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ARTICLE

CloneSig can jointly infer intra-tumor heterogeneity
and mutational signature activity in bulk tumor
sequencing data
Judith Abécassis 1,2,3, Fabien Reyal1,4 & Jean-Philippe Vert 2,5✉

Systematic DNA sequencing of cancer samples has highlighted the importance of two

aspects of cancer genomics: intra-tumor heterogeneity (ITH) and mutational processes.

These two aspects may not always be independent, as different mutational processes could

be involved in different stages or regions of the tumor, but existing computational approaches

to study them largely ignore this potential dependency. Here, we present CloneSig, a com-

putational method to jointly infer ITH and mutational processes in a tumor from bulk-

sequencing data. Extensive simulations show that CloneSig outperforms current methods for

ITH inference and detection of mutational processes when the distribution of mutational

signatures changes between clones. Applied to a large cohort of 8,951 tumors with whole-

exome sequencing data from The Cancer Genome Atlas, and on a pan-cancer dataset of

2,632 whole-genome sequencing tumor samples from the Pan-Cancer Analysis of Whole

Genomes initiative, CloneSig obtains results overall coherent with previous studies.
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The advent and recent democratization of high-throughput
sequencing technologies has triggered much effort recently
to identify the genomic forces that shape tumorigenesis

and cancer progression. In particular, they have begun to shed
light on evolutionary principles happening during cancer pro-
gression, and responsible for intra-tumor heterogeneity (ITH).
Indeed, as proposed by Nowell in the 1970s, cancer cells pro-
gressively accumulate somatic mutations during tumorigenesis
and the progression of the disease, following similar evolutionary
principles as any biological population able to acquire heritable
transformations1. As new mutations appear in a tumor, either
because they bring a selective advantage or simply through
neutral evolution, some cancer cells may undergo clonal expan-
sion until they represent the totality of the tumor or a substantial
part of it. This may result in a tumor composed of a mosaic of cell
subpopulations with specific mutations. Better understanding
these processes can provide valuable insights with implications in
cancer detection and monitoring, patient stratification and ther-
apeutic strategy2–5.

Bulk genome sequencing of a tumor sample allows us in par-
ticular to capture two important aspects of ITH. First, by pro-
viding an estimate of the proportion of cells harboring each single
nucleotide variant (SNV), genome sequencing allows us to assess
ITH in terms of presence and proportions of subclonal popula-
tions and, to some extent, to reconstruct the evolutionary history
of the tumor6–9. This estimation is challenging, both because a
unique tumor sample may miss the full extent of the true tumor
heterogeneity, and because the computational problem of
deconvoluting a bulk sample into subclones is notoriously diffi-
cult due to noise and lack of identifiability6,10. Second, beyond
their frequency in the tumor, SNVs also record traces of the
mutational processes active at the time of their occurrence
through biases in the sequence patterns at which they arise, as
characterized with the concept of mutational signature11. A
mutational signature is a probability distribution over possible
mutation types, defined by the nature of the substitution and its
trinucleotide sequence context, and reflects exogenous or endo-
genous causes of mutations. Forty-nine such signatures have been
outlined12, and are referenced in the COSMIC database, with
known or unknown aetiologies. They are sometimes denoted as
SBS for single-based substitutions signatures, in opposition to
signatures of other genomic alterations. Deciphering signature
activities in a tumor sample, and their changes over time, can
provide valuable insights about the causes of cancer, the dynamic
of tumor evolution and driver events, and finally help us better
estimate the patient prognosis and optimize the treatment
strategy2,5. A few computational methods have been proposed to
estimate the activity of different predefined signatures in a tumor
sample from bulk genome sequencing12,13, also known as the
signature refitting problem; we refer the reader to the reviewing
work of14,15 for a more formal overview of existing methods.

These two aspects of genome alterations during tumor devel-
opment may not always be independent from each other. For
example, if a mutation triggers subclonal expansion because it
activates a particular mutational process, then new mutations in
the corresponding subclone may carry the mark of this process, as
observed for APOBEC mutations in human bladder16. Alter-
natively, mutational processes may change over tumor develop-
ment due to varying exposures to mutagenes, or between cells of
the same tumor due to different micro-environments and hence
selective pressures. This may lead to additional changes in
mutational signatures of SNVs not necessarily coinciding with
clones, but possibly resulting in different signature activities
between different subclones. Consequently, taking into account
mutation types in addition to SNV frequencies may benefit ITH
methods, although the extent of this dependency in human

cancers is still unknown. Furthermore, identifying mutational
processes specific to distinct subclones, and in particular detecting
changes in mutational processes during cancer progression, may
be of clinical interest since prognosis and treatment options may
differ in that case. However, current computational pipelines for
ITH and mutational process analysis largely ignore the potential
dependency between these two aspects, and typically treat them
independently from each other or sequentially. In the sequential
approach, as for example implemented in Palimpsest17, subclones
are first identified by an ITH analysis, and in a second step
mutational signatures active in each subclone are investigated. In
such a sequential analysis, however, we can not observe changes
in mutational signature composition if the initial clonal decom-
position step fails to detect correct subclones, and we ignore
information regarding mutational signatures during ITH infer-
ence. Recently, TrackSig18 was proposed to combine these two
steps by performing an evolution-aware signature activity
deconvolution, in order to better detect changes in signature
activity along tumor evolution. However, while TrackSig over-
comes the need to rely on a previously computed subclonal
reconstruction, it does not leverage the possible association
between mutation frequency and mutation type to jointly infer
ITH and mutation processes active in the tumor. Furthermore, by
design TrackSig can only work if a sufficient number of SNV is
available, limiting currently its use to whole-genome sequencing
(WGS) data. This is an important limitation given the popularity
of whole-exome sequencing (WES) to characterize tumors, par-
ticularly in the clinical setting. An extension has been proposed to
better account for SNV frequencies in the change point detection,
TrackSigFreq19, but is still limited to WGS samples.

In this work, we propose CloneSig, a method that leverages
both the frequency and the mutation type of SNVs to jointly
perform ITH reconstruction and decipher the activity of muta-
tional signatures in each subclone. By exploiting the possible
association between subclones and mutational processes to
increase its statistical power, we show that CloneSig performs
accurate estimations with fewer SNVs than competing methods,
and in particular that it can be used with WES data. We show
through extensive simulations, and three independent simulated
gold-standard datasets2,20–22 that CloneSig reaches state-of-the-
art performance in subclonal reconstruction and signature
activity deconvolution from WGS and WES data, in the presence
or absence of signature activity variations between clones. We
then provide a detailed analysis of 8,951 pancancer WES samples
from the Cancer Genome Atlas (TCGA) with CloneSig, and on
2,632 WGS samples from the International Cancer Genome
Consortium’s Pan-Cancer Analysis of Whole Genomes
(PCAWG) cohort23, where we recover results coherent with
published results on WGS2,23,24 as well as different findings of
potential clinical relevance. CloneSig is available as a Python
package at https://github.com/judithabk6/clonesig25.

Results
Joint estimation of ITH and mutational processes with Clo-
neSig. We propose CloneSig, a method to jointly infer ITH and
estimate mutational processes active in different clones from bulk
genome sequencing data of a tumor sample. The rationale behind
CloneSig is illustrated in Fig. 1, which shows a scatter-plot of all
SNVs detected by WES in a sarcoma (TCGA patient TCGA-3B-
A9HI) along two axes: horizontally, the mutation type of the
SNV, and vertically, its cancer cell fraction (CCF) estimated from
WES read counts. Following previous work on mutational
processes11,26, we consider 96 possible mutation types, defined by
the nature of the substitution involved and the two flanking
nucleotides.
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Standard methods for ITH assessment and clonal deconvolu-
tion only exploit the distribution of CCF values in the sample, as
captured by the histogram on the right panel of Fig. 1, while
standard methods for mutational signature analysis only exploit
the mutation profiles capturing the distribution of mutation
contexts, as represented by the histogram on the bottom panel.
However, we clearly see in the scatter-plot that these two
parameters are not independent, e.g., C > A mutations tend to
occur frequently at low CCF, while C > T mutations occur more
frequently at high CCF. CloneSig exploits this association by
working directly at the 2D scatter-plot level, in order to jointly
infer subclones and mutational processes involved in those
subclones. Intuitively, working at this level increases the statistical
power of subclone detection when subclones are better separated
in the 2D scatter-plot than on each horizontal or vertical axis, i.e.,
when the activity of mutational processes varies between
subclones. Additional examples are shown in Supplementary
Figs. 103 to 108.

Note that while the association between the frequency and the
type of a mutation may be the consequence of a co-segregation of
mutational processes and clones, which itself could occur if a
change in a mutational process coincides with a change in the
fitness of a cell and subsequently in the clonal composition of the
tumor, CloneSig’s model does not rely on such a strong
hypothesis. In particular, an association may exist even if changes
in mutational processes do not coincide with clonal evolution,
and even if each clone contains heterogeneous populations of
cells expressing different mutational processes. What CloneSig
assumes is merely that, on average, the proportion of mutations
associated to each mutational process may differ between clones.
Importantly, if this assumption does not hold, then CloneSig can
still be used and behave like a standard method for ITH inference,
while we expect the performance of CloneSig to improve in cases
where the assumption holds.

