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We consider a coupled model of degenerate population dynamics with age dependence and spatial structure but with unknown data on the birth rate of individuals. Using the notion of low-regret, we prove that we can bring the state of the second population in a given region to a desired state by acting on the first population via a localized control over a part of habitat. We provide the optimality systems that characterize the adapted low-regret control and prove its convergence to a so-called no-regret control that we characterize.

Introduction

In this paper we consider a coupled degenerate population dynamics model with missing data. This model can be used to describe the dispersion of a gene in two given populations which are in interaction ( e.g cancer cells and healthy cells), see [START_REF] Bedr'eddine Ainseba | Null controllability of a cascade model in population dynamics[END_REF] for instance. More precisely, let T > 0, A > 0, U = (0, T ) × (0, A), Q = U × (0, 1), Q A = (0, A) × (0, 1), Q T = (0, T ) × (0, 1), Σ = U × {0, 1}, ω and O are nonempty subsets of the spatial domain (0, 1). We also set Q ω = U × ω. Then, we consider the following model of population dynamics:

               y t + y a -(k(x)y x ) x + µ 1 (a)y = f + vχ ω in Q, z t + z a -(k(x)z x ) x + µ 2 (a)z = κyχ O in Q, y = z = 0
on Σ, y(0, a, x) = y 0 (a, x), z(0, a, x) = z 0 (a, x) in Q A , y(t, 0, x) = A 0 g 1 (a)y(t, a, x) da, z(t, 0, x)

= A 0 g 2 (a)z(t, a, x) da in Q T , (1) 
where y(t, a, x) and z(t, a, x) denote respectively the distributions of individuals of age a at time t having a gene type x. The terms -µ 2 (a)z(t, a, x) and -µ 1 (a)y(t, a, x) describe the natural mortality of individuals of age a at time t and of gene type x of the population z and y respectively. The term A 0 g i (a)W (t, a, x) da, is the flux of new born individuals while the functions g i (a), i = 1, 2 are the * Laboratoire LAMIA, Université des Antilles, Campus Fouillole, 97159 Pointe-à-Pitre Guadeloupe (FWI)-University of Buea, Department of Mathematics, Buea, Cameroon (email :kenne853@gmail.com).
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age-specific fertility rates, i = 1, W = y or i = 2, W = z. A is the maximal life expectancy. The function f ∈ L 2 (Q) represents the external supply of population. We have denoted by k the diffusion coefficient, by v the control. The functions y 0 , z 0 ∈ L 2 (Q A ) are the initials conditions, χ X denote the characteristic function of the set X. Here, we don't have the distribution of newborns in the two populations, these measurements are expressed here by the unknown variables g 1 and g 2 .

We assume as in [START_REF] Bedr'eddine Ainseba | Null controllability of a population dynamics with degenerate diffusion[END_REF] that the dispersal coefficient k verifies k ∈ C([0, 1]) ∩ C 1 ((0, 1]), k > 0 in (0, 1] and k(0) = 0, ∃γ ∈ [0, 1) :

xk (x) ≤ γk(x), x ∈ [0, 1], (2) 
the death rates µ i , i = 1, 2 are such that

µ i ∈ L ∞ (0, A), µ i ≥ 0 a.e. (0, A), (3) 
and the fertility rates g i , i = 1, 2 are unknown and verify

g i ∈ L ∞ (0, A), g i ≥ 0 a.e in [0, A]. (4) 
For the sake of simplicity, we replace y by y/κ, f by f /κ, v by v/κ, and y 0 by y 0 /κ and we will consider from now on, the following system:

               y t + y a -(k(x)y x ) x + µ 1 (a)y = f + vχ ω in Q, z t + z a -(k(x)z x ) x + µ 2 (a)z = yχ O in Q, y = z = 0
on Σ, y(0, a, x) = y 0 (a, x), z(0, a, x) = z 0 (a, x) in Q A , y(t, 0, x) = A 0 g 1 (a)y(t, a, x) da, z(t, 0, x)

= A 0 g 2 (a)z(t, a, x) da in Q T . (5) 
As in [START_REF] Birba | Null controllability of a sytem of degenerate nonlinear couple equations derived from population dynamics[END_REF][START_REF] Younes | Null controllability of a model in population dynamics[END_REF], we denote by H 1 k (0, 1) and H 2 k (0, 1) the weighted Sobolev spaces respectively given by H 1 k (0, 1) := {u ∈ L 2 (0, 1) : u is abs. cont. in [0, 1] :

√ ku x ∈ L 2 (Ω), u(0) = u(1) = 0}, H 2 
k (0, 1) := {u ∈ H 1 k (0, 1) : (ku x ) x ∈ H 1 (0, 1)}, [START_REF] Jacob | Optimal control for age-structured population dynamics of incomplete data[END_REF] and endowed respectively with the norms,

u 2 H 1 k (0,1) := u 2 L 2 (0,1) + k(x)u x 2 L 2 (0,1) , u ∈ H 1 k (0, 1), u 2 H 2 k (0,1) := u 2 H 1 k (0,1) + (k(x)u x ) x 2 L 2 (0,1) , u ∈ H 2 k (0, 1). (7) 
Throughout the rest of the paper, we use • ∞ to denote the L ∞ -norm in (0, A).

Remark 1 Under the assumptions (2), we have 1. H 1 k (0, 1) is compactly embedded in L 2 (0, 1) (see [START_REF] Alabau-Boussouira | Carleman estimates for degenerate parabolic operators with applications to null controllability[END_REF]).

2. The trace at x = 0 of a function of H 1 k (0, 1) exists.

Set

E = C([0, T ]; L 2 (Q A )) ∩ C([0, A]; L 2 (Q T )) ∩ L 2 (U, H 1 k (0, 1)) 2 , (8) 
W k (T, A) = ρ ∈ L 2 (U ; H 1 k (0, 1)); ρ t + ρ a ∈ L 2 U ; H -1 k (0, 1) . (9) 
Then we have that

W k (T, A) ⊂ C([0, T ], L 2 (Q A )) ∩ C([0, A], L 2 (Q T )). ( 10 
)
Under the assumption on the data one can prove as in [START_REF] Younes | Null controllability of a model in population dynamics[END_REF][START_REF] Birba | Null controllability of a sytem of degenerate nonlinear couple equations derived from population dynamics[END_REF][START_REF] Bedr'eddine Ainseba | Null controllability of a cascade model in population dynamics[END_REF] that the problem (5) has a unique solution (y, z) in E. Moreover, there exists constant

C = C(T, A, µ 1 ∞ , µ 2 ∞ , g 1 ∞ , g 2 ∞ ) > 0, such that y(T ) 2 L 2 (Q A ) + y(A) 2 L 2 (Q T ) + z(T ) 2 L 2 (Q A ) + z(A) 2 L 2 (Q T ) + √ ky x 2 L 2 (Q) + y 2 L 2 (Q) + √ kz x 2 L 2 (Q) + z 2 L 2 (Q) ≤ C v 2 L 2 (Qω) + z 0 2 L 2 (Q A ) + y 0 2 L 2 (Q A ) . (11) 
The purpose of this paper is to bring the distribution of cancer cells z in a given region O ⊂ (0, 1) to a desired distribution z d by acting on the system via a control v over a part ω of the domain. Such a control may correspond to a removal on the subdomain ω. We define the cost function

J(v, g 1 , g 2 ) = z(v, g 1 , g 2 ) -z d 2 L 2 (U ×O) + N v 2 L 2 (Qω) , (12) 
where the term

z d ∈ L 2 (U × O)
is the desired state, and N > 0 is the cost coefficient and are given. We point out that the objective is not to determine the unknown birth rates g i , i = 1, 2, but to find a optimal control v solution to the following optimization problem:

inf v∈L 2 (Qω) sup (g1,g2)∈[L 2 (0,A)] 2 (J(v, g 1 , g 2 ) -J(0, g 1 , g 2 )). ( 13 
)
Problem ( 13) is called the no-regret control problem. The notions of no-regret control and low-regret control were introduced by Lions [START_REF] Lions | Contrôle à moindre regrets des systèmes distribués[END_REF] in order to control a phenomenon described by a parabolic equation with missing initial condition.

