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CloneSig can jointly infer intra-tumor heterogeneity
and mutational signature activity in bulk tumor
seguencing data

Judith Abécassis® 23, Fabien Reyal'* & Jean-Philippe Vert® 2°*

Systematic DNA sequencing of cancer samples has highlighted the importance of two
aspects of cancer genomics: intra-tumor heterogeneity (ITH) and mutational processes.
These two aspects may not always be independent, as different mutational processes could
be involved in different stages or regions of the tumor, but existing computational approaches
to study them largely ignore this potential dependency. Here, we present CloneSig, a com-
putational method to jointly infer ITH and mutational processes in a tumor from bulk-
sequencing data. Extensive simulations show that CloneSig outperforms current methods for
ITH inference and detection of mutational processes when the distribution of mutational
signatures changes between clones. Applied to a large cohort of 8,951 tumors with whole-
exome sequencing data from The Cancer Genome Atlas, and on a pan-cancer dataset of
2,632 whole-genome sequencing tumor samples from the Pan-Cancer Analysis of Whole
Genomes initiative, CloneSig obtains results overall coherent with previous studies.
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ARTICLE

he advent and recent democratization of high-throughput

sequencing technologies has triggered much effort recently

to identify the genomic forces that shape tumorigenesis
and cancer progression. In particular, they have begun to shed
light on evolutionary principles happening during cancer pro-
gression, and responsible for intra-tumor heterogeneity (ITH).
Indeed, as proposed by Nowell in the 1970s, cancer cells pro-
gressively accumulate somatic mutations during tumorigenesis
and the progression of the disease, following similar evolutionary
principles as any biological population able to acquire heritable
transformations!. As new mutations appear in a tumor, either
because they bring a selective advantage or simply through
neutral evolution, some cancer cells may undergo clonal expan-
sion until they represent the totality of the tumor or a substantial
part of it. This may result in a tumor composed of a mosaic of cell
subpopulations with specific mutations. Better understanding
these processes can provide valuable insights with implications in
cancer detection and monitoring, patient stratification and ther-
apeutic strategy2—>.

Bulk genome sequencing of a tumor sample allows us in par-
ticular to capture two important aspects of ITH. First, by pro-
viding an estimate of the proportion of cells harboring each single
nucleotide variant (SNV), genome sequencing allows us to assess
ITH in terms of presence and proportions of subclonal popula-
tions and, to some extent, to reconstruct the evolutionary history
of the tumor®?. This estimation is challenging, both because a
unique tumor sample may miss the full extent of the true tumor
heterogeneity, and because the computational problem of
deconvoluting a bulk sample into subclones is notoriously diffi-
cult due to noise and lack of identifiability®!?. Second, beyond
their frequency in the tumor, SNVs also record traces of the
mutational processes active at the time of their occurrence
through biases in the sequence patterns at which they arise, as
characterized with the concept of mutational signature!l. A
mutational signature is a probability distribution over possible
mutation types, defined by the nature of the substitution and its
trinucleotide sequence context, and reflects exogenous or endo-
genous causes of mutations. Forty-nine such signatures have been
outlined!?, and are referenced in the COSMIC database, with
known or unknown aetiologies. They are sometimes denoted as
SBS for single-based substitutions signatures, in opposition to
signatures of other genomic alterations. Deciphering signature
activities in a tumor sample, and their changes over time, can
provide valuable insights about the causes of cancer, the dynamic
of tumor evolution and driver events, and finally help us better
estimate the patient prognosis and optimize the treatment
strategy>°. A few computational methods have been proposed to
estimate the activity of different predefined signatures in a tumor
sample from bulk genome sequencing!?!13, also known as the
signature refitting problem; we refer the reader to the reviewing
work of!41> for a more formal overview of existing methods.

