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Abstract. We aim at better understanding the mechanisms of ischemia
and reperfusion, in the context of acute myocardial infarction. For this
purpose, imaging and in particular magnetic resonance imaging are of
great value in the clinic, but the richness of the images is currently under
exploited. In this paper, we propose to characterize myocardial ischemia
and reperfusion patterns across a population beyond the scalar measure-
ments used in the clinic. Specifically, we adapted representation learning
techniques to not only characterize the population distribution in terms
of scar and microvascular obstruction patterns, but also regarding the ap-
pearance of late gadolinium images which reflects tissue heterogeneity. To
do so, we implemented a hierarchical manifold learning approach where
the embedding from a higher-level content (the images) is guided by one
from a lower-level content (the infarct and microvascular obstruction
segmentations). We demonstrate its relevance on 1711 late gadolinium
enhancement slices from 123 patients with acute ST-elevation myocardial
infarction. We designed ways to balance the contribution of each level
in the hierarchy, and quantify its impact on the overall distribution and
on sample neighborhoods. We notably observe that the obtained latent
space is a balanced contribution between the two levels of the hierarchy,
and is more robust to challenging images subjected to artifacts or specific
lesion patterns.

Keywords: Manifold learning · Decision Hierarchy · Information fusion
· Cardiac imaging · Myocardial infarction

1 Introduction

The ischemic mechanims following the obstruction of a coronary artery can lead
to both structural and functional myocardial damage. For acute myocardial in-
farction, the benefits of treatments that restore the coronary circulation are coun-
terbalanced by potential reperfusion injuries (microvascular obstruction, MVO)
due to a sudden blood reflow in areas that were deprived of it [2]. In this context,
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imaging and in particular cardiac magnetic resonance imaging plays a crucial
role to understand the mechanisms of ischemia-reperfusion [5]. However, due to
limited analysis tools, the richness of the acquired images is under-exploited in
the clinical analysis. The lesion characteristics are limited to simple scalar de-
scriptors (extent and transmurality, mainly) [1], and the image contents are not
exploited (e.g. the heterogeneity of pixel values within the segmented lesions).

The field of representation learning offers very efficient tools to better cha-
racterize the lesion patterns within a population. It allows mapping the high-
dimensional data (e.g. images) to a simplified latent representation that facili-
tates the analysis of individual or subgroup trends. Within this field, manifold
learning offers a sound framework where statistical distances in the latent space
can be exploited for such a mapping. It assumes that the input samples lie on
a (non-linear) mathematical manifold that is unknown but can be learnt from
data.

However, the analysis of the imaging content within the myocardium is not
straightforward. For instance, in late gadolinium enhancement (LGE) images,
MVO is displayed as dark areas within bright and larger regions indicating the
infarct. The gray levels of MVO and healthy tissues may be close (see Fig. 1),
which can fool the metric used to compare images (often in a pixel-wise fashion),
in particular for large MVO. Other critical issues can happen in case of image
artifacts. This analysis could be substantially more robust by using additional
imaging information, up to the local appearance of the acquired images.

To merge the information from different imaging descriptors, several fusion
strategies exist within the field of manifold learning. For instance, Multiple Man-
ifold Learning (MKL) [8] finds the best linear combination between the affinity
matrices associated to each descriptor. A non-linear fusion process called Sim-
ilarity Network Fusion (SNF) [11] has also been proposed to iteratively merge
several descriptors. Nonetheless, these methods perform the early fusion of all the
descriptors at the same time, which may be suboptimal in our context. A better
integration scheme could consist in a hierarchical learning process, to guide the
embedding from a given descriptor by a previous embedding from a lower-level
descriptor. This approach is already part of standard clinical reasoning through
decision trees [10] and of computational methods through random forests [7].
However, it is hardly scalable to multiple high-dimensional descriptors from im-
ages. Bhatia et al. [4] proposed an interesting hierarchical manifold learning
scheme that could overcome this data integration problem, but it has only been
exploited to study a single medical imaging modality at different resolutions. In
contrast, we want to incorporate the data from several medical imaging modal-
ities in a hierarchical way and estimate a single representation for a population
of patients.

