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Abstract

We consider a coupled model of degenerate population dynamics with age dependence and
spatial structure but with unknown data on the birth rate of individuals. Using the notion of
low-regret, we prove that we can bring the state of the second population in a given region to
a desired state by acting on the first population via a localized control over a part of habitat.
We provide the optimality systems that characterize the adapted low-regret control and prove its
convergence to a so-called no-regret control that we characterize.

Mathematics Subject Classification. 49J20, 92D25, 93C41
Key-words : Degenerate population dynamics model, incomplete data, optimal control, No-regret
control, Low-regret control.

1 Introduction

In this paper we consider a coupled degenerate population dynamics model with missing data. This
model can be used to describe the dispersion of a gene in two given populations which are in interaction
( e.g cancer cells and healthy cells), see [2] for instance. More precisely, let T > 0, A > 0, U =
(0,7) x (0,A), @ =U x (0,1), Qa = (0, A) x (0,1), Q7 = (0,T) x (0,1), ¥ = U x {0,1}, w and O
are nonempty subsets of the spatial domain (0,1). We also set @, = U x w. Then, we consider the
following model of population dynamics:

Yt + Yo — (k(x)yl)d, + Ml(a)y = f + UVXw in Qa
2t + Zq — (k(z)zx)z + ,U'Q(a)z = KyXo in Q,
y=2z = 0 on X,
y(0,a,2) = yo(a,x), 2(0,a,2) = zo(a,x) in Qa, (1)
A

A
y(tvovx):A gl(a)y(ua,x)dm Z(t,O,!E) = /0 gz(a)z(t,a,:r)da in  Qr,

where y(t,a,z) and z(t,a,z) denote respectively the distributions of individuals of age a at time ¢
having a gene type x. The terms —pus(a)z(t,a,z) and —puq(a)y(t, a,x) describe the natural mortality
of individuals of age a at time ¢ and of gene type x of the population z and y respectively. The term

A
/ gi(a)W (t,a,x) da, is the flux of new born individuals while the functions g;(a), i = 1,2 are the
0
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age-specific fertility rates, 1 = 1,W =y or i = 2,WW = z. A is the maximal life expectancy. The
function f € L?(Q) represents the external supply of population. We have denoted by k the diffusion
coefficient, by v the control. The functions yo, 20 € L?(Qa) are the initials conditions, yx denote
the characteristic function of the set X. Here, we don’t have the distribution of newborns in the two
populations, these measurements are expressed here by the unknown variables ¢g; and gs.

We assume as in [1] that the dispersal coefficient k verifies

{keC([o,l])mcl((o,l]),k>0 in (0,1 and k(0) =0, @)
Fyel0,1) : ak(x) < k@), 2 € [0,1],

the death rates p;, i = 1,2 are such that
pi € L>(0,A), p; >0 a.e. (0,4), (3)
and the fertility rates g;, i« = 1,2 are unknown and verify
gi € L*(0,A), g; >0 aein [0,A]. (4)

For the sake of simplicity, we replace y by y/k, f by f/k, v by v/k, and yo by yo/k and we will consider
from now on, the following system:

Yt + Yo — (k(x)yx)x + ﬂl(a)y = f + UXw in Qa
2t + 2q — (k(x)zx)m + NZ(G)Z = YXo in Qu
y=2z = 0 on X,
y(0,a,2) = yo(a,x), =2(0,a,2) = zo(a,x) in Qua, (5)
A

A
y(t70’x):/0 gl(a)y(t7aax) da’a Z(t,o,l‘) = /0 g2(a)z(t,a,x)da in QT-

As in [5, 15], we denote by H}(0,1) and H?(0,1) the weighted Sobolev spaces respectively given by

HE(0,1) := {u € L?(0,1) : w is abs. cont. in [0,1] : Vku, € L?(Q),u(0) = u(1) = 0}, (6)
HE(0,1) :={u € H(0,1) : (kug), € H'(0,1)},
and endowed respectively with the norms,
00y = N2y + IVE@alZaye € HEO,L), .
”u”%g(O,l) = Hu”?qé(oyn + ”(k(m)ur)wH%Z(O,l)a u € le(o’ 1)'
Throughout the rest of the paper, we use || - || to denote the L>-norm in (0, A).
Remark 1 Under the assumptions (2), we have
1. HL(0,1) is compactly embedded in L*(0,1) (see [3]).
2. The trace at x =0 of a function of H}(0,1) exists.
Set
2
B = [C([0,T];L*(Qa4)) N C([0, A} L*(Qr)) N L*(U, H (0,1))] (8)
Wi(T,A) = {pe L*(U;Hy(0,1));pr + pa € L* (U; H;'(0,1)) } - (9)
Then we have that
Wi(T, A)  €([0,T], L*(Qa)) N C([0, A], L*(Qr)).- (10)



Under the assumption on the data one can prove as in [15, 5, 2] that the problem (5) has a unique
solution (y, z) in E. Moreover, there exists constant C = C(T, A, |11l oo, |42 lcos |91 | 0os [|g2]lcc) > 0,
such that
HZJ(T)HQH(QA) + ”y(A)”%?(QT) + ||Z(T)H%2(QA) + ||2(A)||2L2(QT)+
2 2
(H\/ny + ||?J%2(Q)> + (H\/Ezw + ||Z||2L2(Q)) < (11)

L2(Q)
C (W22, + I20032q0) + 01130,

L2(Q)

The purpose of this paper is to bring the distribution of cancer cells z in a given region O C (0,1) to
a desired distribution z4 by acting on the system via a control v over a part w of the domain. Such a
control may correspond to a removal on the subdomain w. We define the cost function

J(v,91,92) = ||2(v, 91, 92) — ZdH%Z(UxO) + N||U||2L2(Qw)7 (12)

where the term z4 € L2(U x O) is the desired state, and N > 0 is the cost coefficient and are given.
We point out that the objective is not to determine the unknown birth rates g;, ¢ = 1,2, but to
find a optimal control v solution to the following optimization problem:

inf sup (J(v,91,92) — J(0,91,g2)). (13)
VEL*(Qu) (g1,92)€[L2(0,A)]2

Problem (13) is called the no-regret control problem. The notions of no-regret control and low-regret
control were introduced by Lions [8] in order to control a phenomenon described by a parabolic equation
with missing initial condition.

The most challenging point is to prove that this family of controls (called low-regret controls)

converge towards the no-regret control. In [13], Nakoulima et al. applied this notion to linear evolution
equations with incomplete data. They proved that the low-regret controls converge to the no-regret
control for which they obtained a singular optimality system. In the nonlinear case, this notion was
also considered by Nakoulima et al. [12] to control (on the whole domain) a nonlinear system with
incomplete data. They observe on the one hand that the no-regret control is typically not easy to
characterize and, on the other hand that the low-regret cost function may not be convex. So, by
adapting this cost, they proved that the adapted low-regret control converge towards a no-regret
control. Finally they characterized this no-regret by a singular optimality system. Velin[14], studied
systems governed by quasilinear equations with unknown boundary condition and a control acting
on the whole domain. After established some regularity results, he proved by proceeding as in [12]
that the adapted low-regret control converge towards a no-regret control characterized by a singular
optimality system. Note that in the above papers, the convergence of the low-regret control towards
the no-regret control is obtained by controlling on the whole domain. Recently, Kenne et al. [7] used
the notion of no-regret and low-regret to control a model describing the dynamics of population with
age dependence and spatial structure with missing birth rate by acting on a part of the domain. They
proved that they can bring the state of the system to a desired state by acting on the system via
a localized distributed control. The results of this latter paper are extended here to a degenerated
coupled model with two missing data. We also refer to [10, 6, 11] for more literature.
In this paper we are interested in the optimization problem (13), where the cost function is given by
(12). Since the application from the space of the unknown birth rates to space of the state variables
is nonlinear, we linearize the cost and prove the existence of a no-regret control associated to this
new cost. Then we consider an adapted low-regret control problem obtained by relaxing the no-
regret problem. We prove the existence and uniqueness of the adapted low-regret control and show its
convergence toward the no-regret control. Finally we show that the optimality systems of the adapted
low-regret control converge to optimality systems which characterize the no-regret control.