More precisely, CloneSig is based on a probabilistic graphical
model27, summarized graphically in Box 1, to model the

distribution of allelic counts and trinucleotidic contexts of SNVs
in a tumor. These observed variables are statistically associated
through shared unobserved latent factors, including the number
of clones in the tumor, the CCF of each clone, and the mutational
processes active in each clone. CloneSig infers these latent factors
for each tumor from the set of SNVs by maximum likelihood
estimation, using standard machinery of probabilistic graphical
models. Once the parameters of the model are inferred for a given
tumor, we can read from them the estimated number of subclones
together with their CCF, as well as the set of mutational processes
active in each clone along with their strength. In addition, for
each individual SNV, CloneSig allows us to estimate the clone and
the signature that generated it, in a fully probabilistic manner; for
example, in Fig. 1, each SNV in the scatter-plot is colored
according to the most likely mutational signature that generated
it, according to CloneSig. Finally, we developed a likelihood ratio-
based statistical test to assess whether mutational signatures
significantly differ between subclones, in order to help character-
ize the evolutionary process involved in the life of the tumor. We
refer the reader to the Methods section and Box 1 for all technical
details regarding CloneSig.

Performance for subclonal reconstruction. We first assess the
ability of CloneSig to correctly reconstruct the subclonal orga-
nization of a tumor on simulated data, using four different
simulators: (1) the DREAM challenge dataset devised in20,21,
consisting of 5 simulated WGS tumors with different sequencing
depths; (2) PhylogicSim500, comprising 500 samples generated
using the PhylogicNDT method, and (3) SimClone1000, com-
prising 972 samples generated with the simulator SimClone, both
proposed by2,22; and (4) CloneSigSim, a simulator we propose
which simulates data according to the probabilistic graphical
model behind CloneSig. The different simulators differ in the
underlying simulation models, as well as other features such as
the number of mutations simulated (DREAM, PhylogicSim500,

Fig. 1 CloneSig analysis of 246 SNVs obtained by WES of a sarcoma sample (patient TCGA-3B-A9HI). The main panel displays all SNVs in 2
dimensions: horizontally the mutation type, which describes the type of substitution together with the flanking nucleotides, and vertically the estimated
CCF, as corrected by CloneSig with the estimated mutation multiplicity. From these data CloneSig infers the presence of 2 clones and a number of
mutational signatures active in the different clones. Each mutation in the main panel is colored according to the most likely mutational signature according
to CloneSig. On the right panel, the CCF histogram is represented and colored with estimated clones, and superimposed with mutational signature density.
The bottom panel represents the total mutation type profile. The changing pattern of mutation types with CCF is clearly visible, illustrating the opportunity
for CloneSig to perform joint estimation of ITH and signature activity, while most methods so far explore separately those data, considering solely the CCF
histogram in the right panel for ITH analysis, or the mutation profile of the bottom panel to infer mutational processes.
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and SimClone1000 simulate typical WGS samples while Clone-
SigSim simulates both WES and WGS samples), the depth of
sequencing, the presence of subclonal copy number events (in
DREAM and SimClone1000). Importantly, the SNVs in the
DREAM dataset were simulated with a fixed distribution of sig-
nature activities across subclones, so this is a case where we do
not expect a benefit for CloneSig compared to other methods. The
PhylogicSim500 and SimClone1000 datasets were generated
without concern about mutational signatures, so we can add a
mutation type to each simulated SNV (among the 96 possibilities)
using either constant or varying signature activities across clones.
Similarly, for CloneSigSim, we can simulate SNV under both
scenario. In order to assess the performance of CloneSig under
various scenarios, we, therefore, consider two sets of simulations:
(1) the “constant” scenario, comprising DREAM, Phylo-
gicSim500, SimClone1000, and CloneSigSim simulated with
constant signature activities across subclones, and (2) the “vary-
ing” scenario, comprising PhylogicSim500, SimClone1000 and
CloneSigSim simulated with varying signature activities across
subclones.

In order to measure the correctness of the subclonal
reconstruction we use four different metrics adapted from20

and described in details in the Methods section. Briefly, score1B
measures how similar the true and the estimated number of
clones are, score1C assesses in addition the correctness of
frequency estimates for each subclone, score2A measures the

adequacy between the true and predicted co-clustering matrices,
and score2C the classification accuracy of clonal and subclonal
mutations. We also assess the performance of eight other state-of-
the-art methods for ITH estimation and compare them to
CloneSig. First we evaluate TrackSig18, that reconstructs signature
activity trajectory along tumor evolution by binning mutations in
groups of 100 with decreasing CCFs, and for each group performs
signature activity deconvolution using an expectation-
maximization (EM) algorithm. A segmentation algorithm is then
applied to determine the number of breakpoints, from which we
obtain subclones with different mutational processes. A recent
extension integrating CCF in the segmentation algorithm to also
perform subclonal reconstruction, TrackSigFreq19 is also con-
sidered. Because of this rationale, the authors recommend to have
at least 600 observed mutations to apply TrackSig or TrackSig-
Freq. For sake of completeness, however, we also apply TrackSig
with fewer mutations in order to compare it with other methods
in all settings. Third, we test Palimpsest17, another method which
associates mutational signatures and evolutionary history of a
tumor. In Palimpsest, a statistical test based on the binomial
distribution of variant and reference read counts for each
mutation is performed, with correction for copy number, in
order to classify mutations as clonal or subclonal. Then, for each
of the two groups, signature activity deconvolution is performed
using non-negative matrix factorization (NMF). Those methods
are representative of the main approaches to the signature

Box 1 | Probabilistic graphical model for CloneSig

This plot summarizes the structure of the probabilistic graphical model underlying CloneSig. Each node represents a random variable, shaded ones
being observed, and edges between two nodes describe a statistical dependency encoded as conditional distribution in CloneSig. For a given tumor we
observe p, the tumor purity of the sample, and for each SNV, Bn and Dn are respectively the variant and total read counts, Cn is the copy number state,
and Tn is the trinucleotide context. Unobserved latent variable include Un, the clone or subclone where the SNV occurs, Sn, the clone-dependent
mutational process that generates the mutation, andMn, the number of chromosomal copies harboring the mutation. See the main text for details about
the distributions and parameters of the model.
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refitting problem: NMF-based approaches, and probability-based
approaches14,15. This limitation to two populations can induce a
bias in the metrics 1B, 1C and 2A that are inspired from20, so we
introduce the metric 2C to account for the specificity of
Palimpsest. Finally, we test five other popular methods for ITH
reconstruction which do not model mutational processes:
PyClone7, PhylogicNDT28 and DPClust6, which are Bayesian
clustering models optimized with a Markov Chain Monte Carlo
(MCMC) algorithm, Ccube8, another Bayesian clustering model,
optimized with a variational inference method, and SciClone29,
also a Bayesian clustering model, optimized with a variational
inference method, that only focuses on mutation in copy-number
neutral regions.

Figure 2 summarizes the subclonal reconstruction performance
of CloneSig and other ITH reconstruction methods, under both
the “constant” and “varying” scenarios. Each radar plot shows the
average scores (1B, 1C, 2A, and 2C) reached by each method on a
set of simulated data. Under the “constant” scenario, we see that
CloneSig is on par with or better than the best ITH methods
(PhylogicNDT, DPClust, and Ccube) on all scores and across all
simulators, while SciClone, TrackSig, and TrackSigFreq have
overall poorer performance. This confirms that CloneSig reaches
state-of-the-art performance even if the main assumption
underlying its model is not met in the data, which is an
important property since the question of how often subclonal
populations with different signature activities emerge in tumors
remains open. Moving to the “varying” setting, where signature
activities vary across subclones, we see that, as expected, CloneSig,
TrackSig, and TrackSigFreq improve their performance, at least

on the PhylogicSim500 and CloneSigSim simulations. Interest-
ingly, CloneSig outperforms all methods on all simulations in that
setting, confirming the potential benefits of using CloneSig on
tumors where signature activities vary across subclones.

While Fig. 2 shows average performances across hundreds of
simulations with different parameters, it is also interesting to dig
deeper into how the performance of each method fluctuates as a
function of simulation parameters such as the number of clones
in the tumor or the number of mutations simulated. Figure 3
summarizes this for the PhylogicSim500 simulations (in both the
“varying” and “constant” settings, corresponding respectively to a
“varying” or “constant” signature setting), and we refer the reader
to Supplementary Note 2 for similar analyses for other simulators.