These two aspects of genome alterations during tumor devel-
opment may not always be independent from each other. For
example, if a mutation triggers subclonal expansion because it
activates a particular mutational process, then new mutations in
the corresponding subclone may carry the mark of this process, as
observed for APOBEC mutations in human bladder!®. Alter-
natively, mutational processes may change over tumor develop-
ment due to varying exposures to mutagenes, or between cells of
the same tumor due to different micro-environments and hence
selective pressures. This may lead to additional changes in
mutational signatures of SNVs not necessarily coinciding with
clones, but possibly resulting in different signature activities
between different subclones. Consequently, taking into account
mutation types in addition to SNV frequencies may benefit ITH
methods, although the extent of this dependency in human

cancers is still unknown. Furthermore, identifying mutational
processes specific to distinct subclones, and in particular detecting
changes in mutational processes during cancer progression, may
be of clinical interest since prognosis and treatment options may
differ in that case. However, current computational pipelines for
ITH and mutational process analysis largely ignore the potential
dependency between these two aspects, and typically treat them
independently from each other or sequentially. In the sequential
approach, as for example implemented in Palimpsest!”, subclones
are first identified by an ITH analysis, and in a second step
mutational signatures active in each subclone are investigated. In
such a sequential analysis, however, we can not observe changes
in mutational signature composition if the initial clonal decom-
position step fails to detect correct subclones, and we ignore
information regarding mutational signatures during ITH infer-
ence. Recently, TrackSig!® was proposed to combine these two
steps by performing an evolution-aware signature activity
deconvolution, in order to better detect changes in signature
activity along tumor evolution. However, while TrackSig over-
comes the need to rely on a previously computed subclonal
reconstruction, it does not leverage the possible association
between mutation frequency and mutation type to jointly infer
ITH and mutation processes active in the tumor. Furthermore, by
design TrackSig can only work if a sufficient number of SNV is
available, limiting currently its use to whole-genome sequencing
(WGS) data. This is an important limitation given the popularity
of whole-exome sequencing (WES) to characterize tumors, par-
ticularly in the clinical setting. An extension has been proposed to
better account for SNV frequencies in the change point detection,
TrackSigFreq!®, but is still limited to WGS samples.

In this work, we propose CloneSig, a method that leverages
both the frequency and the mutation type of SNVs to jointly
perform ITH reconstruction and decipher the activity of muta-
tional signatures in each subclone. By exploiting the possible
association between subclones and mutational processes to
increase its statistical power, we show that CloneSig performs
accurate estimations with fewer SNVs than competing methods,
and in particular that it can be used with WES data. We show
through extensive simulations, and three independent simulated
gold-standard datasets®20-22 that CloneSig reaches state-of-the-
art performance in subclonal reconstruction and signature
activity deconvolution from WGS and WES data, in the presence
or absence of signature activity variations between clones. We
then provide a detailed analysis of 8,951 pancancer WES samples
from the Cancer Genome Atlas (TCGA) with CloneSig, and on
2,632 WGS samples from the International Cancer Genome
Consortium’s Pan-Cancer Analysis of Whole Genomes
(PCAWG) cohort?3, where we recover results coherent with
published results on WGS>2324 as well as different findings of
potential clinical relevance. CloneSig is available as a Python
package at https://github.com/judithabké/clonesig?°.