The rest of this paper is structured as follows. In Section 2, we give some regularity results. We
study the low-regret and no-regret control and their characterizations in Section 3. A conclusion is
given in Section 4. The last section takes the form of an appendix wherein we will give the proofs of
some basic tools.



2 Preliminary results

To solve the optimization problem (13), we need some preliminary results. Set {2 = (0,1) and consider
the following model of population dynamics:

Yt + Yo — (k(2)Yz )z +u1(agy = h in Q,

2zt + 2q — ((/f( )2y )) +(u2(a ) = yxo in Q,
t,a, 1 t,a,0) = 0 on U,
y(t a,1) = z(t,a,0) = 0 on U, (14)
y((),a,:c) = yo(a,x), ( ;x) = Zo(a,iﬂ) in QA;
y(t,0,2) = by (t,x), =2(t,0,2) = ba(t,x) in Qr.

Let us state the following well posedness result.

Proposition 2.1 Assume that (3) holds true. Let h € L*(Q), (b1,b2) € L*(Qr)? and (yo,20) €
LQ(QA)Q. Let
E = [C((0,T); L(Qa)) N C([0, AJ; LA(Qxr)) N LA(U, HE ()]

Then the problem (14) has a unique solution (y,z) in E.
Moreover, there exists constant C = C(T, A, |11 |loo, || 42]lc) > 0, such that

ly(T)72 @u * (A Z2(0r) + IIZ(T)IIi;@A) +12(A)Z20p+
(ny vt |y||ig(Q)) - (H\/Ez ot z||2L2(Q)> < (15)
(Hh”L?(Q) + ”ZOH%Q(QA) + H:‘JOH%ﬁ(QA) + Hb1||%2(QT) + ||b2H%2(QT)) :

Proof. For the existence, we refer to [15, 5, 2]. To prove (15), we make a change of variable. For
r € R, we set
y(t,a,x) = e "y(t a,x), 2(t,a,x) = e 2(t,a, 1),

where (y, ) is the solution of (5). Then (g, Z) is the solution of

gt + ya ( ( ) a:)a: + ﬂl(a/)g = e_”h in Q,
Ze+ 2o — (k(7)Z2)2 + fi2(@)Z = Yxo in Q,
y(t,a,1) =g(t,a,0) = 0 on U, 16)
Z(t,a,1) = 2(t,a,0) = 0 on U, (
7(0,a,2) = yo(a,x), 2(0,a,2) = zo(a,x) in  Qua,
9(a,0,z) = e by (t,x), Z(a,0,x) = e Thy(t, ) in  Qr.

where in view of (3), fi;(a) =r + ui(a), i = 1,2.
Now, let (¢,a) € U. If we multiply the first and the second equation in (16) respectively by §(¢,a) and
Z(t,a), and integrate by parts over ), we obtain

1d

(0,0 gy + 5 e300, @) gy + || VEde(t,0)|

\V]

;(Q)-i-/m( )i (t, a, ) dx

eirth(t7 a’? I))g(t’ a7 x) dx’

I
@\

2

1d N
t d
2@ —i—/ng(a)z (t,a,z) dx

28, 0)32 0 + 5 2 I3 @)lFe() + || VEZ(t,0)

4
dt

N =

G\;

y(t,a,z)2(t, a,z) dx.
since fi;(a) = r + p;(a), i = 1,2, using Young and Cauchy inequalities,
1d 1d 5
Vi (t ‘
ket a)]| o)t

5 52y + 5 Nt )2y +
1 ~ 1 —rt 2
r=lmlles = 5 ) 19t a)ll72(0) < Slle” At @)z,




and
1d

2dt
1\, . 1,
(7= el = 5 ) 12,0 < 10l

2
G + 5 Lot + [VEat o],

3
choose r = max (|1 |00, [[£2]|l00) + 2 then it follows that

~ 2
> dtuy@ DNy + 5 715t ey + [VEL (), | + 15t D0y
< §||h(tva)||L2(Q)

and
1d d . . ) N 2 N )
el ey + 5 3 It Dl + [V, + 15y

< §Hy(ta a)”Lz(Q)a

which after an integration by part over (0,7) x (0, A) gives

I g + 515 ey + | ViDL, )+||y||%z<@
< §||hH%2(Q) + 5”3/0”%2(@,4) + 5\%1”%2(%) (17)
and
SIEDI g + SIE A + VB, + 1l
< Sl + gllzolan + 3152 3acr)- (18)

By combining (17) and (18), and replacing 7 and Z by e "'y and e "z respectively, we deduce (15)

3
with C = e"T, and where 7 = max (|| 111 |0, || 12]]00) + 3 This completes the proof. m

For the rest of the section and for the sequel, we denote by C(X) a positive constant whose value
varies from a line to another but depends on X. Let us adopt the following notation

Li = 8,5 + 8,1 — (k(x)aw)m + Wi, (19)
Ly = -0y — 0y — (k(l')ax)w + Wi

The following two propositions are proved as in [7, Propositions 2.1 and 2.2] using a change of variable
on the states and energy estimate.

Proposition 2.2 Let (y(v, g1, 92), 2(v, g1, 92)) be a solution of (5). Then the application (v, g1, ge) —
(y(v,91,92), 2(v, g1, 92)) from L?(Q.) x L*(0, A) x L?(0, A) onto [L?(Q))? is continuous.

Proposition 2.3 Let A > 0. Let g1,92,h1,ha € L?(0,A) and v,w € L?*(Q,). Let also (y,z) =

A Ah Ahg) —
(9(0,01,92),2(0. 91, 92) be a solution of (5). Set g = LTI H A2 £ ARe) 2 Y0 91,92)

z(v+ Aw, g1 + Ahi, g2 + Aha) — 2(v, g1, g2)

. Then as A — 0, (Y, 2x) converges strongly in

and Z) = \
[L2(Q))? to (¥, Z), where (¥, Z) is solution of

Ly = wxe W Q,

Loz = yxo n Q,

y=2z = 0 on X, (20)
y(0,+,-)=0, 20,,) = 0 in  Qa,

g( ,0,') = 43, 2(',07~) = 4 n  Qr,



with
A A
53=/ g1(a)y da+/ hi(a)y(t,a,z;v, g1, g2) da,
0 0

and
A

A
04 2/ g2(a)z da + ha(a)z(t,a, z;v, 91, g2) da.
0 0

Remark 2 Note that using the definition of the cost function given by (12) and Proposition 2.3, we

have that

I J(v+ Aw, g1 + Ahy, g2 + M) — J(v,91,92)
im -
A—0 A

2N vwdt da dx + 2/ / zZ(z(v,91,92) — za)dt da dx
Qu vJo

where (7, Z) satisfies (20).