Regarding the estimation of the number of clones (score1B),
CloneSig, Ccube, DPClust, and PhylogicNDT exhibit the best
performances in most settings except for 2 clones where they are
outperformed by Palimpsest, which however systematically
predicts two clones by design. In the unfavorable “constant”
scenario, PhylogicNDT has the best score, which may reflect the
fact that this particular dataset is simulated according to
PhylogicNDT’s model and might therefore be biased towards
that method by construction. As already observed in Fig. 2,
CloneSig, TrackSig, and TrackSigFreq see their performance
increase in the favorable “varying” scenario, which is expected as
they can leverage extra information to distinguish clones in cases
where signature activity varies between distinct clones. SciClone
tends to find a high number of clones, explaining its relatively
good score1B for heterogeneous samples with 5 or 6 clones.
However, other scores do not have the same positive evolution,

Fig. 2 Subclonal reconstruction performance of CloneSig and eight ITH reconstruction methods on simulated data. Each radar plot summarizes the
performance of the nine ITH reconstruction methods according to four performance measures on one set of simulated data. In short, score1B evaluates the
number of clones found by the method, score1C the resulting mutation CCF distribution, score2A the co-clustering of mutations in the defined clones, and
score2C the classification of subclonal versus clonal mutations. All scores are normalized such that the best performing method lies on the outer circle, and
the worst near the center, to enhance visual distinction between methods. We have ensured that all scores are comparable by averaging them only on
simulations where all methods successfully produced an estimate under reasonable computation time and memory limits; PyClone results are not shown
on the DREAM, PhylogicSim500 and SimClone1000 datasets because it failed to produce an output too often. The four simulated sets on the left follow the
“constant” scenario, where signature activities are the same across all subclones, while the three simulated sets on the right follow the “varying” scenario,
where signature activities vary between subclones. Source data are provided as a Source Data file.
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revealing SciClone’s limits. Regarding the impact of the number
of mutations on score1B, we see that CloneSig and TrackSig
outperform all other comparable methods when the number of
mutations is lower, illustrating the advantage of considering extra
information in the ITH reconstruction process (we have already
made clear that Palimpsest’s estimation of the number of clones is
irrelevant, and TrackSig’s score has a very large error bar). As
expected, all methods improve when the number of SNVs
increases. Regarding score1C, which focuses not on the number
of clones estimated by the ITH methods but on their ability to
correctly recapitulate the distribution of CCF values, we see that
all methods except SciClone, TrackSig, and TracksigFreq have
almost a perfect performance in all settings. TrackSigFreq
performs slightly worse than TrackSig, but this may be explained
by its poor performance when the number of mutations is too
low, as performance is closer to the other methods as the number
of mutations increases. Finally, SciClone is clearly the worst
performing method for score1C.

Besides the ability of different methods to reconstruct the
correct number of subclones and their CCF, as assessed by
score1B and score1C, we measure with score2A their ability to
correctly assign individual mutations to their clones, an
important step for downstream analysis of mutations in each
subclone. Similarly to other scores, Ccube, DPClust, Phylo-
gicNDT and CloneSig have the best (and similar performances)
in the majority of settings. For all methods, score2A decreases
when the number of clones increases, and increases with more
observed mutations. Again, when comparing “constant” and
"varying” settings for signature activity, PhylogicNDT appears as
the best performing method over all “constant” samples, and
CloneSig dominates in the “varying” setting. Finally, when we
assess the capacity of each method to simply discriminate clonal
from subclonal mutations using score2C, a measure meant not to
penalize Palimpsest which only performs that task, we see again
that CloneSig is among the best methods in all scenarios, in
particular with fewer observed mutations, and very close to by

Fig. 3 Detailed subclonal reconstruction performance on the PhylogicSim500 simulations. This figure shows the four performance scores (rows) of the
different ITH reconstruction methods, when we vary one simulation parameter such as the number of clones simulated (left), the signature activity pattern
to mimic the “varying” or “constant” scenario (middle), and the number of mutations observed rounded to the closest thousand (right). Each point
represents the average of the scores over all simulated samples with a given parameter value. Bootstrap sampling of the scores was used to compute 95%
confidence intervals, which are not visible if smaller than the dot. We have ensured that all scores are comparable by keeping only simulations where all
methods output a prediction; PyClone results were excluded because they led to exclude too many samples. There are respectively 85, 47, 223, 250, and
236 samples with 1, 2, 3, 4, and 5 clones, 427 samples with constant and 414 with varying signature activities between clones, and 265, 347 and
229 samples with approximately 2000, 4000 and 6000 observed point mutations. Source data are provided as a Source Data file.
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Ccube, DPClust, and PhylogicNDT in other cases. Palimpsest is a
bit below these methods, as well as TrackSig and TrackSigFreq.
Again, CloneSig, TrackSig, and TrackSigFreq benefit from the
“varying” signature activity setting.

To further illustrate the interplay between signature change
and ability to detect clones, we now test CloneSig, TrackSig,
TrackSigFreq and Palimpsest on simulations with exactly two
clones, and where we vary how the clones differ in terms of CCF,
on the one hand, and in terms of mutational processes, on the
other hand (quantified in terms of cosine distance between the
two profiles of mutation type). Figure 4 shows the area under the
ROC curve (AUC) for the correct classification of clonal and
subclonal mutations by CloneSig as a function of these two
parameters. We see an increased AUC as the distance between the
mutation type profiles increases, for a constant CCF difference
between the clones. For example, when two clones have similar
signatures (small cosine distance), the AUC is around 0.7 when
the difference between their CCF is around 0.2; when their
signatures are very different (large cosine distance), the same
performance can be achieved when their CCF only differ by 0.1 or
slightly below. We show in Supplementary Fig. 110 how other
parameters (number of mutations, sequencing depth, diploid
proportion of the genome, choice of input signature) also impact
the performance of CloneSig in this setting. We also present
similar results for other methods that both account for mutation
frequency and mutational context in Supplementary Fig. 111, as
well as the influence of the number of observed mutations for
each of them in Supplementary Fig. 112.

Performance for signature activity deconvolution. In addition
to ITH inference in terms of subclones, CloneSig estimates the
mutational processes involved in the tumor and in the different
subclones. We now assess the accuracy of this estimation on
simulated data, using five performance scores detailed in the
Methods section. In short, score_sig_1A is the Euclidean distance
between the normalized mutation type counts and the recon-
structed profile (activity-weighted sum of all signatures); scor-
e_sig_1B is the Euclidean distance between the true and the
reconstructed profile; score_sig_1C measures the identification of
the true signatures; score_sig_1D is the proportion of signatures
for which the true causal signature is correctly identified; and
score_sig_1E reports the median of the distribution of the cosine
distance between the true and the predicted mutation type profile
that generated each mutation. We compare CloneSig to the three
other methods that perform both ITH and mutational process

estimation, namely, TrackSig, TrackSigFreq, and Palimpsest, and
add also deconstructSigs13 in the benchmark, a method that
optimizes the mixture of mutational signatures of a sample
through multiple linear regressions without performing subclonal
reconstruction.

Figure 5 shows the performance of the different methods
according to the different metrics on the PhylogicSim500 dataset.
For Score_sig_1A and Score_sig_1B, there is a clear advantage for
CloneSig, TrackSig, and TrackSigFreq over Palimpsest and
deconstructSigs in all scenarios except when the number of
mutation is the smallest, in which case all methods behave
similarly. For Score_sig_1C, CloneSig, TrackSig, and TrackSig-
Freq exhibit the best AUC to detect present signatures in all
scenarios. This may be related to a better sensitivity as CloneSig
and TrackSig perform signature activity deconvolution in subsets
of mutations with less noise. All methods perform similarly with
respect to Score_sig_1D. The median cosine distance (Score_-
sig_1E) is slightly better for CloneSig compared to other methods
in all settings, particularly when there are three clones or more,
and when signature activity varies across subclones.

Overall, as for ITH inference, we conclude that CloneSig is as
good as or better than all other tested methods in all tested
scenarios. Additional results where we vary other parameters in
each methods, notably the set of mutations used as inputs or the
set of signatures used as prior knowledge, can be found in
Supplementary Note 2; they confirm the good performance of
CloneSig in all tested settings. We also present a thorough
evaluation of signature activity deconvolution on the CloneSig-
Sim, SimClone1000 and DREAM simulated datasets in Supple-
mentary Note 2, which overall confirm the results observed on
the PhylogicSim500 dataset.

Pan-cancer overview of signature changes. We now use Clo-
neSig on real pan-cancer data, to analyze ITH and mutational
process changes in 8,951 tumor WES samples from the TCGA
cohort spanning 31 cancer types, and in 2,632 WGS samples from
32 cancer types analyzed by the PCAWG initiative which
represents the largest dataset of cancer WGS data to date.