Results

Joint estimation of ITH and mutational processes with Clo-
neSig. We propose CloneSig, a method to jointly infer ITH and
estimate mutational processes active in different clones from bulk
genome sequencing data of a tumor sample. The rationale behind
CloneSig is illustrated in Fig. 1, which shows a scatter-plot of all
SNVs detected by WES in a sarcoma (TCGA patient TCGA-3B-
A9HI) along two axes: horizontally, the mutation type of the
SNV, and vertically, its cancer cell fraction (CCF) estimated from
WES read counts. Following previous work on mutational
processes! 126, we consider 96 possible mutation types, defined by
the nature of the substitution involved and the two flanking
nucleotides.
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Fig. 1 CloneSig analysis of 246 SNVs obtained by WES of a sarcoma sample (patient TCGA-3B-A9HI). The main panel displays all SNVs in 2
dimensions: horizontally the mutation type, which describes the type of substitution together with the flanking nucleotides, and vertically the estimated
CCF, as corrected by CloneSig with the estimated mutation multiplicity. From these data CloneSig infers the presence of 2 clones and a number of
mutational signatures active in the different clones. Each mutation in the main panel is colored according to the most likely mutational signature according
to CloneSig. On the right panel, the CCF histogram is represented and colored with estimated clones, and superimposed with mutational signature density.
The bottom panel represents the total mutation type profile. The changing pattern of mutation types with CCF is clearly visible, illustrating the opportunity
for CloneSig to perform joint estimation of ITH and signature activity, while most methods so far explore separately those data, considering solely the CCF
histogram in the right panel for ITH analysis, or the mutation profile of the bottom panel to infer mutational processes.

Standard methods for ITH assessment and clonal deconvolu-
tion only exploit the distribution of CCF values in the sample, as
captured by the histogram on the right panel of Fig. 1, while
standard methods for mutational signature analysis only exploit
the mutation profiles capturing the distribution of mutation
contexts, as represented by the histogram on the bottom panel.
However, we clearly see in the scatter-plot that these two
parameters are not independent, e.g., C>A mutations tend to
occur frequently at low CCF, while C>T mutations occur more
frequently at high CCF. CloneSig exploits this association by
working directly at the 2D scatter-plot level, in order to jointly
infer subclones and mutational processes involved in those
subclones. Intuitively, working at this level increases the statistical
power of subclone detection when subclones are better separated
in the 2D scatter-plot than on each horizontal or vertical axis, i.e.,
when the activity of mutational processes varies between
subclones. Additional examples are shown in Supplementary
Figs. 103 to 108.

Note that while the association between the frequency and the
type of a mutation may be the consequence of a co-segregation of
mutational processes and clones, which itself could occur if a
change in a mutational process coincides with a change in the
fitness of a cell and subsequently in the clonal composition of the
tumor, CloneSig’'s model does not rely on such a strong
hypothesis. In particular, an association may exist even if changes
in mutational processes do not coincide with clonal evolution,
and even if each clone contains heterogeneous populations of
cells expressing different mutational processes. What CloneSig
assumes is merely that, on average, the proportion of mutations
associated to each mutational process may differ between clones.
Importantly, if this assumption does not hold, then CloneSig can
still be used and behave like a standard method for ITH inference,
while we expect the performance of CloneSig to improve in cases
where the assumption holds.

More precisely, CloneSig is based on a probabilistic graphical
model?’, summarized graphically in Box 1, to model the

distribution of allelic counts and trinucleotidic contexts of SNV
in a tumor. These observed variables are statistically associated
through shared unobserved latent factors, including the number
of clones in the tumor, the CCF of each clone, and the mutational
processes active in each clone. CloneSig infers these latent factors
for each tumor from the set of SNVs by maximum likelihood
estimation, using standard machinery of probabilistic graphical
models. Once the parameters of the model are inferred for a given
tumor, we can read from them the estimated number of subclones
together with their CCF, as well as the set of mutational processes
active in each clone along with their strength. In addition, for
each individual SNV, CloneSig allows us to estimate the clone and
the signature that generated it, in a fully probabilistic manner; for
example, in Fig. 1, each SNV in the scatter-plot is colored
according to the most likely mutational signature that generated
it, according to CloneSig. Finally, we developed a likelihood ratio-
based statistical test to assess whether mutational signatures
significantly differ between subclones, in order to help character-
ize the evolutionary process involved in the life of the tumor. We
refer the reader to the Methods section and Box 1 for all technical
details regarding CloneSig.