3 Resolution of the optimization problem (13)

This section is devoted to the optimization problem (13). As the low-regret and no-regret notion
introduced by Lions [8] uses the decomposition of the solution of (5) on the form y(v,g1,92) =
y(v,0,0) + ©(g1,92) where y(v,0,0) is solution of (5) with g1 = ¢go = 0 and ¢(g1, g2) is a function
depending of g; and g, this decomposition is no longer valid because the map (g1, g2) — y(v, g1, g2)
from [L%(0,A))? to L*(U; HE(Q)) is non-linear. Thus using the regularity results of (y, z) given in
Proposition 2.2 and Proposition 2.3, we replace the cost function defined in (12) by its linearized form
with respect to g1 and go. Thus, we consider as in [9] the new cost-function

oJ oJ
Jl(v?gl7g2) = J(’U,0,0) + (U’ 0,0)(91) + (U,O, 0)(92)' (21)
391 a92

Then, we consider the following new optimization problem:

inf sup (Jl(vaglaQQ) - Jl(nglng))' (22)
vEL2(Qw) (g1,92)€[L2(0,A)]2

The solution of (22) if it exists is called no-regret control for the non-linear problem.
Let (y(v,0,0), 2(v,0,0)) € [L2(U; H}(£2))]? be the solution of

Lly(v,0,0) = fH+oxe in Q,

Loz(v,0,0) = y(v,0,0)x0 in Q,

y==z =0 on X, (23)
y(0,a,z) =yo(a,z), 2(0,a,2) = zp(a,x) in Qa,

y(t,0,2) =0, 2z(¢0,2) =0 in Qr.

Then we have the following result.

Proposition 3.1 For any (v,g1,92) € L?(Q.) x [L?(0, A)]?, the following equality holds:
nvange) = 00,0042 [ [ (200,000 ((0.0.0) -z dtdads (24)
vJo \ 9%

+2/U/O(§;2(v,o,0)(gz)> (2(v,0,0) — 24) dt da da

where J is the cost function defined in (12).



Proof. Observing on the one hand

J(v,tg1,0) H 2(v,91,0) = zallZ2 < 0) + NvllZz g

= J(v,0,0) + [lz(v,tg1,0) — 2(v,0, O)HL2(U><(’))
/ / (v,tg1,0) — 2(v,0,0))(2(v,0,0) — z4) dt da d,

+

and on the other hand
J(v,tg1,0) — J(v,0,0)

t b

J .
87‘91(@7 07 0)(91) = tlg%

using Proposition 2.3 and Remark 2, we obtain that
J (v, tgl,()) J(v,0,0)

J .
8791(1% 0, 0)(91) = %40

_ // (691 (1,0,0) gl)> (2(v,0,0) — z4) dt da d.

Analogously,

oJ 0z
6—@(1},0,0)(92) = Q/U/O<agz(v70,0)(gg)> (2(v,0,0) — z4) dt da dzx.

Using these two identities in (21) yields (24). m

Proposition 3.2 For any (v,g1,g2) € L?(Q.) x [L?(0, A)]?, we have
A
Jl(vvgl7g2) - Jl(Oaglng) = J(’U, Oa 0) - ‘](05 070) + 2/ Sl(a;v)gl(a)da
0

A
42 / Sy(a; v)ga(a)da,
0

where for any a € (0, A),

S1(a;v) = / [y(t,a,z;v,0,0)& (v) (¢, 0,2) — y(¢,a,2;0,0,0)& (0)(¢, 0, x)] dt dz,

T

Sa(a;v) = / [2(t,a, z;v,0,0)n2(v)(t,0,2) — 2(t,a,z;0,0,0)n2(0)(¢,0, x)] dt dz,

T

where (&1(v),m1(v)) is solution to

Li& (v) = m(v)xo in  Q,
Lim (v) = (2(v,0,0) = za)xo in Q,
§i(v) =m(v ) = 0 on X,
( )(T ) = nl(v)(Tv'v') =0 in  Qa,
() A,) =0, m@)(,A4,) = 0 i Qr,
and (&2(v),n2(v)) is solution to
Li&(v) = n(v)xo in  Q,
L;772(’U) = (Z(U, 0, O) - zd)XO m Q7
&2(v) = n2(v) =0 on 3,
fg(’U)(T,',') =0, 772(1))(T7'7') =0 in Qa,
52(1})('7‘4") =0, 772(1’)("147') =0 in Q.

(26)

(27)

(28)



Proof. From(21),

oJ
J1(0791392) = J(O>O7O) + —

391 (07070)(91) +

oJ
a9 07070 .
392( )(92)
In view of (24), we have
J1(v,91,92) — J1(0,91,92) = J(v,0,0) — J(0,0,0)
2 / / 2 (0,0,0)(00)) (-(0,0.0) ~ 70t dada
1

0z

%92 75— (0,0,0)(g2) ) (2(v,0,0) — 2q) dt da dz
_Q/U/O %9(0’0’0)(91) (2(0,0,0) — z4)dt da dx

092

2L

—1(0,0,0)(g2) ) (2(0,0,0) — z4)dt da dx.

From Proposition 2.3, we have that (g(g1),2(g1)) = <§;(v, 0,0)(g1), aa?z(v, 0, O)(g1)> is solution to
1 1

L1y(g1) =0 in Q,
Lz(g1 = glg1)xo in Q,
y(g1) = 2(g91) =0 on X,
g(gl)(oa'a') =Y 5(91)(0,-,-) = 0 in Qa,
y(g1)(-,0,-) =m1, Zz(91)(-,0,-) = 0 in Qr,

where

A
M1 Z/ g1(a)y(t,a,z;v,0,0) da.
0

(31)

So, if we multiply the first and the second equations of (31) respectively by &;(v) and 7;(v) solutions

of (28), and integrate by parts over @, we get

/U/O <(§i(v»070)(91)> m (v)dt da dx

= / g1(a)y(t, a,x;v,0,0)& (v)(t,0,2)dt da dx,
Q

/U/O( (,0,0)( ) (v,0,0) — z4)dt da dz
//(gyvoo )>n1(v)dtdadx.

Then, combining (32) and (33), we obtain

/U/o ((;9;(“’0»0)(91)> (2(v,0,0) — zq)dt da dx

= / g1(a)y(t,a,z;v,0,0)& (v)(¢,0,2)dt da dz,
Q

and

from which, we deduce that

/ / (391 (0,0,0)( )> (2(0,0,0) — 24)dt da dx

- / gl(a)y(t7 a, T; 07 07 0)51 (0)(t, 0, I’)dt da dCC
Q

(32)

(34)



Using again Proposition 2.3, we have that (3(g2), 2(g2)) = (ggi( 0,0)(g2), ggzg (v70,0)(gg)) is solu-

tion to

ng(QQ) =0 in Qv

LyZ(g2 = g(g2)xo in Q,

¥(g2) = Z(g2 =0 on X, (36)
5(92)(07'7 ) =0, 2(92)(07'7') =0 in Qa,

g(QQ)('707 ) =0, 2(92)('707 ) = M2 in  Qr,

where A
N = / ga2(a)z(t, a,z;v,0,0) da.
0

So, if we multiply the first and the second equations of (36) respectively by &;(v) and n2(v) solutions
of (29) and integrate by parts over @, we get

/U/O (gng(uO, 0)(92)) na(v)dtdadx =0 (37)

/ (a)z(t,a,x;v,0,0)&(v)(t, 0, x)dt da dx

/U/o< 0)(g )) (2(v,0,0) — z4)dt da dx (38)

:/U (a (1,0,0) g2)> 0o (v)dt da de.
(38

Also, by combining (37) and

and

+
@

), we are lead to

/U (8 7 v,0,0) (g2)> (2(v,0,0) — z4)dt da dx (39)

= / g2(a)z(t, a,x;v,0,0)&(v)(t,0, z)dt da dz,
Q

from which we deduce that

/ / (392 (0,0,0)( )) (2(0,0,0) — z4)dt da dx (40)
:/ng(a)z(ua,:v;07070)52(0)(t,0,x)dtdadx. (41)

Using (30), (34), (35), (39) and (40), (25) follows, with (26) and (27). This completes the proof. m
Proceeding as for the the proof of Proposition 2.2, we have the following result.

Lemma 3.1 Let (§&1(v),n1(v)) and (&2(v),n2(v)) be respectively solutions of problems (28) and (29).
Then the applications v +— (&1 (v),m1(v)) and v — (&2(v),m2(v)) are continuous from L*(Q.,) onto
[L2(Q)]2. Moreover the applications v — (£1(v)(+,0,-),m1(v)(+,0,-)) and v — (&2(v)(+,0,-),n2(v)(+,0,))
are also continuous from L?(Q,) onto [L?(Qr)]?.

