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Some comparison results and a partial bang-bang property

for two-phases problems in balls

Idriss Mazari∗
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Abstract

In this paper, we present two type of contributions to the study of two-phases problems.
In such problems, the main focus is on optimising a diffusion function a under L∞ and L1

constraints, this function a appearing in a diffusive term of the form −∇ · (a∇) in the model,
in order to maximise a certain criterion. We provide a parabolic Talenti inequality and a
partial bang-bang property in radial geometries for a general class of elliptic optimisation
problems: namely, if a radial solution exists, then it must saturate, at almost every point, the
L∞ constraints defining the admissible class. This is done using an oscillatory method.
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1 Introduction

1.1 Scope of the paper, informal presentation of the problem

Scope of the paper In this paper, we aim at investigating several properties for a natural
shape optimisation problem that arises in heterogeneous heat conduction: what is the optimal way
to design the properties of a material in order to optimise its performance? This question has
received a lot of attention from the mathematical community over the last decades [1, 12, 10, 11,
13, 15, 14, 16, 22, 30] and our goal in this paper is to offer some complementary qualitative results.
Mathematically, these problems are often dubbed two-phase problems and write, in their most
general form, as follows: considering that the piece consists of a basic material, with conductivity
α > 0, we try to find the best location ω for the inclusion of another material having conductivity
β > α. The resulting diffusive part of the equation under consideration writes

−∇ ·
(

(α+ (β − α)1ω))∇ ·
)
. (1.1)

∗CEREMADE, UMR CNRS 7534, Université Paris-Dauphine, Université PSL, Place du Maréchal De Lattre De
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This diffusive part is supplemented with a source term, and can be considered in elliptic or parabolic
models. We study some aspects of both cases in the present paperin the case of radial geometries.
To state the generic type of question we are interested in, we write down the typical equation in
the elliptic case: for aball Ω, a source term f ∈ L2(Ω) (the influence of which is also discussed)
and an inclusion ω ⊂ Ω, let uω be the unique solution of{

−∇ ·
(

(α+ (β − α)1ω)∇uω
)

= f in Ω ,

uω = 0 on ∂Ω.
(1.2)

We consider a volume constraint, enforced by a parameter V1 ∈ (0; Vol(Ω)), and we investigate the
problem

sup
ω⊂Ω ,Vol(ω)=V1

J (ω) :=

ˆ
Ω

j(uω),

for a certain non-linearity j. More specifically, we consider the set

M(Ω) := {a ∈ L∞(Ω) : a = α+ (β − α)1ω for some measurable ω ⊂ Ω ,Vol(ω) = V1} , (1.3)

also called the set of bang-bang functions, as well as its natural compactification for the weak
L∞ − ∗ topology,

A(Ω) :=

{
a ∈ L∞(Ω) , α 6 a 6 β ,

ˆ
Ω

a = V0 := αVol(Ω) + (β − α)V1

}
.

For a ∈ A(Ω), we define ua,f as the solution of (1.2) with α+ (β − α)1ω replaced with a. We
will be interested in two formulations: the initial (unrelaxed) one

sup
a∈M(Ω)

ˆ
Ω

j(ua)

as well as the relaxed one

sup
a∈A(Ω)

ˆ
Ω

j(ua).

It should be noted that we will also for some results have to optimise with respect to the source
term f , but that the main difficulty usually lies in handling the term a. The two formulations of the
problem have their interest, as it may be interesting to see when the two coincides. In other words,
is a solution to the second problem a solution of the first one? Let us already underline several
basic facts: first, as is customary in this type of optimisation problems (we detail the references
later on and for the moment refer to [31]) we do not expect existence of solutions in all geometry,
and the proper type of relaxation should rather be of the H-convergence type. Nevertheless, we
offer some results about these two problems. Second, the type of problems we are considering are
not energetic (in the sense that the criterion we aim at optimising can not a priori be derived from
the natural energy associated with the PDE constraint). This leads to several difficulties, most
notably in handling the adjoint of the optimisation problem and in the ensuing loss of natural
convexity or concavity of the functional to optimise. Third, we distinguish between two types of
results: the first type correspond to Talenti inequalities, where we rearrange both the coefficient
a and the source term f . In the elliptic case, this follows from results of [6], and our contribution
here is the application of these methods to the parabolic case. A second type of result, given in
Theorem II, deals with a possible identification of the two formulations (i.e. if a solution to the
relaxed problem exists then it is a solution of the unrelaxed one) in radial geometries, and we do
not need for this second type of results to rearrange the source term f . This result is the main
contribution of this article.
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Informal statement of the results Our goal is thus threefold. For the sake of presentation
we indicate to which case (i.e. optimisation with respect to a, f or both) each item corresponds.
We write ua,f for the solution of the equation with diffusion a and source term f .We will need a
comparison inequality provided in [6] and that we recall in Theorem A.

1. Existence and partial characterisation in radial geometries (optimisation with
respect to a and f) This matter of existence and/or characterisation of optimal a in the
case of radial geometries is the topic of the two first results. TheTalenti inequality from [6]
leads to a comparison principle, but leaves open the question of the existence of optimal
shapes: if Ω is a centred ball, is there a radially symmetric solution a∗ to the optimisation
problem in Ω of the form

a∗ = α+ (β − α)1ω∗

for some measurable subset ω∗ ⊂ Ω? We prove in Theorem I that it is the case when the
function j is convex and we also allow ourselves to rearrange the source term f . We use
the ideas contained in [15] to do so and prove this theorem for the sake of completeness;
we highlight that the main contribution here is to prove that the methods of [15] work for
non-energetic functionals.

2. Weak bang-bang property under monotonicity assumption in radial geometries
(optimisation with respect to a) The second result of the ”elliptic problem” part, is the
main result of this paper, Theorem II. In it, we give a weak bang-bang property that does not
require convexity assumptions on the function j (and so no clear convexity on J ). Namely,
we prove that if, in a centred ball Ω, a solution a∗ to the optimisation problem exists, and
if j is increasing, then this solution has to be of bang-bang type. It is notable that, in this
theorem, we do not require the term f to be rearranged as well and that we can handle
non-energetic problem. This is proved by introducing, for two-phase problems, an oscillatory
method reminiscent of the ideas of [25].

