Nt−1 vmaxi (Gt−1). We add to C the coalition
formed by agents i and j, i.e., C = C ∪ {i, j}. Moreover,
let Gt such that N t = N t−1 \ {i, j}. The algorithm stops
when |N t| ≤ 1. In particular, if |N | mod 2 = 0 (resp. |N |
mod 2 = 1), the algorithm ends by returning C (resp. C ∪{i}
where N t = {i}). Since at each phase (excluding the last)
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two agents are removed from the sub-game, the algorithm
terminates in at most d|N |/2e phases returning a coalition
structure with all coalitions of cardinality at most 2.

We now show that the returned outcome C is a 2(1− 1/n)-
improvement core stable coalition structure of G. In C, agents
i and j selected at phase t = 1 get each utility of v0max

2 . Re-
mind that µi(C) ≤ n−1

n v0max and µj(C) ≤ n−1
n v0max, for

any possible coalition structure C. It implies that agents i
and j cannot belong to a k-improvement blocking coalition
for C, for any k ≥ 2(1 − 1/n). The proof continues by in-
duction as follows. Suppose that all the agents selected un-
til phase z, i.e., agents belonging to N \ Nz , cannot belong
to any k-improvement blocking coalition for C, for any k ≥
2(1 − 1/n), then agents iz+1 and jz+1 selected in the phase
z + 1 of the algorithm cannot belong to any k-improvement
blocking coalition for C, for any k ≥ 2(1 − 1/n), as well.
In fact, suppose that such agents have a certain utility in the
coalition C. For the inductive hypothesis we have that they
can create a k-improvement blocking coalition for C, for any
k ≥ 2(1−1/n), only with agents belonging toNz . However,
since they have utility vzmax

2 and cannot get utility higher than
n−1
n vzmax, this is not possible. Finally, it is easy to see that, if

there is an agent selected as the last one by the algorithm that
is alone in her coalition, she cannot form a blocking coalition,
and this finishes the proof.

Finally, we provide the following theorem holding for the
special case of simple games: by combining Theorem 2 with
Theorem 4, it directly follows that a k-improvement core sta-
ble outcome can be computed in polynomial time for every
k ≥ 3/2.
Theorem 7. Every SS-FHG admits a k-improvement core
stable coalition structure that can be computed in polynomial
time, for every k ≥ 3/2.

4 Efficiency
In this section we study the price of anarchy for the consid-
ered relaxed core stable outcomes. We start by showing that,
for every S-FHG and k ≥ 1, the social welfare of an optimal
outcome can be at most 2k times the social welfare of any
k-improvement core stable outcome.
Theorem 8. For every S-FHG G and k ≥ 1,
k-IMPR CPOA(G) ≤ 2k.

Proof. First of all, we need some additional notation and def-
initions. Let δ>C (i) =

∑
j∈C,j>i vi(j) be the sum of valua-

tions of agent i for every agent j > i belonging to coalition
C. Analogously, let µ>i (C) =

δ>C (i)

|C| be the part of utility of
agent i due to her valuations for every agent j > i belonging
to coalition C. It is worth noticing that, given the symmetry
of the valuations, for any coalition C, it holds that

SW (C) = 2
∑
i∈C

µ>i (C). (1)

Let C∗(G) be an optimal coalition structure and C be any
k-improvement core stable coalition structure of game G. We
aim at showing that SW(C∗(G))

SW(C) ≤ 2k.

For any C∗ ∈ C∗(G), consider the following process com-
posed by |C∗| phases:

• Phase 1. Let C∗1 = C∗. Since C is k-improvement core
stable, coalition C∗1 cannot be a k-improvement blocking
coalition for C, thus implying that there exists an agent, say
agent i1, such that µi1(C∗1 ) ≤ kµi1(C).

