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Abstract

As DNA sequencing technologies keep improving in scale and cost, there is a
growing need to develop machine learning models to analyze DNA sequences,
e.g., to decipher regulatory signals from DNA fragments bound by a particular
protein of interest. As a double helix made of two complementary strands, a DNA
fragment can be sequenced as two equivalent, so-called Reverse Complement (RC)
sequences of nucleotides. To take into account this inherent symmetry of the data in
machine learning models can facilitate learning. In this sense, several authors have
recently proposed particular RC-equivariant convolutional neural networks (CNNs).
However, it remains unknown whether other RC-equivariant architectures exist,
which could potentially increase the set of basic models adapted to DNA sequences
for practitioners. Here, we close this gap by characterizing the set of all linear RC-
equivariant layers, and show in particular that new architectures exist beyond the
ones already explored. We further discuss RC-equivariant pointwise nonlinearities
adapted to different architectures, as well as RC-equivariant embeddings of k-mers
as an alternative to one-hot encoding of nucleotides. We show experimentally that
the new architectures can outperform existing ones.

1 Introduction

Incorporating prior knowledge about the structure of data in the architecture of neural networks is a
promising approach to design expressive models with good generalization properties. In particular,
exploiting natural symmetries in the data can lead to models with fewer parameters to estimate than
agnostic approaches. This is especially beneficial when the amount of available data is limited. A
famous example of such an architecture is the convolutional neural network (CNN) for 1D sequences
or 2D images, which is well adapted to problems which are invariant to translations in the data, while
exploiting multiscale and local information in the signals. Motivated by the success of CNNs, there
has been a fast-growing body of research in recent years to build the theoretical underpinnings and
design architectures and efficient algorithms to systematically exploit symmetries and structures in
the data [3].

A central idea that has emerged is to formalize the symmetries in data by a particular group action
(e.g., the group of translations or rotations on images), and to create multilayer neural networks which,
by design, “behave well” under the action of the group. This is captured formally by the concept of
equivariance, which states that each equivariant layer should be designed to be subject to the group



action (e.g., we should be able to "translate" or "rotate" the signal in each layer), and that when an
input data is transformed by a particular group element, then its representation in an equivariant
layer should also be transformed according to the same group element. While it is easy to see that
convolutional layers in CNNs are equivariant to translations, Cohen and Welling [7] formalized the
concept of group equivariance CNN (G-CNN) for more general groups and showed in particular
how to design convolutional layers equivariant not only to translations but also to reflections and to a
discrete set of rotations. Following this seminal work, the theoretical foundations of group equivariant
neural networks were then expanded, going beyond regular representations [9], for more groups
[2, 18, 37, 40], in less regular spaces [8, 10] or with more general results on their generality and
universality [11, 13, 14, 22]. The main applications were developed with the groups of rotations in
2D and 3D, mostly to computer vision problems, but also in biology with histopathology [17, 23],
medicine [41] and quantum chemistry [33].

In this paper, we explore and study the potential benefits of equivariant architectures for an important
class of data, namely deoxyribonucleic acid (DNA) sequences. DNA is the major form of genetic
material in most organisms, from bacteria to mammals, which encodes in particular all proteins
that a cell can produce and which is transmitted from generation to generation. The study of DNA
in humans and various organisms has led to tremendous progress in biology and medicine since
the 1970s, when the first DNA sequencing technologies were invented, and the collapsing cost of
sequencing in the last twenty years has accelerated the production of DNA sequences: there are
for example about 2.8 billion sequences for a total length of ∼ 1013 nucleotides publicly available
at the European Nucleotide Archive (ENA1). Unsurprisingly in such a data-rich field, machine
learning-based approaches are increasingly used to analyze DNA sequences, e.g., in metagenomics
to automatically predict the species present in an environment from randomly sequenced DNA
fragments [26, 28, 36, 38] and to detect the presence of viral DNA in human samples [36], in
functional genomics to predict the presence of protein binding sites or other regulatory elements in
DNA sequences of interest [16, 24, 30, 35, 43, 44], to predict epigenetic modifications [25], or to
predict the effect of variations in the DNA sequence on a phenotype of interest [1, 46].

Due to the sequential nature of DNA and the translation-equivariant nature of the questions addressed,
many of these works are based on 1D CNN architectures, although recently transformer-based
language models have also shown promising results on various tasks [6, 20, 42]. However, besides
translation, DNA has an additional fundamental symmetry that has been largely ignored so far: the
so-called reverse complement (RC) symmetry, due to the fact that DNA is made of two strands
oriented in opposite direction and encoding complementary nucleotides. In other words, a given DNA
segment can be sequenced as two RC DNA sequences, depending on which strand is sequenced;
any predictive model for, e.g., DNA sequence classification should therefore be RC-invariant, which
calls for RC-equivariant architectures. While strategies based on data augmentation and prediction
averaging has been commonly used to handle the need for RC invariance [1, 32], one translation-
and RC-equivariant CNN architecture has been proposed and led to promising results [4, 29, 34].
However, it remains unclear whether that architecture is the only one that can encode translation-
and RC-equivariance, or if alternative models exist to complement the toolbox of users wishing to
develop deep learning models for DNA sequences.

Using the general theory of equivariant representations, in particular steerable CNNs [9], we answer
that question by characterizing the set of all linear translation- and RC-equivariant layers. We show
in particular that new architectures exist beyond the ones already explored by [4, 29, 34], which in
the language of equivariant CNNs only make use of the regular representation [7] while more general
representations lead to different layers. We further discuss RC-equivariant pointwise nonlinearities
adapted to different representations, as well as RC-equivariant embeddings of k-mers as an alternative
to one-hot encoding of nucleotides. We test the new architecture on several protein binding prediction
problems, and show experimentally that the new models can outperform existing ones, confirming the
potential benefit of exploring the full set of RC-equivariant layers when manipulating DNA sequences
with deep neural networks.
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Figure 1: Illustration of the reverse-complement symmetry. Both DNA strands get sequenced in
opposite directions resulting in redundant information.

2 Methods

2.1 Group action of translation and reverse complementarity on DNA sequence

DNA is a long polymer made of two intertwined strands, forming the well-known double-helical
structure. Each strand is a non-symmetric polymer that can be described as an oriented chain of
four possible monomers called nucleotides and denoted respectively {A, C, G, T}. The two strands
are oriented in opposite directions, and their nucleotides face each other to form hydrogen bonds.
They interact at each position in a deterministic way because only two nucleotides pairings can
happen: (A,T) and (G,C). Thus, given a nucleotide sequence on one strand, we can deduce the
so-called RC sequence of its corresponding strand by complementing each nucleotide and reversing
the order (Figure 1). When a double-stranded DNA fragment is sequenced, the two strands are first
separated and, typically, only one of them is randomly selected and is decrypted by the machine.
This implies that any given DNA fragment can be equivalently described by two RC sequences of
nucleotides. Moreover, several genomic learning tasks amount to a sequence annotation that does
not depend on the strand. For example, a protein can bind a double-stranded DNA fragment, and
both strands of the bound part can get sequenced. This motivates the search for equivariance to this
RC-action for the prediction functions. Moreover, the sequencing often results in long sequences
where the relevant parts of the sequence do not correlate with their position. The task of prediction
over genomic sequences is thus largely translation equivariant, which explains why the community
settled on the use of CNNs to train and predict on arbitrary length segments.