For each sample in each cohort, we estimate with CloneSig the
number of subclones present in the tumor, the signatures active
in each subclone, and test for the presence of a significant
signature change between clones. Based on samples exhibiting a
significant signature change, we attempt to identify the signatures
that are the most variant for each cancer type. To that end, we
compute the absolute difference in signature activity between the

Fig. 4 Accuracy of the number of clones estimated by CloneSig. To illustrate the factors that impact the validity of the subclonal reconstruction performed
by CloneSig, we have simulated samples with two clones, varying both the difference in the cancer cell fraction (CCF) between the two clones (vertical
axis) and the cosine distance between their mutational profiles (horizontal axis). The accuracy denotes the proportion of runs where CloneSig rightfully
identifies two clones. Source data are provided as a Source Data file.
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largest subclone and the set of clonal mutations, neglecting cases
where the absolute difference is below 0.05. Figure 6 shows a
global summary of the signature changes found in the TCGA
cohort. For each cancer type with at least 100 patients (see
Supplementary Note 3 for the analysis over all cancers), it shows
the proportion of samples where a signature change is found, and
a visual summary of the proportion of samples where each

individual signature is found to increase or to decrease in the
largest subclone, compared to the clonal mutations. The thickness
of each bar, in addition, indicates the median change of each
signature. We retained only signatures found variant in more
than 10% of each cohort samples. Complete results for the
PCAWG samples are presented in a similar way in Supplemen-
tary Note 4. Overall, CloneSig detects a significant change in

Fig. 5 Comparison of CloneSig, deconstructSigs, Palimpsest, TrackSig, and TrackSigFreq for signature activity deconvolution on the PhylogicSim500
dataset. Several metrics have been implemented, and are detailed in the main text. Scores_sig_1A and 1B are distances between the estimated mutation
type profile (as defined by the signature activity proportions) to the true mutation profile (defined using the parameters used for simulations, 1A), and the
empirical observed mutation profile (defined using available observed mutations, 1B), and is better when close to 0. Score_sig_1C is the area under the ROC
curve for the classification of signatures as active or inactive in the sample, and is better when close to 1. Score_sig_1D is the proportion of mutations for
which the correct signature was attributed, and is better when close to 1. Finally, Score_sig_1E is the median distance to the true mutation type profile of the
clone to which a mutation was attributed from the true distribution of its original clone in the simulation, and is better when close to 0. The results are
presented depending on several relevant covariates: the true number of clones (left), the signature activity setting (middle), and the number of mutations
(right). Each point represents the average of the score over all available simulated samples. We used bootstrap sampling of the scores to compute 95%
confidence intervals. There are respectively 87, 47, 223, 250, and 236 samples with 1, 2, 3, 4, and 5 clones, 428 samples with constant and 415 with
varying signature activities between clones, and 267, 347, and 229 samples with approximately 2000, 4000 and 6000 observed point mutations. Source
data are provided as a Source Data file.
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Fig. 6 Mutational signature changes in the TCGA cohort. Each plot corresponds to one cancer type, indicates the number of samples with a significant
signature change compared to the total number of samples, and shows on the right panel an increase of a signature in the largest subclone, compared to
clonal mutations, and on the left panel a decrease. The length of each bar corresponds to the number of patients with such changes, and the thickness to
the median absolute observed change. Only the 22 cancer types with more than 100 patients are represented: bladder urothelial carcinoma (BLCA), breast
invasive carcinoma (BRCA), cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), colorectal adenocarcinoma (COADREAD),
esophageal carcinoma (ESCA), glioblastoma multiforme (GBM), head and neck squamous cell carcinoma (HNSC), kidney renal clear cell carcinoma
(KIRC), kidney renal papillary cell carcinoma (KIRP), brain lower grade glioma (LGG), liver hepatocellular carcinoma (LIHC), lung adenocarcinoma (LUAD),
lung squamous cell carcinoma (LUSC), ovarian serous cystadenocarcinoma (OV), pancreatic adenocarcinoma (PAAD), prostate adenocarcinoma (PRAD),
sarcoma (SARC), skin cutaneous melanoma (SKCM), stomach adenocarcinoma (STAD), thyroid carcinoma (THCA), thymoma (THYM), uterine corpus
endometrial carcinoma (UCEC). Full results for all cancer types are available in Supplementary Note 3. Source data are provided as a Source Data file.
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signature activity in 39% of all samples of the TCGA and 61% of
the PCAWG cohort, in line with previous reports of 30%23 or
76%2, although these proportions vary between cancer types.

Let us first compare signature variations found using CloneSig
in the TCGA and the PCAWG cohorts, to assess the consistency
between results obtained by CloneSig on WES and WGS data.
Interestingly, for most cancer types, namely BLCA, BRCA, CESC,
GBM, HNSC, KIRP, LUAD, LUSC, OV, SKCM, and UCEC, very
similar patterns of signature changes are found in both cohorts,
while some minor differences are found in other types. For
example, in esophageal cancer (ESCA in the TCGA, Eso-
AdenoCA in the PCAWG) a strong decrease in signature 16
activity is observed in the TCGA, but not in the PCAWG. Such a
decrease pattern is however consistent with the association
between signature 16 and alcohol consumption30, and recurrent
patterns of decrease of lifestyle-associated signature activity2,23.
For liver tumors, a strong decrease of signature 12 (unknown
aetiology) in liver cancers is observed in the PCAWG (Liver-
HCC), but variations in both directions are found in the TCGA
(LIHC), which is coherent with a similar observation made on an
independent cohort of 44 WGS samples of liver tumors30.
Additionally, a tendency to decrease for signature 16 and increase
for signature 17 activities is found by CloneSig on the TCGA
cohort, which is coherent with30 who found on a independent
cohort a systematic decrease of signature 16 activity in all patients
and an increase in signature 17 for one patient, while these
variations are not clearly found on the PCAWG cohort. In
prostate cancers, CloneSig identifies both increases and decreases
of signatures 3 and 5 activities in the TCGA (PRAD), while only
in one direction in the PCAWG (Prost-AdenoCA). Both increases
and decreases of those two signature activities were previously
reported in an independent cohort of 293 whole-genome
sequenced localized prostate tumors24. In short, despite a few
minor differences, the agreement between CloneSig’s results on
the two cohorts is excellent, and in case of discrepancy the signals
found on the larger TCGA cohort seem to be more coherent with
current literature than those found on PCAWG. This illustrates
the ability of CloneSig to detect patterns of ITH and signature
activity change using WES or WGS data, and to benefit from the
availability of larger WES cohorts.

To further explore the reliability of CloneSig’s results on real
data, we now compare our findings in the PCAWG to results
obtained on the same dataset with two different methods:
TrackSig2, and the careful distinction of early and late (and clonal
and subclonal mutations) in23. Overall, CloneSig’s predictions are
very similar to both studies for several important signals, such as
lifestyle-associated signatures associated with tobacco-smoking
(signature 4) and UV light exposure (signature 7) that decrease
systematically in lung tumors and oral cancers (Lung-AdenoCA,
Lung-SCC, and Head-SCC) and skin melanoma (Skin-Mela-
noma) respectively. Similarly, CloneSig finds a strong decrease of
signature 17 (damage by reactive oxygen species) in esophageal
tumors (Eso-AdenoCA), and of signature 9 (Polymerase eta
somatic hypermutation) in Chronic Lymphoid Leukemia
(Lymph-CLL), which was also found by2,23. Besides these
coherent predictions, CloneSig finds additional differences not
reported by2,23. For example, CloneSig finds an increase in
signature 3 (defective homologous recombination-based DNA
damage repair) in bladder tumors (Bladder-TCC) unreported
by2,23, but consistent with the evidence of homologous recombi-
nation repair modulation being a marker of cancer progression in
Bladder31. CloneSig also identifies an unreported increase in
signature 8 activity in several cancer types, namely breast,
pancreatic, and prostate tumors, both in TCGA and PCAWG
cohorts. The same increase was reported for two out of ten multi-
sample, whole-genome breast cancer cases with a local relapse or

distant metastatic32, and in some prostate tumors24. Also, an
analysis of genomic location of signature 8 SNVs suggests that
this signature arises during cancer progression33. However,
signature 8 is deemed difficult to identify due to potential
confusion with signature 333, potentially contributing to dis-
crepancies between CloneSig’s results and previous studies.

To complement the analysis of the TCGA and the PCAWG
cohorts, we provide heatmaps to delineate an overview of each
cancer type in Supplementary Figs. 38 to 68 and 71 to 102
respectively. For each type, the first panel represents the
difference between subclonal and clonal signature activities (in
case of a significant change in activity), and the bottom panel
represents the absolute values of each signature activity for clonal
SNVs (belonging to the clone of largest CCF estimated by
CloneSig), and in the main subclone (in terms of number of
SNVs). This allows researchers to fully explore CloneSig’s results,
and further compare their results in future studies. For the
TCGA, in each panel, we have added several clinical variables, in
particular, the patient’s age at diagnosis and the patient’s sex.
Overall, we found no trend of association between signature
activities or change in activities and those clinical characteristics,
as previously observed in the particular case of prostate cancer24.
In most types, like CESC (Supplementary Fig. 41), HNSC
(Supplementary Fig. 47) and others, we observe groups of
patients with different patterns of signature activity. The clinical
significance of such groups remains to be further explored.
Comparable clinical information is not available for the PCAWG
cohort.

Altogether, we note a good agreement between findings on the
TCGA WES and PCAWG WGS datasets using CloneSig, and
previous similar analyses of the PCAWG WGS cohort, but also
some differences which may be due to several factors including (i)
the fact that both cohorts differ in size, patient clinical profiles
and treatments, (ii) the fact that the algorithms used for the
analysis are different, (iii) the fact that the TCGA cohort focuses
on exonic mutations while PCAWG is based on WGS, and (iv)
the fact that we and2 focus on signatures with large activity
changes in absolute difference while23 focuses more on a general
description of the cohort, report changes in log-fold change, and
go beyond SNVs by integrating doublet-based substitutions
(DBS) and small insertions and deletions (ID) signature changes.
To mitigate these different effects, we provide an analysis of
CloneSig’s results on the TCGA and on the PCAWG using log-
fold change as a metric in Supplementary Figs. 37, 70, that gives a
slightly different view of the results.