The most challenging point is to prove that this family of controls (called low-regret controls) converge towards the no-regret control. In [START_REF] Nakoulima | On the pareto control and no-regret control for distributed systems with incomplete data[END_REF], Nakoulima et al. applied this notion to linear evolution equations with incomplete data. They proved that the low-regret controls converge to the no-regret control for which they obtained a singular optimality system. In the nonlinear case, this notion was also considered by Nakoulima et al. [START_REF] Nakoulima | No-regret control for nonlinear distributed systems with incomplete data[END_REF] to control (on the whole domain) a nonlinear system with incomplete data. They observe on the one hand that the no-regret control is typically not easy to characterize and, on the other hand that the low-regret cost function may not be convex. So, by adapting this cost, they proved that the adapted low-regret control converge towards a no-regret control. Finally they characterized this no-regret by a singular optimality system. Velin [START_REF] Velin | No-regret distributed control of system governed by quasilinear elliptic equations with incomplete data: the degenerate case[END_REF], studied systems governed by quasilinear equations with unknown boundary condition and a control acting on the whole domain. After established some regularity results, he proved by proceeding as in [START_REF] Nakoulima | No-regret control for nonlinear distributed systems with incomplete data[END_REF] that the adapted low-regret control converge towards a no-regret control characterized by a singular optimality system. Note that in the above papers, the convergence of the low-regret control towards the no-regret control is obtained by controlling on the whole domain. Recently, Kenne et al. [START_REF] Kenne | Optimal control of a population dynamics model with missing birth rate[END_REF] used the notion of no-regret and low-regret to control a model describing the dynamics of population with age dependence and spatial structure with missing birth rate by acting on a part of the domain. They proved that they can bring the state of the system to a desired state by acting on the system via a localized distributed control. The results of this latter paper are extended here to a degenerated coupled model with two missing data. We also refer to [START_REF] Lions | Environment, economics and their mathematical models[END_REF][START_REF] Jacob | Optimal control for age-structured population dynamics of incomplete data[END_REF][START_REF] Mophou | Optimal control for fractional diffusion equations with incomplete data[END_REF] for more literature. In this paper we are interested in the optimization problem [START_REF] Nakoulima | On the pareto control and no-regret control for distributed systems with incomplete data[END_REF], where the cost function is given by [START_REF] Nakoulima | No-regret control for nonlinear distributed systems with incomplete data[END_REF]. Since the application from the space of the unknown birth rates to space of the state variables is nonlinear, we linearize the cost and prove the existence of a no-regret control associated to this new cost. Then we consider an adapted low-regret control problem obtained by relaxing the noregret problem. We prove the existence and uniqueness of the adapted low-regret control and show its convergence toward the no-regret control. Finally we show that the optimality systems of the adapted low-regret control converge to optimality systems which characterize the no-regret control.

The rest of this paper is structured as follows. In Section 2, we give some regularity results. We study the low-regret and no-regret control and their characterizations in Section 3. A conclusion is given in Section 4. The last section takes the form of an appendix wherein we will give the proofs of some basic tools.

Preliminary results

To solve the optimization problem (13), we need some preliminary results. Set Ω = (0, 1) and consider the following model of population dynamics:

               y t + y a -(k(x)y x ) x + µ 1 (a)y = h in Q, z t + z a -(k(x)z x ) x + µ 2 (a)z = yχ O in Q, y(t, a, 1) = y(t, a, 0) = 0 on U, z(t, a, 1) = z(t, a, 0) = 0 on U, y(0, a, x) = y 0 (a, x), z(0, a, x) = z 0 (a, x) in Q A , y(t, 0, x) = b 1 (t, x), z(t, 0, x) = b 2 (t, x) in Q T . (14) 
Let us state the following well posedness result.

Proposition 2.1 Assume that (3) holds true. Let h ∈ L 2 (Q), (b 1 , b 2 ) ∈ L 2 (Q T ) 2 and (y 0 , z 0 ) ∈ L 2 (Q A ) 2 . Let E = C([0, T ]; L 2 (Q A )) ∩ C([0, A]; L 2 (Q T )) ∩ L 2 (U, H 1 k (Ω)) 2 .
Then the problem (14) has a unique solution (y, z) in E.

Moreover, there exists constant

C = C(T, A, µ 1 ∞ , µ 2 ∞ ) > 0, such that y(T ) 2 L 2 (Q A ) + y(A) 2 L 2 (Q T ) + z(T ) 2 L 2 (Q A ) + z(A) 2 L 2 (Q T ) + √ ky x 2 L 2 (Q) + y 2 L 2 (Q) + √ kz x 2 L 2 (Q) + z 2 L 2 (Q) ≤ C h 2 L 2 (Q) + z 0 2 L 2 (Q A ) + y 0 2 L 2 (Q A ) + b 1 2 L 2 (Q T ) + b 2 2 L 2 (Q T ) . (15) 
Proof. For the existence, we refer to [START_REF] Younes | Null controllability of a model in population dynamics[END_REF][START_REF] Birba | Null controllability of a sytem of degenerate nonlinear couple equations derived from population dynamics[END_REF][START_REF] Bedr'eddine Ainseba | Null controllability of a cascade model in population dynamics[END_REF]. To prove [START_REF] Younes | Null controllability of a model in population dynamics[END_REF], we make a change of variable. For r ∈ R, we set ỹ(t, a, x) = e -rt y(t, a, x), z(t, a, x) = e -rt z(t, a, x),

where (y, z) is the solution of (5). Then (ỹ, z) is the solution of

               ỹt + ỹa -(k(x)ỹ x ) x + μ1 (a)ỹ = e -rt h in Q, zt + za -(k(x)z x ) x + μ2 (a)z = ỹχ O in Q, ỹ(t, a, 1) = ỹ(t, a, 0) = 0 on U, z(t, a, 1) = z(t, a, 0) = 0 on U, ỹ(0, a, x) = y 0 (a, x), z(0, a, x) = z 0 (a, x) in Q A , ỹ(a, 0, x) = e -rt b 1 (t, x), z(a, 0, x) = e -rt b 2 (t, x) in Q T . ( 16 
)
where in view of (3), μi (a) = r + µ i (a), i = 1, 2. Now, let (t, a) ∈ U . If we multiply the first and the second equation in (16) respectively by ỹ(t, a) and z(t, a), and integrate by parts over Ω, we obtain

1 2 d dt ỹ(t, a) 2 L 2 (Ω) + 1 2 d da ỹ(t, a) 2 L 2 (Ω) + √ k ỹx (t, a) 2 L 2 (Ω) + Ω μ1 (a)ỹ 2 (t, a, x) dx = Ω e -rt h(t, a, x))ỹ(t, a, x) dx, 1 2 
d dt z(t, a) 2 L 2 (Ω) + 1 2 d da z(t, a) 2 L 2 (Ω) + √ kz x (t, a) 2 L 2 (Ω) + Ω μ2 (a)z 2 (t, a, x) dx = O ỹ(t, a, x)z(t, a, x) dx.
since μi (a) = r + µ i (a), i = 1, 2, using Young and Cauchy inequalities,

1 2 d dt ỹ(t, a) 2 L 2 (Ω) + 1 2 d da ỹ(t, a) 2 L 2 (Ω) + √ k ỹx (t, a) 2 L 2 (Ω) + r -µ 1 ∞ - 1 2 ỹ(t, a) 2 L 2 (Ω) ≤ 1 2 e -rt h(t, a) 2 L 2 (Ω) , and 
1 2 d dt z(t, a) 2 L 2 (Ω) + 1 2 d da z(t, a) 2 L 2 (Ω) + √ kz x (t, a) 2 L 2 (Ω) + r -µ 2 ∞ - 1 2 z(t, a) 2 L 2 (Ω) ≤ 1 2 ỹ(t, a) 2 L 2 (Ω) . choose r = max ( µ 1 ∞ , µ 2 ∞ ) + 3 2 , then it follows that 1 2 d dt ỹ(t, a) 2 L 2 (Ω) + 1 2 d da ỹ(t, a) 2 L 2 (Ω) + √ k ỹx (t, a) 2 L 2 (Ω) + ỹ(t, a) 2 L 2 (Ω) ≤ 1 2 h(t, a) 2 L 2 (Ω)
and 1 2

d dt z(t, a) 2 L 2 (Ω) + 1 2 d da z(t, a) 2 L 2 (Ω) + √ kz x (t, a) 2 L 2 (Ω) + z(t, a) 2 L 2 (Ω) ≤ 1 2 ỹ(t, a) 2 L 2 (Ω)
, which after an integration by part over (0, T ) × (0, A) gives

1 2 b 2 2 L 2 (Q T ) . (18) 
By combining (17) and (18), and replacing ỹ and z by e -rt y and e -rt z respectively, we deduce [START_REF] Younes | Null controllability of a model in population dynamics[END_REF] with C = e rT , and where r = max ( µ 1 ∞ , µ 2 ∞ ) + 3 2 . This completes the proof.