3. Comparison results for parabolic models (optimisation with respect to time-
dependent a and f) We provide, in Theorem III, a parabolic Talenti inequality. The proof
is an adaptation of a result of [29], combined with the methods of [6].

Plan of the paper This paper is organised as follows: in Section 1.2 we present the models,
the optimisation problems and give some elements about the Schwarz rearrangement. In Section
1.3 we state our main results. Section 1.4 contains the bibliographical references. The rest of the
paper is devoted to the proofs of the main results. Finally, in the Conclusion, we state several
open problems that we deem interesting.

1.2 Mathematical model and preliminaries

1.2.1 Admissible sets

Henceforth, Ω is aa centred ball in IRd , and V0 ∈ (0; Vol(Ω)) is a fixed parameter that serves as
a volume constraint. As explained in the first paragraph, we are interested in both elliptic and
parabolic models. This leads us to define two admissible classes: the first one, used for elliptic
problems, is

A(Ω) :=

{
a ∈ L∞(Ω) : α 6 a 6 β a.e. in Ω ,

ˆ
Ω

a = V0

}
(1.4)

while the second, defined for a certain time horizon T > 0, is
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A(Ω;T ) := {a ∈ L∞((0;T )× Ω) : α 6 a 6 β a.e. in (0;T )× Ω ,

for a.e. t ∈ (0;T ) ,

ˆ
Ω

a(t, ·) = V0

}
(1.5)

The set of admissible sources, on which we also place a volume constraint modelled via a constant
F0 ∈ (0; Vol(Ω)), is

F(Ω) :=

{
f ∈ L∞(Ω) : 0 6 f 6 1 a.e. in Ω ,

ˆ
Ω

f = F0

}
. (1.6)

Similarly, we define, in the parabolic case,

F(Ω;T ) := {f ∈ L∞((0;T )× Ω) : 0 6 f 6 1 a.e. in (0;T )× Ω ,

for a.e. t ∈ (0;T )

ˆ
Ω

f(t, ·) = F0

}
. (1.7)

1.2.2 Statement of the equations and of the optimisation problems

Main equation in the elliptic case In the elliptic case, the main equation reads as follows:
for any a ∈ A(Ω) and any f ∈ F(Ω), uell,a,f is the unique solution of{

−∇ · (a∇uell,a,f ) = f in Ω ,

uell,a,f = 0 in Ω.
(1.8)

The solution uell,a,f is the unique minimiser in W 1,2
0 (Ω) of the energy functional

Ea,f : W 1,2
0 (Ω) 3 u 7→ 1

2

ˆ
Ω

a|∇u|2 −
ˆ

Ω

fu. (1.9)

Remark 1. Although for the classes A(Ω) and A(Ω;T ) the lower bounds 0 < α 6 a ensure
coercivity of the associated energy, it may be asked whether the non-negativity constraint on the
sources can be relaxed. It may be difficult, as we need in our proofs the following crucial fact: when
Ω is the ball, when f and a are radially symmetric functions of A(Ω) and F(Ω) respectively, the
solution ua,f is radially non-increasing in Ω. This may not be the case, for instance when f < 0
close to the center of the ball. Thus we choose simplicity and assume f > 0 almost everywhere.

In the elliptic case, the goal is to solve the following problem: let j ∈ C 1(IR) be a given
non-linearity, then the problem is

sup
a∈A(Ω) ,f∈F(Ω)

{
Jell(a, f) :=

ˆ
Ω

j (uell,a,f )

}
. (Pell,j)

In [6], a comparison result that we will use later on is proved; we recall it in Theorem A. This
comparison result states roughly speaking, that if j is increasing, there exist two radially symmetric
functions ã and f∗ such that Jell(a, f) 6 Jell(ã, f), with f∗ still admissible; ã, however, may violate
some constraints. Here, our main contribution is Theorem I, in which we prove it is possible to
choose a radially symmetric ã that satisfies the constraints if we assume that j is convex and C 2.
This is done by adapting the methods of [15].

Second, in Theorem II, we are interested in the following alternative formulation: f ∈ F(Ω)
being fixed, solve

sup
a∈A(Ω)

{
Jell(a) :=

ˆ
Ω

j (uell,a,f )

}
. (Pell,j,f )
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We prove, using an oscillatory technique that, if a solution a∗ exists and if j is increasing, then we
must have a∗ ∈M(Ω). We underline that this result does not require rearranging f .

Main equation in the parabolic case In the parabolic case, the main equation reads as
follows: for any a ∈ A(Ω;T ), any f ∈ F(Ω;T ), uparab,a,f is the unique solution of

∂uparab,a,f

∂t −∇ · (a∇uparab,a,f ) = f in (0;T )× Ω ,

uparab,a,f = 0 on ∂Ω ,

uparab,a,f (0, ·) = 0 in Ω.

(1.10)

The parabolic optimisation problem assumes the following form: for two given non-linearities j1
and j2 in C 1(IR) we consider the optimisation problem

sup
a∈A(Ω;T ) ,f∈F(Ω;T )

{
Jparab(a, f) :=

¨
(0;T )×Ω

j1 (uparab,a,f ) +

ˆ
Ω

j2 (uparab,a,f (T ))

}
.

(Pparab,j1,j2)
The main result is Theorem III, in which a parabolic isoperimetric inequality (with respect to the
coefficient a) is obtained: namely, it is better to have radially symmetric a and f .

1.2.3 Preliminaries on rearrangements

In this section we recall the key points about the Schwarz rearrangement,which will be used con-
stantly throughout this paper, and about the rearrangement of Alvino and Trombetti [6, 7] that
is crucial in dealing with two-phase isoperimetric problems.

Schwarz rearrangement: definitions, properties and order relations We refer to section
1.4 for further references, for instance for parabolic isoperimetric inequalities and for the time being
we recall the basic definitions of the Schwarz rearrangement. We refer to [19, 20, 23] for a thorough
introduction.

Definition 2 (Schwarz rearrangement of sets). For a given bounded connected open set Ω0 , the
Schwarz rearrangement Ω∗0 of Ω0 is the unique centred ball BΩ0

= B(0;RΩ0
) such that

Vol(BΩ0) = Vol(Ω0). (1.11)

For rearrangements of functions, we use the distribution function: for any p ∈ [1; +∞), for any
function u ∈ Lp(Ω), u > 0, its distribution function is

µu : IR+ 3 t 7→ Vol({u > t}). (1.12)

Definition 3 (Schwarz rearrangement of a function). For any function u ∈ Lp(Ω0) , u > 0, its
Schwarz rearrangement is the unique radially symmetric function u∗ ∈ Lp(Ω∗0) having the same
distribution function as u. u# stands for the one-dimensional function such that u∗ = u#(cd| · |d)
where cd := Vol(B(0; 1)).