Proposition 3.3 Let S1(-;v) and Sa(-;v) be the functions defined respectively in (26) and (27). Then
the maps v — S1(:;v) and v — Sa(+;v) are continuous form L*(Q.) onto L*(0, A).

Proof. We write the proof for S;(-;v), the proof for Sa(-;v) follows by using the same arguments.
Let vi,vs € L?(Q,,). Then in view of (26),

Sl(a;vl) - Sl(a;vz) = / (y(t7aax;1}17070) fy(t,a,x;112,0,0))51(1)1)(25,O,JI)dtdz
+ /Q y(t, a, z;v9,0,0) (&1 (v1) (8,0, ) — &1 (v2)(t, 0, 2))dt dx.



Using the Cauchy Schwartz inequality, we have

1S1(a;v1) — Si(asve)| < lly(., @, 5v1,0,0) — y(., a,5v2,0,0)[ 2 () 161 (v1) (-, 0, )| L2 (@)
+Hy('7a7';U2707O)HLZ(QT)”g(Ul)("O?')_g(v2)( 0 )HLQ(QT)

Hence, N

/ 1S1(a;v1) — S1(a;ve)|?da <

0

QHy( a, 71}170 O) (a a, 71]270 O)HL2 ||€(’U1)( 707 )”L2 QT)+
2[ly(. a, 5v2,0,0)[|72(q) 1€(v1) (., 0,.) — ( 2)(-0, )72
)

It then follows from Proposition 2.2 and Lemma 3.1 that Si(-,v1) — Si1(-,v2) as v1 — wvy. This
completes the proof. m

The following Lemma will be useful to prove the existence of the no-regret and low-regret controls.

Lemma 3.2 Let S1(.,v) and Ss(.,v) be respectively defined as in (26) and (27) for any a € L?(0, A).
For any~ > 0, we consider the sequences (y7,27) = (y(t,a,xz;u?,0,0), z(¢, a, z;u?,0,0)), (&1 (u?), n1(u?))
and (&2(uY),n2(u?)) , respectively, solutions of (23), (28) and (29) with v = uY. Assume that there
exists Cy,Cy > 0 independent of vy such that

||Sl(.,u7)||L2(07A) < (7 and ||SQ(.,U’Y)||L2(07A) < (Y

Assume also that (9,2) = (y(t,a,;4,0,0),y(t,a,z;4,0,0)) € [L2(U; Hi(2))]? solution of (23), and
@€ L*(Qu), £1(.,0,.),&(.,0,.),71(.,0,.),72(.,0,.) € L*(Qr) are such that

u? — @ weakly in L3(Q.), (42a)

(v7,27) = (3, 2) weakly in [L2(U, H(Q)], (42b)
E1u7)(0,.) — £1(,0,.) weahly in 12(Qp). (42¢)
n2(u?)(.,0,.) = 72(.,0,.) weakly in L*(Qr). (42d)

Then we have
S1(a;uY) — Si(a;a) weakly in D'(0, A),

and
Sa(a;u?) — Sa(a; @) weakly in D'(0, A).

Proof. Let D((0,A)) be the set of C* function with compact support on (0, A). Set for any
¢ € D((0,4))
A
7 (t, ) :/ y(t,a,z;u”,0,0)p(a)da, (t,z) € Qr, (43a)
0
A
ZV(t, x) :/ z(t,a,2;u”,0,0)¢(a)da, (t,z) € Q. (43b)
0
Then, in view of (42b), there exist two constants C7,Cy > 0 independent of v such that

HZ?"L2(QT)§ Iy |22 ll@llL20,4) < Ch,
127 L2@r) < 12722 (@) 18l L20,0) < Co

Consequently, there exist §, 2 € L%(Qr) such that

77 — § weakly in L*(Qr), (44a)
Qr).

77 — z weakly in L?(Qr) (44b)

10



Moreover, using (43a) and (42b), we deduce that

A
lim g (t, x)(t, z) dt doe = / / y(t, a, z;0,0)p(a)(t, ) de dt da, Vi € D(Qr).
T T 0

~—0 Q
This means that

A
TR / y(t,a,x;1,0,0)¢p(a) da weakly in D' (Qr).
0

It follows from (43a) and the uniqueness of the limit that,

A
g(t,x) :/ y(t,a,x;4,0,0)p(a)da, (t,z) € Qr. (45)
0
Arguing as the same for 27 while using (43b) and (42b), we obtain that
A
Z(t, x) :/ z(t,a,x;1,0,0)p(a)da, (t,z) € Q. (46)
0
Because (y7,27) = (y(t,a,z;u",0,0), 2(t,a, x;u”,0,0)) solves (23) with v = u”, we have that (g7, 27)
solves ~ ~ .
gl = (k(2)73)a = Kk in Qr,
z — (k(x)2))a = k3 in  Qr,
yr =z =0 on X,
A A
7O = [ Pansad 70 = [ Leséad m
0 0
where
A A A gy
Bt = [ (F+uxaode [ mlapoda— [ oda,
0 0 o Oa
and
A A A gy
Bt) = [ wxosda~ [ pala)oda— [ oda.
0 0 o Oa

Consequently, in view of (42a) and (42b), there exist two positive constants C; and Cy independent
of v such that

1/2
1K lz2@n) < (207 03aq) + 2122, + I3 o,m 1971320y ) Illz2c0,)+

99 <C
a|lr200,4) =V

192 |

and 12
13 lz2@n) < (21571320) + 230 a1 Baiq))  I0lz2o,a)+

9
12722 | 32 < Cy.

L2(0,A)

It then follows that there is C1,Cy > 0, independent of ~, such that

19720,y < Chs

Hy;/”L?((O,T);Hk_l(Q)) = G
and

12720, 1ymp )y < Cos

12 220,710y < Co

11



Therefore, it follows from Remark 1 and Aubin-Lions’s Lemma that
g7 — § strongly in L?(Qr) and 27 — Z strongly in L*(Qr) (47)

where for (¢,2) € Qr

A A
i) = [ ytami0d@dn and Eta) = [ st 00(d

because of (45) and (46).
Now in view of (26)

Si(a;u?) = / [y(t,a,xz;u”,0,0)& (u)(t,0,2) — y(t, a,2;0,0,0)£1(0)(¢, 0, z)] dt dx.

Therefore using (43a),

A A
/0 Si(a;u”)¢(a)da = /T/O (y(t; a,z;u7,0,0)p(a)da)és (u7)(t, 0, x)dt da dx

— / y(t,a,2;0,0,0)&1(0)(¢t,0, z)p(a)dt da dx
Q

= / g7 (t, x)& (u)(¢,0, z)dt da dx
Qr

- / y(ta Q, T; 07 07 0)51 (O)(t7 07 x)qﬁ(a)dt da d.’E, v¢ € D(Oa A)
Q

Passing this latter identity to the limit while using (47), (45) and (42c), we obtain

A
/ Siaupla)da — | §(t,2)E@)(t,0,x)dt dada
0 Qr

— / y(t,a,x;0,0,0)£1(0)(t, 0, z)p(a)dt da dx

Q
A
|| it .0,0)6(a)da)éa (@2, 0.)dt dada
T JO
= [ s00.0.0.060)0 000t dads o € DO, A),
Q

which in view of (26), proves
S1(a;u”) — Si(a;4) weakly in D'(0, A).
Proceeding as above while using (43b), (47), (46) and (42d), we obtain that
So(a;uY) — Sa(a; @) weakly in D'(0, A).

This completes the proof. m
From now on, we denote by D(©) the set of C* function with compact support on © and by D'(0),
its dual.