For the rest of the section and for the sequel, we denote by C(X) a positive constant whose value varies from a line to another but depends on X. Let us adopt the following notation

L i = ∂ t + ∂ a -(k(x)∂ x ) x + µ i , L * i = -∂ t -∂ a -(k(x)∂ x ) x + µ i . (19) 
The following two propositions are proved as in [7, Propositions 2.1 and 2.2] using a change of variable on the states and energy estimate.

Proposition 2.2 Let (y(v, g 1 , g 2 ), z(v, g 1 , g 2 )) be a solution of (5). Then the application (v, g 1 , g 2 ) → (y(v, g 1 , g 2 ), z(v, g 1 , g 2 )) from L 2 (Q ω ) × L 2 (0, A) × L 2 (0, A) onto [L 2 (Q)] 2 is continuous. Proposition 2.3 Let λ > 0. Let g 1 , g 2 , h 1 , h 2 ∈ L 2 (0, A) and v, w ∈ L 2 (Q ω ). Let also (y, z) = (y(v, g 1 , g 2 ), z(v, g 1 , g 2 )) be a solution of (5). Set ȳλ = y(v + λw, g 1 + λh 1 , g 2 + λh 2 ) -y(v, g 1 , g 2 ) λ , and zλ = z(v + λw, g 1 + λh 1 , g 2 + λh 2 ) -z(v, g 1 , g 2 ) λ . Then as λ → 0, (ȳ λ , zλ ) converges strongly in [L 2 (Q)] 2 to (ȳ, z), where (ȳ, z) is solution of            L 1 ȳ = wχ ω in Q, L 2 z = ȳχ O in Q, ȳ = z = 0 on Σ, ȳ(0, •, •) = 0, z(0, •, •) = 0 in Q A , ȳ(•, 0, •) = δ 3 , z(•, 0, •) = δ 4 in Q T , (20) 
with

δ 3 = A 0 g 1 (a)ȳ da + A 0 h 1 (a)y(t, a, x; v, g 1 , g 2 ) da,
and

δ 4 = A 0 g 2 (a)z da + A 0 h 2 (a)z(t, a, x; v, g 1 , g 2 ) da.
Remark 2 Note that using the definition of the cost function given by ( 12) and Proposition 2.3, we have that

lim λ→0 J(v + λw, g 1 + λh 1 , g 2 + λh 2 ) -J(v, g 1 , g 2 ) λ = 2N Qω vwdt da dx + 2 U O z(z(v, g 1 , g 2 ) -z d )dt da dx
where (ȳ, z) satisfies (20).

3 Resolution of the optimization problem [START_REF] Nakoulima | On the pareto control and no-regret control for distributed systems with incomplete data[END_REF] This section is devoted to the optimization problem [START_REF] Nakoulima | On the pareto control and no-regret control for distributed systems with incomplete data[END_REF]. As the low-regret and no-regret notion introduced by Lions [START_REF] Lions | Contrôle à moindre regrets des systèmes distribués[END_REF] uses the decomposition of the solution of ( 5) on the form y(v, g 1 , g 2 ) = y(v, 0, 0) + ϕ(g 1 , g 2 ) where y(v, 0, 0) is solution of ( 5) with g 1 = g 2 = 0 and ϕ(g 1 , g 2 ) is a function depending of g 1 and g 2 , this decomposition is no longer valid because the map (g

1 , g 2 ) → y(v, g 1 , g 2 ) from [L 2 (0, A)] 2 to L 2 (U ; H 1 k (Ω)
) is non-linear. Thus using the regularity results of (y, z) given in Proposition 2.2 and Proposition 2.3, we replace the cost function defined in ( 12) by its linearized form with respect to g 1 and g 2 . Thus, we consider as in [START_REF] Lions | Least regret control, virtual control and decomposition methods[END_REF] the new cost-function

J 1 (v, g 1 , g 2 ) = J(v, 0, 0) + ∂J ∂g 1 (v, 0, 0)(g 1 ) + ∂J ∂g 2 (v, 0, 0)(g 2 ). (21) 
Then, we consider the following new optimization problem:

inf v∈L 2 (Qω) sup (g1,g2)∈[L 2 (0,A)] 2 (J 1 (v, g 1 , g 2 ) -J 1 (0, g 1 , g 2 )). ( 22 
)
The solution of (22) if it exists is called no-regret control for the non-linear problem.

Let (y(v, 0, 0), z(v, 0, 0)) ∈ [L 2 (U ; H 1 k (Ω))] 2 be the solution of            L 1 y(v, 0, 0) = f + vχ ω in Q, L 2 z(v, 0, 0) = y(v, 0, 0)χ O in Q, y = z = 0 on Σ, y(0, a, x) = y 0 (a, x), z(0, a, x) = z 0 (a, x) in Q A , y(t, 0, x) = 0, z(t, 0, x) = 0 in Q T . (23) 
Then we have the following result.

Proposition 3.1 For any (v, g 1 , g 2 ) ∈ L 2 (Q ω ) × [L 2 (0, A)] 2
, the following equality holds:

J 1 (v, g 1 , g 2 ) = J(v, 0, 0) + 2 U O ∂z ∂g 1 (v, 0, 0)(g 1 ) (z(v, 0, 0) -z d ) dt da dx (24) +2 U O ∂z ∂g 2 (v, 0, 0)(g 2 ) (z(v, 0, 0) -z d ) dt da dx
where J is the cost function defined in [START_REF] Nakoulima | No-regret control for nonlinear distributed systems with incomplete data[END_REF].

Proof. Observing on the one hand

J(v, tg 1 , 0) = z(v, tg 1 , 0) -z d 2 L 2 (U ×O) + N v 2 L 2 (Qω) = J(v, 0, 0) + z(v, tg 1 , 0) -z(v, 0, 0) 2 L 2 (U ×O) + 2 U O (z(v, tg 1 , 0) -z(v, 0, 0))(z(v, 0, 0) -z d ) dt da dx,
and on the other hand

∂J ∂g 1 (v, 0, 0)(g 1 ) = lim t→0 J(v, tg 1 , 0) -J(v, 0, 0) t ,
using Proposition 2.3 and Remark 2, we obtain that

∂J ∂g 1 (v, 0, 0)(g 1 ) = lim t→0 J(v, tg 1 , 0) -J(v, 0, 0) t = 2 U O ∂z ∂g 1 (v, 0, 0)(g 1 ) (z(v, 0, 0) -z d ) dt da dx.
Analogously,

∂J ∂g 2 (v, 0, 0)(g 2 ) = 2 U O ∂z ∂g 2 (v, 0, 0)(g 2 ) (z(v, 0, 0) -z d ) dt da dx.
Using these two identities in (21) yields (24).