To formalize mathematically the translation and RC operations on DNA sequences, we first encode
the raw genetic sequence as a signal function in F0 =

{
f : Z −→ {0, 1}4

}
, as the one hot encoding

of the nucleotide content for each integer position. Because of the finite length of this polymer, we
assume that beyond a compact support this function takes a constant value of zero. The group (Z,+)
of translations acts naturally on this encoding by Tu(f)(x) = f(x− u), for a translation u ∈ Z, and
the RC operations amounts to the following : RC(f)(x) = σ(−1)[f(−x)], where σ(−1) is the 4× 4
permutation matrix that exchanges complementary bases A/T and C/G (while we denote by σ(1) the
4 × 4 identity matrix). We notice that RC is a linear operation on F0 that satisfies RC2 = I , and
thus that the RC operation is a group representation on F0 for the group Z2 = {1,−1} endowed with
multiplication.

To jointly consider translations and RC actions, we naturally consider the semi-direct product group
G = Z o Z2. Elements g ∈ G can be written as g = ts with t ∈ Z, s ∈ Z2 and the group G acts on
F0 by the action π0 defined by:

∀ts ∈ G , ∀(f, x) ∈ F0 × Z ,
(
π0(ts)f

)
(x) = σ(s)[f(s(x− t))] .

In other words, π0 is the representation of G on F0 induced by the representation σ of RC on R4 [9].

2.2 Features spaces of equivariant layers

Let us now describe the structure of intermediate layers of a neural network equivariant to translations
and RC. Following the theory of steerable CNNs [9], we consider successive representations of the
input DNA sequence in the following way:
Definition 1. Given ρ a representation of Z2 on RD for some D ∈ N∗, a ρ-feature space is the set
of signals F = {f : Z −→ RD} endowed with the G group action π, known as the representation

1As of May, 2021: https://www.ebi.ac.uk/ena
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induced by ρ :

∀ts ∈ G , ∀(f, x) ∈ F × Z ,
(
π(ts)f

)
(x) = ρ(s)[f(s(x− t))] . (1)

With this definition, we see in particular that the one-hot encoding input layer maps the input DNA
sequence to a σ-feature space, and that the dimension (i.e., number of channels in the language of
deep learning) and group action of ρ-feature space are fully characterized by the representation ρ.
Interestingly, the theory of linear group representations allows us to characterize more precisely all
such representations:
Theorem 1. For any representation ρ of Z2 on RD, there exist a, b ∈ N such that a+ b = D and an
invertible matrix P ∈ GL(RD) such that

∀s ∈ Z2 , ρ(s) = P Diag(Ia, sIb)P
−1 .

In other words, combining Definition 1 and Theorem 1, we see that any ρ-feature space that we will
use to build translation- and RC-equivariant layers is fully characterized by a triplet (P, a, b), which
we call its type, and which characterizes both its dimension D = a+ b and the action of the group G
by (1). By slight abuse of language, we also refer to (P, a, b) as the type of ρ.

Theorem 1 is a standard result of group theory, which explicits the decomposition of any representation
ρ in terms of so-called irreducible representation, or irreps. In the case of Z2, there are exactly two
irreps which act on R, namely, ρ1(s) = 1 and ρ−1(s) = s. If ρ has type (P, a, b), then it means that
it can be decomposed as a times ρ1(s) and b times ρ−1(s). In the particular case where P is the
identity matrix, i.e., when we consider a type (I, a, b), then ρ(s) is a diagonal matrix for any s ∈ Z2,
and each channel of F is acted upon by a single irrep. In that case, we will call the channels of type
"1" (resp. "-1") if they are acted upon by ρ1 (resp. ρ−1), and we will say that F is an "irrep feature
space".

Now, let us introduce another special case. Since Z2 is finite of cardinality 2, let us consider the
regular representation ρreg of Z2 on R2 defined by:

ρreg(1) =

(
1 0
0 1

)
, ρreg(−1) =

(
0 1
1 0

)
.

One can easily check that ρreg is of type (Preg, 1, 1), where Preg =

(
1 1
1 −1

)
. It corresponds to

a ρ-feature space with two channels, where the RC operations flips the two channels (and of course
the sequence coordinates).

Let us now consider feature spaces of interest. In the input layer, nucleotides are one-hot encoded in
a certain order, let us say (A, T, G, C). As stated above, this input space is acted upon by σ, a 2−cycle
that swaps bases A/T and C/G. We see that we can rewrite σ = (ρreg ⊕ ρreg) := (ρ⊕2reg), where ⊕ is
the bloc-diagonal operation. Because ρreg is of type (Preg, 1, 1), we can diagonalize σ with (P⊕2reg)
and the diagonal would be alternated +1 and -1 values. Thus, there exists a permutation Π such that σ
is of type (P, 2, 2), with P = Π(P⊕2reg)Π

−1. These concepts are illustrated in Supplementary Section
A.1

Interestingly, all RC-equivariant layers proposed so far in [4, 29, 34] follow a similar pattern: the
channels go by pair, and the RC action amounts to flipping the channel values within a pair and
reversing the sequence coordinates. In our formalism, this corresponds to channels of type (P, a, a),
where a ∈ N∗ is the number of pairs of channels, and where up to a permutation of channels the
matrix P satisfies P = Π(P⊕areg)Π

−1. Following [34], we will refer to these layers as Reverse
Complement Parameter Sharing (RCPS) layers below.

This highlights the fact that translation- and RC-equivariant layers explored so far are equivariant
according to Definition 1, but that there exists potentially many other equivariant layers, obtained in
particular by allowing ρ-feature spaces of types (P, a, b) where a 6= b, on the one hand, and where P
is not a direct sum of Preg , on the other hand. We investigate such variants below.

2.3 Equivariant linear layers

While Definition 1 characterizes ρ-feature space in terms of structure and group action, an equivariant
multilayer neural network is built by stacking ρ-feature spaces on top of each other and connecting
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them with equivariant layers. Cohen et al. [11, Theorem 2] gives us a general result about such
equivariant mappings. Here, we apply this result to our specific data and group, and characterize the
class of equivariant linear layers, i.e., the linear functions φ : Fn → Fn+1 that satisfy πn+1φ = φπn,
where πn and πn+1 are respectively the group action on Fn and Fn+1.