As a consequence of the equimeasurability of the function and of its rearrangement1 there holds:

∀p ∈ [1; +∞) ,∀u ∈ Lp(Ω0) , u > 0 ,

ˆ
Ω

up =

ˆ
Ω∗0

(u∗)
p
. (1.13)

Two results are particularly important in the study of the Schwarz rearrangement:

1Two functions are called equimeasurable if they have the same distribution functions.
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• Hardy-Littlewood inequality: for any two non-negative functions f , g ∈ L2(Ω),

ˆ
Ω0

fg 6
ˆ

Ω∗0

f∗g∗. (1.14)

• PólyaSzegö inequality: for any p ∈ [1; +∞), for any u ∈W 1,p
0 (Ω) , u > 0,

u∗ ∈W 1,p
0 (Ω0) and

ˆ
Ω∗0

| ∇u∗|p 6
ˆ

Ω0

|∇u|p. (1.15)

Finally, we will rely on an ordering of the set of functions.

Definition 4. Let RΩ0
> 0 be the radius of the ball Ω∗0. For any two non-negative functions

f, g ∈ L1(Ω0) we write
f ≺ g

if

∀r ∈ [0;RΩ0 ] ,

ˆ
B(0;r)

f∗ 6
ˆ
B(0;r)

g∗. (1.16)

This ordering [17] provides the natural framework for comparison theorems in elliptic and
parabolic equations [3, 4, 28, 29, 36, 37, 38]. The following property is proved in [4, Proposition 2]:
for any non-decreasing convex function F such that F (0) = 0, for any two non-negative functions
f , g ∈ L1(Ω),

f ≺ g → F (f) ≺ F (g). (1.17)

We now pass to the definition of rearrangement sets:

Definition 5 (Rearrangement sets). For any non-negative function f ∈ L1(Ω0) we define

CΩ0
(f) := {ϕ ∈ L1(Ω0) , ϕ∗ = f∗} (1.18)

and

KΩ0
(f) :=

{
ϕ ∈ L1(Ω0) , ϕ > 0 a.e., ϕ ≺ f ,

ˆ
Ω0

ϕ =

ˆ
Ω0

f

}
. (1.19)

The following result can be found in [8, 27, 34]: for any non-negative f ∈ L1(Ω), KΩ(f) is a
weakly compact, convex set; its extreme points are the elements of CΩ(f).

The Alvino-Trombetti rearrangement: definition and property The Alvino-Trombetti
rearrangement is very useful when handling two-phase problems, and was introduced in [6, 7] to
establish some comparison principles for some elliptic equations with a diffusion matrix. The goal
is the following: let u ∈W 1,2

0 (Ω) ∩ L∞(Ω) be a non-negative function and let a ∈ A(Ω). We want
to prove that there exists ã that is radially symmetric, such that ã Id is uniformly elliptic and such
that ˆ

Ω

a|∇u|2 >
ˆ

Ω∗
ã |∇u∗|2 . (1.20)

One defines ã as the unique radially symmetric function such that

For a.e. t ∈ (0; ‖u‖L∞) ,

ˆ
{u∗>t}

1

ã
=

ˆ
{u>t}

1

a
. (1.21)

It can be checked [15] that
ã−1 ∈ KΩ∗

(
(a∗)−1

)
.
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Remark 6. In particular, if all the level-sets of u have Lebesgue measure zero and the gradient of
u does not vanish on these level-sets, this definition rewrites as

For a.e. t ∈ (0; ‖u‖L∞) ,

ˆ
{u∗=t}

1

ã|∇u∗|
=

ˆ
{u=t}

1

a|∇u|
. (1.22)

This fact follows from the co-area formula, which states in particular that

ˆ
{u>c}

1

a
=

ˆ ∞
c

ˆ
{u=t}

1

a|∇u|
.

[7, Lemma 1.2] or [15, Proposition 4.9] assert that: for any u > 0 , u ∈ W 1,2
0 (Ω), for any

a ∈ A(Ω), ã being defined by (1.21), there holds

ˆ
Ω

a|∇u|2 >
ˆ

Ω∗
ã|∇u∗|2. (1.23)

1.3 Main results

1.3.1 The elliptic case: Talenti inequalities and bang-bang property

Talenti inequalities for the relaxed problem Let us startby recalling an application of the
Alvino-Trombetti rearrangement to Talenti-like inequalities. Talenti inequalities originated in the
seminal [36] and have, since then, been widely studied [2, 3, 4, 8, 9, 28, 29, 37, 38]. Roughly
speaking, they amount to comparing, using the relation ≺, the solution u of an elliptic problem
with the solution u′ of a ”symmetrised” elliptic equation. This first result [6] is the stepping stone
to our main theorem and holds for the relaxed version of the problem:

Theorem A ([6], Comparison results, optimisation w.r.t. a and f). Let Ω be a centred ball. For
any a ∈ A(Ω) and any f ∈ F(Ω), ã being defined by (1.21), there holds

u∗ell,a,f 6 uell,ã,f∗ . (1.24)

As a consequence, for any increasing function j,

ˆ
Ω

j(uell,a,f ) 6
ˆ

Ω

j(uell,ã,f∗).

Thus, it seems quite interesting to investigate whether the optimisation problem (Pell,j) has
a radial solution. This would seem natural given the equation above. However, the Alvino-
Trombetti rearrangement only provides us with a rearranged coefficient ã such that the inverse
(ã)−1 ∈ KΩ∗(a

−1). This last set is however different from A(Ω). The same problem arises when
considering bang-bang functions a. We nonetheless obtain existence properties for the unrelaxed
problem.

Theorem I (Existence and bang-bang property in radial geometry for convex integrand, optimi-
sation w.r.t. a and f). Assume j is a convex C 2 function. Let R > 0. Let Ω = B(0;R). The
optimisation problem

sup
a∈M(Ω),f∈F(Ω)

ˆ
Ω

j(uell,a,f )

has a solution (a, f) ∈M(Ω)×F(Ω).
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The proof of this theorem is inspired by the proof of existence of optimal profiles for eigenvalue
problems in [15].