Discussion
In recent years, a large number of methods have been developed
to unravel ITH in tumors6–8,29,34, and have been applied to dif-
ferent cohorts, including the TCGA. Recent analyses illustrate
limits encountered when applying those methods to bulk
WES10,35, as the number of observed mutations is small, the
variance in read counts can be high, and a unique sample may
miss the heterogeneity of the tumor. As sequencing costs are
continuously decreasing, WGS, multi-sample sequencing and
single cell sequencing will constitute relevant alternatives and
simplify the study of ITH. However, to date a much larger
number of tumor samples with sufficient clinical annotation is
available with WES compared to other more advanced technol-
ogies, and can lead to interesting insights. Beyond the number of
clones present in a tumor, another relevant aspect of tumor
evolution is the presence of changes in mutational signatures
activities5, which could have clinical implications in cancer pre-
vention and treatment, and unravel the evolutionary constraints
shaping early tumor development. To the best of our knowledge,

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-24992-y

10 NATURE COMMUNICATIONS |         (2021) 12:5352 | https://doi.org/10.1038/s41467-021-24992-y | www.nature.com/naturecommunications

www.nature.com/naturecommunications


TrackSig18, TrackSigFreq19 and Palimpsest17 are the only meth-
ods addressing the problem of systematic detection of signature
changes, but they present serious limitations: Palimpsest first
detects ITH, and then performs signature activity deconvolution,
which has the major drawback that if this first step fails, no
signature change can be detected. Moreover, Palimpsest simply
aims to distinguish subclonal from clonal mutations, thus
ignoring more complex patterns. TrackSig and TrackSigFreq are
only applicable to WGS data, and though avoiding the caveat of
relying on a previous detection of ITH for TrackSig, the final step
of associating signature changes to the subclonal reconstruction is
manual. TrackSigFreq is meant to be an extension of TrackSig to
detect also clones not distinguished by a change in signature
activity, but shows mitigated results on our benchmark compared
to TrackSig. Finally, none of these methods efficiently leverages
the changes in signature activity to inform and improve the ITH
detection step. To overcome these limitations, we have developed
CloneSig, the first method to offer joint inference of both sub-
clonal reconstruction and signature activity deconvolution, which
casn be applied to WGS as well as to WES data.

Improved ITH and signature detection in WES. CloneSig is a
generative probabilistic graphical model that considers somatic
mutations as derived from a mixture of clones where different
mutational signatures are active. We demonstrated with a thor-
ough simulation study the benefits of the joint inference in
detecting ITH, both in WES and WGS samples. We included four
different datasets to obtain a thorough evaluation of CloneSig and
other ITH methods. Resorting to several datasets is necessary to
obtain a complete and fair evaluation of the algorithms in a
variety of situations. First, two of those datasets are generated
using exactly some of the reconstruction methods: CloneSigSim
and PhylogicSim500, respectively, follow the models of CloneSig
and PhylogicNDT. The two other datasets do not explicitly follow
the model of an evaluated method, but might also be biased
towards one or more methods. Second, the DREAM and Sim-
Clone1000 have subclonal copy number events, while the other
two datasets have only clonal events, which allows us to further
assess the effect of neglecting them in CloneSig and other eval-
uated methods. Third, the simulated samples from the different
datasets highly vary in number of observed SNVs, encompassing
characteristics from WES and WGS data. Finally, although some
relevant characteristics of our benchmark such as a very low
number of observed SNVs are only covered by the CloneSigSim
dataset, integration of gold-standard datasets allow us to con-
tribute to establishing evaluation standards for ITH methods, and
to facilitate comparison of CloneSig with (future) methods not
considered in our study. We showed that CloneSig is competitive
with or outperforms state-of-the art ITH methods, even in the
absence of signature activity change between the clones, and is
particularly efficient for the detection of samples with one or a
few subclones. Interestingly, several other methods we considered
including PyClone7, SciClone29, DPClust6, PhylogicNDT28, and
Ccube8, are fully Bayesian and choose the number of clones by
maximizing the posterior probability of the data. In those
methods the prior has a regularizing role, and they exhibit a
decrease of accuracy as the number of observed mutations
increases. This may be related to the fact that the regularizing
prior is less influential as more mutations are taken into account.
We instead developed a specific adaptive criterion to estimate the
number of clones, as we observed that standard statistical tools
for model selection performed poorly in preliminary experiments.

Regarding the signature activity deconvolution problem, results
on simulations (Score_sig_1C) suggest that CloneSig exhibits an
improved sensitivity. Application to the TCGA also indicates

such increased sensitivity: in the TCGA pancreatic ductal
adenocarcinoma cohort (PAAD), the original study using
deconstructSigs could not detect signature 3 activity in samples
with somatic subclonal mutations in genes BRCA1 and BRCA236,
while CloneSig reports signature 3 exposure in some PAAD
tumors.

Limits of CloneSig. It is important to explicitly state some of
CloneSig’s limits, a number of them largely shared by most ITH
methods. CloneSig is currently limited to SNVs, and does not
account for indels or structural variants. Regarding the copy
number profile of the tumor, CloneSig only considers clonal
segments, but provides a complete framework to estimate a
mutation’s multiplicity, which is an improvement over many
existing methods. Regarding the range of application of CloneSig,
the results are slightly below some pre-existing methods when
fewer than 100 mutations are observed, as more stability is nee-
ded to fully benefit for robust estimates of signature activity, but
exhibits very good performances for a number of mutations
ranging from 100 to 10,000, as in the DREAM, SimClone1000,
and PhylogicSim500 datasets, which makes it the most flexible
method considered in this study. Regarding the runtime and
scalability, resorting to subsampling above 10,000 observed
mutations, as implemented in DPClust might be advisable.

Another point to be vigilant about when using CloneSig, as
illustrated in simulations, and based on our experience with the
TCGA and the PCAWG cohorts, is that the choice of the input
signatures is key to CloneSig’s optimal performances. This is
related to the unidentifiability of the signature activity deconvo-
lution problem. Several solutions have been proposed: use of a
pre-defined cancer-specific matrix12,18, selection of signatures
based on other genomic information, such as patterns of indels or
structural variants, or strand biases12, or with other molecular or
clinical covariates37. We have tested several such strategies (using
all available signatures, or a well-chosen subsets), and CloneSig’s
results highly depend on such a choice; we made similar
observations for TrackSig, TrackSigFreq and Palimpsest. The
probabilistic framework of CloneSig is well suited to integrate
other mutation types (indels, structural variants), as well as prior
knowledge on signature co-occurrence, and a prior based on
other molecular and clinical covariates. The difficulty of this
approach is the possibility to learn such association patterns.
Another direction for further development would be to use
CloneSig’s model to learn the signatures, or to allow some
variations in the pre-defined signatures, as suggested in38.

Clinical relevance of signature variations. To assess the clinical
relevance of signature changes, we jointly analyzed clinical fea-
tures available for the TCGA cohort and CloneSig results. We
found no evidence of association between survival and the
number of clones or the occurrence of a change of signature
activity between subclones in any cancer type considered. We
have also systematically analyzed whether we could identify an
association between the exact pattern of signature change, i.e., the
increase or decrease of a particular mutational signature and
clinical variables, but found no significant association. However,
more refined or complete analyses may be necessary to uncover
the full significance of signature activity changes. Previous studies
report important signature activity differences between early and
metastatic tumors in endometrial and breast cancers39,40, with
impact on the survival in the breast cancer study40. We could not
perform a similar analysis using the TCGA with only untreated
primary tumors, but this constitutes new directions and oppor-
tunities of research using CloneSig on metastatic cohorts, for
instance to refine findings of40, that compares signatures
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deconvoluted from the whole metastasis, and could benefit from
subclonal analysis to distinguish early and late mutations.

A final potential clinical application could be usage as a marker
for personalized treatment. For example, signature 3 is associated
with homologous recombination repair defect (HRD), and a
targeted therapy, PARP inhibitors, can successfully target cells
with such defect. We may therefore use the detection of signature
3 to identify patients that can benefit from such therapy41, and
CloneSig exhibits better identification of active signatures, as
illustrated in the simulation studies. Indeed, several mutations in
genes like BRCA1 and 2, RAD51 are known to cause HRD, but
some other mutations are less frequent, or other events may result
in HRD and be undetectable using regular genome sequencing,
such as epigenetic inactivation42. In addition, the intensity of
HRD mutational process may be predictive of the treatment
response. Pursuing this line of thought, the change in signature
activity could also be exploited as an indicator of the current
driver status of HRD in tumor development. Of course, these
remain at this stage hypotheses that require further in silico and
experimental exploration. In particular relating the presence or
chance of a signature to the fact that it represents a driving
process amenable to therapeutic intervention remains challen-
ging, particularly in the absence of longitudinal data about tumor
evolution. As the underlying processes of signatures keeps being
uncovered, we nevertheless expect more examples of such clinical
applications to arise. Signatures indicating sensitivity to PARP
inhibitors, platinium-based chemotherapy, PD1-immunotherapy,
cisplatin and resistance to tamoxifen have been identified43.