Theorem 2. Given two representations ρn and ρn+1 of Z2, of respective types (Pn, an, bn) and
(Pn+1, an+1, bn+1) with an + bn = Dn and an+1 + bn+1 = Dn+1, and respective ρn- and ρn+1-
feature spaces Fn and Fn+1, a linear map φ : Fn → Fn+1 is equivariant if and only if it can be
written as a convolution:

∀(f, x) ∈ Fn × Z , φ(f)(x) =
∑
y∈Z

κ(y − x)f(y) , (2)

where the kernel κ : Z→ RDn+1×Dn satisfies:

∀x ∈ Z , κ(−x) = ρn+1(−1)κ(x)ρn(−1) , (3)

or equivalently:

∀x ∈ Z , κ(x) = Pn+1

(
α(x) β(x)
γ(x) δ(x)

)
P−1n , (4)

where α : Z → Ran+1×an and δ : Z → Rbn+1×bn are even, while β : Z → Ran+1×bn and
γ : Z→ Rbn+1×an are odd functions.

As stated in Cohen et al. [11], "Convolution is all you need" to define linear layers which are
equivariant to our group. In addition, Theorem 2 characterizes all the convolution kernels that ensure
equivariance through the two equivalent constraints (3) and (4).

To illustrate this result, let us consider two RCPS feature spaces Fn and Fn+1 of respective types
(Πn(P⊕anreg )Π−1n , an, an) and (Πn+1(P

⊕an+1
reg )Π−1n+1, an+1, an+1). Then, the channels in Fn and

Fn+1 go by pair, and if we consider a slice κ̃ : Z → R2×2 of the convolution kernel κ describing
how a pair of channels in Fn maps to a pair of channels in Fn+1, (3) gives the constraint:

κ̃(−x) :=

(
κ̃11(−x) κ̃12(−x)
κ̃21(−x) κ̃22(−x)

)
=

(
0 1
1 0

)
κ̃(x)

(
0 1
1 0

)
=

(
κ̃22(x) κ̃21(x)
κ̃12(x) κ̃11(x)

)
.

We recover exactly the constraints of the RCPS filters first proposed by [34], proving as a consequence
of Theorem 2 that RCPS convolution filters describe exactly all equivariant linear mappings between
RCPS feature spaces.

Moreover, if we now consider any two feature spaces Fn and Fn+1 of respective types (Pn, an, bn)
and (Pn+1, an+1, bn+1), then Equation (4) tells us that up to multiplications by matrices Pn+1 and
P−1n , the kernel is expressed in terms of even and odd functions, which can be trivially implemented
with parameter sharing. For example, to represent the even function α, one just need to parameterize
the values of α(x) for x ≥ 0, and complete the negative values by parameter sharing α(−x) = α(x).
Hence, the parameter sharing idea used in RCPS [34] extends to any equivariant linear map.

Instead of using (4) to parameterize equivariant convolution kernels, one may also directly write the
constraints (3) for specific representations, and potentially save the need of multiplication by Pn+1

and P−1n in (4). This is for example the case in RCPS layers [34], and more generally for channels
acted upon by the regular representation; for the sake of completeness, we derive in Appendix
A.4 the constraints to go from and to the regular representation or the irreps, and use them in our
implementation.

2.4 Equivariant nonlinear layers

Besides equivariant linear layers, a crucial component needed for multilayer neural networks is the
possibility to have equivariant nonlinear layers, such as nonlinear pointwise activation functions or
batch normalization [19]. In this section, we discuss particular nonlinearities that are adapted to
various equivariant layers.

Pointwise activations. Let us begin with pointwise transformations, that encompass most activation
functions used in deep learning. Pointwise transformations are formally defined as follows: given
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a function θ : R → R and a vector space V = RA for some index set A, the pointwise extension
of θ to V is the mapping θ̄V : V → V defined by θ̄V (f)(a) = θ (f(a)), for any (f, a) ∈ V × A.
For a D-dimensional representation ρ of Z2 and a ρ-feature space F with G-group action π, we say
that a pointwise extension θ̄F : F → F is equivariant if it commutes with π, i.e., πθ̄F = θ̄Fπ. By
definition of the group action (1), this is equivalent to saying that the pointwise extension θ̄RD of θ to
RD commutes with ρ. The following theorem gives an exhaustive characterization of a large class of
equivariant pointwise extensions for any ρ-feature space:
Theorem 3. Let ρ be a representation of Z2 and θ : R→ R be a continuous function with left and
right derivatives at 0. Let F be a ρ-layer and θ̄F : F → F be the point-wise extension of θ on this
layer. Then θ̄F is equivariant if and only if at least one of the following cases holds:

1. θ is a linear function.

2. θ is an affine function, and ρ(−1)1 = 1.

3. θ is not an affine function, and there exists a permutation matrix Π, integers a, b, c, d ∈ N,
and scalars (λ1, . . . , λa) ∈ (R∗+)a, such that ρ decomposes as

Π−1ρ(−1)Π =

a⊕
i=1

(
0 λi
λ−1i 0

)
⊕
(

0 −1
−1 0

)⊕b
⊕ (1)⊕c ⊕ (−1)⊕d . (5)

In that case,

• Either b = d = 0 and ∀i, λi = 1 and θ is any function,
• Or b = d = 0 and ∃i, λi 6= 1 and θ is a leaky ReLu function.2

• Or b+ d > 0 and ∀i, λi = 1 and θ is an odd function,

The first case in Theorem 3 is of little interest, since pointwise linear functions are always equivariant
to linear group actions. The second case essentially says that adding a constant to a pointwise linear
function is only equivariant for representations ρ such that the sum of all rows of ρ(−1) is equal to 1.
This holds for example for the regular representation and the RCPS layers, but not for an irrep feature
space of type (I, a, b) with b > 0, since in that case, some rows have a single "-1" entry. The most
interesting case is the third one, since it describes what pointwise nonlinearities one can apply. The
condition (5) on the decomposition of ρ essentially excludes all representations that have more than
one nonzero value in at least one row of ρ(−1). Among valid ρ’s that decompose as (5), we see that
the regular representation (corresponding to the first block in (5) with λi = 1)), used in RCPS, stands
out as the only that allows any nonlinearity, besides of course invariant channels of type "+1" (third
block in (5)). Replacing a "1" in the regular representation by a scalar λi 6= 1 (in the first block of (5),
with b = d = 0) creates a valid representation ρ, however only leaky ReLu pointwise nonlinearities
can be applied in that case. Another case of practical interest is the irrep feature space of type (I, c, d)
for some c > 0 and d > 0. By Theorem 3, only odd nonlinearities are allowed in that case, such as
the hyperbolic tangent function. Finally, one should keep in mind that other representations, which
do not satisfy the conditions listed in Theorem 3, do not allow any equivariant nonlinear pointwise

transform; this is for example the case of ρ(−1) =

(
0 −1/2
−2 0

)
, which is a valid representation of

Z2 but does neither meet the condition to accept affine activations (case 2), nor to accept nonlinear
activations (case 3) because ρ(−1) does not decompose according to (5).