Finally, the last result for elliptic problems deals with a bang-bang property when optimising
only with respect to a: is it true that, if we just assume that j is increasing, if a solution a of
(Pell,j,f ) exists, then it is bang-bang? We can only partially answer this question, in the next
theorem. It is the main result of our paper.

Theorem II (Weak bang-bang property for increasing cost functions, optimisation w.r.t radially
symmetric a). Assume j is an increasing function such that j′ > 0 on IR∗+. Let R > 0. Let
Ω = B(0;R) and f ∈ F(Ω). Then, if the optimisation problem

sup
a∈A(Ω),a radially symmetric

ˆ
Ω

j(uell,a,f ) (Pell,j,a)

has a solution a, there holds

a ∈M(Ω) or, in other words, a = α+ (β − α)1ω for some measurable ω ⊂ Ω.

The proof of this theorem is based on the development of an oscillatory method recently intro-
duced in [25].

1.3.2 The parabolic case: time-dependent optimal design problems & application to
parabolic eigenvalue optimisation problems

In this second part, we state our main result devoted to the parabolic optimisation problem
(Pparab,j1,j2). The proof of the parabolic isoperimetric inequality is done by adapting the proofs
of Theorem A and of [29, Theorem 2.1]. For the sake of clarity, for a function u of two variables
u = u(t, x), the notation u∗(t, ·) stands for the Schwarz rearrangement of u(t, ·) with respect to
the space variable x.

Theorem III (Comparison results, optimisation w.r.t. a and f). Let Ω = B(0;R). Let a ∈
M(Ω;T ) and f ∈ F(Ω;T ). Then there exists a radially symmetric function ã defined on (0;T )×Ω
such that α 6 ã 6 β almost everywhere and such that, for almost every t ∈ (0;T ) and every
r ∈ (Ω;R) there holds ˆ

B(0;r)

u∗parab,a,f 6
ˆ
B(0;r)

uparab,ã,f∗ .

In particular, if j1 and j2 are convex increasing functions there holds

Jparab(a, f) 6 Jparab(ã, f∗).

Let us now offer some comments about this result, and about the method of proof.

Remark 7 (Comments on Theorem III). 1. The first thing that has to be noted is that, exactly
as in the elliptic case, although the new weight a satisfies the correct upper and lower bounds
α 6 β, there is a priori no guarantee that a ∈ M(Ω). Some other arguments would then be
needed in order to conclude as to the integral constraint. It is not clear at this stage how one
may go about this question.

2. The second remark has to do with the method of proof that is employed. The two main
available approaches in the context of parabolic equations are, on the one hand, dealing with
the parabolic problem directly, as is done in [29] and as we do here, and on the other hand
by time-discretisation of the evolution problem, as in [3]. We believe the second of these
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approaches may prove more delicate. To see why, let us recall the main steps of the proof of
[3]: the authors, which in particular try to prove a comparison result for rearrangement of
the source f in the parabolic equation

∂u

∂t
−∆u = f,

approximate this equation by the discretisation with time step N ∈ IN∗

N(uk+1,N − uk,N )−∆uk+1,N = fk,N

where fk,N = N
´ (k+1)/N

k/N
f. On each of these discretised problem, they use an elliptic Talenti

inequality, yielding a comparison with the solution of the same system with f∗k,N as a right-
hand side. This Schwarz symmetrisation operation is independent of the time-step (in the
sense that the definition of f∗ does not depend on the time step N). In our case however,
since the Alvino-Trombetti rearrangement depends on the function uparab,a,f evaluated at the
time t, this would translate, at the discretised level, as a rearrangement that would depend
on both indexes k and N . This may lead to potential difficulties in passing to the limit.

Let us underline that this type of parabolic comparison results can be very useful when dealing
with parabolic eigenvalue optimisation problems, as is done for instance in [32, Theorem 3.9].

1.4 Bibliographical references

In this paper, we offer contributions that may be viewed from several point of views, each of which
stemming from very rich domains in mathematical analysis.

Two-phase spectral optimisation problems Two-phase optimisation problems have a rich
history, and are deeply linked to homogenisation phenomenas. We refer, for instance, to [31, 1]
for a presentation of this rich theory, and we underline that one of the striking features of these
problems is that there is often a lack of existence results. These results are typically obtained by
proving that should an optimiser exist, then an overdetermined problem that can only solved in
radial geometries should have a solution. This is done by using Serrin type theorems [35], and
this phenomenon occurs in dimension d > 2. A typical and famous example of such problems is
the optimisation of the first Dirichlet eigenvalue of the operator −∇ · (a∇) under the constraint
that a ∈ A(Ω). To the best of our knowledge, the proof of non-existence of an optimal a∗ ∈ A(Ω)
when Ω is not a ball was only recently completed in a series of papers by Casado-Diaz [12, 10, 11].
However, these negative results in the case of non-radial geometries do not allow to conclude as for
the existence and/or characterisation of optimisers in radially symmetric domains. In this case,
the same spectral optimisation problem being under consideration, the first proof of existence can
be found in [15], using the Alvino-Trombetti rearrangement. We borrow from their ideas in the
proof of Theorem I (and we highlight the fact that we do not consider here energetic problems). To
underline the complexity of this spectral optimisation problem, let us also mention [22], in which
it is shown that, in the ball, the qualitative features of the optimiser a∗ strongly depend on the
volume constraint. We also refer to [13, 26] for the study of the spectral optimisation of operators
with respect to a weight a ∈ A(Ω) that appears both in the principal symbol −∇ · (a∇) and as a
potential.

Elliptic and parabolic Talenti inequalities Talenti inequalities, which originate in the sem-
inal [36] have been the subject of an intense research activity. For parabolic equations, the study
of such inequalities started, as far as we are aware, in the works of Bandle [9], Vazquez [38] and
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were later deeply analysed by Alvino, Trombetti and Lions [2, 3] on the one hand, and by Mossino
and Rakotoson on the other [29]. We would like to mention that we have recently obtained a
quantitative parabolic isoperimetric inequality for the source term in [24]. Alvino, Nitsch and
Trombetti have recently proved an elliptic Talenti inequality under Robin boundary conditions,
using a very fine analysis of the Robin problem [5]. This Robin Talenti inequality was then used
in, for instance, [21, 33].