3.1 Existence of No-regret control and Low-regret control

In view of (25), the optimization problem (22) is equivalent to the following problem:

A
inf sup J(v,0,0) — J(0,0,0) + 2/ Si(a;v)g1(a)da
vEL2(Qu) (g1,92)€[L2(0,A)]2 0

A
+2/0 Sg(a;v)gg(a)da] .

12



A
As / Si(a;v)g;(a)da is either equal to 0 or +00, i = 1,2, we look for the control v in the set,
0

M= {v € LQ(Qw);/OA Si(a;v)gi(a)da =0, Vg; € L*(0,A),i= 172} . (49)

Lemma 3.3 The problem (48) has a solution @ in M.

Proof. 1t is clear that the set M is strongly closed in L?(Q,). On the one hand the application
v+ J(v,0,0)—J(0,0,0) is coercive on L?(Q,,), bounded below by —.J(0,0,0), and continuous because
of Proposition 2.2. On the other hand, since the applications v — S;(-;v), ¢ = 1,2 are continuous on
L?(Q.,), then using minimizing sequences and Lemma 3.2 there exists a no-regret control @ in M
satisfying (48). m

In order to characterize the no regret control 4, we consider for any v > 0, low-regret-control
problem:

A
inf sup J(v,0,0) — J(0,0,0) + 2/ S1(a;v)g1(a)da
VEL*(Qw) (g1,92)€[L(0,4)]2 0
. (50)
+2/0 Sa(a;v)ga(a)da —yllg1)1720, ) — 7||92||%2(0,A)] :
Using Fenchel-Legendre transform (see [4]), we obtain that,
A A
sup J(v,0,0) — J(0,0,0) 4 2 S1(a;v)g1(a)da + 2/ Sa(a;v)ga(a)da
(91,92)€[L?(0,A)]? 0 0
—7“91”%2(0,,4) - 7”92“%?(0,,4)_
M .
Si(a;v 1
= 70.0.0- 10,00 +2 s | [ g @da— Tl
g1€22(0,4) |Jo gl 2 |
M :
So(a;v 1
+2y  sup [/ 2 >92(a)da - §||92||%2(0,A)
92€L2(0,4) | Jo v |
1 1
= J(v,0,0) = J(0,0,0) + ;Hsl(';U)HQL%O,A) + ;||S2(';U)H%2(0,A)7
and (50) is reduced to
inf  J7(v), 51
ety TTW) (51)
where 1 1
J(v) = J(v,0,0) = J(0,0,0) + ;”Sl(';U)HQLQ(O,A) + ;HSQ(';U)”%P(O,A)' (52)

Remark 3 As J7(v) > —J(0,0,0) and J7(0) = 0. Using minimizing sequences, Proposition 2.2,
Proposition 3.3 and Lemma 3.2, we can prove as for Lemma 3.5 that problem (51) has at least one
solution u, € L*(Q,). But, as the applications v — S;(-;v), i = 1,2 from L*(Q,) to L*(0, A) are not
necessarily strictly convex, the uniqueness of u~, € L?(Q.), solution of (51) is not guaranteed. So, we
are not sure that control low-regret-control u., will converge to a no-regret control u € M. Therefore,
in order to have a low-regret control which will converge in M, we adapt the cost function J" to a
no-regret control u.

13



3.2 Existence of the adapted low-regret control

Let % be a no-regret optimal control. For any v > 0, we define the adapted cost function Nal by:
v JM(v) = J(v,0,0) = J(0,0,0) + [jv — @l|72 (g,
1 2 1 2
+;||51(~; V)lz20,4) + ;||52(‘; 0)122(0,4)- (53)
Then, we consider the following optimal control problem:

inf )j'y(v). (54)

vEL?(Qu
Proposition 3.4 Lety > 0. Then problem (54) has at least a solution i in L*(Qy).

Proof. We have J7(v) > —J(0,0,0) and J7(0) = ||a||2L2(Qw)' Using minimizing sequences, Propo-

sition 2.2, Proposition 3.3, Lemma 3.2 and the fact that lim J7(v) = 400, we prove as for
lvll L2 (q,,) =+

Lemma 3.3 that problem (54) has at least a solution @, in L?(Q,,). =

Proposition 3.5 Let i, € L*(Q.) be a solution of (54). Then there exist (p),p2) = (p1 (i), p2(ty)) €
[L2(Us Hy ()P, (33, 8) = (01(iiy), g2(8y)) € [L2(Us Hy ()] and (25, 23) = (p1(iy), ¢2(ily)) €

[L2(U; HE()))? such that { (-, 2,), (€,7), (E2.72), (B3, 2), (@, G2), (&3, #2)} is a solution of the sys-
tems:

Ly, = f+i,Xe in Q,
LQE'Y = g'YXO n Qa
Uy = 2y = 0 on X, (55)
9(0,a,2) = yo(a,z), Z,(0,a,2) = 2zo(a,x) in Qa,
g’y(tv 0, .T) =0, g'y(ta 0, Z‘) = 0 m  Qr,
Ly = X0 in  Q,
Lo, = (& —zxo in Q,
% =7 1 = 0 on X, (56)
é}y(Tv'a') =0, ﬁ'y(Ta'a') = 0 mn QA;
GOA) =0 (A = 0 in Qr,
Ly é = ixo in  Q,
L3y = (& -zxo in Q,
g = , = 0 on X, (57)
~;/(Tv'v') =0, ?Q(Ta'a') = 0 "L Qa,
’Y("A’ ) =0, 777(-’14, ) =0 m  Qr,
Ly é @xo in  Q,
L;(i‘y = (Z’Y - Zd)XO + Q’y m Qa
q% = =0 on X%, (58)
q~ (Tv'v') =0, qz(T77) = 0 mn QA7
q’y('aAa ) =0, q~ry('7A7 ) = 0 mn QT7
Lyp, =0 in Q
Lap, = Pyxo in Q,
S ! o B
Dy =Dy = 0 on X, (59)
ﬁ’y(ov'f) :Oa ﬁ?ngoaa) =0 mn QA,
1
~1 ~ - ~2
pi(-,0,) = — [ 2(@,,0,0)S1(a,ty)da, p5(-,0,:) = 0 in  Qr,
5(450,) 7, (tiy,0,0)51(a, ty) 5(50,)

14



(60)

(61)

Lk =0 in  Q,
Lo = PiXxo in  Q,
¢ =¢2 =0 on %,
~}/ 07'7') = 03 953(07 ) ) = 0 1 m QAu
1
~1 ~2 ~ ~ .
14 ('707') =0, 12 ('a07') = 7/ Z(’LL ,O,O)SQ(G7U )da’ m QT7
Y Y ﬁ o Y Y
and
(N+1)ay —a+¢ =0 in Qu,
h L5 X0 + —= @ X0 + 21 (i1y) (1,0, 2)S1 (a3 iy) + ~ (i) (1,0, 2) S5, i)
Where 0y = ——P XO — P XO T Q1 \U , U, Z)01(a5 U —n2(u , U, T)02(a, Uy ),
Yy \/,7 ¥ ﬂ o ,y Y Yy ,y Yy Y

(gv’gv) = (y(ﬁ7,070)72(ﬁ7,070)), and (2/777%) = (fz'(ﬁw)ﬂh(ﬁv)% i=1,2.