Other activation functions Besides pointwise transformations from a ρ-feature space to itself
characterized in Theorem 3, the set of nonlinear equivariant layer is tremendous and the design choices
are endless. A first extension is to keep pointwise activation, but to allow different nonlinearities
on different channels, e.g., by using any function on the "+1" channels and an odd function on
the "-1" channels of an irrep feature space. Another relaxation is to use different input and output
representations. While odd functions will not affect the field type, even functions will turn a field of
type "-1" into a "+1" type. It is well known that any function decomposes into a sum of an odd and
even function. Therefore, given ρ, a representation decomposed as in (5), any point-wise non-linearity
can be used in a ρ-feature space by first decomposing it into its odd and even components and
applying each component separately for the second and fourth blocks.

2A leaky ReLu function is θ(x) = αsign(x)x for some (α+, α−) ∈ R2.
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Other possibilities exist and include creating new representations by tensorization, which amounts to
taking pointwise products between different channels [13, 21, 37]. or using non point-wise activation
layers, that act on several coupled dimensions, such as the ones used in [37]. For instance, we could
apply the max function to paired channels. These possibilities are discussed in [39]

Batch normalization An equivariant batch normalization was introduced by [34]. It considers a
feature map and its reverse complement as two instances, which is easy to do because the reverse
complement feature map is already computed when using regular representation. We propose another
batch normalization for irrep feature spaces that also gives the result we would have had if the batch
contained all the reverse complement of its sequences. For the "+1" dimensions, it amounts to scaling
as we would have the same values twice. For the "-1" dimensions, we enforce a zero mean and
compute a variance estimate based on this constraint.

K-mers. Instead of the standard one-hot encoding of individual nucleotides as input layer, we
propose to one-hot encode k-mers for k ≥ 1, i.e., overlapping blocks of k consecutive nucleotides.
This technique is known to improve performance in several tasks [27, 28]. In order to implement it
into an equivariant network, we need to know how the group acts on the k-mers space, made of 4k

elements. The simplest idea is to pair the index of the channels of two RC k-mers. Because some
k-mers are their own reverse complement, the canonical way to do so is to have a representation that
is a blend of "+1" irrep and regular representation. An alternative is to make the regular representation
act on the k-mers instead by redundantly encoding these k-mers into paired dimensions. This is the
strategy we follow in our implementation, to be more coherent with the usual input group action.

3 Experiments

We assess the performance of various equivariant architectures on a set of three binary prediction
and four sequence prediction problems used by Zhou et al. [45] to assess the performance of RCPS
networks. The binary classification problems aim to predict if a DNA sequence binds to three
transcription factors (TFs), based on genome-wide binarized TF-ChIP-seq data for Max, Ctcf and
Spi1 in the GM12878 lymphoblastoid cell-line [34]. The sequence prediction problems aim to
predict TF binding at the base-pair resolution, using genome-wide ChIP-nexus profiles of four TFs-
Oct4, Sox2, Nanog and Klf4 in mouse embryonic stem cells. For a more detailed explanation of the
experimental setup, please refer to Zhou et al. [45]. We report "significant" differences in performance
below when the P-value of a Wilcoxon signed rank test is smaller than 0.05.

Models. We build over the work of Zhou et al. [45] for both the binary and the sequence prediction
problems. They benchmarked an equivariant RCPS architecture and a corresponding non-equivariant
model, with the same number of filters and trained with data augmentation, which we respectively
refer to as "RCPS" and "Standard" models below. The data augmentation scheme for the "Standard"
model consists in adding to the training set the reverse complement sequences of all training sequences,
which is a natural procedure to let the model "learn" the equivariance without encoding it explicitly
in the architecture of the network. We checked empirically that data augmentation significantly
improves the performance of non-equivariant models (Appendix A.6.1). In addition, we extend the
RCPS architecture with one-hot encoding of k-mers as input layers, which we refer to as "Regular"
below. Finally, we add to the comparison a new equivariant network where each RCPS layer is
replaced by an (I, a, b) layer with the same number of filters, which we call "Irrep" below. We also
use k-mers and vary the ratio a/(a+ b) in this model. We combine the regular and "+1" dimensions
with ReLu activations and the "-1" dimensions with a tanh activation.

Influence of hyperparameters in equivariant models To assess the impact of different hyperpa-
rameters in the family of equivariant models we propose (k-mer length for Irrep and Regular, a/(a+b)
ratio for Irrep), we train equivariant models with different combinations of hyperparameters on the
training set and assess their performance on the validation set, repeating the process ten times with
different random seeds. We assess the performance of each run in terms of Area under the Receiver
Operator Characteristic (AuROC), and show in Figure 2 the average performance reached by all runs
with a given ratio a/(a + b) ∈ {0, 1/4, 1/2, 3/4, 1} (left) and with a given k ∈ {1, 2, 3, 4} (right).
We see a clear asymmetry in the performance as a function of a/(a + b), with poor performance
when a = 0 and optimal performance for a = 0.75, significantly better than all other ratios tested.
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This confirms that exploring different irreps may be valuable. As for the k-mer length, setting k = 3
gives the best performance and significantly outperforms all other values of k tested. This confirms
that going beyond one-hot encoding of nucleotides in equivariant architectures can be beneficial.
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Figure 2: Average AuROC performance across four TFs and 10 random seeds for the Irrep model as
a function of a/(a+ b) (left, also averaged over k values) and for the Irrep and Regular models as a
function of k (right, also averaged over a/(a+ b) values for Irrep).

Binary task. We then compare the test set performance of three different models for the binary
classification task: 1) Standard, 2) RCPS, and 3) the best Irrep or Regular equivariant model,
where hyperparameters are selected based on the AuROC on the validation set, which we denote
as "Best Equivariant". Figure 3 (left) shows the performance of each model on each TF task and
overall. As already observed by [34], the equivariant RCPS architecture has a strong lead over
the Standard, non-equivariant model in spite of data augmentation. Interestingly, we see that Best
Equivariant is significantly better than RCPS on all tasks, and that the performance gain from RCPS
to Best equivariant is of the same order as the performance gain from Standard to RCPS. This
demonstrates that the family of equivariant architectures we introduce in this paper can lead to
significant improvement over existing architectures.
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Figure 3: AuROC performance of the three different models (Standard, RCPS and Best equivariant
after hyperparameter selection on the validation set) on the three binary classification problems CTCF,
MAX and SPI1, as well as their average. Error bars correspond to an estimate of the standard error
on 10 repeats with different random seeds. The left plot is the performance on the full datasets, while
the right plot shows the performance where models are trained on a subset of 1,000 sequences only
(notice the differences of AuROC values on the vertical axis in both plots).

Reduced models. Since equivariant architectures are meant to be particularly beneficial in the
low-data regime [15], we further assess the performance of the three models on the same binary
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classification problems but with only 1,000 sequences used to train the models, and show the results
on Figure 3 (right). Overall, the performances are worse than in the full-data regime (Figure 3, left),
which confirms that this is a regime where more data helps. We also see that the relative order of the
three different methods remains overall the same, with Best Equivariant outperforming RCPS, which
itself outperforms Standard. Interestingly, the gaps between the best and worse models widens in the
low-data regime, showing that the prior is more useful in this setting. More precisely, there is a large
gap of about 1% between Best Equivariant and Standard in the low data regime, compared to a gap
of about 0.3% on the full dataset. We also investigated whether equivariant models converge faster to
their solutions, but found not noticeable difference (Appendix A.6.2).