2 Proof of Theorem I

Proof of Theorem I. For the first part of the theorem, we consider the case Ω = B(0;R) where
R > 0 is a fixed constant. We work with functions a ∈M(Ω). In other words, there exists ω ⊂ Ω
measurable such that

a = α+ (β − α)1ω,

and we aim at solving

sup
a∈M(Ω),f∈F(Ω)

J (f, a) =

ˆ
Ω

j(uell,a,f ),

under the assumption that j is convex on IR+.
Let us first note that for any a ∈ M(Ω) we have a∗ = α + (β − α)1B∗ where B∗ = B(0; r∗)

satisfies βVol(B∗) + Vol(Ω\B∗) = V0. As a consequence, for any a1, a2 ∈M(Ω),

K ((a1)−1) = K ((a2)−1)

where K (·) is the rearrangement class defined in definition 5. For the sake of notational conve-
nience, we define

K := K (a−1) where a is any element of M(Ω).

By Theorem A, for any a ∈ A(Ω) there exists a radially symmetric ã such that

ã−1 ∈ K , J(ã, f) > J(a, f)

where f is simply the Schwarz rearrangement of f . By convexity of the functional with respect
to f , f is a bang-bang function. We henceforth consider it fixed and focus on optimisation with
respect to a.

The problem with this reformulation is that there is a priori no guarantee that ã ∈M(Ω), and
it is in general false. To overcome this difficulty, we now focus on a slightly simplified version of
our problem:

sup
a radially symmetric s.t. ã∈K

ˆ
Ω

j(ua) where ua solves

{
−∇ · (a∇ua) = f in Ω ,

ua = 0 on ∂Ω.
(2.1)

Another refomulation, a priori encompassing a larger class, is

sup
µ̃ radially symmetric s.t. µ∈K

(
H(µ) :=

ˆ
Ω

j(vµ)

)
where vµ solves

{
−∇ ·

(
1
µ∇vµ

)
= f in Ω ,

vµ = 0 on ∂Ω.

(2.2)
We now proceed in several steps, following the ideas of [15]:

1. Existence of solutions to (2.2): we first prove, in lemma 8, that there exists a solution µ to
(2.2). This is done via the direct method in the calculus of variations.
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2. The bang-bang property for µ: we then prove, in lemma 9, that any solution µ of (2.2) is a
bang-bang function. In other words, there exists a measurable subset ω ⊂ Ω such that

µ =
1

α+ (β − α)1ω
.

This is done via a convexity argument. As a consequence, 1
µ ∈M(Ω), hence concluding the

proof.

Existence of solutions to (2.2) The main result of this paragraph is the following lemma:

Lemma 8. There exists a solution µ of the variational problem (2.2).

Proof of Lemma 8. We first note the following fact: if a sequence of radially symmetric functions
{µk} ∈ KIN weakly converges in L∞−∗ to µ∞ (which is an element of K by the closedness of K for
the weak convergence, see [27]) then, up to a subsequence,

H(µk) →
k→∞

H(µ∞).

Obtaining this result boils down to proving that, for any sequence of radially symmetric func-
tions {µk} ∈ KIN weakly converges in L∞ − ∗ to µ∞ there holds(

µk ⇀
k→∞

µ∞

)
⇒
(
vµk

→
k→∞

vµ∞ a.e. up to a subsequence

)
.

Indeed, it then simply suffices to use the dominated convergence theorem to obtain the required
result. Let us then prove that for any sequence of radially symmetric functions {µk} ∈ KIN weakly
converging in L∞ − ∗ to µ∞,

vµk
→
k→∞

vµ∞ in L2(Ω). (2.3)

However, since we are working with radially symmetric functions, this follows from explicit inte-
gration in radial coordinates of {

−∇ ·
(

1
µ∇vµk

)
= f in Ω ,

vµk
= 0 on ∂Ω

which gives, for any k ∈ IN (and with a slight abuse of notation),

rd−1v′µk
(r) = −µk(r)

ˆ r

0

sd−1f(s)ds.

Thus, from the Rellich-Kondrachov embedding

vµk
→
k→∞

vµ∞

{
weakly in W 1,2

0 (Ω) ,

strongly in L2(Ω).

It suffices to extract a subsequence that is converging almost everywhere.
We turn back to the proof of the lemma: let {µk}k∈IN be a maximising sequence for (2.2).

Since the set K is weakly compact, and since for any k ∈ IN µk is radially symmetric, there exists
a radially symmetric µ∞ ∈ K such that, up to a subsequence,

µk →
k→∞

µ∞ weakly in L∞ − ∗.

Hence, up to a subsequence,
H(µk) →

k→∞
H(µ∞)

so that µ∞ is a solution of (2.2).
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The bang-bang property for µ We now present the key point of the proof of Theorem I, the
bang-bang property.

Lemma 9. Any solution µ of (2.2) is of bang-bang type: there exists ω ⊂ Ω such that

µ =
1

α+ (β − α)1ω
.

Proof of lemma 9. We argue by contradiction and assume that there exists a solution µ of (2.2)
that is not of bang-bang type. We will reach a conclusion using a second order information on
the functional H, namely, by using the first and second order Gâteaux-derivative of the functional
H. Let us first observe that it is standard [18] to see that the map K 3 µ 7→ vµ is Gâteaux-
differentiable. Furthermore, for a given µ ∈ K and an admissible perturbation h at µ (i.e. such
that µ + th ∈ K for t > 0 small enough) the first order Gâteau-derivative of vµ in the direction h
is the unique solution v̇µ(h) of{

−∇ ·
(

1
µ∇v̇µ(h)

)
+∇ ·

(
h
µ2∇vµ

)
= 0 in Ω ,

v̇µ(h) = 0 on ∂Ω,
(2.4)

and the first Gâteaux-derivative of H at µ in the direction h is given by

Ḣ(µ)[h] =

ˆ
Ω

j′(vµ)v̇µ(h). (2.5)

This leads to introducing the adjoint state pµ as the unique solution of{
−∇ ·

(
1
µ∇pµ

)
= j′(vµ) in Ω ,

pµ = 0 on ∂Ω,
(2.6)

Remark 10. It should be noted that by explicit integration of the equation on vµ in radial coordi-
nate, vµ ∈ L∞(Ω); as a consequence, j′(vµ) is an L∞ function, so that pµ is well-defined.