Performance for subclonal reconstruction. We first assess the
ability of CloneSig to correctly reconstruct the subclonal orga-
nization of a tumor on simulated data, using four different
simulators: (1) the DREAM challenge dataset devised in2021,
consisting of 5 simulated WGS tumors with different sequencing
depths; (2) PhylogicSim500, comprising 500 samples generated
using the PhylogicNDT method, and (3) SimClonel000, com-
prising 972 samples generated with the simulator SimClone, both
proposed by22% and (4) CloneSigSim, a simulator we propose
which simulates data according to the probabilistic graphical
model behind CloneSig. The different simulators differ in the
underlying simulation models, as well as other features such as
the number of mutations simulated (DREAM, PhylogicSim500,
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Box 1 | Probabilistic graphical model for CloneSig

the distributions and parameters of the model.

Box 1: CloneSig’s algorithm

1 Input For a given tumor we observe

e p, the tumor purity of the sample, and for each SNV,

e B, and D, are respectively the variant and total read counts,
e (), is the copy number state,

e T, is the trinucleotide context.

2 Probabilistic model This network summarizes the structure of the
probabilistic graphical model underlying CloneSig. Each node repre-
sents a random variable, shaded ones being observed, and edges between
two nodes describe a statistical dependency encoded as conditional dis-
tribution in CloneSig.

This plot summarizes the structure of the probabilistic graphical model underlying CloneSig. Each node represents a random variable, shaded ones
being observed, and edges between two nodes describe a statistical dependency encoded as conditional distribution in CloneSig. For a given tumor we
observe p, the tumor purity of the sample, and for each SNV, B,, and D,, are respectively the variant and total read counts, C, is the copy number state,
and T, is the trinucleotide context. Unobserved latent variable include U,, the clone or subclone where the SNV occurs, S, the clone-dependent
mutational process that generates the mutation, and M,, the number of chromosomal copies harboring the mutation. See the main text for details about

Un, the clone or subclone where the SNV occurs,

e S, the clone-dependent mutational process that generates the muta-
tion,

e My, the number of chromosomal copies harboring the mutation.

and observed variables, conditionally on latent variables, with

7 the exposures of active signatures in each subclone,
¢ the cancer cell fraction of each clone,
£ the proportions of SNVs in each clone,

p the overdispersion parameter of read count observations.

3 Objective CloneSig estimates the parameters of the distributions of
latent (unobserved) variables We want 0 = (&, , p, ¢) to maximize the
likelihood of observed data.

N
L(gm,¢.p) o log {1‘[ LP(BH,T,I;B)}

n=1

N (] )

xclog | [T 30 B(Bu,TulUn, Sn, Mn, D, Cn,p; 6)

n=1Up,Sn, M,

4 Model fitting Optimization with an expectation-maximization
(EM) algorithm, with projected Newton method at M step.

5 Output Optimal values for 6 = (&, 7, p,¢). We can use CloneSig’s
model to obtain a posteriori most likely values for latent variables
Uy, Sn, My, or consider the probabilities for each possible value.

and SimClonel000 simulate typical WGS samples while Clone-
SigSim simulates both WES and WGS samples), the depth of
sequencing, the presence of subclonal copy number events (in
DREAM and SimClonel000). Importantly, the SNVs in the
DREAM dataset were simulated with a fixed distribution of sig-
nature activities across subclones, so this is a case where we do
not expect a benefit for CloneSig compared to other methods. The
PhylogicSim500 and SimClonel000 datasets were generated
without concern about mutational signatures, so we can add a
mutation type to each simulated SNV (among the 96 possibilities)
using either constant or varying signature activities across clones.
Similarly, for CloneSigSim, we can simulate SNV under both
scenario. In order to assess the performance of CloneSig under
various scenarios, we, therefore, consider two sets of simulations:
(1) the “constant” scenario, comprising DREAM, Phylo-
gicSim500, SimClonel000, and CloneSigSim simulated with
constant signature activities across subclones, and (2) the “vary-
ing” scenario, comprising PhylogicSim500, SimClonel000 and
CloneSigSim simulated with varying signature activities across
subclones.