On post-hoc models. Zhou et al. [45] introduced the so-called post-hoc model, another equivariant
method obtained by averaging the predictions of a Standard model over a sequence and its reverse-
complement, and showed that it is competitive with and often outperforms RCPS. The post-hoc model
only requires training and storing one network, but aggregates two predictions for each sequence
at inference time. Because of that, the good performance of post-hoc may be due in part to the
aggregation step common to all ensemble models [12]. To decipher the respective contributions of
the network architecture, on the one hand, and of the aggregation of predictions, on the other hand,
we add to the comparison an ensemble of two Standard models trained with different random seeds
(Ensemble Standard) and an ensemble of two equivariant Irrep models (Ensemble Irrep) and present
the results in Figure 4. We see that Ensemble Irrep strongly outperforms Best Equivariant, and
both post-hoc and Ensemble Standard widely outperform the Standard architecture. This confirms
that ensembling equivariant or non-equivariant models through post-hoc of ensemble aggregation
is always useful (at the cost of increased computational time). We see that Ensemble Standard is
not significantly different from post-hoc Standard on CTCF and SPI1, but that post-hoc Standard is
better on MAX, suggesting that most of the benefits of post-hoc Standard indeed comes from the
ensembling effect. Regarding the impact of the architecture for a given budget of predictions, we
saw earlier than Best equivariant significantly outperforms Standard when a single prediction per
test sequence is allowed, and see now that Ensemble Irrep strongly outperforms both post-hoc and
Ensemble Standard when two predictions are allowed, thus confirming the benefit of equivariant
architectures in all settings. We also see that a single Best equivariant models outperforms post-hoc
and Ensemble Standard, indicating that enforcing equivariance throughout the network is not only
faster but also more more accurate than averaging a non-equivariant model over group transformed
inputs.
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Figure 4: AuROC performance on the three binary classification problems, for the Best Equivariant
model, the post-hoc Standard model, and an ensemble of two Standard or Irrep models. Error bars
correspond to an estimate of the standard error on 10 repeats with different random seeds.

Profile task. We now compare the performance of different models on the profile prediction tasks.
To limit the carbon footprint of this study, and based on the influence of hyperparameters on the
binary task (Figure 2), we only test two equivariant models in addition to Standard and RCPS: a
Regular model with k = 3, and an Irrep model with k = 3 and a/(a + b) = 75%. We also assess
the performance of post-hoc Standard (the best model in [45]), and an ensemble of two models of
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the best performing equivariant model. Figure 5 shows the performance of all models in terms of
Spearman correlation between the target profile and the predicted ones, on the full dataset (left) or a
reduced experiment with only 1,000 training sequences (right).
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Figure 5: Spearman Correlation between true and predicted profiles by different methods for four
data sets.

First of all, we observe as before that in the low-data regime, the gap between standard and equivariant
networks grows in favor of equivariant ones. We also observe, surprisingly, that Irrep, which
outperformed RCPS on the binary task, now underperforms it. A possible explanation could be that
since this task aims to annotate an individual nucleotide, encoding the nucleotide level information
using k-mers makes the signal blurry and decreases performance. However, in the reduced setting,
Irrep performs better again. These results indicate that for now the best model should be chosen
empirically on a validation set. Finally, despite good performance of post-hoc Standard, the ensemble
equivariant model once again performs better for the same computational cost at inference.

Experiment settings and computational cost. All experiments were run on a single GPU (either
a GTX1080 or a RTX6000), with 20 CPU cores. The binary classification experiments were shorter
to train. To limit our carbon footprint, we chose to run more experiments on this task, e.g., for
hyperparameter tuning and to reduce the number of replicates for the profile task. The total runtimes
of each of those tasks were approximately of a week.

4 Conclusion

In this paper, we addressed the problem of including the RC symmetry prior in neural networks.
Leveraging the framework of equivariant networks, in particular steerable CNNs, we deepened
existing methods by unraveling the whole space of linear layers and pointwise nonlinearities that are
translation and RC-equivariant. We also investigated the links between the linear representations and
the non-linear layers of neural networks, exposing the special role of the regular representation in
equivariant networks. Finally, we implemented new linear and nonlinear equivariant layers and make
all these equivariant layers available in Keras [5] and Pytorch [31]. 3 We then explored empirically
how this larger equivariant functional space behaves in terms of learning. Our best results improve the
state of the art performance of equivariant networks, showing that new equivariant architectures can
have practical benefits. In the future we plan to test more deeply the newly proposed architectures on
prediction tasks involving double-stranded DNA, such as DNA-protein binding prediction, epigenetics
or metagenomics. On the theoretical side, we characterized equivariant pointwise nonlinearities that
preserve the layer type, but more general nonlinear transforms (e.g., not pointwise, or changing the
layer type) remain to be fully characterized.

3code available at https://github.com/Vincentx15/Equi-RC
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A Appendix

A.1 Illustration of group actions

This section is intended to provide a visual, more intuitive understanding of the different group
actions on the tensors of our network. We begin with a visualization of the group action for the input
space. We exemplify it over the sequence GGACT, whose reverse complement is AGTCC. The sequence
is one hot encoded as explained in the main text and the group action over Z2 consist in flipping the
tensor along the spatial axis and swapping the channels pairwise.

0 0 1 0 0
0 0 0 1 0
1 1 0 0 0
0 0 0 0 1


1 0 0 0 0

0 0 0 1 1
0 1 0 0 0
0 0 1 0 1

A
C
G
T

A
C
G
T

π(−1)

π(−1) ◦ π(−1) = I

Now we illustrate the actions of other representations, on an example tensor
[
1 2 3
4 5 6

]
with two

channels (of type a or b) and three positions; this could typically be the representation of an input
sequence of length 3 in an intermediate layer of dimention 2. Choosing the canonical representations
of type (I, 2, 0), (I, 0, 2) and (I, 1, 1) respectively, we get the following group actions (for clarity we
add the channel type, a or b, near each matrix row):

[
1 2 3
4 5 6

] [
3 2 1
6 5 4

]
a
a

a
a

π(−1)

π(−1) ◦ π(−1) = I

[
1 2 3
4 5 6

] [
−3 −2 −1
−6 −5 −4

]
b
b

b
b

π(−1)

π(−1) ◦ π(−1) = I

[
1 2 3
4 5 6

] [
3 2 1
−6 −5 −4

]
a
b

a
b

π(−1)

π(−1) ◦ π(−1) = I

Finally, when using different values for P, we can get other group actions. As mentioned in the

main text, by choosing (Preg, 1, 1), where Preg =

[
1 1
1 −1

]
, we get the regular representation that

flips the input channel. We also provide an example of the group action for a general P matrix,
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by choosing (Pgeneral, 1, 1), where Pgeneral =

[
1 3
1 −1

]
, we get a representation on the fibers

ρgeneral =

[
−0.5 1.5
0.5 0.5

]

[
1 2 3
4 5 6

] [
6 5 4
3 2 1

]
Reg Reg

π(−1)

π(−1) ◦ π(−1) = I

[
1 2 3
4 5 6

] [
5.5 6.5 7.5
2.5 3.5 4.5

]
General General

π(−1)

π(−1) ◦ π(−1) = I

Over the course of these examples, we have limited ourselves to the case where the input tensor had
only three nucleotides and two channels, but this is coincidental. The representation with arbitrary P
can mix an arbitrary number of channels together with the group action.