Multiplying, on the one hand (2.4) by pµ, on the other hand (2.6) by vµ, and integrating by
parts gives

Ḣ(µ)[h] =

ˆ
Ω

1

µ
〈∇pµ,∇v̇µ(h)〉 = −

ˆ
Ω

h

µ2
〈∇vµ ,∇pµ〉 = −

ˆ
Ω

h

〈
∇vµ
µ

,
∇pµ
µ

〉
. (2.7)

We now compute the second order derivative of the criterion in a similar manner: the second order
Gâteaux derivative of vµ at µ in the direction h is zero. In other words, denoting by v̈µ this second
order derivative, we have

v̈µ = 0.

Indeed, this follows from the explicit computation of vµ as

rd−1v′µk
(r) = −µk(r)

ˆ r

0

sd−1f(s)ds.

Thus, it appears that µ 7→ vµ is linear. As a consequence we have that the second order Gâteaux

derivative of H at µ in the direction h, henceforth abbreviated as Ḧ(µ), is given by

Ḧ(µ) =

ˆ
Ω

j′′(vµ) (v̇µ)
2

+

ˆ
Ω

j′(vµ)v̈µ =

ˆ
Ω

j′′(vµ) (v̇µ)
2
. (2.8)

Hence, if j is convex, so is H. Thus any solution µ of (2.2) is an extreme point of K. In other
words

µ ∈ C (a−1) where a is any element of M(Ω).

It follows that 1
µ ∈M(Ω).

12



Conclusion of the proof As noted at the beginning of the proof, for any a ∈M(Ω) there exists
ã such that ã−1 ∈ K and such that J (ã, f) > J (a, f). Since

H
(

1

ã

)
= J (ã, f)

it follows that

J (ã, f) 6 H(µ) where µ is the solution of (2.2) given by lemma 8.

From proposition 9 µ is a bang-bang function. As a consequence, 1
µ := a is an element of M(Ω).

Thus

J (a, f) 6 J (ã, f) 6 H(µ) = J (a, f).

Thus a is a solution of the initial optimisation problem.
The proof of the theorem is now complete.

3 Proof of Theorem II

Proof of Theorem II. Throughout this proof we assume that we are given a radially symmetric
solution a of the optimisation problem

sup
a∈A(Ω),a radially symmetric

ˆ
Ω

j(uell,a,f )

and we want to prove that a ∈M(Ω). To reach the desired conclusion we argue by contradiction and
we assume that a /∈M(Ω). We emphasise once again that this proof does not require rearranging
the source term f . Since f is assumed to be fixed, we write J (a) for J (a, f) =

´
Ω
j(uell,a,f ) and

ua for uell,a,f .
Let us single out the following result, that follows from direct integration in radial coordinates

of (1.10):

Lemma 11. For any radially symmetric a ∈ A(Ω) and f ∈ F(Ω), ua ∈ W 1,∞(Ω), ua is radial
and we furthermore have, with a slight abuse of notation, for a.e. r ∈ (0;R),

u′a(r) = − 1

a(r)rd−1

ˆ r

0

ξd−1f(ξ)dξ. (3.1)

In particular, u′a is a non-positive function and, for any ε > 0, sup[ε;R] u
′
a < 0. It is strictly

decreasing if f > 0 in a neighbourhood of 0.

We now compute the Gateaux derivatives of both the maps a 7→ uell,a,f and of a 7→ J (a) (we
note that the fact that both maps are Gateaux differentiable follow from standard arguments).
We note that, to compute them, it is not necessary to assume that the coefficients a and f are
radiallly symmetric.

The first-order Gateaux derivative of uell,a,f at a in an admissible direction h (i.e. such that
a+ th ∈ A(Ω) for t > 0 small enough), denoted by u̇a, is the unique solution to{

−∇ · (a∇u̇a) = ∇ · (h∇ua) in Ω ,

u̇a = 0 on ∂Ω.
(3.2)
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The Gateaux derivative of J at a in the direction h is given by

J̇ (a)[h] =

ˆ
Ω

j′(ua)u̇a. (3.3)

This leads to introducing the adjoint state pa as the unique solution to{
−∇ · (a∇pa) = j′(ua) in Ω ,

pa = 0 on ∂Ω.
(3.4)

Multiplying (3.4) by u̇a and (3.2) by pa and integrating by parts gives

J̇ (a)[h] =

ˆ
Ω

j′(ua)u̇a =

ˆ
Ω

a〈∇pa ,∇u̇a〉 = −
ˆ

Ω

h〈∇ua,∇pa〉. (3.5)

In the same way, the second order Gateaux derivative of ua at a in the direction h, denoted by üa,
is the unique solution to {

−∇ · (a∇üa) = 2∇ · (h∇u̇a) in Ω ,

üa = 0 on ∂Ω,
(3.6)

and the second order Gateaux derivative of J at a in the direction h is given by

J̈ (a)[h, h] =

ˆ
Ω

j′′(ua)(u̇a)2 +

ˆ
Ω

j′(ua)üa. (3.7)

However, multiplying (3.6) by pa, integrating by parts and using the weak formulation of (3.4)
yields ˆ

Ω

j′(ua)üa =

ˆ
Ω

a〈∇pa ,∇üa〉 = −2

ˆ
Ω

h〈∇u̇a ,∇pa〉. (3.8)

Plugging (3.8) in (3.7) gives

J̈ (a)[h, h] =

ˆ
Ω

j′′(ua)(u̇a)2 − 2

ˆ
Ω

h〈∇u̇a ,∇pa〉. (3.9)

We now use the radial symmetry assumption: since h, a and f are radially symmetric, and since
u′a(0) = u̇′a(0) = 0, (3.2) implies, in radial coordinates, as

− au̇′a = hu′a. (3.10)

Furthermore, we have the following lemma:

Lemma 12. If j′ > 0 on IR∗+ then pa is a radially symmetric decreasing function:

p′a < 0 in (0;R).

Proof of Lemma 12. The fact that pa is decreasing simply follows from, first, the strong maximum
principle which implies that

ua > 0 in [0;R)

and, second, from explicit integration of the equation on pa in radial coordinates, which gives

p′a(r) = − 1

a(r)rd−1

ˆ r

0

j′(ua)rd−1dr < 0 for r > 0.
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The radiality of pa implies
〈∇u̇a ,∇pa〉 = u̇′ap

′
a.