In order to measure the correctness of the subclonal
reconstruction we use four different metrics adapted from?0
and described in details in the Methods section. Briefly, scorelB
measures how similar the true and the estimated number of
clones are, scorelC assesses in addition the correctness of
frequency estimates for each subclone, score2A measures the

adequacy between the true and predicted co-clustering matrices,
and score2C the classification accuracy of clonal and subclonal
mutations. We also assess the performance of eight other state-of-
the-art methods for ITH estimation and compare them to
CloneSig. First we evaluate TrackSig!®, that reconstructs signature
activity trajectory along tumor evolution by binning mutations in
groups of 100 with decreasing CCFs, and for each group performs
signature activity deconvolution wusing an expectation-
maximization (EM) algorithm. A segmentation algorithm is then
applied to determine the number of breakpoints, from which we
obtain subclones with different mutational processes. A recent
extension integrating CCF in the segmentation algorithm to also
perform subclonal reconstruction, TrackSigFreq!® is also con-
sidered. Because of this rationale, the authors recommend to have
at least 600 observed mutations to apply TrackSig or TrackSig-
Freq. For sake of completeness, however, we also apply TrackSig
with fewer mutations in order to compare it with other methods
in all settings. Third, we test Palimpsest!7, another method which
associates mutational signatures and evolutionary history of a
tumor. In Palimpsest, a statistical test based on the binomial
distribution of variant and reference read counts for each
mutation is performed, with correction for copy number, in
order to classify mutations as clonal or subclonal. Then, for each
of the two groups, signature activity deconvolution is performed
using non-negative matrix factorization (NMF). Those methods
are representative of the main approaches to the signature
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Fig. 2 Subclonal reconstruction performance of CloneSig and eight ITH reconstruction methods on simulated data. Each radar plot summarizes the
performance of the nine ITH reconstruction methods according to four performance measures on one set of simulated data. In short, score1B evaluates the
number of clones found by the method, scorelC the resulting mutation CCF distribution, score2A the co-clustering of mutations in the defined clones, and
score2C the classification of subclonal versus clonal mutations. All scores are normalized such that the best performing method lies on the outer circle, and
the worst near the center, to enhance visual distinction between methods. We have ensured that all scores are comparable by averaging them only on
simulations where all methods successfully produced an estimate under reasonable computation time and memory limits; PyClone results are not shown
on the DREAM, PhylogicSim500 and SimClone1000 datasets because it failed to produce an output too often. The four simulated sets on the left follow the
“constant” scenario, where signature activities are the same across all subclones, while the three simulated sets on the right follow the “varying” scenario,
where signature activities vary between subclones. Source data are provided as a Source Data file.

refitting problem: NMF-based approaches, and probability-based
approaches!41°, This limitation to two populations can induce a
bias in the metrics 1B, 1C and 2A that are inspired from??, so we
introduce the metric 2C to account for the specificity of
Palimpsest. Finally, we test five other popular methods for ITH
reconstruction which do not model mutational processes:
PyClone’, PhylogicNDT?® and DPClust®, which are Bayesian
clustering models optimized with a Markov Chain Monte Carlo
(MCMC) algorithm, Ccube?®, another Bayesian clustering model,
optimized with a variational inference method, and SciClone??,
also a Bayesian clustering model, optimized with a variational
inference method, that only focuses on mutation in copy-number
neutral regions.

Figure 2 summarizes the subclonal reconstruction performance
of CloneSig and other ITH reconstruction methods, under both
the “constant” and “varying” scenarios. Each radar plot shows the
average scores (1B, 1C, 2A, and 2C) reached by each method on a
set of simulated data. Under the “constant” scenario, we see that
CloneSig is on par with or better than the best ITH methods
(PhylogicNDT, DPClust, and Ccube) on all scores and across all
simulators, while SciClone, TrackSig, and TrackSigFreq have
overall poorer performance. This confirms that CloneSig reaches
state-of-the-art performance even if the main assumption
underlying its model is not met in the data, which is an
important property since the question of how often subclonal
populations with different signature activities emerge in tumors
remains open. Moving to the “varying” setting, where signature
activities vary across subclones, we see that, as expected, CloneSig,
TrackSig, and TrackSigFreq improve their performance, at least

on the PhylogicSim500 and CloneSigSim simulations. Interest-
ingly, CloneSig outperforms all methods on all simulations in that
setting, confirming the potential benefits of using CloneSig on
tumors where signature activities vary across subclones.