A.2 Proof of Theorem 1

Proof. The irreducible representations (irreps) of the 2-elements group Z2 are the 1-dimensional
trivial and sign representations, given respectively by ρ1(s) = 1 and ρ1(s) = s. Any representation
ρn can be decomposed as a direct sum of irreps, and since each irrep is 1-dimensional this means
that there exists an invertible matrix P such that Pρn(s)P−1 is diagonal, with diagonal terms either
equal to 1 or equal to s. If we denote by an (resp. bn) the number of diagonal terms equal to 1 (resp.
s), then Theorem 1 follows.

A.3 Proof of Theorem 2

Proof. Cohen et al. [11, Theorem 3.3] gives a general result about linear equivariant mapping. We
first show that this result can be applied here, to show that these linear mappings are exactly the ones
written as (2) and (3). For sake of clarity, we then provide a fully self-contained proof of the same
result.

Let us first show that (2) and (3) correspond to a particular case of Cohen et al. [11, Theorem 3.3].
Under the notations of [11], our group is G = Z o Z2, a locally compact, semi-direct product group.
We choose H = H1 = H2 = Z2, making the coset space G/H = Z. Since our group is a semi direct
product group, we have h1(x, s) = s. The spaces Fn that we have considered are signals in RD over
the coset space, acted upon by the representation induced by ρ. Equivalently, they are sections of the
associated vector bundle for the trivial case of a product group. Therefore, these Fn exactly coincide
with the setting of Cohen et al. [11, Theorem 3.3] and {φ : Fn → Fn+1|πn+1φ = φπn} is exactly
H. Then, by [11, Theorem 3.3], φ : Fn → Fn+1 is equivariant if and only if it can be written as a
convolution:

∀(f, x) ∈ Fn × Z , φ(f)(x) =
∑
y∈Z

κ(y − x)f(y) , (2)

where the kernel κ : Z→ RDn+1×Dn satisfies:

∀x ∈ Z s ∈ Z2, , κ(sx) = ρn+1(s)κ(x)ρn(s−1) . (6)

Using that for s ∈ Z2, s
−1 = s, and the triviality of this equation for s = 1, we get that (6) is

equivalent to (3)
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For sake of clarity and completeness, we now provide a more explicit and self-contained proof for (2)
and (3), that follows the one of [40, Theorem 2] in our specific setting. We first notice that any linear
mapping φ;Fn → Fn+1 can be written as

∀(f, x) ∈ Fn × Z , φ(f)(x) =
∑
y∈Z

k(x, y)f(y) ,

for some function k : Z2 → Rdn+1×dn . For any g = ts ∈ G, the action of G on Fn+1 gives:

∀(f, x) ∈ Fn × Z , πn+1(g)φ(f)(x) = ρn+1(s)φ(f)(s(x− t))

= ρn+1(s)
∑
y∈Z

k(s(x− t), y)f(y) . (7)

Similarly, the action of G on Fn followed by φ gives:

∀(f, x) ∈ Fn × Z , φ(πn(g)f)(x) =
∑
y∈Z

k(x, y)πn(g)f(y)

=
∑
y∈Z

k(x, y)ρn(s)f(s(y − t))

=
∑
y∈Z

k(x, sy + t)ρn(s)f(y)

(8)

where we made the change of variable y 7→ sy+ t to get the last equality. φ is equivariant if and only
if, for any g ∈ G, φ ◦ πn(g) = πn+1(g) ◦ φ, which from (7) and (8) is equivalent to:

∀(f, x) ∈ Fn × Z , ρn+1(s)
∑
y∈Z

k(s(x− t), y)f(y) =
∑
y∈Z

k(x, sy + t)ρn(s)f(y) . (9)

For any y0 ∈ Z and v ∈ RDn , let us apply this equality to the function f ∈ Fn given by f(y0) = v
and f(y) = 0 for y 6= y0:

∀(x, y0, v) ∈ Z× Z× RDn , ρn+1(s)k(s(x− t), y0)v = k(x, sy0 + t)ρn(s)v .

Since this must hold for any v ∈ RDn this necessarily implies:

∀(x, y0) ∈ Z2 , ρn+1(s)k(s(x− t), y0) = k(x, sy0 + t)ρn(s) .

With the change of variable y = s(y0 − t), this is equivalent to:

∀(x, y) ∈ Z2 , ρn+1(s)k(s(x− t), s(y − t)) = k(x, y)ρn(s) ,

which itself is equivalent to

∀(x, y) ∈ Z2 , k(s(x− t), s(y − t)) = ρn+1(s)k(x, y)ρn(s) , (10)

where we used the fact that ρn+1(s)2 = ρn+1(s2) = I for any s ∈ Z2. This must hold in particular
for s = 1 and t = x, which gives:

∀(x, y) ∈ Z2 , k(0, y − x) = k(x, y) ,

i.e., k is necessarily translation invariant in the sense that there must exist a function κ : Z →
RDn+1×Dn such that

∀(x, y) ∈ Z2 , k(x, y) = κ(y − x) .

From (10) we see that κ must satisfy

∀(x, y) ∈ Z2 , κ(s(y − x)) = ρn+1(s)κ(y − x)ρn(s) ,

which boils down to the following constraint, after observing that the constraint is always true for
s = 1 and is therefore only nontrivial for s = −1:

∀x ∈ Z , κ(−x) = ρn+1(−1)κ(x)ρn(−1) . (11)

At this point, we have therefore shown that an equivariant linear function must have an expansion of
the form

∀(f, x) ∈ Fn × Z , φ(f)(x) =
∑
y∈Z

κ(y − x)f(y) ,
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where κ must satisfy (11). Conversely, such a linear layer trivially satisfies (9), and is therefore
equivariant. This proves (2) and (3).

To prove (4), we simply rewrite (3) using Theorem 1:

∀x ∈ Z , κ(−x) = Pn+1Diag(Ian+1
,−Ibn+1

)P−1n+1κ(x)PnDiag(Ian ,−Ibn)P−1n . (12)

Thus writing the matrix K = P−1n+1κ(x)Pn by blocs of sizes an+1 × an, an+1 × bn, bn+1 × an and
bn+1 × bn, we have :

(12) ⇐⇒ K(−x) = Diag(Ian+1 ,−Ibn+1)K(x)Diag(Ian ,−Ibn)

⇐⇒
[
α(−x) β(−x)
γ(−x) δ(−x)

]
=

[
α(x) −β(x)
−γ(x) δ(x)

]
This gives us the equivalence (3) ⇐⇒ (12) ⇐⇒ (4).