As a consequence of (3.10), we have, for a constant Md > 0

−
ˆ

Ω

h〈∇u̇a ,∇ṗa〉 = −Md

ˆ R

0

rd−1h(r)u̇′a(r)p′a(r)dr

= Md

ˆ R

0

a(r) (u̇′a)
2 p′a
u′a

(r)dr

= Md

ˆ R

0

a(r) (u̇′a)
2 ap′a
au′a

(r)dr.

Let us first define

ϕ : r ∈ (0;R] 7→ ap′a
au′a

(r).

We observe that ϕ > 0 in (0;R] and that, as r → 0,

lim inf
r→0

ϕ(r) > lim inf
r→0

j′(ua(0))

f(r)
> 0. (3.11)

If f > 0 in a neighbourhood of 0 then we can extend ϕ by j′(ua(0))
f(0) > 0 in 0. If on the other hand

f = 0 in a neighbourhood of 0, then ϕ → +∞ when r → 0. In any case, there exists a constant
A > 0 such that

ϕ >
A0

2
> 0 in [0;R].

We define the function
Φ : Ω 3 x 7→ ϕ (|x|) ,

and we thus have

−
ˆ

Ω

h〈∇u̇a ,∇ṗa〉 = −2Md

ˆ R

0

rd−1h(r)u̇′a(r)p′a(r)dr

= 2Md

ˆ R

0

a(r) (u̇′a)
2 p′a
u′a

(r)dr

= 2

ˆ
Ω

Φa|∇u̇a|2

> A0

ˆ
Ω

a|∇u̇a|2.

Finally, as j ∈ C 2(IR+) and ua ∈ L∞(Ω) there exists a constant B > 0 such that

j′′(ua) > −B in Ω. (3.12)

We end up with the following estimate on J̈ (a)[h, h]:

J̈ (a)[h, h] =

ˆ
Ω

j′′(ua)(u̇a)2 − 2

ˆ
Ω

h〈∇u̇a ,∇pa〉 (3.13)

> A0

ˆ
Ω

a|∇u̇a|2 −B
ˆ

Ω

u̇2
a. (3.14)
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Remark 13. It should be noted that, at this level, we recover the convexity of the functional J if
we assume that j′′ > 0. Indeed, in that case we can take B = 0.

Let us now turn back to the core of the proof: we have a maximiser a /∈M(Ω). Let

ω̃ := {α < a < β}.

Since a /∈M(Ω),
Vol(ω̃) > 0.

Furthermore, for any h ∈ L∞(ω̃), extended by 0 outside of ω̃ and such that
´
ω̃
h = 0, we have

(since both h and −h are admissible perturbations at a)

J̇ (a)[h] = 0. (3.15)

To reach a contradiction, it suffices to build h ∈ L∞(ω̃)\{0} such that

ˆ
Ω

h1ω̃ = 0 and J̈ (a)[h1ω̃, h1ω̃] > 0. (3.16)

Actually, by approximation it suffices to build h ∈ L2(ω̃) such that (3.16) holds. For the sake of
notational simplicity, for any h ∈ L2(ω̃), we identify h with h1ω̃ ∈ L2(Ω). To obtain the existence
of such a perturbation we single out the estimate

J̈ (a)[h, h] > A0

ˆ
Ω

a|∇u̇a|2 −B
ˆ

Ω

u̇2
a. (3.17)

We introduce the sequence {σk , ψk}k∈IN∗ of eigenvalues of the operator −∇ · (a∇). We pick a
non-decreasing of the eigenvalue sequence:

0 < σ0 6 σ1 6 . . . 6 σk →
k→∞

+∞.

The eigenequations are given by

∀k ∈ IN∗ ,


−∇ · (a∇ψk) = σkψk in Ω ,

ψk = 0 on ∂Ω ,´
Ω
ψ2
k = 1.

(3.18)

For any admissible perturbation h at a, we decompose u̇a in this basis as

u̇a =

∞∑
k=1

αk(h)ψk, (3.19)

where the coefficients {αk(h)}k∈IN∗ are determined by equation (3.2). If we assume that, for an
integer K large enough, we have

∀k 6 K ,αk(h) = 0 ,

∞∑
k=K

αk(h)2 > 0 (3.20)

then we obtain, by expanding the right hand-side of (3.17),

J̈ (a)[h1ω̃, h1ω̃] > A

∞∑
k=K

σkαk(h)2 −B
∞∑
k=K

αk(h)2 > (AσK −B)

∞∑
k=K

αk(h)2

σk
> 0. (3.21)
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As a consequence it remains to construct a perturbation h such that

∇ · (h∇ua) =
∑
k>K

ηkψk. (3.22)

We need however to be careful, since ∇ · (h∇ua) merely lies in W−1,2(Ω). To overcome this
difficulty, we define, for any h ∈ L2(ω̃), the coefficient

ηk(h) :=

ˆ
Ω

h〈∇ua ,∇ψk〉. (3.23)

Since ∇· (h∇ua) ∈W−1,2(Ω), each of this quantities is well-defined. Furthermore, setting, for any
k ∈ IN,

αk(h) :=

ˆ
Ω

ψku̇a (3.24)

we have

αk(h) :=

ˆ
Ω

ψku̇a =
1

σk

ˆ
Ω

a〈∇ψk ,∇u̇a〉 =
ηk(h)

σk
. (3.25)

Since u̇a ∈W 1,2
0 (Ω) we have, in W 1,2

0 (Ω), the decomposition

u̇a =

∞∑
k=1

ηk(h)

σk
ψk. (3.26)

As a consequence, to ensure a decomposition of the form (3.19) it suffices to find, for K large
enough, an h ∈ L2(ω̃) such that

• h is radially symmetric,

• ‖h‖L2(ω̃) = 1 ,

• For any k = 1, . . . ,K − 1, ηk(h) = 0,

• There holds
´

Ω
h1ω̃ =

´
ω̃
h = 0.