In this paper, we aim at improving the analysis of tissue heterogeneity in LGE
images by prior knowledge from the segmented lesions, which can be seen as a
hierarchical way of estimating a latent space. We propose to use the hierarchical
manifold learning framework such that the embedding from a higher level content
(the LGE images) is guided by the one from a lower level content (the infarct and
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microvascular obstruction zones segmented on these images). Here, we keep the
problem unsupervised and examine the distribution of ischemia and reperfusion
patterns across a population. As there is no groundtruth for such an unsupervised
problem, we design ways of selecting relevant hyperparameters a posteriori. We
demonstrate its relevance on a population of 123 patients with acute myocardial
infarct, to improve the analysis of potentially subtle tissue heterogeneities beyond
the prior segmentation masks.

2 Method

2.1 Hierarchical representation problem statement

We build a two-level hierarchical model, where x0
i stands for the i-th sample

from the lower/parent level (the image of the segmented lesions, where pixel
values lie in the interval [0,2], with 0, 1 and 2 respectively standing for the
healthy myocardium, the infarct, and the MVO), and x1

i corresponds to the
same sample from the higher level (the LGE image). We aim at estimating the
higher/child level latent space Y1 = [y1

i ]i∈[1,K] guided by the lower level latent
space Y0 = [y0

i ]i∈[1,K], K being the number of samples.

2.2 Spectral embedding

In this work, manifold learning is achieved within the diffusion maps framework
[6], which served as a basis for fusion [11, 8] and hierarchical [4] algorithms.

For each level m = {0, 1} in the hierarchy, pairwise affinities between indi-
viduals are encoded within the matrix Wm = [Wm

ij ] ∈ RK×K defined as:

Wm
ij =

�
exp(−�xm

i −xm
j �2

2σ2 ) if j ∈ Nk(i),
0 otherwise,

(1)

where Nk(i) stands for the neighbordhood of the i-th sample, based on the
k closest samples. The graph Laplacian is defined from this matrix as Lm =
Dm −Wm, where Dm is a diagonal matrix such that Dm

ii =
�

j W
m
ij .

Diffusion maps consists in performing the spectral decomposition of the graph
Laplacian to estimate Ym. In practice, this is achieved by diagonalizing the
matrix W̃m = (Dm)−

1
2Wm(Dm)−

1
2 , which corresponds to working with the

normalized graph Laplacian. It can be seen as a Markov chain matrix, where
W̃m

ij represents the probability of moving from sample i to j in one step of a
random walk on the graph [6]. The embedding corresponds to the eigenvectors
associated to the first higher eigenvalues of W̃m, after removing the trivial case
associated to the eigenvalue 1. It stands for the principal directions of diffusion
across the data manifold, approximated by the graph made of the available
samples.
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2.3 Hierarchical Manifold Learning

The hierarchical embedding proposed in Bhatia et al. [4] builds upon this frame-
work and minimizes the following cost function:

argmin
Y1

(1− µ)
�

i

�

j

�y1
i − y1

j�2W 1
ij + µ

�

i

�y1
i − y0

i �2, (2)

where Y0 = [y0
i ] was previously estimated by applying diffusion maps to the

lower-level data, and µ ∈ [0, 1] balances the contributions of the higher and lower
levels to the hierarchical embedding. If µ = 1, the optimal solution is Y1 = Y0,
so the hierarchical embedding is in this case the lower-level embedding. If µ = 0,
it corresponds to performing diffusion maps on the higher level only. In their
paper, Bhatia et al. showed that there is an analytic solution to this cost function
minimization for µ �= 0:

Y1 = (µI+ 2(1− µ)L1)−1µY0, (3)

where I stands for the identity matrix.

2.4 Hyperparameters optimization

Bhatia et al. arbitrarily set the weighting parameter µ. In contrast, we propose
two complementary strategies to find the best embedding for our application.

First, we computed a-posteriori each term in the energy function (Eq. 2),
and defined the optimal µ as the value for which the two terms are balanced
(Fig. 2b).