Proposition 3.2 For any (v, g 1 , g 2 ) ∈ L 2 (Q ω ) × [L 2 (0, A)] 2 , we have J 1 (v, g 1 , g 2 ) -J 1 (0, g 1 , g 2 ) = J(v, 0, 0) -J(0, 0, 0) + 2 A 0 S 1 (a; v)g 1 (a)da (25) +2 A 0 S 2 (a; v)g 2 (a)da,
where for any a ∈ (0, A),

S 1 (a; v) = Q T [y(t, a, x; v, 0, 0)ξ 1 (v)(t, 0, x) -y(t, a, x; 0, 0, 0)ξ 1 (0)(t, 0, x)] dt dx, (26) 
S 2 (a; v) = Q T [z(t, a, x; v, 0, 0)η 2 (v)(t, 0, x) -z(t, a, x; 0, 0, 0)η 2 (0)(t, 0, x)] dt dx, (27) 
where

(ξ 1 (v), η 1 (v)) is solution to            L * 1 ξ 1 (v) = η 1 (v)χ O in Q, L * 2 η 1 (v) = (z(v, 0, 0) -z d )χ O in Q, ξ 1 (v) = η 1 (v) = 0 on Σ, ξ 1 (v)(T, •, •) = 0, η 1 (v)(T, •, •) = 0 in Q A , ξ 1 (v)(•, A, •) = 0, η 1 (v)(•, A, •) = 0 in Q T , (28) 
and

(ξ 2 (v), η 2 (v)) is solution to            L * 1 ξ 2 (v) = η 2 (v)χ O in Q, L * 2 η 2 (v) = (z(v, 0, 0) -z d )χ O in Q, ξ 2 (v) = η 2 (v) = 0 on Σ, ξ 2 (v)(T, •, •) = 0, η 2 (v)(T, •, •) = 0 in Q A , ξ 2 (v)(•, A, •) = 0, η 2 (v)(•, A, •) = 0 in Q T . (29) 
Proof. From(21),

J 1 (0, g 1 , g 2 ) = J(0, 0, 0) + ∂J ∂g 1 (0, 0, 0)(g 1 ) + ∂J ∂g 2 (0, 0, 0)(g 2 ).
In view of (24), we have

J 1 (v, g 1 , g 2 ) -J 1 (0, g 1 , g 2 ) = J(v, 0, 0) -J(0, 0, 0) +2 U O ∂z ∂g 1 (v, 0, 0)(g 1 ) (z(v, 0, 0) -z d ) dt da dx +2 U O ∂z ∂g 2 (v, 0, 0)(g 2 ) (z(v, 0, 0) -z d ) dt da dx -2 U O ∂z ∂g 1 (0, 0, 0)(g 1 ) (z(0, 0, 0) -z d )dt da dx -2 U O ∂z ∂g 2 (0, 0, 0)(g 2 ) (z(0, 0, 0) -z d )dt da dx. (30) 
From Proposition 2.3, we have that (ȳ(g 1 ), z(g

1 )) = ∂y ∂g 1 (v, 0, 0)(g 1 ), ∂z ∂g 1 (v, 0, 0)(g 1 ) is solution to            L 1 ȳ(g 1 ) = 0 in Q, L 2 z(g 1 ) = ȳ(g 1 )χ O in Q, ȳ(g 1 ) = z(g 1 ) = 0 on Σ, ȳ(g 1 )(0, •, •) = 0, z(g 1 )(0, •, •) = 0 in Q A , ȳ(g 1 )(•, 0, •) = η 11 , z(g 1 )(•, 0, •) = 0 in Q T , (31) 
where

η 11 = A 0 g 1 (a)y(t, a, x; v, 0, 0) da.
So, if we multiply the first and the second equations of (31) respectively by ξ 1 (v) and η 1 (v) solutions of (28), and integrate by parts over Q, we get

U O ∂y ∂g 1 (v, 0, 0)(g 1 ) η 1 (v)dt da dx = Q g 1 (a)y(t, a, x; v, 0, 0)ξ 1 (v)(t, 0, x)dt da dx, (32) 
and

U O ∂z ∂g 1 (v, 0, 0)(g 1 ) (z(v, 0, 0) -z d )dt da dx = U O ∂y ∂g 1 (v, 0, 0)(g 1 ) η 1 (v)dt da dx. (33) 
Then, combining (32) and (33), we obtain

U O ∂z ∂g 1 (v, 0, 0)(g 1 ) (z(v, 0, 0) -z d )dt da dx = Q g 1 (a)y(t, a, x; v, 0, 0)ξ 1 (v)(t, 0, x)dt da dx, (34) 
from which, we deduce that

U O ∂z ∂g 1 (0, 0, 0)(g 1 ) (z(0, 0, 0) -z d )dt da dx = Q g 1 (a)y(t, a, x; 0, 0, 0)ξ 1 (0)(t, 0, x)dt da dx. ( 35 
)
Using again Proposition 2.3, we have that (ỹ(g 2 ), z(g 2 )) =

∂y ∂g 2 (v, 0, 0)(g 2 ), ∂z ∂g 2 (v, 0, 0)(g 2 ) is solu- tion to            L 1 ỹ(g 2 ) = 0 in Q, L 2 z(g 2 ) = ỹ(g 2 )χ O in Q, ỹ(g 2 ) = z(g 2 ) = 0 on Σ, ỹ(g 2 )(0, •, •) = 0, z(g 2 )(0, •, •) = 0 in Q A , ỹ(g 2 )(•, 0, •) = 0, z(g 2 )(•, 0, •) = η 12 in Q T , (36) 
where

η 12 = A 0 g 2 (a)z(t, a, x; v, 0, 0) da.
So, if we multiply the first and the second equations of (36) respectively by ξ 2 (v) and η 2 (v) solutions of (29) and integrate by parts over Q, we get

U O ∂y ∂g 2 (v, 0, 0)(g 2 ) η 2 (v)dt da dx = 0 (37)
and

- Q g 2 (a)z(t, a, x; v, 0, 0)ξ 2 (v)(t, 0, x)dt da dx + U O ∂z ∂g 2 (v, 0, 0)(g 2 ) (z(v, 0, 0) -z d )dt da dx = U O ∂y ∂g 2 (v, 0, 0)(g 2 ) η 2 (v)dt da dx. (38) 
Also, by combining (37) and (38), we are lead to

U O ∂z ∂g 2 (v, 0, 0)(g 2 ) (z(v, 0, 0) -z d )dt da dx (39) = Q g 2 (a)z(t, a, x; v, 0, 0)ξ 2 (v)(t, 0, x)dt da dx,
from which we deduce that

U O ∂z ∂g 2 (0, 0, 0)(g 2 ) (z(0, 0, 0) -z d )dt da dx (40) = Q g 2 (a)z(t, a, x; 0, 0, 0)ξ 2 (0)(t, 0, x)dt da dx. (41) 
Using (30), (34), ( 35), (39) and ( 40), (25) follows, with (26) and ( 27). This completes the proof. Proceeding as for the the proof of Proposition 2.2, we have the following result.

Lemma 3.1 Let (ξ 1 (v), η 1 (v)) and (ξ 2 (v), η 2 (v))
be respectively solutions of problems (28) and (29).

Then the applications v → (ξ Proof. We write the proof for S 1 (•; v), the proof for S 2 (•; v) follows by using the same arguments.

1 (v), η 1 (v)) and v → (ξ 2 (v), η 2 (v)) are continuous from L 2 (Q ω ) onto [L 2 (Q)] 2 . Moreover the applications v → (ξ 1 (v)(•, 0, •), η 1 (v)(•, 0, •)) and v → (ξ 2 (v)(•, 0, •), η 2 (v)(•, 0, •)) are also continuous from L 2 (Q ω ) onto [L 2 (Q T )] 2 .
Let

v 1 , v 2 ∈ L 2 (Q ω ).
Then in view of (26),

S 1 (a; v 1 ) -S 1 (a; v 2 ) = Q T (y(t, a, x; v 1 , 0, 0) -y(t, a, x; v 2 , 0, 0))ξ 1 (v 1 )(t, 0, x)dt dx + Q T y(t, a, x; v 2 , 0, 0)(ξ 1 (v 1 )(t, 0, x) -ξ 1 (v 2 )(t, 0, x))dt dx.
Using the Cauchy Schwartz inequality, we have

|S 1 (a; v 1 ) -S 1 (a; v 2 )| ≤ y(., a, .; v 1 , 0, 0) -y(., a, .; v 2 , 0, 0) L 2 (Q T ) ξ 1 (v 1 )(., 0, .) L 2 (Q T ) + y(., a, .; v 2 , 0, 0) L 2 (Q T ) ξ(v 1 )(., 0, .) -ξ(v 2 )(., 0, .) L 2 (Q T ) .
Hence,

A 0 |S 1 (a; v 1 ) -S 1 (a; v 2 )| 2 da ≤ 2 y(., a, .; v 1 , 0, 0) -y(., a, .; v 2 , 0, 0) 2 L 2 (Q) ξ(v 1 )(., 0, .) 2 L 2 (Q T ) + 2 y(., a, .; v 2 , 0, 0) 2 L 2 (Q) ξ(v 1 )(., 0, .) -ξ(v 2 )(., 0, .) 2 L 2 (Q T )
. It then follows from Proposition 2.2 and Lemma 3.