We define L2
rad(ω̃) as the space of radially symmetric functions in L2(ω̃). Let us first note that for

any k ∈ {1, . . . ,K} the linear maps ηk := h 7→ ηk(h) are continuous on L2
rad(ω̃). This continuity

property is a consequence of the radial symmetry assumption on the coefficients, which from Lemma
11 implies that ∇ua ∈ L∞(Ω). Indeed, we can then simply write

|ηk(h)| 6 ‖∇ua‖L∞(Ω)

ˆ
Ω

|h| · |∇ψk|

6 ‖∇ua‖L∞(Ω)‖∇ψk‖L2(Ω)‖h‖L2(Ω)

= ‖∇ua‖L∞(Ω)‖∇ψk‖L2(Ω)‖h‖L2(ω̃),

whence the continuity.
Defining R0 ∈ L2

rad(ω̃)′ as

R0(h) :=

ˆ
ω̃

h,

which is obviously continuous on L2(ω̃) we are hence looking for hk such that

‖hK‖L2(ω̃) , hK ∈ ker(R0) ∩

(
K−1⋂
k=1

ker(ηk)

)
. (3.27)

17



However, L2
rad(ω̃) is an infinite dimensional Hilbert space, ker(R0) and

⋂K−1
k=1 ker(ηk) are closed

subspaces of finite co-dimension, hence ker(R0) ∩
(⋂K−1

k=1 ker(ηk)
)

has finite co-dimension. In

particular it is non empty, so there exists hK such that (3.27) holds. The conclusion follows.

4 Proof of Theorem III

Proof of Theorem III. For the proof of the parabolic Talenti inequalities we follow the main ideas
of [29, Theorem 2.1] and of [7]. Since the proof is very similar we mostly present the main steps.
To alleviate notations, we simply write ua,f for uparab,a,f . For a fixed a ∈ M(Ω;T ), we define,
for almost every t ∈ (0;T ), ã(t, ·) as the Alvino-Trombetti rearrangement of a(t, ·) with respect to
ua,f (t, ·). In other words, for almost every t ∈ (0;T ) and almost every s ∈ (0; ‖ua,f (t, ·)‖L∞),

ˆ
{u∗a,f (t,·)>s}

1

ã(t, ·)
=

ˆ
{ua,f (t,·)>s}

1

a(t, ·)
.

From [7, Proof of Lemma 1.2] we have, with Sd = dVol(B(0, 1))
1
d ,

S2
dµua,f

(t, s)2− 2
d 6

(
− d

ds

ˆ
{ua,f (t,·)>s}

1

a

)(
− d

ds

ˆ
{ua,f (t,·)>s}

a|∇ua,f |2
)
.

Let a is the one-dimensional counterpart of ã (i.e. ã = a(cd| · |d)). Then, as in [7], there holds,
almost everywhere,

− d

ds

ˆ
{ua,f (t,·)>s}

1

a
= −

∂µua,f

∂s

a
(t, s).

On the other hand the same arguments as in [3, Proof of Theorem 1] (see also [36]) show that,
almost everywhere

− d

ds

ˆ
{ua,f (t,·)>s}

a|∇ua,f |2 =

ˆ
{ua,f (t,·)>s}

(
f − ∂ua,f

∂t

)
.

We can hence conclude that

S2
daµua,f

(t)2− 2
d 6 −

∂µua,f

∂s
(t, s)

ˆ
{ua,f>t}

(
f − ∂ua,f

∂t

)
. (4.1)

We now rewrite ˆ
{ua,f (t,·)>s}

∂ua,f
∂t

=

ˆ µua,f
(t,s)

0

∂u#
a,f

∂t
.

Introducing as in [29] the function k defined as

k(t, ξ) :=

ˆ ξ

0

u#(t, ·)

we hence obtain ˆ
{ua,f (t,·)>s}

∂ua,f
∂t

=
∂k

∂t
(t, µ(t, s)). (4.2)
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By the Hardy-Littlewood inequality we have
ˆ
{ua,f>t}

f 6
ˆ µua,f

(t,s)

0

f#. (4.3)

Combining these estimates we are left with

1 6 −S−2
d a−1µua,f

(t, s)−2+ 2
d
∂µua,f

∂s
(t, s)

(ˆ µua,f
(t,s)

0

f# − ∂k

∂t
(t, µ(t, s))

)
(4.4)

which, after integration, gives

0 6 −∂
2k

∂ξ2
6 S−2

d a−1ξ−2+ 2
d

(ˆ ξ

0

f# − ∂k

∂t
(t, ξ)

)
. (4.5)

We denote by k∗ the function obtained by replacing ua,f by uã,f∗ in the definition of k. Since all
the previous inequalities become equalities in this case it follows that the function K := k − k∗
satisfies 

∂k
∂t − S

2
daξ

2− 2
d
∂2K
∂2ξ2 6 0 in (0; Vol(Ω))× (0;T )

K(0, ·) = 0 ,

K(t, 0) = 0 = ∂K
∂ξ (t,Vol(Ω)).

(4.6)

From the maximum principle, we have K 6 0, so that the conclusion follows. If j1 and j2 are
convex non-decreasing functions, the second conclusion of the theorem follows from [4, Proposition
2].

5 Conclusion and open problems

In this paper, we have undertaken the study of certain non-energetic two-phase optimisation prob-
lems. Of course, our results are partial, and we now present some open problems that we think
are worth investigating.

Open problem I: rearrangements for the time-independent case The first crucial ques-
tion has to do with the parabolic problem. Indeed, since the Alvino-Trombetti rearrangement we
use is defined differently for every time t, the question of time-independent a remains completely
open, and we believe it may be fruitful to investigate in the future.

Open problem II: possible relaxations of the problem, bang-bang property for the
parabolic optimisation problem The second problem has to do with the conclusion of The-
orem I. A more satisfying conclusion that we could not reach would have been a weak bang-bang
property, namely that, a profile a ∈ A(Ω) being given, there exists ã ∈ M(Ω) that improves the
criterion. Usually, this type of property is obtained using the convexity or concavity of the func-
tional. However, here, what we proved in Theorem II was that the second-order derivative of the
functional is positive on an infinite dimensional subspace of the space of admissible perturbations.
It is unclear whether this weaker information may be sufficient.

Open problem III: Robin boundary conditions Finally, let us note that, following the
recent progresses in the study of Robin Talenti inequalities [5], it may be very interesting to try
and understand which type of rearrangement of the weight a may be suitable to obtain Talenti
inequalities for two-phases problems under Robin boundary conditions.
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