In addition, we quantified the point-to-point distances between the estimated
hierarchical embedding Y1 and the embeddings estimated for the higher and
lower levels considered independently. To reduce bias in the distances, we rescaled
the embeddings globally so that the standard deviations along their first dimen-
sion match, and determined the sign of the eigenvectors that produced the best
match. The optimal µ using this second strategy corresponds to the embedding
at equal distance from the high and low levels (Fig. 2c).

We implemented the method in Python 3.7.6. The whole algorithm was com-
puted on an standard laptop within a few seconds. The limiting part is the com-
putation of the affinity matrices for the whole set of images. The hierarchical
part of the algorithm (Eq. 2) is really quick as it doesn’t require any optimization
step.

3 Experiments and Results

3.1 Data and preprocessing

We analyzed the data from 123 patients with acute myocardial infarction re-
cruited in the MIMI study [3]. The myocardial content of the LGE images was
resampled to a reference anatomy using atlas-based techniques, as done in [9].
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Fig. 1: Representative pairs of LGE images and their corresponding segmen-
tation. The MVO and the infarct respectively correspond to the dark/red and
the bright/yellow regions in the grayscale/segmented images. Some challenging
samples are displayed: a very large MVO that covers most of the lesion and
could be counfounded with healthy myocardium (b), and a slice with typical
MRI artifacts (c). Note that during the transport of imaging data to a com-
mon reference, imaging contents may have been interpolated within a slice and
across slices, leading to non-categorical values for the segmentated images (not
completely blue/yellow/red).

In brief, this consists in a pixel-wise parameterization based on the local radial,
circumferential, and long-axis coordinates, which only requires labelling the LV-
RV junction on each slice, and the identification of the apex and base levels in
the stack of slices.

In this paper, we analyzed the 2D slices independently to benefit from a
larger dataset. Besides, the image stacks were artificially reoriented for patients
with LCX or RCA infarcts to match the location of the LAD infarct subgroup
and therefore prevent the infarct location from confounding the analysis. As
a result, we analyzed 1711 samples of segmented images as the parent, and
their corresponding grayscale images as the child (see representative examples
in Fig. 1).

3.2 Latent space organization

We first applied diffusion maps to the segmented images in which the infarct
and MVO are labeled, leading to the lower-level embedding Y0 (Fig. 2a-b-c,
left column). Then, we computed the affinity matrix associated to the LGE
image contents to define the graph Laplacian L1, and estimated the higher-level
embedding Y1 from Eq. 3 for several values of µ spanning the interval [0, 1].
For comparison purposes, diffusion maps were also directly applied to the LGE
images (Fig. 2a-b-c, right column).

The bandwidth σ of the kernel involved in the affinity matrices Wm was
set experimentally for each latent space. In the literature, it is commonly set as
the average distance between a sample and its k-th nearest neighbor. However,
this choice was not relevant in our case, in particular with MVO patterns. For
instance, if σ is too small, the principal directions of diffusion can be strongly
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Fig. 2: First three rows (a-b-c): Latent spaces obtained for the parent (left col-
umn) and child (right column) data independently, and for the optimal hierar-
chical embedding (middle columns). The first two dimensions are displayed, and
colored according to the infarct (a), MVO size (purple dots correspond to slices
without MVO) (b) or the average pixel value in the images (c). Last two rows
(d-e): The two optimal µ (vertical black line) were obtained from the crossing
of the distance curves (d) or energy curves (e), as explained in Section 2.4.
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affected by one specific sample. Conversely, if σ is too large, it can lead to a
shrinkage of the latent spaces to zero. We therefore heuristically set σ to the
lowest value allowing a meaningful data spread in the latent space (in our case
σ = 35 for the segmentation embedding, and σ = 25 for the image-based one).

As visible in the two central columns of Fig. 2a-b, the optimal values for
µ lead to intermediate latent spaces to which both the parent and child levels
contribute. Samples are no longer fully organized according to the segmentation
characteristics (the amount of infarct and MVO encoded in the colorscale of
Fig. 2a-b). They are neither strongly disorganized as obtained with the child
data only, but contain part of the information on image appearance (the average
pixel value is encoded in the colorscale of Fig. 2c).