Methods
CloneSig model. CloneSig is a probabilistic graphical framework, represented in
Box 1, to model the joint distribution of SNV frequency and mutational context
using several latent variables to capture the subclonal composition of a tumor and
the mutational processes involved in each clone. For a given SNV it assumes that
we observe the following variables: D, the total number of reads covering the SNV;
B ≤D, the number of mutated reads; T ∈ {1,…, 96} the index of the mutation type
(i.e., the mutation and its flanking nucleotides, up to symmetry by reverse com-
plement); and C ¼ ðCnormal ;C

major
tumor ;C

minor
tumorÞ the allele-specific copy number at the

SNV locus, as inferred using existing tools such as ASCAT44. Here Cnormal is the
total copy number in normal cells, and ðCmajor

tumor ;C
minor
tumorÞ are respectively the copy

number in the cancer cells of the major and minor allele, respectively. We therefore
also observe Ctumor ¼ Cmajor

tumor þ Cminor
tumor , the total copy number in cancer cells.

Finally, we assume observed the tumor sample purity p, i.e., the fraction of cancer
cells in the sample.

In addition to those observed variables, CloneSig models the following
unobserved variables: U ∈ {1,…, J}, the index of the clone where the SNV occurs
(assuming a total of J clones); S∈ {1,…L} the index of the mutational signature
that generated the SNV (assuming a total of L possible signatures, given a priori);
and M 2 f1; ¼ ;Cmajor

tumorg, the number of chromosomes where the SNV is present.
Note that here we assume that SNVs can only be present in one of the two alleles,
hence the upper bound of M by Cmajor

tumor . to delete
Denoting for any integer d by Σd ¼ fu 2 Rd

þ ; ∑d
i¼1 ui ¼ 1g the d-dimensional

probability simplex, and for u ∈ Σd by Cat(u) the categorical distribution over
{1,…, d} with probabilities u1,…, ud (i.e., X ~ Cat(u) means that P(X= i)= ui for
i= 1,…, d), let us now describe the probability distribution encoded by CloneSig
for a single SNV; its generalization to several SNVs is simply obtained by assuming
they are independent and identically distributed (i.i.d.) according to the model for a
single SNV. We do not model the law of C and D, which are observed root nodes in
Box 1, and therefore only explicit the conditional distribution of (U, S, T,M, B)
given (C,D).

Given parameters ξ∈ ΣJ, π 2 ðΣLÞJ and μ 2 ðΣ96ÞL , we simply model U, S and T
as categorical variables:

U � CatðξÞ ;
S jU � CatðπU Þ ;
T j S � CatðμSÞ :

ð2Þ

Conditionally on C, we assume that the number of mutated chromosomes M is
uniformly chosen between 1 and Cmajor

tumor , i.e.,

M jC � Catð1=Cmajor
tumorÞ ; ð3Þ

where 1=Cmajor
tumor 2 ΣCmajor

tumor
represents the vector of constant probability. Finally, to

define the law of B, the number of mutated reads, we follow a standard approach in
previous studies that represent ITH as a generative probabilistic model7–9,29 where
the law of the mutated read counts for a given SNV must take into account the
purity of the tumor, the proportion of cells in the tumor sample carrying that
mutation (cancer cell fraction, CCF), as well as the various copy numbers of the
normal and tumor cells. More precisely, as reviewed by6, one can show that the
expected fraction of mutated reads (variant allele frequency, VAF) satisfies

VAF ¼ p ´CCF ´M
p ´Ctumor þ ð1� pÞ ´Cnormal

: ð4Þ

Note that this only holds under the classical simplifying assumption that all copy
number events are clonal and affect all cells in the sample. If we now denote by
ϕ∈ [0, 1]J the vector of CCF for each clone, and introduce a further parameter
ρ 2 R�

þ to characterize the possible overdispersion of mutated read counts
compared to their expected values, we finally model the number of mutated reads
using a beta binomial distribution as follows:

B j D;U ;C;M � BetaBinomial D; ρϕUηðM;CÞ; ρð1� ϕUηðM;CÞÞ� �

with ηðM;CÞ ¼ p ´M
p ´Ctumor þ ð1 � pÞ ´Cnormal

:
ð5Þ

Parameter estimation. Besides the tumor purity p, we assume that the matrix of
mutational processes μ 2 ðΣ96ÞL is known, as provided by databases like COSMIC
and discussed below in Section 4.7. We note that we could consider μ unknown and
use CloneSig to infer a new set mutational signatures from large cohorts of
sequenced tumors, but prefer to build on existing work on mutational processes in
order to be able to compare the results of CloneSig to the existing literature. Besides p
and μ, the free parameters or CloneSig are J, the number of clones, and θ= (ξ, ϕ, π, ρ)
which define the distributions of all random variables. On each tumor, we optimize θ
separately for J= 1 to Jmax= 8 clones to maximize the likelihood of the observed
SNV data in the tumor. The optimization is achieved approximately by an
expectation-maximization (EM) algorithm45 detailed in Supplementary Section 1.1.
The number of clones J*∈ [1, Jmax] is then estimated by maximizing an adaptive
model selection criterion, detailed in Supplementary Section 1.2.

Test of mutational signature changes. We use a likelihood ratio test to determine
the significance of a signature change, by comparing a regular CloneSig fit to a fit
with a single mixture of signatures common to all clones. To adapt the test, the
parameter of the chi-squared distribution needs a calibration, that we perform on
simulated data under the null hypothesis (without change of signatures between
clones). We obtain the optimal parameter using a ridge regression model with the
number of clones and the degree of freedom of the input signature matrix as
covariates. The coefficient values are averaged over 10-fold cross-validation to
ensure robustness. We provide more details about this test in Supplementary
Section 1.3.

Simulations. We use several simulation strategies to evaluate the performance of
CloneSig and other methods in various situations. We also use simulations to
adjust several aspects of CloneSig, in particular the setting of a custom stopping
criterion and the calibration of the statistical test to detect a significant signature
change along tumor evolution.

Default simulations. We implemented a class SimLoader to perform data
simulation in CloneSig package. The user sets the number of clones J, the number
of observed mutations N, and the matrix of L possible signatures μ. She can also
specify the desired values for the CCF of each clone ϕ∈ [0, 1]J, the proportion of
each clone ξ∈ ΣJ, the exposure of each signature in each clone π 2 ðΣLÞJ , and the
overdispersion parameter ρ 2 Rþ� for the beta-binomial distribution, as well as the
proportion of the genome that is diploid. If the user does not provide values for one
or several parameters, we generate them randomly as follows:

a. π the number of active signatures follows a Poisson(7)+ 1 distribution, and
the signatures are chosen uniformly among the L available signatures. Then
for each subclone, the exposures of active signatures follow a Dirichlet
distribution of parameter 1 for each active signature;

b. ϕ the cancer cell fraction of each clone is set such that the largest clone has a
CCF of 1, and each subsequent CCF is uniformly drawn in decreasing order
to be greater than 0.1, and at a distance at least 0.05 from the previous clone;

c. ξ the proportions of clones are drawn from a Dirichlet distribution of
parameter 1 for each clone. The proportions are repeatedly drawn until the
minimal proportion of a clone is greater than 0.05;

d. ρ follows a normal distribution of mean 60 and of variance 5.

The same strategy is used for random initialization of the parameters for the
EM algorithm.

The total copy number status is drawn for a user-set diploid proportion of the
genome with a bell-like distribution centered in 2, and skewed towards the right
(see Supplementary Fig. 109 for examples), or from a rounded log-normal
distribution of parameters 1 and 0.3. The minor copy number is then drawn as the
rounded product between a beta distribution of parameters 5 and 3 and the total
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copy number. The multiplicity of each mutation n is uniformly drawn between 1
and Cmajor

n;tumor . The purity is drawn as the minimum between a normal variable of
mean 0.7 and of variance 0.1, and 0.99. The other observed variables (T, B, D) are
drawn according to CloneSig probabilistic model.

Simulations for comparison with other ITH and signature methods. To calibrate the
custom stopping criterion and for further evaluation of CloneSig, we simulated a
dataset comprising 7, 812 samples using the previously described setting, with a few
adjustments: we set the minimal proportion of each clone to 0.1, the minimal
difference between 2 successive clone CCFs to 0.1, and we chose the active sig-
natures among the active signatures for each of the 31 cancer types from the
TCGA, and curated using literature knowledge, as described later in Methods, in
section 4.7. We draw the number of active signatures as the minimum of a
Pois(7)+ 1 distribution and the number of active signatures for this cancer type.
We required a cosine distance of at least 0.05 between the mutational profiles of
two successive clones.

In total, for each of the 31 cancer types, we generated a simulated sample for
each combination of a number of mutations from the set
{20, 50, 100, 300, 600, 1000, 5000} covering the range observed in WES and WGS
data, a percentage of the genome that is diploid from the set
{0%, 20%, 40%, 60%, 80%, 100%} to assess the impact of copy number variations,
and finally, between 1 and 6 clones.

Simulations without signature change between clones. We generated a set of
simulations similar in all points to the one for comparison with other ITH and
signature methods, except that there is a unique signature mixture common to all
clones. We used this dataset in two contexts: (i) to evaluate CloneSig in comparison
to other methods in the absence of signature change, and (ii) to design a statistical
test to assess the significance of a change in mutational signatures. For the latter,
the dataset was limited to the first eleven cancer types to avoid unnecessary
computations (2,772 samples).