1 that S 1 (•, v 1 ) → S 1 (•, v 2 ) as v 1 → v 2 .
This completes the proof.

The following Lemma will be useful to prove the existence of the no-regret and low-regret controls.

Lemma 3.2 Let S 1 (., v) and S 2 (., v) be respectively defined as in (26) and (27) for any a ∈ L 2 (0, A).

For any γ > 0, we consider the sequences (y γ , z γ ) = (y(t, a, x; u γ , 0, 0), z(t, a, x; u γ , 0, 0)), (ξ 1 (u γ ), η 1 (u γ )) and (ξ 2 (u γ ), η 2 (u γ )) , respectively, solutions of (23), ( 28) and (29) with v = u γ . Assume that there exists C 1 , C 2 > 0 independent of γ such that

S 1 (., u γ ) L 2 (0,A) < C 1 and S 2 (., u γ ) L 2 (0,A) < C 2
Assume also that (ŷ, ẑ) = (y(t, a, x; û, 0, 0), y(t, a, x; û, 0, 0

)) ∈ [L 2 (U ; H 1 k (Ω))
] 2 solution of (23), and û ∈ L 2 (Q ω ), ξ1 (., 0, .), ξ2 (., 0, .), η1 (., 0, .), η2 (., 0, .) ∈ L 2 (Q T ) are such that

u γ û weakly in L 2 (Q ω ), (42a) 
(y γ , z γ ) (ŷ, ẑ) weakly in [L 2 (U, H 1 k (Ω))] 2 , (42b) 
ξ 1 (u γ )(., 0, .) ξ1 (., 0, .) weakly in

L 2 (Q T ), (42c) 
η 2 (u γ )(., 0, .) η2 (., 0, .) weakly in

L 2 (Q T ). ( 42d 
)
Then we have S 1 (a; u γ ) S 1 (a; û) weakly in D (0, A), and S 2 (a; u γ ) S 2 (a; û) weakly in D (0, A).

Proof. Let D((0, A)) be the set of C ∞ function with compact support on (0, A). Set for any φ ∈ D((0, A))

ỹγ (t, x) = A 0 y(t, a, x; u γ , 0, 0)φ(a)da, (t, x) ∈ Q T , (43a) 
zγ (t, x) = A 0 z(t, a, x; u γ , 0, 0)φ(a)da, (t, x) ∈ Q T . (43b) 
Then, in view of (42b), there exist two constants

C 1 , C 2 > 0 independent of γ such that ỹγ L 2 (Q T ) ≤ y γ L 2 (Q) φ L 2 (0,A) ≤ C 1 , zγ L 2 (Q T ) ≤ z γ L 2 (Q) φ L 2 (0,A) ≤ C 2 .
Consequently, there exist ỹ, z

∈ L 2 (Q T ) such that ỹγ ỹ weakly in L 2 (Q T ), ( 44a 
) zγ z weakly in L 2 (Q T ). (44b) 
Moreover, using (43a) and (42b), we deduce that

lim γ→0 Q T ỹγ (t, x)ψ(t, x) dt dx = Q T A 0 y(t, a, x; û, 0)φ(a)ψ(t, x) dx dt da, ∀ψ ∈ D(Q T ).
This means that ỹγ A 0 y(t, a, x; û, 0, 0)φ(a) da weakly in D (Q T ).

It follows from (43a) and the uniqueness of the limit that,

ỹ(t, x) = A 0 y(t, a, x; û, 0, 0)φ(a)da, (t, x) ∈ Q T . (45) 
Arguing as the same for zγ while using (43b) and (42b), we obtain that

z(t, x) = A 0 z(t, a, x; û, 0, 0)φ(a)da, (t, x) ∈ Q T . (46) 
Because (y γ , z γ ) = (y(t, a, x; u γ , 0, 0), z(t, a, x; u γ , 0, 0)) solves ( 23) with v = u γ , we have that (ỹ γ , zγ ) solves

           ỹγ t -(k(x)ỹ γ x ) x = k γ 1 in Q T , zγ t -(k(x)z γ x ) x = k γ 2 in Q T , ỹγ = zγ = 0 on Σ, ỹγ (0) = A 0 y 0 (a, x)φ(a)da, zγ (0) = A 0 z 0 (a, x)φ(a)da in Ω,
where

k γ 1 (t, x) = A 0 (f + u γ χ ω )φda - A 0 µ 1 (a)y γ φda - A 0 ∂y γ ∂a φda, and 
k γ 2 (t, x) = A 0 y γ χ O φda - A 0 µ 2 (a)z γ φda - A 0 ∂z γ ∂a φda.
Consequently, in view of (42a) and (42b), there exist two positive constants C 1 and C 2 independent of γ such that

k γ 1 L 2 (Q T ) ≤ 2 f 2 L 2 (Q) + 2 u γ 2 L 2 (Qω) + µ 1 2 L ∞ (0,A) y γ 2 L 2 (Q) 1/2 φ L 2 (0,A) + y γ L 2 (Q) ∂φ ∂a L 2 (0,A) ≤ C 1 , and 
k γ 2 L 2 (Q T ) ≤ 2 y γ 2 L 2 (Q) + µ 2 2 L ∞ (0,A) z γ 2 L 2 (Q) 1/2 φ L 2 (0,A) + z γ L 2 (Q) ∂φ ∂a L 2 (0,A) ≤ C 2 .
It then follows that there is C 1 , C 2 > 0, independent of γ, such that ỹγ

L 2 ((0,T );H 1 k (Ω)) ≤ C 1 , ỹγ t L 2 ((0,T );H -1 k (Ω)) ≤ C 1 ,
and zγ

L 2 ((0,T );H 1 k (Ω)) ≤ C 2 , zγ t L 2 ((0,T );H -1 k (Ω)) ≤ C 2 .
Therefore, it follows from Remark 1 and Aubin-Lions's Lemma that ỹγ → ỹ strongly in L 2 (Q T ) and zγ → z strongly in L 2 (Q T ) (47)

where for (t, x) ∈ Q T ỹ(t, x) = A 0 y(t, a, x; û, 0)φ(a)da and z(t, x) = A 0 z(t, a, x; û, 0)φ(a)da, because of (45) and (46). Now in view of (26)

S 1 (a; u γ ) = Q T
[y(t, a, x; u γ , 0, 0)ξ 1 (u γ )(t, 0, x) -y(t, a, x; 0, 0, 0)ξ 1 (0)(t, 0, x)] dt dx.

Therefore using (43a),

A 0 S 1 (a; u γ )φ(a)da = Q T A 0 (y(t, a, x; u γ , 0, 0)φ(a)da)ξ 1 (u γ )(t, 0, x)dt da dx - Q y(t, a, x; 0, 0, 0)ξ 1 (0)(t, 0, x)φ(a)dt da dx = Q T ỹγ (t, x)ξ 1 (u γ )(t, 0, x)dt da dx - Q y(t, a, x; 0, 0, 0)ξ 1 (0)(t, 0, x)φ(a)dt da dx, ∀φ ∈ D(0, A)
Passing this latter identity to the limit while using (47), ( 45) and (42c), we obtain

A 0 S 1 (a; u γ )φ(a)da → Q T ỹ(t, x)ξ 1 (û)(t, 0, x)dt da dx - Q y(t, a, x; 0, 0, 0)ξ 1 (0)(t, 0, x)φ(a)dt da dx = Q T A 0
(y(t, a, x; û, 0, 0)φ(a)da)ξ 1 (û)(t, 0, x)dt da dx -Q y(t, a, x; 0, 0, 0)ξ 1 (0)(t, 0, x)φ(a)dt da dx ∀φ ∈ D(0, A), which in view of (26), proves S 1 (a; u γ ) S 1 (a; û) weakly in D (0, A).