The energy and distance curves in Fig. 2d-e confirm that µ = 1 leads to
matching the parent data embedding. In contrast, a jump is observed when
approaching µ = 0, as Eq. 3 would amount to Y1 = 0. This might be explained
by the sizes of the embeddings we obtained when approaching µ = 0 (typically
for µ ≤ 0.1). As the embeddings are really small (due to numerical issues), their
rescaling might be less accurate, leading to the jump in the distance curves. On
this population, a value of µ = 0.47 leads to balanced energies in Eq. 3, although
a smaller value of 0.16 is needed to get a hierarchical embedding equally distant
from the child and parent embeddings. In our case, the energy-based solution
is closer to the parent embedding structure, whereas the distance-based one is
closer to the child latent space.

3.3 Neighborhood consistency

Figure 3 complements these observations by showing representative cases picked
from the latent spaces. Row (a) shows a slice with a standard infarct pattern con-
taining a small MVO. The four images and segmentations displayed on the left of
the figure stand for the four nearest neighbors in the parent embedding, whereas
the ones on the right stand for the four neighbors from the hierarchical embed-
ding (balanced energies solution). We observe that both the neighbors from the
parent and hierarchical embedding have segmentations close to the sample slice.
However, the images from the hierarchical method are closer (compared with the
parent embedding) to the original subject. It means that the embedding is more
faithful to the MR image appearance. Row (b) displays the neighbors of a slice
with a large MVO that covers most of the infarct. In this case, we display on the
left the four nearest neighbors from the image-based embedding, while the im-
ages on the right correspond to the neighbors from the hierarchical embedding.
We observe here that the image-based neighbors have very different MVO pat-
terns, despite close image appearance. In contrast, the hierarchy-based neighbors
are much more consistent with the original pattern. This highlights the interest
of guiding the hierarchical embedding by the segmented data, which leads to
embeddings more robust to challenging image contents for unusual samples.
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Fig. 3: Illustration of the robustness to challenging image contents. The first
column represents the segmentation and image contents for two representative
samples: a standard infarct pattern with small MVO (a), and a large MVO
covering most of the infarct (b). The remaining columns show their four nearest
neighbors for these two cases, either picked from the segmentation- or image-
based embeddings, compared to the ones from the hierarchical embedding.

4 Discussion

We have demonstrated the relevance of a hierarchical approach for the analysis
of tissue heterogeneities in LGE images. Our hierarchy consisted in guiding the
representation of a higher-level (and more challenging) content, by a lower-level
(and easier to represent) content corresponding to the segmented images. We also
introduced two ways of selecting a relevant weighting parameter µ to balance
the contribution of each level in the hierarchy.

Our approach comes from the hierarchical way physicians integrate several
data from different sources, for more robustness and confidence in their diagnosis.
In our case, the hierarchy allows the integration of prior knowledge correspond-
ing to the lesion location. It can be seen as a way to circumvent the simplicity
of a pixelwise distance metric between samples, which may be counfounded by
specific lesion patterns or image artifacts. We used only simple metrics (pixel-
wise distances) and a well-known manifold learning framework (diffusion maps),
which may reveal limited for complex datasets. Our experiments demonstrated
that meaningful embeddings can be achieved even for the challenging cases in-
cluded in our database.

This hierarchical manifold learning algorithm could be extended to other
imaging protocols featuring several levels of data complexity (e.g. typical echocar-
diography or MRI examinations). The latent space can serve as an intermediate
representation to feed a classification algorithm, or as a simplified way to exam-
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ine complex data, as in our application. It allows the extraction of the principal
diffusion dimensions in such data spaces.

Better image metrics and more powerful algorithms could improve our results
in the future, but our purpose here was to demonstrate the interest of such a
hierarchy on a sound application. Future work will include the integration of
complementary imaging of the lesions such as T1 native and T2* images, early
gadolinium enhancement images, and myocardial deformation extracted from
image sequences, with the purpose of better understanding ischemia-reperfusion
mechanisms in the case of acute myocardial infarction.
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