Proof. We write the Euler-Lagrange optimality condition that characterizes a.:

)l\ln’lo ‘77(’&7 + )\’lf\) B ‘77(’&7) — 07 Yw € L2(Qw>

Using Proposition 2.3 and Proposition 3.2, we obtain after some calculations

0 = // (@,0,0)(w) (2(4,0, 0)—zd)dtdadx+/ (ty — w)wdt da dx

w

+ / Nty wit dada + / gz(qu 0)(w)éx (i) (2, 0, 2) 1 (a, i )dt da dar
Q

Q
+ /%il(u )( )(t,o,‘r)Z(ﬂ,,y,O’O)Sl(a;a,y)dtdadm

;1 / 0 (1,,0,0) () ity (¢, 0,) S50, @ )t da d
7 g Ov

" /85”( D(w)(E,0,2) (75, 0,0)85(a; 3y )db dada, Y € L(Qu),

where

(9(0), 20) = (G400 0.0)(0). 520, 0.00w) ). Entw).m(w) = (G, w), G

(&(w), T2 (w)) = (a&(ﬁv)(w), aﬂz(ﬂﬁ(w)) are respectively solutions to

Ov Ov
ng(w) = WXw in @,
Loz(w = Jw)xo in Q,
g(w) = z(w) = 0 on X,
y(w)(0,--) =0, 2z(w)(0,-) = 0 in  Qa,
y(w)(-,0,-) =0 Z(w)(-,0,:) = 0 in  Qr,
L& (w) = mw)xo in Q,
Lim (w) = Z(w)xo n Q,
§1(w) = m(w = 0 on X,
é;l (w)(Ta ) ) =0, m (’LU)(T, ) ) =0 in  Qa,
G(w)(A4,)=0, Mmw)(,4,-) = 0 in  Qr,
and
Li&a(w) = p(wxo n Q,
Lina(w = Z(w)xo in Q,
§2(w) = M (w = 0 on X,
72(U))(T, K ) =0, 772(’IU)(T, K ) =0 in QAv
2(’LU)('7A,-) =0, 772(’[1))(',14,-) = 0 in Q.

(62)

(1,)(w)) and



To interpret (62), we use the adjoint states (p,y,p,y) (q,y,q,y) (go,y, go,y) So if we multiply the first and
the second equation of (63) respectively by qy and q7 solutions of (58) and we combine the result, we

multiply the first and the second equation of (64) respectively by ﬁp,y and \lf;ﬁ,y solutions of (59), we

multiply the first and the second equation of (65) respectively by \%ga,y and ﬁcﬁ?y solutions of (60),
then integrate by parts over ) and combining the result, we obtain respectively

/L;q;g(w)dtdadz +/ L;quz(w)dtdadx:/ (j,lywdtdader/ / J(w)@dt da dx,
Q Q Qu UJo

1
\ﬁQT

+— | Laop w) = — w)p dtdadx—i—— w)pP 2dt da dz,
7 Jo 2P5171 (w) \ﬁ . 0771( )P~ gl

=
Vel

gl(w)(t,(),x)f)}y(t,O x)dt dx + 7/ 7 (w)(t,0,x)p ?{(t,O,:c)dtda:

1
ﬁg(w)(t,O,x)@i(t,o,x)dtdx+ —/ Lﬂé%ﬁg(fw)dtdadx

Qr
= L

= — 7 dtdada:—&——// dtdadm.
VY JulJo 2()

By combining the three latter equalities, we obtain

/ (N +1)ay — @+ @ )wdtdadz =0, Yw € L*(Qu),

w

which implies that
(N 4+ 1)y — @+ ¢, =0in Q. (66)

This completes the proof. m

3.3 Characterization of the no-regret control

In this section, we are about to characterize the no-regret control. Before to do so, let us state the
following result which gives the estimations needed for the characterization.

Proposition 3.6 Let i, € L*(Q.) be a solution of (54). Let also (§y, %), (€1,72), (€2,72), (B, 52),
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(@, @), (pL,82) be such that (55)-(61) hold true. Then we have the following estimations: fori = 1,2

iyl 22(q.) < C (N, Co),

1 -
ﬁ ||S¢(-;u—y)|\L2(07A) < Cy,

195 (-5 iy )l 20,4y < V/7CO

1991 201 (0)) < C (N, T, Co),

1232 a2 0)) < C (N, T, Co)
1€ 22 o mia) < C(T,Co),
17 | 22 (012 02)) < C (T, Co)
172(-,0, )l 2(@r) < C (T, C),
18310, )l z2(@r) < C (T Co),
||‘Py(-a 0, ) z2(@r) < Co,

122 (.,0, )l £2(@r) < Co,

155 | 22 012 (02)) < C (T, Co)
||%5£YHL2(U;H;(Q)) < C(T,Cy),

||q'z;/HL2(U;H;(Q)) < C(N,T,Cy),

where Co = C (@l L2(qu)» 1Yol L2(@a)» 120l 2(@ ), 11 L2y 1zall 22 (@) -

Proof. We proceed in three steps.
Step 1. We prove the estimations (67)-(72).
As 4., is solution of (54), we can write

T (iy) < T7(0) = [l 12(q.)-
It then follows from the definition of 77 and .J given respectively by (53) and (12) that,
. . . 1 -
12y = zall72 gy + Nllayl122q.) + 1y — @ll72q) + ;HSl(ﬁuv)”%Z(o,A)
1 - -
+;”S2(';U’Y)HQL2(O7A) < HUHQL?(QW) +/2(0,0,0) — Zd”%?(UxO)'

Hence we deduce (67), (68), (69) and

12y = zallL2wxo) < C (lallz2(qu)s 1WollL2(@ s 20l 2@y 1fl22(@), 1zallL2@)) -

(67
(68

)
)
(69)
(70)
(71)
(72)
(73)
(74)
(75)
(76)
(77)
(78)
(79)
(80)

(81)

(82)

Observing that (§,, Z,), (&2,7}), and (£2,72) are respectively solution of (55), (56) and (57), proceeding

as in Proposition 2.1, we obtain that
9722 m )y < Clllyollzz@a) + [[20ll22(@a) + 1 fllz2(@) + ldyllz2qu))-

1232 9)) < Clllvollzz@a) + l20llz2(@a) + [1fllz2@) + @11 12(qu)):

Hé}y(wov N2 + H&HLZ(U;H;(Q)) + Hﬁrly”LQ(U;Hé(Q)) < Oy = zal 2 wx 0
and

€3N 22 ) + 175 0, M 2@y + 173 p2 )y < CliZy = 2all 2w xo),
from which we respectively, deduce (70)-(75) because of (67) and (82).

17



Step 2. We prove the estimations (76) and (77).
We observe that for i = 1,2

1 A
= Z(tvaaz;ﬂ’Y?OaO)Si(a;a'Y) da| <
\ﬁ/o

1/2
1 :
i

So using (68) and (70), we deduce

Je

A
|‘Si(';a’)’)||L2(O,A) </ Z(taa7x;a77070)2da')
0

dt dx

IN

I _ _
\ﬁ/@ z(t,a,x;6y,0)S;(a; 4y) da

< C,

where C' = C (||1~J,||L2(Qw), Hy()”Lz(QA), ”ZO”LZ(QA)a Hf||L2(Q)7 sz”Lz(Q)) > (0. This means

||25'1y(a 0, .)||L2(QT) <C (”ﬁ‘HLZ(Qw)? ||y0||L2(QA)7 ”ZOHLZ(QA)v Hf||L2(Q)7 ||Zd||L2(Q)) )

and

125 0] 1y < € (lEllz2(Qu)s 190l L2 (@) 20l 22(@0): 1 1l22(0)- ll2allL2(@) -

1 - -
§||Sz'(-§Uw)|\%2(o,A)HZv||%2(Q)

Since (p},p2), (2, @2) are respectively solution of (59) and (60), proceeding as in Proposition 2.1

while using (76) and (77), we obtain

185 | 22 s )) < C (@l 2@y 90l L2(@a)s 1201l 22 @0y 1 2@y 1 2dll 2(@))

and

1852 sm ) < C (lllz2@uys lwollz2@as 120l L2@a)s I 1122 (@) l2all L2 (@)) -

Step 3. We prove (80).
We observe that ((j}{, zj%), solution of (58), can be decomposed as