A.4 Resolution of the constraint for other basis

To go from an arbitrary representation (P, a, b) to another, we can write an odd/even kernel and
change of basis. One may also solve the constraints (3) for specific representations, and save the
need of multiplication by Pn+1 and P−1n in (4). In this section, we solve the constraint in other basis,
to go from one kind of representation (irrep or regular) to another. We just substitute the correct
representation and see what constrained kernel it gives. The irrep and regular representations are in a
basis such that they write as :

ρirrep =

[
Ia 0
0 −Ib

]
, ρreg =


0 0 . . . 1
...

...
0 1 . . . 0
1 0 . . . 0

 .
We get the following table of constraints :

Fn
Fn+1 ’irrep’ ’regular’

’irrep’
[
α(−x) β(−x)
γ(−x) δ(−x)

]
=

[
α(x) −β(x)
−γ(x) δ(x)

]
[κj,a(−x), κj,b(−x)] = [κn−j,a(x),−κn−j,b(x)]

’regular’
[
κa,j(−x)
κb,j(−x)

]
=

[
κa,n−j(x)
−κb,n−j(x)

]
κi,j(−x) = −κn−i,n−j(x) [34]

A.5 Proof of Theorem 3

With a slight abuse of notations, in this section we denote the matrix ρ(−1) simply by ρ ∈ RD×D,
and for any θ : R→ R we define θ̃(x) := θ(x)− θ(0). We start with three technical lemmas, before
proving Theorem 3.
Lemma 4. Let h : R→ R be a continuous function with left and right derivatives at 0. If there exists
A ∈ R with |A| > 1 such that

∀x ∈ R , h(x) = Ah(A−1x) , (13)

then h is a leaky ReLu function, i.e., there exists (α−, α+) ∈ R2 such that

∀x ∈ R , h(x) =

{
α−x if x ≤ 0 ,

α+x if x ≥ 0 .

In addition, if A < −1, then α− = α+, i.e., h is linear.

Proof. Equation (13) implies h(0) = 0 and

∀x ∈ R∗ ,
h(x)

x
=
h(A−1x)

A−1x
,
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which by simple induction gives more generally:

∀(x, n) ∈ R∗ × N ,
h(x)

x
=
h(A−nx)

A−nx
. (14)

The right-hand side of (14) for n = 2k converges to h′sign(x)(0) when k → +∞, which by unicity
of the limit must be equal to the left-hand side. As a result, for any x ∈ R, h(x) = h′sign(x)(0)x,
i.e., h is a leaky ReLu function with αs = h′s(0) for s ∈ {−,+}. If in addition A < −1, then (14)
for n = 2k + 1 converges to h′−sign(x)(0) when k → +∞. By unicity of the limit, this implies
h′−(0) = h′+(0), i.e., α− = α+.

Lemma 5. Under the assumptions of Theorem 3, if θ̄F is equivariant and if there exists (i, j) ∈
[1, D]2 such that ρij /∈ {−1, 0, 1}, then necessarily θ̃ is a leaky ReLu function.

Proof. For any (i, j), applying the equivariance constraint θ(ρx)i = ρθ(x)i to the vector x = aej ,
for any a ∈ R, gives the equation:

∀a ∈ R , θ(aρij) = ρijθ(a) + (
∑
k 6=j

ρik)θ(0) .

If |ρij | > 1, we can rewrite it as

∀a ∈ R , θ(a) = ρijθ(aρ
−1
ij ) + (

∑
k 6=j

ρik)θ(0) ,

and if 0 < |ρij | < 1 we can rewrite it as

∀a ∈ R , θ(a) = ρ−1ij θ(aρij)− ρ
−1
ij (
∑
k 6=j

ρik)θ(0) .

In both cases, this is an equation of the form

∀a ∈ R , θ(a) = Aθ(A−1a) +B ,

where |A| > 1. Subtracting to this equation the same equation written for a = 0 gives

∀a ∈ R , θ̃(a) = Aθ̃(A−1a) . (15)

By Lemma 4, θ̃ is a leaky ReLu function.

Lemma 6. Under the assumptions of Theorem 3, if θ̄F is equivariant and if there exists at least one
row in ρ with at least two nonzero entry, then necessarily θ is an affine function.

Proof. Let us suppose that ρ contains at least a row i with two nonzero entries, say ρij 6= 0 and
ρik 6= 0. Then taking x = xjej + xkek with xj , xk ∈ R, the equivariance constraint for the i-th
dimension gives

∀xj , xk ∈ R , θ(ρijxj + ρikxk) = ρijθ(xj) + ρikθ(xk) + Cθ(0) ,

with C =
∑
p/∈{j,k} ρip. Subtracting to this equation the same equation written for xj = xk = 0

allows us to remove the constant term and get

∀xj , xk ∈ R , θ̃(ρijxj + ρikxk) = ρij θ̃(xj) + ρikθ̃(xk) . (16)

We now prove that θ̃ is necessarily a leaky ReLu function, i.e., that there exist (α+, α−) ∈ R2

such that θ̃(x) = αsign(x)x, with potentially α+ 6= α−. By Lemma 5 this is true if |ρij | 6= 1 or
|ρik| 6= 1, so we focus on the case |ρij | = |ρik| = 1, which we decompose in two subcases. First, if
ρij = ρik = s with s ∈ {−1, 1}, then taking xj = xk = a in (16) gives θ̃(2sa) = 2sθ̃(a), for any
a ∈ R. Second, if ρij = −ρik = 1 (resp. ρij = −ρik = 1), then taking xj = 2a and xk = a (resp.
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xj = a and xk = 2a) gives θ̃(2a) = 2θ̃(a). In both subcases, by Lemma 4, θ̃ must be a leaky ReLu
function.

Knowing that θ̃ is a leaky ReLu function with coefficients α+ and α−, in order to prove that θ
is necessarily an affine function (i.e., that θ̃ is linear), we need to show that α+ = α−. For that
purpose, let us first suppose that ρij and ρik are both positive or both negative. Then there exists a
pair (xj , xk) ∈ R2 such that xj > 0, xk < 0 and ρijxj + ρikxk < 0. Similarly, if ρij and ρik are of
different signs, say without loss of generality ρij < 0 and ρik > 0, then any pair (xj , xk) ∈ R2 such
that xj > 0, xk < 0 satisfies ρijxj + ρikxk < 0. In both cases, using the fact that θ̃ is linear on R+

and on R−, (16) gives

α−(ρijxj + ρikxk) = α+ρijxj + α−ρikxk ,

⇐⇒ α−ρijxj = α+ρijxj
⇐⇒ α− = α+ .

We are now ready to prove Theorem 3.