Proceeding as above while using (43b), (47), ( 46) and (42d), we obtain that S 2 (a; u γ ) S 2 (a; û) weakly in D (0, A).

This completes the proof.

From now on, we denote by D(Θ) the set of C ∞ function with compact support on Θ and by D (Θ), its dual.

Existence of No-regret control and Low-regret control

In view of (25), the optimization problem ( 22) is equivalent to the following problem:

inf v∈L 2 (Qω) sup (g1,g2)∈[L 2 (0,A)] 2 J(v, 0, 0) -J(0, 0, 0) + 2 A 0 S 1 (a; v)g 1 (a)da +2 A 0 S 2 (a; v)g 2 (a)da . ( 48 
)
As A 0 S i (a; v)g i (a)da is either equal to 0 or +∞, i = 1, 2, we look for the control v in the set,

M = v ∈ L 2 (Q ω ); A 0 S i (a; v)g i (a)da = 0, ∀g i ∈ L 2 (0, A), i = 1, 2 .
(49) Lemma 3.3 The problem (48) has a solution ũ in M.

Proof. It is clear that the set M is strongly closed in L 2 (Q ω ). On the one hand the application v → J(v, 0, 0) -J(0, 0, 0) is coercive on L 2 (Q ω ), bounded below by -J(0, 0, 0), and continuous because of Proposition 2.2. On the other hand, since the applications v → S i (•; v), i = 1, 2 are continuous on L 2 (Q ω ), then using minimizing sequences and Lemma 3.2 there exists a no-regret control ũ in M satisfying (48).

In order to characterize the no regret control ũ, we consider for any γ > 0, low-regret-control problem:

inf v∈L 2 (Qω) sup (g1,g2)∈[L 2 (0,A)] 2 J(v, 0, 0) -J(0, 0, 0) + 2 A 0 S 1 (a; v)g 1 (a)da +2 A 0 S 2 (a; v)g 2 (a)da -γ g 1 2 L 2 (0,A) -γ g 2 2 L 2 (0,A) . ( 50 
)
Using Fenchel-Legendre transform (see [START_REF] Azé | Éléments d'analyse convexe et variationnelle[END_REF]), we obtain that, sup

(g1,g2)∈[L 2 (0,A)] 2 J(v, 0, 0) -J(0, 0, 0) + 2 A 0 S 1 (a; v)g 1 (a)da + 2 A 0 S 2 (a; v)g 2 (a)da -γ g 1 2 L 2 (0,A) -γ g 2 2 L 2 (0,A) = J(v, 0, 0) -J(0, 0, 0) + 2γ sup g1∈L 2 (0,A) A 0 S 1 (a; v) γ g 1 (a)da - 1 2 g 1 2 L 2 (0,A) +2γ sup g2∈L 2 (0,A) A 0 S 2 (a; v) γ g 2 (a)da - 1 2 g 2 2 L 2 (0,A) = J(v, 0, 0) -J(0, 0, 0) + 1 γ S 1 (•; v) 2 L 2 (0,A) + 1 γ S 2 (•; v) 2 L 2 (0,A) ,
and (50) is reduced to inf

v∈L 2 (Qω) J γ (v), (51) 
where

J γ (v) = J(v, 0, 0) -J(0, 0, 0) + 1 γ S 1 (•; v) 2 L 2 (0,A) + 1 γ S 2 (•; v) 2 L 2 (0,A) . ( 52 
)
Remark 3 As J γ (v) ≥ -J(0, 0, 0) and J γ (0) = 0. Using minimizing sequences, Proposition 2.2, Proposition 3.3 and Lemma 3.2, we can prove as for Lemma 3.3 that problem (51) has at least one solution u γ ∈ L 2 (Q ω ). But, as the applications v → S i (•; v), i = 1, 2 from L 2 (Q ω ) to L 2 (0, A) are not necessarily strictly convex, the uniqueness of u γ ∈ L 2 (Q ω ), solution of (51) is not guaranteed. So, we are not sure that control low-regret-control u γ will converge to a no-regret control ũ ∈ M. Therefore, in order to have a low-regret control which will converge in M, we adapt the cost function J γ to a no-regret control ũ.

Existence of the adapted low-regret control

Let ũ be a no-regret optimal control. For any γ > 0, we define the adapted cost function J γ by:

v → J γ (v) = J(v, 0, 0) -J(0, 0, 0) + v -ũ 2 L 2 (Qω) + 1 γ S 1 (•; v) 2 L 2 (0,A) + 1 γ S 2 (•; v) 2 L 2 (0,A) . ( 53 
)
Then, we consider the following optimal control problem:

inf v∈L 2 (Qω) J γ (v). ( 54 
)
Proposition 3.4 Let γ > 0. Then problem (54) has at least a solution ũγ in L 2 (Q ω ).

Proof. We have J γ (v) ≥ -J(0, 0, 0) and J γ (0) = ũ 2 L 2 (Qω) . Using minimizing sequences, Proposition 2.2, Proposition 3.3, Lemma 3.2 and the fact that lim

v L 2 (Qω ) →+∞
J γ (v) = +∞, we prove as for Lemma 3.3 that problem (54) has at least a solution ũγ in L 2 (Q ω ).

Proposition 3.5 Let ũγ ∈ L 2 (Q ω ) be a solution of (54). Then there exist

(p 1 γ , p2 γ ) = (p 1 (ũ γ ), p 2 (ũ γ )) ∈ [L 2 (U ; H 1 k (Ω))] 2 , (q 1 γ , q2 γ ) = (q 1 (ũ γ ), q 2 (ũ γ )) ∈ [L 2 (U ; H 1 k (Ω))] 2 and ( φ1 γ , φ2 γ ) = (ϕ 1 (ũ γ ), ϕ 2 (ũ γ )) ∈ [L 2 (U ; H 1 k (Ω))] 2 such that {(ỹ γ , zγ ), ( ξ1 γ , η1 γ ), ( ξ2 γ , η2 γ ), (p 1 γ , p2 γ ), (q 1 γ , q2 γ ), ( φ1 γ , φ2 γ )} is a solution of the sys- tems:            L 1 ỹγ = f + ũγ χ ω in Q, L 2 zγ = ỹγ χ O in Q, ỹγ = zγ = 0 on Σ, ỹγ (0, a, x) = y 0 (a, x), zγ (0, a, x) = z 0 (a, x) in Q A , ỹγ (t, 0, x) = 0, zγ (t, 0, x) = 0 in Q T , (55) 
             L * 1 ξ1 γ = η1 γ χ O in Q, L * 2 η1 γ = (z γ -z d )χ O in Q, ξ1 γ = η1 γ = 0 on Σ, ξ1 γ (T, •, •) = 0, η1 γ (T, •, •) = 0 in Q A , ξ1 γ (•, A, •) = 0, η1 γ (•, A, •) = 0 in Q T , (56) 
             L * 1 ξ2 γ = η2 γ χ O in Q, L * 2 η2 γ = (z γ -z d )χ O in Q, ξ2 γ = η2 γ = 0 on Σ, ξ2 γ (T, •, •) = 0, η2 γ (T, •, •) = 0 in Q A , ξ2 γ (•, A, •) = 0, η2 γ (•, A, •) = 0 in Q T , (57) 
           L * 1 q1 γ = q2 γ χ O in Q, L * 2 q2 γ = (z γ -z d )χ O + γ in Q, q1 γ = q2 γ = 0 on Σ, q1 γ (T, •, •) = 0, q2 γ (T, •, •) = 0 in Q A , q1 γ (•, A, •) = 0, q2 γ (•, A, •) = 0 in Q T , (58) 
               L 1 p1 γ = 0 in Q, L 2 p2 γ = p1 γ χ O in Q, p1 γ = p2 γ = 0 on Σ, p1 γ (0, •, •) = 0, p2 γ (0, •, •) = 0 in Q A , p1 γ (•, 0, •) = 1 √ γ A 0 z(ũ γ , 0, 0)S 1 (a, ũγ )da, p2 γ (•, 0, •) = 0 in Q T , (59) 
               L 1 φ1 γ = 0 in Q, L 2 φ2 γ = φ1 γ χ O in Q, φ1 γ = φ2 γ = 0 on Σ, φ1 γ (0, •, •) = 0, φ2 γ (0, •, •) = 0 in Q A , φ1 γ (•, 0, •) = 0, φ2 γ (•, 0, •) = 1 √ γ A 0 z(ũ γ , 0, 0)S 2 (a, ũγ )da in Q T , (60) 
and