(@.8) = (@ + .22 + &) where (g1,22) is solution to

Ligy = 3xo in Q,
qu_'y = (3 —zi))xo in Q,
(j% - (ﬁ =0 on 3,
g (T,-,-) =0, (fé(T’.") - 0 n Qa
G0 A) =0, T4 = 0 i Qr,
and (qA}Y, (j,%) is solution to
Ligy = @xo i Q
L;q’y = Q'Y in Qa
(I% — (fy =0 on X,
a(T,-,-) =0, qz(T, ) = 0 in Qu,
q’y('7A7') = Oa q7('7Aa') = 0 in QT,

(84)

1 1 1 1
where ¢, = —p2xo + 7@3){0 + ;&(ﬂﬁ(tﬁ,x)&(a;ﬁy) + ;nz(ﬂﬂ,)(t,o,x)SQ(aﬂw). Proceeding

il el

as in Proposition 2.1, while using (82), we obtain

1@ 2w ) + 1@ N 2w ) < C,s
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where C' = C (|4l L2(q.) 1¥ollL2(Qa): 120l L2(@a)s 1 fllL2(q)s [[2all L2(@))-
Combining (62), (66) and (66), we obtain for all w € L*(Q.,

z 1o g 1 i a: 1 U 5(a, o adx
/Qz<w>(ﬁpy><o+ﬁmo+vsl< DO a ) + L) (0) 2, w) dt da.d

(86)
+/ / Z(w)(Jy — za)dt dadx +/ N, wdt da dx +/ (iy — @)wdt dadz = 0.
Set
£ = {Z(w)7 w e LZ(QW)}. (87)
Then £ C L?(Q). We define on € x & the inner product:
(Z(v), 2(w)) e = / vw dt da dx +/ Z(v)zZ(w)dt da dz, VZ(v), Z2(w) € E. (88)
w Q
Then &£ endowed with the norm
1Z)[E = [wlZzq.) + 12w)lI12(q), VE(w) € € (89)
is a Hilbert space. We set
1, 1, 1 U T i
Ty (ay) = NIk AL A 551(%)(0)51(%%) + ;772(%)(0)52(@7%)-
Then, in view of (86), we have for any w € L*(Q,,),
/ T, (ty)Z(w)dtdadr = / / — zq)dt da dx
@ (90)
— / Nu, wdtdadaj—/ (ty — @)wdt da dz.
Qu w

Using the Cauchy Schwarz inequality, we have

‘ // dtd“dz*/ (N + )i, — @) wdt dadz| <

w

12y = zall 2w <o) I2(w) || L2(@) + (N + Dy || z2@u) 1wl L2(@u) +
ol z2(@u) Wl L2 (Qu)-

Therefore, using (82) and (67),

‘ // y — Zd) dtdadx—/ (N + 1)y — @) wdtdadz| <

w

B ~ B 1/2
(1152 = 242200y + IV + DlF 2y + 13l 2@u?) * I12(w)le <
Cllz(w)le,

where C = C (N, T, |[a]| 12 (q.): voll 2 (@) 120l 22 (@) 1 f | 22(@) [12dll 22()) > 0. Tt then follows from

(90)
’ / w)dtdadz
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< Cllz(w)le-




Consequently,

1T Ga)lle = H p,,xw—mm L6 (1) 01 @) + () 0)a(a )
.

IN

In particular,

<,

L2(Q)

H R0+ =0 + SE0,)0)8 () + T (i) 00, )

where C' = C (N, T, il 2(q..) lIvollL2(@.)- 120l 22 (@) 1/ 22 (@) l2all 2(q)) > 0-
Now, proceeding as in Proposition 2.1, while using the latter inequality, we obtain that

—Pixo +

1330 2w ) < C (NS T Nlll L2 (@u)s 1voll 2 (@ a)s 20l 2@y 11l 22 (@)s lzall 2 (@) -

Finally from (85) and the latter inequality, we deduce (80). m

Proposition 3.7 The adapted low-regret optimal control 4., converges in L?(Q.) to the no-regret

control . € M.

Proof. In view of (67)-(75), for i = 1,2, there exists a subsequence of (&, §, 2, 5;, Sy Ty, ﬁ;) still
denoted by (i, Gy, 25, & Si(c i), 74) and @ € L2(Qu), 5.5 € LU HYQ), €17 € LU, HL@)),

a; € L*(0,A), 7, € L? (QT) such that
i, — @ weakly in L?(Q,),
1
Tsi(.,a,y) — a; weakly in L?(0, A), S;(.,4,) — 0 strongly in L*(0, A),
ol
gy =0, H—z & =8, i = i weakly in L*(U; Hy(Q)),
ﬁ’%(.707 ) - T2, 5%1(707 ) — 71 Weakly in LQ(QT)

Let ¢, ¢ € D(Q), by multiplying the first equation and the second equation of system (55) respectively

by ¢ and ¢, and integrating by parts over @), we obtain

/%L*l‘godtdadx:/fgodtdadx—k/ uypdtdadr, Ve e D(Q),
Q Q

w

and

/Z,YL;qutdadx:/ gy dtdadr, V¢ e D(Q).
Q Qo

By taking the limit as v — 0 in these latter identities, while using (91) and (93), we obtain

/g][f{gp dtdadm:/fgodtdadx—k/ tpdtdadr, Ve € D(Q),
Q Q

w

and

/ ZL3¢ dt da dx =/ godtdadz, Vo€ D(Q).
Q Qo

An integration by parts gives

/L*{gjvgodtdadx:/fgodtdadx—i—/ uypdtdadr, Ve e D(Q),
Q Q

w
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and
/L§27¢dtdadx:/ Jypdtdadz, Vo€ D(Q).
Q Qo

Hence

Lyy = f+dxe in Q, (95)
and

Loz = gxo in Q. (96)

Now, we have §, 2 € L*(U, H}(Q)) and using (95) and (96), §; + a, 2t + 24 € L*(U, H; ' (Q)). Hence
g,z € Wi(0,T) and according to Remark 1, §(0,-,-),2(0,-,-),4(T,-,-) and Z(T,-,-) exist and belong
to L?(Q4). Also, (-,0,-), 2(-,0,-),%(-, A,-) and (-, A, -) exist and belong to L?(Qr). Moreover ¢,z €
L*(U, H}(€)) implies that

j=2=0 on 3. (97)

Let ¢, ¢ € C(Q) such that ¢ = ¢ = 0 on X, ¢(t,A,1) = ¢(¢,A,0) = 0 in Qr, and ¢(T,a,2) = 0 in
Q4. If we multiply the first equation and the second equation in (55) respectively by ¢ and ¢, and we
integrate by parts over @), we obtain

—/ yo(x,a)cp(o,aw)dadx—i—/ gLl dtdadx:/ f(pdtdadx—i—/ U dt da dz,
A Q Q

w

and

/ z0(x,a)é(0,a,x) dadz+/ Z, Lo dtdadx:/ Jy¢ dt dadz.
Qa Q Qo

By taking the limit as v — 0 in these latter identities, while using (91) and (93), we obtain