Proof of Theorem 3. To characterize the functions θ and representations ρ such that θ̄F is equivariant,
we proceed by a disjunction of cases on θ, depending on whether it is affine.

If θ is affine, say θ(x) = αx+ β, then θ̄F is equivariant if and only if, for any x ∈ RD, θ̄RD (ρx) =
ρθ̄RD (x) . This is equivalent to

∀(i, x) ∈ [1, d]× RD ,
D∑
j=1

ρi,jθ(xj) = θ

 D∑
j=1

ρi,jxj


⇐⇒ ∀(i, x) ∈ [1, d]× RD ,

D∑
j=1

ρi,j(αxj + β) = α

 D∑
j=1

ρi,jxj

+ β

⇐⇒ ∀i ∈ [1, d] , β

 D∑
j=1

ρi,j − 1

 = 0 .

This shows that if θ is affine, then θ̄F is equivariant if and only β = 0, i.e., θ is linear (case 1 of
Theorem 3), or ρ1 = 1 (case 2 of Theorem 3).

If θ is not affine and θ̄F is equivariant, then by Lemma 6 we know that ρ can have at most one
nonzero entry per row. Since ρ is invertible, it must have at least one nonzero entry per row, so we
conclude that if contains exactly one nonzero entry per row, hence a total of D nonzero entries. Being
invertible, it must also contain at least one nonzero entry per column, so we conclude that it contains
also exactly one nonzero entry per column. Using the fact that ρ2 = I , we can further clarify how
nonzero entries must be organized:

• For a nonzero entry ρii 6= 0 on the diagonal, we must have ρ2ii = 1, i.e., ρii ∈ {−1,+1}.

• For an off-diagonal nonzero entry ρij 6= 0 with i 6= j, we must have ρijρji = 1, i.e.,
ρji = ρ−1ij .

Splitting the nonzero entries by sign, this implies that there exists a permutation matrix Π such that

ρ̂ := Π−1ρ(−1)Π =

a⊕
i=1

(
0 λi
λ−1i 0

)
⊕

b⊕
i=1

(
0 −µj
−µ−1j 0

)
⊕ (1)⊕c ⊕ (−1)⊕d , (17)

for some (a, b, c, d) ∈ N4 such that a+ b+ c+ d = D and (λ, µ) ∈ Ra+ × Rb+. For any i ∈ [1, D],
let us now denote by τ(i) the column corresponding to the nonzero entry of the i-th row of ρ̂, i.e.,
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the only index such that ρ̂iτ(i) 6= 0. Then the action of ρ̂ on a vector v ∈ RD has the simple form
[ρ̂v]i = ρ̂iτ(i)vτ(i). By writing the equivariance property ρ ◦ θ̄F = θ̄F ◦ ρ coordinate by coordinate,
we can therefore say that θ̄F is equivariant if and only if:

∀(i, x) ∈ [1, D]× R , θ(ρ̂iτ(i)x) = ρ̂iτ(i)θ(x) . (18)

Let us now consider two possible cases:

• If there exists i ∈ [1, D] such that |ρ̂iτ(i)| 6= 1, then by Lemma 5 θ̃ is a leaky ReLu function,
i.e., there exist (α+, α−, β) ∈ R3 such that ∀x ∈ R , θ(x) = αsign(x)x + β. In that case,
by (18), θ̄F is equivariant if and only if:

∀(i, x) ∈ [1, D]× R , αsign(ρ̂iτ(i)x)ρ̂iτ(i)x+ β = ρ̂iτ(i)
(
αsign(x)x+ β

)
,

⇐⇒ ∀i ∈ [1, D] ,


αsign(ρ̂iτ(i)) = α+ ,

αsign(−ρ̂iτ(i)) = α− ,

β = ρ̂iτ(i)β ,

⇐⇒

{
∀i ∈ [1, D] , αsign(ρ̂iτ(i)) = α+ ,

β = 0 ,

(19)

where the first equivalence comes from identifying the coefficients of the linear equation
in x on R− and R+, and the second equivalence comes from the observation that the two
conditions in α in the first equivalence are themselves equivalent to each other, so we can
keep only one of them, and that the condition on β is equivalent to β = 0 since we assume
the existence of an i ∈ [1, D] such that ρ̂iτ(i) 6= 1. Since we assume that θ is not affine, we
can not have α− = α+, which by (19) rules out the possibility of having negative entries
in ρ̂, i.e., necessarily b = d = 0 in (17). If that is not the case, then the condition on α in
(19) is automatically met for all i ∈ [1, D], so we have that θ̄F is equivariant if and only if
β = 0, i.e., if and only if θ is a leaky ReLu function. This is the second statement in Case
3 of Theorem 3, when we further notice that when b = 0 the only entry in ρ̂ that can have
been different from -1 and 1 is a λi in (17).

• If for all i ∈ [1, D], |ρ̂iτ(i)| = 1, then (17) simplifies as

ρ̂ =

a⊕
i=1

(
0 1
1 0

)
⊕

b⊕
i=1

(
0 −1
−1 0

)
⊕ (1)⊕c ⊕ (−1)⊕d .

In that case, the equivariance condition (18) is particularly simple, and true for any θ for
positive values. For each i such that ρ̂iτ(i) = −1 it reads ∀x ∈ R,−θ(x) = θ(−x), and is
therefore true if and only if θ is odd. Noticing that the latter constraint occurs if and only if
b+ d > 0 finally leads to the first and third statements in Case 3 of Theorem 3.

A.6 Additional result

A.6.1 Effect of data augmentation and size for non-equivariant models

Given a non-equivariant model, a simple way to let it "learn" to be equivariant is to train it with
data augmentation, where for each sequence in the training set we add its reverse complement to the
training set. This doubles the size of the training set, which increases the training time. If we compare
such a non-equivariant model with an equivariant model with the same number of channels in each
layers, then it has about twice the same number of free parameters to train, and we therefore call it
"big"; as an alternative, one may want to restrict the number of channels in each layer to enforce the
same number of parameters as the equivariant model. To assess the benefits of data augmentation
and number of channels, we plot in Figure 6 the performance of a standard, non-equivariant model
with or without data augmentation, and with the same number of channels or half of it, on the binary
classification tasks. We see that the number of channels has no significant impact on the performance,
but that data augmentation has a significant positive impact. In the main text, we therefore restrict
ourselves to the standard model with data augmentation as non-equivariant baseline model.
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Figure 6: Binary task performance of a standard, non-equivariant model trained with ("Aug") or
without ("NoAug") data augmentation, and with more ("Big") or less ("Standard") channels.

A.6.2 Comparison of learning curves

Because equivariant model are supposed to converge faster, we looked into the learning curves of
our models, i.e., how the test performance increases as a function of the number of epochs during
training. However, we do not see a major difference in the learning dynamics between the equivariant
and non equivariant models.
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Figure 7: AuROC performance of the four different models on the three binary classification problems
CTCF, MAX and SPI1, as well as their average over the course of learning.
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