• Phase t (t = 2, . . . , |C∗|). Let C∗t = C∗t−1 \ {it−1}. Since
C is k-improvement core stable, coalition C∗t cannot be a
k-improvement blocking coalition for C, thus implying that
there exists an agent, say agent it, such that µit(C

∗
t ) ≤

kµit(C).
Assume, without loss of generality, that the agents are

numbered such that i1 < i2 < . . . < i|C∗|. Notice that the
property of this assumption can be simultaneously obtained
for all coalitions of C∗, for instance assigning to all agents
in a same coalition consecutive numbers that respect the de-
sired ordering. By this assumption, for any t = 1, . . . , |C∗|,
it holds that

µit(C
∗
t ) =

δ>C∗(it)

|C∗t |
≥
δ>C∗(it)

|C∗|
= µ>it(C

∗). (2)

By summing over all agents in coalition C∗, we obtain

SW (C∗) = 2
∑
i∈C∗

µ>i (C∗) ≤ 2

|C∗|∑
t=1

µit(C
∗
t )

≤ 2k
∑
i∈C∗

µi(C),

where the first equality holds by (1), the first inequality holds
by (2) and the last inequality holds because, for every t =
1, . . . , |C∗|, it is selected at phase t of the above described
process as an agent in C∗t such that µit(C

∗
t ) ≤ kµit(C). By

applying the last inequality to every coalition in C∗(G), we
finally obtain

SW (C∗(G)) =
∑

C∗∈C∗(G)

SW (C∗) ≤ 2k
∑

C∗∈C∗(G)

∑
i∈C∗

µi(C)

= 2k
∑
i∈N

µi(C) = 2k · SW (C).

We now show that the analysis of Theorem 8 is essentially
tight even for SS-FHGs.

Theorem 9. There exists an infinite collection of SS-FHGs
such that, for every game G belonging to it, it holds that
1-IMPR CPOA(G) ≥ 2. Moreover, for every k > 1 and
ε ∈ (0, 1/2], there exists an infinite collection of SS-FHGs
such that, for every game G belonging to it, it holds that
k-IMPR CPOA(G) ≥ 2k(1− ε).

Sketch of Proof. We first focus on the case k > 1. For every
triple (p, q, d) of positive integers, such that p > q and pq
is even, we construct an unweighted graph G representing a
game G as follows. The set of nodes of G is partitioned into
subset M = {1, 2, . . . ,m} of size m ≥ 2, and m subsets
L1, L2, . . . , Lm, each of size d, with m = p(d + 1). We
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assume that
⋃m
j=1 Lj is an independent set in G, while the

subgraph induced by M is a t-regular graph, with t = q(d +
1); notice that, by definition of t and m, this subgraph is well
defined (in fact, as it is well known, there always exists a t-
regular graph on m nodes when m ≥ t + 1 and mt is even).
Finally, each i ∈M is connected to each node in Li.

Let us consider the coalition structure C made of coali-
tion M and md singleton coalitions, one for each node in⋃m
j=1 Lj . It can be proved that C is p/q-improvement core

stable. In order to evaluate the efficiency of C, we compare its
social welfare with the social welfare of the coalition struc-
ture C̄, made of m coalitions, in which each agent i ∈ M
makes a coalition with the corresponding set Li. The social
welfare of C̄ is m 2d

d+1 = 2pd. On the other hand, the so-
cial welfare of C is

∑
i∈M µi(C) = t = q(d + 1). It fol-

lows that the p
q -improvement price of anarchy of G is at least

SW
(
C̄
)
/SW (C) = 2pd

q(d+1) = 2pq

(
1− 1

d+1

)
. The claim

follows by observing that for every pair of rational numbers
k > 1 and ε ∈ (0, 1/2], there are infinite ways of choosing
the triple (p, q, d) such that k = p/q and ε = 1

d+1 .
For the case k = 1, we can prove the claim by simplifying

the construction presented above, in particular by imposing
that the subgraph induced by M is a clique.

We now focus on the q-size core price of anarchy, for
q ∈ {2, 3}. For S-FHGs, by Theorem 1 we get that the social
welfare of the worst 2-size core stable outcome is at least the
social welfare of the worst 2-improvement core stable out-
come. Analogously, for SS-FHGs, by Theorem 2 we get that
the social welfare of the worst 3-size core stable outcome is at
least the social welfare of the worst 3

2 -improvement core sta-
ble outcome. Therefore, by Theorem 8, the following upper
bounds can be directly obtained.

Theorem 10. For any S-FHG G it holds that
2-SIZE CPOA(G) ≤ 4; moreover, for any SS-FHG G,
it holds that 3-SIZE CPOA(G) ≤ 3.