—/ yo(x,a)ga(O,a,x)dadm—i—/ yLip dtdada:z/ fgodtdada:+/ e dt da dz,
Qa Q Q

and

/ zo(z,a)9(0,a, x) dad:v+/
Qa

ZL3o dtdadmz//gjqﬁdtdadw.
Q UJo

An integration by parts gives

/ (9(0,a,z) — yo(z,a))e(0,a,z) dadx —I—/ g(t,0,2)p(t,0,2) dt dz

A T

+/<pL1§ dtdadx:/fgodtdad:ch/ Uy dt da dz,
Q Q

w

and

/ (2(0,a,x) — zo(x,a))9(0,a, z) dadx —|—/ Z(t,a,2)¢(t,0,x) dt dx
Qa Qr

+/¢L22 dtdadx://g](bdtdadx.
Q uJo

Taking (95) and (96) into account, we are lead to
/ (;&(O,a,x) - yo($7a))<p(0,a,x) dadl‘—”/ ;&(t,O,x)g@(t,O,x) dtdx = 0, (98)
A T

and
/ (2(0,a,x) — zo(x,a))9(0,a,z) dadx +/ Z(t,a,2)o(t,0,z) dt de = 0. (99)
Qa

T
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Now on one of the hand, if we take in addition in (98), ¢(-,0,-) = 0 in Qr, then it follows that

g0, )=yo In  Qa. (100)
Taking (100) in account, (99) yields

9(-,0,-) =0 in Qa- (101)
On the other hand, if we choose in addition in (99), ¢ such that ¢(0,-,-) = 0 in @, we obtain

2,0,)=0 in  Qa. (102)
Moreover taking (102) into account, (99) gives

Z(0,-,) = %o in Qa. (103)
Therefore by (95)-(97) and (100)-(103), it follows that (g, Z) is solution to

Ly = [+ixe n Q,

Lyz = Jxo in Qa

g=2z =0 on X, (104)
7(0,a,2) = yo(a,x), 2(0,a,2) = zo(a,x) in Qua,

jj(t,O,x) = 07 g(tvovx) =0 in QT-

By applying the same arguments as above for (£}, ), (£2,72), and using the convergences (93)-(94),
we infer that (5 Lah, (52, 7?) are respectively solutions to

Li‘éi = ii'yo n 0,
Lai = (F—z)xo in Q,
=17t =0 on X, (105)
él(T"") =0, ﬁl(T, , ) = 0 in Qa,
51(714;'):0, ﬁ1(7A7 ) 0 in C)T7
and _
Lfﬁz = ’xo in Q,
Lo = (F-zxo n Q,
~2 =7? =0 on %, (106)
§2(T7'7') :Oa ﬁQ(Tv'v') =0 in QA7
§2(.7A, ) — ()7 77'2(,’A, ) = 0 in QT7
In addition, we get also ~
51('303') =T1, (107)
and
(., 0,.) = 7. (108)

Now, using (91), (92), (94), and (69), we have from Lemma 3.2 that
Si(.,uY) = S;(.,4) weakly in D'(0, A).
Hence, using (92) again and thanks to the uniqueness of the limit, we obtain
Si(.yiiy) — Si(., @) = 0 strongly in L?(0, A).

Consequently,

A A
/ Si(a; ty)g(a) da — / Si(a; y)g(a) da = 0.
0 0
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Thus 4 € M and we also have |[.S;(.;%)[|z2(0,4) = 0. Since @ is a No-regret control and 4 € M , it

follows from (48) that
J(@,0,0) — J(0,0,0) < J(@,0,0) — J(0,0,0),

Observing that . solves the problem ngl(fQ )j 7(v), we have
ve w

J (@) < J7(a) = J(@,0,0) — J(0,0,0),

which, in view of the definition of J7 given by (53), implies that

Iy, 0,0) = J(0,0,0) + iy — l3q., < T7(@,) < J7 (@) = J(@,0,0) ~ J(0,0,0).

Using the convexity and lower semi-continuity of J on L?(Q,), (91) and (92), we obtain
J(,0,0) = J(0,0,0) + [ = l32(q,, < liminf J7 (@) < J(@,0,0) — J(0,0,0),
v
which combining with (109) gives
& — @l|72q.) <O

Hence,
=10 in Q.

(109)

(110)

(111)

(112)

Thus the adapted low-regret controls converge in L?(Q,,) to the no-regret control. Moreover from
(112) and (104), it follows that (7, 2) = (y(4,0,0), 2(,0,0)) € [L*(U; HL(2))]? is the unique solution

of

Ly = f+iuxe in @,
Loz = UYxo in @,
y=2z = 0 on X,
9(0,a,z) =yo(a,z), Z2(0,a,2) = zp(a,x) in Qu,
g(t,0,2) =0, Z(¢0,2) =0 in Qr.

This completes the proof. m

(113)

Proposition 3.8 The No-regret control 4 € M is characterized by the functions @, (g, %), (fl,ﬁl),

(€2,72), (%, 7). (G%,3?) and ($', ) which are unique solutions of the optimality system:

Ly = f+uxe in Q,

Loz = yxo in Q,

y==2 =0 on X,

g(oa a,x) - yo(a,x), §(O7CL,.’E) - Zo(a,l’) in QA7

gj(t,O,x) = 0; z t,O,Z’) = 0 m QT.
LTEI = ﬁlx(g m Q)

L' = (F-zaxo n Q,
=gt =0 on X,
él(Ta'v ) :Oa ﬁl(T7'7') = 0 mn QA7
(A, =0, 7' A = 0 in Qr,
L;& = 7’Xxo n  Q,

Lyi® = (F-za)xo n Q,
§2 = ij? =0 on X,

52(T’ ’-) = 0, "2<7"7 , ) = 0 m QA,
E(,A,)=0, 7( A, 0 in  Qr,
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Lig* = ¢*xo in  Q,
L;¢ = F-z)xo+A in Q,
it =q =0 on X, (117)
(jl(T"") =0, ¢ (T7'7') =0 n  Qa,
ql('7A7') =0, ¢(,4,-) = 0 m  Qr,
Lyp' = 0 in  Q,
Lop® = p'xo in Q,
p=p? =0 on %, (118)
p1(0,-,-) =0, $%0,-,-) = 0 in  Qa,
ﬁ1(707'):)‘27 ﬁ2(707 ) = 0 mn QT,
Lig' = 0 in  Q,
Ly@® = ¢'xo in Q,
¢t =¢? =0 on %, (119)
951(03'3') =0, 952(07'7') =0 mn QA>
951('707 ) =0, 952("07 ) = X3 in QTv
and
Ni+q' =0, (120)
where

_ [y e L.~ - Lo .

A= lim (ﬁPZXo + A Paxo +;§1(u7)(t, 0,2)51(a; ty) + Vﬂz(uw)(tvovﬂf)sz(a,uv))
. 1 - -

Ao = ’11_% \ﬁ/o z(,0,0)S51(a, y)da,

1
Az = lim — 2(t+,0,0)S2(a, @y )da.

=07 Jo
Proof. We have already proved (114)-(116) (see proof Proposition 3.7).
From (76), (77), (78), (79) and (80), we have there exist X2, A3 € L?(Qr), \1 € L?(Q), p*,p° €
L*(U; HE(Q)), ¢', ¢? € L2(U; HL(Q)) and ¢, % € L*(U; H}(Q)) such that the following convergences
hold in the weak sense:

PA(,0,.) = A2, @2(,0,.) = Az in L*(Qr) and o, — Ay in L*(Q), (121)
PP = E e = @B~ @ — @ in LA(U; HY(Q)). (122)

Then, proceeding as for g, in the proof of Proposition 3.7, while using (121)-(122), we prove (117),
(118) and (119). To obtain (120), we pass to the limit in (66) while using (91), (112) and (122). This
completes the proof. m

4 Conclusion

We used the notion of no-regret and low-regret to control a coupled model describing the dynamics
of a degenerate population with age dependence and spatial structure with missing birth rates. The
control considered acts on a part of the domain (0, 1), the observation is done on another part of the
same domain. Then we introduce an appropriate Hilbert space and apply the Aubin-Lions Lemma
to an appropriate auxiliary problem to prove that the adapted low-regret control converges towards a
no-regret control that we characterize. So theoretically, this means that by acting on the small domain
w, we brought the state of infected in the subspace O to a desired state in order to reduce the disease.
Unfortunately, because of the singularities which appear in the optimality system, we were not able to
perform numerical experiments.
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