(N + 1)ũ γ -ũ + q1 γ = 0 in Q ω , ( 61 
)
where γ = 1 √ γ p2 γ χ O + 1 √ γ φ2 γ χ O + 1 γ ξ 1 (ũ γ )(t, 0, x)S 1 (a; ũγ ) + 1 γ η 2 (ũ γ )(t, 0, x)S 2 (a, ũγ ),
(ỹ γ , zγ ) = (y(ũ γ , 0, 0), z(ũ γ , 0, 0)), and

( ξi γ , ηi γ ) = (ξ i (ũ γ ), η i (ũ γ )), i = 1, 2.
Proof. We write the Euler-Lagrange optimality condition that characterizes ũγ :

lim λ→0 J γ (ũ γ + λw) -J γ (ũ γ ) λ = 0, ∀w ∈ L 2 (Q ω ).
Using Proposition 2.3 and Proposition 3.2, we obtain after some calculations

0 = U O ∂z ∂v (ũ γ , 0, 0)(w) (z(ũ γ , 0, 0) -z d ) dt da dx + Qω (ũ γ -ũ)wdt da dx + Qω N ũγ wdt da dx + 1 γ Q ∂z ∂v (ũ γ , 0, 0)(w)ξ 1 (ũ γ )(t, 0, x)S 1 (a, ũγ )dt da dx + 1 γ Q ∂ξ 1 ∂v (ũ γ )(w)(t, 0, x) z(ũ γ , 0, 0)S 1 (a; ũγ )dt da dx + 1 γ Q ∂z ∂v (ũ γ , 0, 0)(w)η 2 (ũ γ )(t, 0, x)S 2 (a, ũγ )dt da dx + 1 γ Q ∂η 2 ∂v (ũ γ )(w)(t, 0, x) z(ũ γ , 0, 0)S 2 (a; ũγ )dt da dx, ∀w ∈ L 2 (Q ω ), (62) 
where (ȳ(w), z(w)) = ∂y ∂v (ũ γ , 0, 0)(w), ∂z ∂v (ũ γ , 0, 0)(w) , ( ξ1 (w), η1 (w)) = ∂ξ 1 ∂v (ũ γ )(w), ∂η 1 ∂v (ũ γ )(w) and

( ξ2 (w), η2 (w)) = ∂ξ 2 ∂v (ũ γ )(w), ∂η 2 ∂v (ũ γ )(w) are respectively solutions to            L 1 ȳ(w) = wχ ω in Q, L 2 z(w) = ȳ(w)χ O in Q, ȳ(w) = z(w) = 0 on Σ, ȳ(w)(0, •, •) = 0, z(w)(0, •, •) = 0 in Q A , ȳ(w)(•, 0, •) = 0 z(w)(•, 0, •) = 0 in Q T , (63) 
           L * 1 ξ1 (w) = η1 (w)χ O in Q, L * 2 η1 (w) = z(w)χ O in Q, ξ1 (w) = η1 (w) = 0 on Σ, ξ1 (w)(T, •, •) = 0, η1 (w)(T, •, •) = 0 in Q A , ξ1 (w)(•, A, •) = 0, η1 (w)(•, A, •) = 0 in Q T , (64) and  
          L * 1 ξ2 (w) = η2 (w)χ O in Q, L * 2 η2 (w) = z(w)χ O in Q, ξ2 (w) = η1 (w) = 0 on Σ, ξ2 (w)(T, •, •) = 0, η2 (w)(T, •, •) = 0 in Q A , ξ2 (w)(•, A, •) = 0, η2 (w)(•, A, •) = 0 in Q T . (65) 
To interpret (62), we use the adjoint states (p 1 γ , p2 γ ), (q 1 γ , q2 γ ), ( φ1 γ , φ2 γ ). So if we multiply the first and the second equation of (63) respectively by q1 γ and q2 γ solutions of (58) and we combine the result, we multiply the first and the second equation of (64) respectively by 1 √ γ p1 γ and 1 √ γ p2 γ solutions of (59), we multiply the first and the second equation of (65) respectively by 1 √ γ φ1 γ and 1 √ γ φ2 γ solutions of (60), then integrate by parts over Q and combining the result, we obtain respectively

Q L * 1 q1 γ ȳ(w)dt da dx + Q L * 2 q2 γ z(w)dt da dx = Qω q1 γ wdt da dx + U O ȳ(w)q 2 γ dt da dx, 1 √ γ Q T ξ1 (w)(t, 0, x)p 1 γ (t, 0, x)dt dx + 1 √ γ Q T η1 (w)(t, 0, x)p 2 γ (t, 0, x)dt dx + 1 √ γ Q L 2 p2 γ η1 (w) = 1 √ γ U O η1 (w)p 1 γ dt da dx + 1 √ γ U O z(w)p 2 γ dt da dx, 1 √ γ Q T η2 (w)(t, 0, x) φ2 γ (t, 0, x)dt dx + 1 √ γ Q L 2 φ2 γ η2 (w)dt da dx = 1 √ γ U O η2 (w) φ1 γ dt da dx + 1 √ γ U O z(w) φ2 γ dt da dx.
By combining the three latter equalities, we obtain

Qω ((N + 1)ũ γ -ũ + q1 γ )wdt da dx = 0, ∀w ∈ L 2 (Q ω ),
which implies that

(N + 1)ũ γ -ũ + q1 γ = 0 in Q ω . (66) 
This completes the proof.

Characterization of the no-regret control

In this section, we are about to characterize the no-regret control. Before to do so, let us state the following result which gives the estimations needed for the characterization.

Proposition 3.6 Let ũγ ∈ L 2 (Q ω ) be a solution of (54). Let also (ỹ γ , zγ ), ( ξ1 γ , η1 γ ), ( ξ2 γ , η2 γ ), (p 1 γ , p2 γ ), (q 1 γ , q2 γ ), ( φ1 γ , φ2 γ ) be such that (55)-(61) hold true. Then we have the following estimations:

for i = 1, 2 ũγ L 2 (Qω) ≤ C (N, C 0 ) , (67) 1 √ γ S i (•; ũγ ) L 2 (0,A) ≤ C 0 , (68) 
S i (•; ũγ ) L 2 (0,A) ≤ √ γC 0 , (69) 
ỹγ L 2 (U ;H 1 k (Ω)) ≤ C (N, T, C 0 ) , (70) 
zγ L 2 (U ;H 1 k (Ω)) ≤ C (N, T, C 0 ) , (71) ξi 
γ L 2 (U ;H 1 k (Ω)) ≤ C (T, C 0 ) , (72) ηi 
γ L 2 (U ;H 1 k (Ω)) ≤ C (T, C 0 ) , (73) 
η2 γ (., 0, .) L 2 (Q T ) ≤ C (T, C 0 ) , (74) ξ1 γ (., 0, .) L 2 (Q T ) ≤ C (T, C 0 ) , (75) 
p1 γ (., 0, .) L 2 (Q T ) ≤ C 0 , (76) 
φ2 γ (., 0, .) L 2 (Q T ) ≤ C 0 , (77) pi 
γ L 2 (U ;H 1 k (Ω)) ≤ C (T, C 0 ) , (78) φi 
γ L 2 (U ;H 1 k (Ω)) ≤ C (T, C 0 ) , (79) qi γ 
L 2 (U ;H 1 k (Ω)) ≤ C (N, T, C 0 ) , (80) 
where

C 0 = C ũ L 2 (Qω) , y 0 L 2 (Q A ) , z 0 L 2 (Q A ) , f L 2 (Q) , z d L 2 (Q) .
Proof. We proceed in three steps.

Step 1. We prove the estimations (67)-(72).