Simulations to assess the separating power of CloneSig. To assess the separating
power of CloneSig, we generated a dataset of 12,000 simulated tumor samples with
two clones, where each clone represents 50% of the observed SNVs. Our objective
was to explore the set of the distance between two clones, in terms of CCF distance,
and of cosine distance between the two mutational profiles. For that purpose we
first drew ten possible CCF distances evenly on a log scale between 0 and 1, and set
to 1 the largest clone CCF. We also generated 50 matrices π with cosine distances
covering regularly the possible cosine distances; to obtain them, we first generated
10,000 such π matrices to estimate an empirical distance distribution, and we
implemented a rejection sampling strategy to obtain 50 samples from a uniform
distribution. For each pair of CCF distance and π matrix, several samples were
generated with the number of mutations varying among {30, 100, 300, 1000}, the
diploid proportion of the genome among {0.1, 0.5, 0.9}, and the sequencing depth
among {100, 500}.

Simulations to assess the sensitivity of the statistical test. To measure the sensitivity
of the statistical test to detect a significant signature change along tumor evolution,
we generated a dataset of 3,600 simulated tumor samples with 2–6 clones. We used
again a rejection sampling strategy to explore the space of the maximal distance
between the profiles between any 2 clones, but the target distribution is here a beta
distribution of parameters 1.5 and 8 as a target distribution, as the objective was to
sample more thoroughly the small cosine distances. We repeated the sampling of
30 π matrices for 2–6 clones, and in each case, and generated several samples with
the number of mutations varying among {30, 100, 300, 1000}, the diploid propor-
tion of the genome among {0.1, 0.5, 0.9}, and the sequencing depth among
{100, 500}.

Evaluation metrics. We use several evaluation metrics to assess the quality of
CloneSig and other comparable methods. Some assess specifically the accuracy of
the subclonal decomposition, while others assess the performance of signature
activity deconvolution.

Metrics evaluating the subclonal decomposition. The metrics described in this
section evaluate the accuracy of the subclonal deconvolution. They are adapted
from20.

1. Score1B measures the adequacy between the true number of clones Jtrue and
the estimated number of clones Jpred. It is computed as
Jtrueþ1�minðJtrueþ1;jJpred�Jtrue jÞ

Jtrueþ1 .
2. Score1C is the Wasserstein similarity, defined as 1 minus the Wasserstein

distance between the true and the predicted clustering, defined by the CCFs
of the different clones and their associated weights (proportion of
mutations), implemented as the function stats.wasserstein_dis-
tance in the Python package scipy.

3. Score2A measures the correlation between the true and predicted binary co-
clustering matrices in a vector form, Mtrue and Mpred. It is the average of 3
correlation coefficients:

4. PCC ¼ Cov ðMtrue ;Mpred Þ
σMtrue

;σMpred

, implemented as the function pearsonr in the

Python package scipy,
5. MCC ¼ TP ´TN�FP ´ FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðTPþFPÞðTPþFNÞðTNþFPÞðTNþFNÞ
p , implemented as the function

metrics.matthews_corrcoef in the Python package scikit-learn,
6. is the harmonic mean of a homogeneity score that quantifies the fact that

each cluster contains only members of a single class, and a completeness
score measuring if all members of a given class are assigned to the same
cluster46; here the classes are the true clustering. We used the function
v_measure_score in the Python package scikit-learn.

7. Before averaging, all those scores were rescaled between 0 and 1 using the
score of the minimal score between two “bad scenarios”: all mutations are in
the same cluster, or all mutations are in their own cluster (Mpred= 1N×N or
Mpred ¼ IN ´N ). This score follows the strategy initially proposed in the
preprint version47 of20, and suffers from a high memory usage, making it
impractical beyond 20,000 mutations.

8. quantifies the accuracy of each method prediction of clonal and subclonal
mutations. We report the accuracy, and the area under the ROC curve
(implemented in function metrics.roc_auc_score in the Python
package scikit-learn), sensitivity and specificity in Supplementary
Note 2.

Metrics evaluating the identification of mutational signatures. The metrics descri-
bed in this section evaluate the accuracy of the mutational signature activity
deconvolution.

1. computes the Euclidean distance between normalized mutation type counts
(empirical), and the reconstituted profile. This is the objective function of
most signature reconstruction approaches (including deconstructSigs13 and
Palimpsest17).

2. is the Euclidean distance between simulated and estimated signature profiles
(weighted sum over all clones). This is closer to the objective of CloneSig,
TrackSig18 and TrackSigFreq19.

3. measures the ability of each method to correctly identify present signatures.
For CloneSig, no signature has a null contribution to the mixture, so for
each clone, the signatures are considered in the decreasing order of their
contribution to the mixture, and selected until the cumulative sum reaches
0.95. This rule is applied to all methods. For that metric, the area under the
ROC curve (implemented in function metrics.roc_auc_score in the
Python package scikit-learn) is reported, as well as the accuracy,
sensitivity, and specificity in Supplementary Note 2

4. is the percent of mutations with the right signature. For each mutation, the
most likely signature is found by taking into account the distribution of each
mutation type in each signature, and the contribution of the signature to the
mixture.

5. measures for each mutation the cosine distance between the clonal mutation
type distribution that generated the mutation and the reconstituted one. We
consider a unique global distribution for deconstructSigs. This allows us to
measure the relevance of the reconstruction even if the wrong signatures are
selected, as several signatures have very similar profiles. The result is a
distribution of distances over all mutations, and we report the median of this
distribution. We also report in Supplementary Note 2 more results with the
minimum, the maximum, and the standard deviation of this distribution
(max_diff_distrib_mut, median_diff_distrib_mut), as well
as the proportions of mutations with a distance below 0.05 or 0.1
(perc_dist_5 and perc_dist_10).

Implementation. CloneSig is implemented in Python, and is available as a Python
package at https://github.com/judithabk6/clonesig25. A wrapper function imple-
ments the successive optimization of CloneSig with increasing number of clones.
For two clones and more, the model is initialized using results from the precedent
run with one fewer clone, by splitting the subclone with the largest contribution to
the mixture entropy as described in48. This process is stopped when the maximum
number of subclones is reached, or when the selection criterion decreases for two
successive runs. A class for simulating data according to the CloneSig model is also
implemented, as detailed above.

Construction of a curated list of signatures associated with each cancer type.
A very important input for CloneSig is the signature matrix. For application to the
TCGA data, we restrict ourselves to signatures known to be active in each subtype.
To that end, we downloaded the signatures found in the TCGA using SigProfiler26

from synapse table syn11801497. The resulting list was not satisfactory as it lacked
important known patterns; for instance signature 3, associated with homologous
recombination repair deficiency was not found to be active in any tumor of the
prostate cohort, while signature 3 in prostate cancer is well described in the
literature24,49. We therefore completed the signatures present in each cancer type
based on the literature12,24,30,39,50–58, and used the resulting matrix in all CloneSig
runs on the TCGA. Our curated list of signatures present in each cancer type is
provided in Table S4.
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Quantification of signature changes. For analysis of the TCGA and the PCAWG
cohorts, it can be of interest to go beyond the simple assessment of a significant
signature change between clones, in particular to observe different patterns of
variations for distinct cancer types. Using CloneSig’s results, such observations
remain qualitative, as the statistical framework does not analyze changes at the
individual signature activity level. Qualitatively, it might be difficult to strongly
assess whether a signature’s activity increases or decreases because both patterns
can occur in the case where more than two clones are found, and additionally, there
might be complex branching evolution patterns between those clones that go
beyond CloneSig’s abilities. To provide a first approximation, we measure such
variations between the clonal clone (defined by having the highest cellular pre-
valence) and the largest subclone (defined as having the largest number of muta-
tions). We have used two metrics to report such changes:

a. absolute difference Asubclonal−Aclonal, where A is defined as the proportion
of the activity (between 0 and 1). In that case, we have considered only cases
where this difference is greater than 0.05 to avoid noisy reports.

b. relative difference log Asubclonal
Aclonal

� �
; with exclusion of cases where both Asubclonal<10−4

and Aclonal<10−4, and otherwise, replacement of smaller values by 10−4 to avoid

very large or small undue values

Each metric provides a different viewpoint of the data, with the absolute
difference stressing variations of some importance, while the relative difference,
though providing some focus on important variations on the logarithmic scale
between two signature activities below 10−2.

For the graphical representations of Figs. 7, S36 and S69, we have additionally
applied two thresholds: only absolute differences greater than 0.05 in absolute value
were considered, and only signatures varying in >10% of the cohort. Those
thresholds were not applied in the additional representations as heatmaps
(Supplementary Figs. 38 to 68, and 71 to 102).

Survival analysis. We used the package survival in R for the survival analysis.