By exploiting the same ideas of the construction of Theo-
rem 9, it is possible to show that, for any ε > 0 and any integer
q ≥ 2, there exists a game G such that q-SIZE CPOA(G) ≥
2 q
q−1 − ε, thus proving the tightness of the bounds provided

by the last theorem.

5 Concluding Remarks and Open Problems
In this paper we have investigated some relaxed variations
of core stability in the context of fractional hedonic games.
Several worth investigating research directions arise from this
work. First of all, in a general context, we believe that the
investigated relaxed notions of core stability can be of inter-
est for other class of games and could be also investigated
in combination, i.e., by considering blocking coalitions of
bounded cardinality in which every agent has to increase her
utility by a given factor. Moreover, it would be interesting to
study other possible relaxations of stability notions, also with
respect to classical notions other than the core stability, that
can lead to model practical scenarios of multi-agent systems
in a more accurate way.

We now focus on the open problems for the considered
class of fractional hedonic games. It is worth noticing that,
in [Aziz et al., 2019], an instance admitting no core stable
outcome is provided. As a direct consequence, it follows that
there must exist q̄ and k̄ such that no q-size core stable out-
come exists for any q ≥ q̄ and no k-improvement core sta-
ble outcome exists for any k ≤ k̄ (in particular, it holds that
q̄ = 11 and k̄ = 100/99). To this respect, an open problem
raised by our work is that of determining the maximum val-
ues of q and the minimum value of k for which q-size and k-
improvement core stable outcomes, respectively, (i) are guar-
anteed to exist, (ii) can be efficiently computed and (iii) are
guaranteed to be reached by any dynamics of the agents.
Another interesting research direction is that of investigat-
ing the relations between q-size and k-improvement core sta-
ble outcomes. To this respect, some preliminary results are
provided by Theorems 1 and 2. More generally, we con-
jecture that any q-size core stable coalition structure is q

q−1 -
improvement core stable.
With respect to the efficiency, it is worth studying the q-size
core price of anarchy of SS-FHGs and S-FHGs, in order to
provide suitable upper bounds for the cases q ≥ 4 and q ≥ 3,
respectively; to this respect, given the lower bound described
after Theorem 10, we conjecture that the q-size core price of
anarchy of SS-FHGs and S-FHGs is 2q

q−1 for any integer q.

Finally, we would like to focus on the q-size and k-
improvement core price of stability, that can be naturally de-
fined, similarly to the q-size and k-improvement core price
of anarchy, as the ratio between the social optimum and the
social welfare of the best stable outcome. Roughly speaking,
a low core price of stability means that there exists a core sta-
ble solution that is close, in terms of efficiency, to the social
optimum. Interestingly, to this respect, some preliminary re-
sults arise as a direct consequence of the theorems provided
in this paper. In particular, for S-FHGs, the k-improvement
core price of stability is 1 for k ≥ 2, because, by the proof of
Theorem 5, the social welfare is in this case a potential func-
tion for the game, thus implying that the optimal solution is
k-improvement core stable. Moreover, always for S-FHGs,
if k < 2 we know, by Theorem 8, that the core price of stabil-
ity is at most 2k, because the core price of stability of a game
is always less then its core price of anarchy. For SS-FHGs,
by exploiting the fact that, by Theorem 7, a 3

2 -improvement
core stable solution (approximating, by Theorem 8, the opti-
mal solution by a factor of 3) is guaranteed to exist and by
observing that a 3

2 -improvement core stable solution is also
k-improvement core stable for any k > 3/2, we obtain an
improved upper bound equal to 3 for the k-improvement core
price of stability, with k ∈ [3/2, 2). A lower bound of 2 to
the core price of stability is provided in [Carosi et al., 2019,
Theorem 5.1] when considering a notion of core stability in
which there is a structural property the blocking coalition has
to satisfy, thus implying that the (1-improvement) core price
of stability is at least 2: a matching lower bound for the case
k = 1. Therefore, it would be very interesting to solve the
open problem of deriving tight bounds to the k-improvement
core price of stability for k ∈ (1, 2), besides the one of deter-
mining the q-size core price of stability.
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