While Fig. 2 shows average performances across hundreds of
simulations with different parameters, it is also interesting to dig
deeper into how the performance of each method fluctuates as a
function of simulation parameters such as the number of clones
in the tumor or the number of mutations simulated. Figure 3
summarizes this for the PhylogicSim500 simulations (in both the
“varying” and “constant” settings, corresponding respectively to a
“varying” or “constant” signature setting), and we refer the reader
to Supplementary Note 2 for similar analyses for other simulators.

Regarding the estimation of the number of clones (scorelB),
CloneSig, Ccube, DPClust, and PhylogicNDT exhibit the best
performances in most settings except for 2 clones where they are
outperformed by Palimpsest, which however systematically
predicts two clones by design. In the unfavorable “constant”
scenario, PhylogicNDT has the best score, which may reflect the
fact that this particular dataset is simulated according to
PhylogicNDT’s model and might therefore be biased towards
that method by construction. As already observed in Fig. 2,
CloneSig, TrackSig, and TrackSigFreq see their performance
increase in the favorable “varying” scenario, which is expected as
they can leverage extra information to distinguish clones in cases
where signature activity varies between distinct clones. SciClone
tends to find a high number of clones, explaining its relatively
good scorelB for heterogeneous samples with 5 or 6 clones.
However, other scores do not have the same positive evolution,
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Fig. 3 Detailed subclonal reconstruction performance on the PhylogicSim500 simulations. This figure shows the four performance scores (rows) of the
different ITH reconstruction methods, when we vary one simulation parameter such as the number of clones simulated (left), the signature activity pattern
to mimic the “varying” or “constant” scenario (middle), and the number of mutations observed rounded to the closest thousand (right). Each point
represents the average of the scores over all simulated samples with a given parameter value. Bootstrap sampling of the scores was used to compute 95%
confidence intervals, which are not visible if smaller than the dot. We have ensured that all scores are comparable by keeping only simulations where all
methods output a prediction; PyClone results were excluded because they led to exclude too many samples. There are respectively 85, 47, 223, 250, and
236 samples with 1, 2, 3, 4, and 5 clones, 427 samples with constant and 414 with varying signature activities between clones, and 265, 347 and

229 samples with approximately 2000, 4000 and 6000 observed point mutations. Source data are provided as a Source Data file.

revealing SciClone’s limits. Regarding the impact of the number
of mutations on scorelB, we see that CloneSig and TrackSig
outperform all other comparable methods when the number of
mutations is lower, illustrating the advantage of considering extra
information in the ITH reconstruction process (we have already
made clear that Palimpsest’s estimation of the number of clones is
irrelevant, and TrackSig’s score has a very large error bar). As
expected, all methods improve when the number of SNVs
increases. Regarding scorelC, which focuses not on the number
of clones estimated by the ITH methods but on their ability to
correctly recapitulate the distribution of CCF values, we see that
all methods except SciClone, TrackSig, and TracksigFreq have
almost a perfect performance in all settings. TrackSigFreq
performs slightly worse than TrackSig, but this may be explained
by its poor performance when the number of mutations is too
low, as performance is closer to the other methods as the number
of mutations increases. Finally, SciClone is clearly the worst
performing method for scorelC.