Data collection and processing
TCGA cohort. We obtained CNV and CNA data for the TCGA cohort from the
Genomic Data Commons (GDC). We downloaded annotated SNV for 33 cancer
types obtained with four variant callers (MuSe, Mutect2, VarScan2, and Soma-
ticSniper) and aligned to the GRCh38 human genome assembly. The GDC pro-
vides two sets, one denoted “protected” with complete outputs from the variant
callers, with restricted access, and a “public” one, corresponding to a heavily filtered
version of the “protected” set to ensure that all germline variants are removed. The
documentation suggests to use the “protective” set if “omission of true-positive
somatic mutations is a concern”. For the sake of completeness, we therefore applied
CloneSig to both sets. Variant calling is known to be a challenging problem, and it
is common practice to filter variant callers output, as ITH methods are deemed to
be highly sensitive to false positive SNVs. We therefore filtered out indels from the
public dataset, and considered the union of the 4 variant callers output SNVs. For
the protected data, we also removed indels, and then filtered SNVs on the FILTER
columns output by the variant caller (“PASS” only VarScan2, SomaticSniper,
“PASS” or “panel_of_normals” for Mutect2, and “Tier1” to “Tier5” for MuSe). In
addition, for all variant callers, we removed SNVs with a frequency in 1000 gen-
omes or Exac greater than 0.01, except if the SNV was reported in COSMIC. We
added a coverage filter, and we kept SNVs with at least 6 reads at the position in the
normal sample, of which 1 maximum reports the alternative nucleotide (or with a
variant allele frequency (VAF) < 0.01), and for the tumor sample, at least 8 reads
covering the position, of which at least 3 reporting the variant, or a VAF > 0.2. The
relative amount of excluded SNVs from protected to public SNV sets varied sig-
nificantly between the 3 cancer types (see Table S3). All annotations are the ones
downloaded from the TCGA, using VEP v84, and GENCODE v.22, sift v.5.2.2, ESP
v.20141103, polyphen v.2.2.2, dbSNP v.146, Ensembl genebuild v.2014-07, Ensembl
regbuild v.13.0, HGMD public v.20154, ClinVar v.201601. We further denote the
filtered raw mutation set as “Protected SNVs” and the other one, which is publicly
available, as “Public SNVs”. For CNA, we collected data from the ASCAT complete
results on TCGA data partly reported on the COSMIC database44,59. We then
converted ASCAT results on hg19 to GRCh38 coordinates using the segmen-
t_liftover Python package60. ASCAT results also provide an estimate of
purity, which we used as input to ITH methods when possible. Other purity

measures are available61; however we selected the ASCAT estimate to ensure
consistency with CNV (copy number variant) data. For all patients, we downloaded
clinical data from the cBioPortal62.

PCAWG cohort. For the PCAWG cohort, we downloaded SNV and copy number
calls from the ICGC data portal (data access DACO-1086821). Variant calls were
generated by three pipelines run independently on each sample, with subsequent
merging into a consensus set of high-quality calls. As described in63, each of the
three pipelines-labeled “Sanger”64–67, “EMBL/DKFZ”68,69 and “Broad”70–73 after
the computational biology groups that created or assembled them-consisted of
multiple software packages for calling somatic SNVs, small indels, CNAs and
somatic SVs. Purity values represent the estimated fraction of cells in the sample
derived from the tumor clone; ploidy values represent estimated average copy
number in tumor cells. No further filtering or treatment was applied, except
exclusion of indels, and SNVs outside of documented CNV segments (without
CNV information). Matching of cancer types to the TCGA types was done using
the provided table downloadable at https://dcc.icgc.org/api/v1/download?fn=/
PCAWG/clinical_and_histology/tumour_subtype_consolidation_map.xlsx, and
referenced in the ICGC data portal, using the second sheet (“Unique List of
Tumour Types_Aug"), as the “Live Version" sheet did not contain the con-
tributing projects field, allowing mapping with the TCGA cohorts. For
types absent from the TCGA (and hence missing the associated list of present
signatures), we manually used the signatures reported in Fig. 3 of the associated
publication12.

DREAM simulated cohort. We obtained the preprocessed files and associated truth
for the DREAM dataset20,21 from Synapse storage, accession ID syn2813581.
Processed data includes mutation calling by Mutect270, and the Battenberg
algorithm74 for CNV deciphering, and purity and ploidy estimation. We performed
no further filtering, except neglecting the subclonal copy number events, as none of
the evaluated method considered them (in that case, we considered the event with
the largest cellular prevalence as clonal), and excluding indels, and SNVs without
CNV information. To run signature methods in “cancertype” mode, that is with
considering only a subset of all available 47 signatures, we attributed the tumors to
a cancer type that contained all true signatures based on12, and when several were
possible, choosing a frequent one. T2 was considered of the type “Liver-HCC”, T3
“Lung-AdenoCA”, T4 and T5 “Breast”, and T6 “Colorect-AdenoCA”. All methods
were run on this dataset, on a single CPU node per sample, with a time limit of
48 h, and a memory limit of 10GB.

PhylogicSim500 and SimClone1000. We obtained the 500 samples in the Phylo-
gicSim500 dataset, and the 972 samples in the SimClone1000 dataset as described
in2,22. The data comprises the mutations called and CNV information, with sub-
clonal CNV events in the PhylogicSim500 data but not in the SimClone1000. We
ignored subclonal CNV events, and for each segment, we kept only the one with
largest CCF in the input provided to all methods, as none of them deals with those
events. As signature activity was not considered in the simulation, we used the
ground truth to generate two versions of each sample, a “constant” setting with a
signature activity distribution common to all clones (corresponding to the unfa-
vorable scenario for CloneSig), and a “varying” setting with a different signature
activity distribution for each clone (corresponding to the favorable scenario for
CloneSig). In each sample, we drew active signatures according to the PCAWG
cancer type specified for samples of the PhylogicSim500 dataset, and a random
PCAWG cancer type, as it was not set for the SimClone1000 dataset. For the
PhylogicSim500 dataset, each method was run on a single CPU node per sample,
with a time limit of 48 h, and a memory limit of 5GB, and for the SimClone1000,
each method was run on a single CPU node per sample, with a time limit of 48 h,
and a memory limit of 15 GB, only for samples with fewer than 10,000 SNVs to
avoid unnecessary computations; this limit in SNV number was set based on
observations on the DREAM dataset.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The SNV and CNA data for the TCGA cohort are available from the GDC data portal https://
portal.gdc.cancer.gov. For SNV, we used the query cases.project.program.name in

Table 1 PCAWG files downloaded from the ICGC data portal.

filename md5 Synapse ID

consensus.20170119.somatic.cna.icgc.public.tar.gz b16a44e5b52302136b2dfa2d2f4b2000 syn8042988
consensus.20170119.somatic.cna.tcga.public.tar.gz 0d05a8ec9f07aed1c70c6ebbe1db9aad syn8042988
consensus.20170217.purity.ploidy.txt.gz a3cf8c9d0521b23b31a57b0a35379d8e syn8272483
final_consensus_passonly.snv_mnv_indel.icgc.public.maf.gz 009b9f88ec10d07cf826174c3dea5b78 syn7364923
final_consensus_passonly.snv_mnv_indel.tcga.controlled.maf.gz a7f054a45e0ec4eab83cfe22b9adee73 syn7364923
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[“TCGA”] and files.data_type in [“Aggregated Somatic Mutation”,
“Masked Somatic Mutation”] and files.experimental_strategy in
[“WXS”] to obtain the list of files to download from GDC. We provide that list in the file
external_data/gdc_manifest.2019-05-19.txt of75, which can be used directly
with the GDC download tools. In order to download the restricted mutation files, which are
considered potentially identifying, researchers will need to apply to the TCGA Data Access
Committee (DAC) via dbGaP (https://dbgap.ncbi.nlm.nih.gov). Regarding CNA, ASCAT
results were only available on the hg19 genome alignment version, so we provide the raw
CNV and purity data, as well as the final file converted to GRCh38 (see Methods) in the
supplementary Source Data file to exactly reproduce our results. Alternatively, the pipeline
was recently re-run using the GRCh38 genome alignement, and the data can be downloaded
from GDC with the query files.analysis.workflow_type in [“ASCAT2”] and
files.data_type in [“Allele-specific Copy Number Segment”].

For the PCAWG cohort, the mutations are available from the ICGC data portal at
https://dcc.icgc.org/releases/PCAWG/consensus_snv_indel, and the CNV data are
available at https://dcc.icgc.org/releases/PCAWG/consensus_cnv. A comprehensive list
of the files used are presented in Table 1, as well as their accession IDs on the Synapse
platform (https://www.synapse.org), where the data is mirrored. To access information
that could potentially identify participants, researchers need to apply to the ICGC Data
Access Compliance Office (DACO; http://icgc.org/daco) before downloading the
PCAWG data.
The signature matrices used in this work are provided in the supplementary Source

Data file, and in the folder external_data of the companion github repository75. The
preprocessed files for the DREAM simulated cohort21 are publicly available at https://
www.synapse.org/#!Synapse:syn2813581/files/, and the PhylogicSim500 and
SimClone100022 files are publicly available at https://data.mendeley.com/datasets/
by4gbgr9gd/1. Source data are provided with this paper.

Code availability
CloneSig is available as a Python package at https://github.com/judithabk6/clonesig25. All
the code for the analyses performed in this article, aggregated results from simulated and
real data, and code to reproduce all figures is available at https://github.com/judithabk6/
Clonesig_analysis75.
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