Besides the ability of different methods to reconstruct the
correct number of subclones and their CCF, as assessed by
scorelB and scorelC, we measure with score2A their ability to
correctly assign individual mutations to their clones, an
important step for downstream analysis of mutations in each
subclone. Similarly to other scores, Ccube, DPClust, Phylo-
gicNDT and CloneSig have the best (and similar performances)
in the majority of settings. For all methods, score2A decreases
when the number of clones increases, and increases with more
observed mutations. Again, when comparing “constant” and
"varying” settings for signature activity, PhylogicNDT appears as
the best performing method over all “constant” samples, and
CloneSig dominates in the “varying” setting. Finally, when we
assess the capacity of each method to simply discriminate clonal
from subclonal mutations using score2C, a measure meant not to
penalize Palimpsest which only performs that task, we see again
that CloneSig is among the best methods in all scenarios, in
particular with fewer observed mutations, and very close to by
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Fig. 4 Accuracy of the number of clones estimated by CloneSig. To illustrate the factors that impact the validity of the subclonal reconstruction performed
by CloneSig, we have simulated samples with two clones, varying both the difference in the cancer cell fraction (CCF) between the two clones (vertical
axis) and the cosine distance between their mutational profiles (horizontal axis). The accuracy denotes the proportion of runs where CloneSig rightfully

identifies two clones. Source data are provided as a Source Data file.

Ccube, DPClust, and PhylogicNDT in other cases. Palimpsest is a
bit below these methods, as well as TrackSig and TrackSigFreq.
Again, CloneSig, TrackSig, and TrackSigFreq benefit from the
“varying” signature activity setting.

To further illustrate the interplay between signature change
and ability to detect clones, we now test CloneSig, TrackSig,
TrackSigFreq and Palimpsest on simulations with exactly two
clones, and where we vary how the clones differ in terms of CCF,
on the one hand, and in terms of mutational processes, on the
other hand (quantified in terms of cosine distance between the
two profiles of mutation type). Figure 4 shows the area under the
ROC curve (AUC) for the correct classification of clonal and
subclonal mutations by CloneSig as a function of these two
parameters. We see an increased AUC as the distance between the
mutation type profiles increases, for a constant CCF difference
between the clones. For example, when two clones have similar
signatures (small cosine distance), the AUC is around 0.7 when
the difference between their CCF is around 0.2; when their
signatures are very different (large cosine distance), the same
performance can be achieved when their CCF only differ by 0.1 or
slightly below. We show in Supplementary Fig. 110 how other
parameters (number of mutations, sequencing depth, diploid
proportion of the genome, choice of input signature) also impact
the performance of CloneSig in this setting. We also present
similar results for other methods that both account for mutation
frequency and mutational context in Supplementary Fig. 111, as
well as the influence of the number of observed mutations for
each of them in Supplementary Fig. 112.

Performance for signature activity deconvolution. In addition
to ITH inference in terms of subclones, CloneSig estimates the
mutational processes involved in the tumor and in the different
subclones. We now assess the accuracy of this estimation on
simulated data, using five performance scores detailed in the
Methods section. In short, score_sig 1A is the Euclidean distance
between the normalized mutation type counts and the recon-
structed profile (activity-weighted sum of all signatures); scor-
e_sig 1B is the Euclidean distance between the true and the
reconstructed profile; score_sig_1C measures the identification of
the true signatures; score_sig 1D is the proportion of signatures
for which the true causal signature is correctly identified; and
score_sig_1E reports the median of the distribution of the cosine
distance between the true and the predicted mutation type profile
that generated each mutation. We compare CloneSig to the three
other methods that perform both ITH and mutational process

estimation, namely, TrackSig, TrackSigFreq, and Palimpsest, and
add also deconstructSigs'3 in the benchmark, a method that
optimizes the mixture of mutational signatures of a sample
through multiple linear regressions without performing subclonal
reconstruction.

Figure 5 shows the performance of the different methods
according to the different metrics on the PhylogicSim500 dataset.
For Score_sig_1A and Score_sig_1B, there is a clear advantage for
CloneSig, TrackSig, and TrackSigFreq over Palimpsest and
deconstructSigs in all scenarios except when the number of
mutation is the smallest, in which case all methods behave
similarly. For Score_sig 1C, CloneSig, TrackSig, and TrackSig-
Freq exhibit the best AUC to detect present signatures in all
scenarios. This may be related to a better sensitivity as CloneSig
and TrackSig perform signature activity deconvolution in subsets
of mutations with less noise. All methods perform similarly with
respect to Score_sig 1D. The median cosine distance (Score_-
sig_1E) is slightly better for CloneSig compared to other methods
in all settings, particularly when there are three clones or more,
and when signature activity varies across subclones.

Opverall, as for ITH inference, we conclude that CloneSig is as
good as or better than all other tested methods in all tested
scenarios. Additional results where we vary other parameters in
each methods, notably the set of mutations used as inputs or the
set of signatures used as prior knowledge, can be found in
Supplementary Note 2; they confirm the good performance of
CloneSig in all tested settings. We also present a thorough
evaluation of signature activity deconvolution on the CloneSig-
Sim, SimClonel000 and DREAM simulated datasets in Supple-
mentary Note 2, which overall confirm the results observed on
the PhylogicSim500 dataset.

Pan-cancer overview of signature changes. We now use Clo-
neSig on real pan-cancer data, to analyze ITH and mutational
process changes in 8,951 tumor WES samples from the TCGA
cohort spanning 31 cancer types, and in 2,632 WGS samples from
32 cancer types analyzed by the PCAWG initiative which
represents the largest dataset of cancer WGS data to date.

For each sample in each cohort, we estimate with CloneSig the
number of subclones present in the tumor, the signatures active
in each subclone, and test for the presence of a significant
signature change between clones. Based on samples exhibiting a
significant signature change, we attempt to identify the signatures
that are the most variant for each cancer type. To that end, we
compute the absolute difference in signature activity between the
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Fig. 5 Comparison of CloneSig, deconstructSigs, Palimpsest, TrackSig, and TrackSigFreq for signhature activity deconvolution on the PhylogicSim500
dataset. Several metrics have been implemented, and are detailed in the main text. Scores_sig_1A and 1B are distances between the estimated mutation
type profile (as defined by the signature activity proportions) to the true mutation profile (defined using the parameters used for simulations, 1A), and the
empirical observed mutation profile (defined using available observed mutations, 1B), and is better when close to 0. Score_sig_1C is the area under the ROC
curve for the classification of signatures as active or inactive in the sample, and is better when close to 1. Score_sig_1D is the proportion of mutations for
which the correct signature was attributed, and is better when close to 1. Finally, Score_sig_1E is the median distance to the true mutation type profile of the
clone to which a mutation was attributed from the true distribution of its original clone in the simulation, and is better when close to 0. The results are
presented depending on several relevant covariates: the true number of clones (left), the signature activity setting (middle), and the number of mutations
(right). Each point represents the average of the score over all available simulated samples. We used bootstrap sampling of the scores to compute 95%
confidence intervals. There are respectively 87, 47, 223, 250, and 236 samples with 1, 2, 3, 4, and 5 clones, 428 samples with constant and 415 with
varying signature activities between clones, and 267, 347, and 229 samples with approximately 2000, 4000 and 6000 observed point mutations. Source
data are provided as a Source Data file.

largest subclone and the set of clonal mutations, neglecting cases
where the absolute difference is below 0.05. Figure 6 shows a
global summary of the signature changes found in the TCGA
cohort. For each cancer type with at least 100 patients (see
Supplementary Note 3 for the analysis over all cancers), it shows
the proportion of samples where a signature change is found, and
a visual summary of the proportion of samples where each

individual signature is found to increase or to decrease in the
largest subclone, compared to the clonal mutations. The thickness
of each bar, in addition, indicates the median change of each
signature. We retained only signatures found variant in more
than 10% of