As ũγ is solution of (54), we can write

J γ (ũ γ ) ≤ J γ (0) = ũ L 2 (Qω) . (81) 
It then follows from the definition of J γ and J given respectively by (53) and ( 12) that,

zγ -z d 2 L 2 (Q) + N ũγ 2 L 2 (Qω) + ũγ -ũ 2 L 2 (Q) + 1 γ S 1 (•; ũγ ) 2 L 2 (0,A) + 1 γ S 2 (•; ũγ ) 2 L 2 (0,A) ≤ ũ 2 L 2 (Qω) + z(0, 0, 0) -z d 2 L 2 (U ×O) .
Hence we deduce (67), ( 68), (69) and

zγ -z d L 2 (U ×O) ≤ C ũ L 2 (Qω) , y 0 L 2 (Q A ) , z 0 L 2 (Q A ) , f L 2 (Q) , z d L 2 (Q) . (82) 
Observing that (ỹ γ , zγ ), ( ξ1 γ , η1 γ ), and ( ξ2 γ , η2 γ ) are respectively solution of (55), ( 56) and (57), proceeding as in Proposition 2.1, we obtain that

ỹγ L 2 (U ;H 1 k (Ω)) ≤ C( y 0 L 2 (Q A ) + z 0 L 2 (Q A ) + f L 2 (Q) + ũγ L 2 (Qω) ), zγ L 2 (U ;H 1 k (Ω)) ≤ C( y 0 L 2 (Q A ) + z 0 L 2 (Q A ) + f L 2 (Q) + ũγ L 2 (Qω) ), ξ1 γ (., 0, .) L 2 (Q T ) + ξ1 γ L 2 (U ;H 1 k (Ω)) + η1 γ L 2 (U ;H 1 k (Ω)) ≤ C zγ -z d L 2 (U ×O) , and ξ2 γ L 2 (U ;H 1 k (Ω)) + η2 γ (., 0, .) L 2 (Q T ) + η2 γ L 2 (U ;H 1 k (Ω)) ≤ C zγ -z d L 2 (U ×O)
, from which we respectively, deduce (70)-(75) because of (67) and (82).

Step 2. We prove the estimations (76) and (77).

We observe that for i = 1, 2 . So using (68) and (70), we deduce

Q T 1 √ γ A 0 z(t, a, x; ũγ , 0)S i (a; ũγ ) da 2 dt dx ≤ 1 γ S i (.; ũγ ) 2 L 2 (0,A) zγ 2 L 2 (Q) ≤ C, where C = C ũ L 2 (Qω) , y 0 L 2 (Q A ) , z 0 L 2 (Q A ) , f L 2 (Q) , z d L 2 (Q) > 0. This means p1 γ (•, 0, •) L 2 (Q T ) ≤ C ũ L 2 (Qω) , y 0 L 2 (Q A ) , z 0 L 2 (Q A ) , f L 2 (Q) , z d L 2 (Q) , and φ2 γ (•, 0, •) L 2 (Q T ) ≤ C ũ L 2 (Qω) , y 0 L 2 (Q A ) , z 0 L 2 (Q A ) , f L 2 (Q) , z d L 2 (Q) .
Since (p 1 γ , p2 γ ), ( φ1 γ , φ2 γ ) are respectively solution of ( 59) and (60), proceeding as in Proposition 2.1 while using ( 76) and (77), we obtain pi

γ L 2 (U ;H 1 k (Ω)) ≤ C ũ L 2 (Qω) , y 0 L 2 (Q A ) , z 0 L 2 (Q A ) , f L 2 (Q) , z d L 2 (Q) , and φi γ L 2 (U ;H 1 k (Ω)) ≤ C ũ L 2 (Qω) , y 0 L 2 (Q A ) , z 0 L 2 (Q A ) , f L 2 (Q) , z d L 2 (Q) .
Step 3. We prove (80).

We observe that (q 1 γ , q2 γ ), solution of (58), can be decomposed as (q 1 γ , q2 γ ) = (q 1 γ + q1 γ , q2 γ + q2 γ ) where (q 1 γ , q2 γ ) is solution to

           L * 1 q1 γ = q2 γ χ O in Q, L * 2 q2 γ = (z γ -z d )χ O in Q, q1 γ = q2 γ = 0 on Σ, q1 γ (T, •, •) = 0, q2 γ (T, •, •) = 0 in Q A , q1 γ (•, A, •) = 0, q2 γ (•, A, •) = 0 in Q T , (83) 
and (q 1 γ , q2 γ ) is solution to

           L * 1 q1 γ = q2 γ χ O in Q, L * 2 q2 γ = γ in Q, q1 γ = q2 γ = 0 on Σ, q1 γ (T, •, •) = 0, q2 γ (T, •, •) = 0 in Q A , q1 γ (•, A, •) = 0, q2 γ (•, A, •) = 0 in Q T , (84) 
where

γ = 1 √ γ p2 γ χ O + 1 √ γ φ2 γ χ O + 1 γ ξ 1 (ũ γ )(t, 0, x)S 1 (a; ũγ ) + 1 γ η 2 (ũ γ )(t, 0, x)S 2 (a, ũγ ). Proceeding
as in Proposition 2.1, while using (82), we obtain

q1 γ L 2 (U ;H 1 k (Ω)) + q2 γ L 2 (U ;H 1 k (Ω)) ≤ C, (85) 
where

C = C( ũ L 2 (Qω) , y 0 L 2 (Q A ) , z 0 L 2 (Q A ) , f L 2 (Q) , z d L 2 (Q) ).
Combining (62), ( 66) and (66), we obtain for all w ∈ L 2 (Q ω )

Q z(w) 1 √ γ p2 γ χ O + 1 √ γ φ2 γ χ O + 1 γ ξ 1 (ũ γ )(0)S 1 (a; ũγ ) + 1 γ η 2 (ũ γ )(0)S 2 (a, ũγ ) dt da dx + U O z(w)(ỹ γ -z d )dt da dx + Qω N ũγ wdt da dx + Qω (ũ γ -ũ)wdt da dx = 0. ( 86 
) Set E = z(w), w ∈ L 2 (Q ω ) . (87) 
Then E ⊂ L 2 (Q). We define on E × E the inner product:

z(v), z(w) E = Qω vw dt da dx + Q z(v)z(w)dt da dx, ∀z(v), z(w) ∈ E. ( 88 
)
Then E endowed with the norm

z(w) 2 E = w 2 L 2 (Qω) + z(w) 2 L 2 (Q) , ∀z(w) ∈ E (89) 
is a Hilbert space. We set

T γ (ũ γ ) = 1 √ γ p2 γ χ O + 1 √ γ φ2 γ χ O + 1 γ ξ 1 (ũ γ )(0)S 1 (a; ũγ ) + 1 γ η 2 (ũ γ )(0)S 2 (a, ũγ ).
Then, in view of (86), we have for any

w ∈ L 2 (Q ω ), Q T γ (ũ γ )z(w)dtdadx = - U O z(w)(z γ -z d )dt da dx - Qω N ũγ wdt da dx - Qω (ũ γ -ũ)wdt da dx. (90) 
Using the Cauchy Schwarz inequality, we have

- U O z(w)(z γ -z d )dt da dx - Qω ((N + 1)ũ γ -ũ) wdt da dx ≤ zγ -z d L 2 (U ×O) z(w) L 2 (Q) + (N + 1) ũγ L 2 (Qω) w L 2 (Qω) + ũ L 2 (Qω) w L 2 (Qω) .
Therefore, using (82) and (67),

- U O z(w)(z γ -z d )dt da dx - Qω ((N + 1)ũ γ -ũ) wdt da dx ≤ zγ -z d 2 L 2 (U ×O) + [(N + 1) ũγ L 2 (Qω) + ũ L 2 (Qω) ] 2 1/2 z(w) E ≤ C z(w) E , where C = C N, T, ũ L 2 (Qω) , y 0 L 2 (Q A ) , z 0 L 2 (Q A ) , f L 2 (Q) , z d L 2 (Q) > 0. It then follows from (90) Q T γ (ũ γ )ȳ(w)dtdadx ≤ C z(w) E . Consequently, T γ (ũ γ ) E = 1 √ γ p2 γ χ O + 1 √ γ φ2 γ χ O + 1 γ ξ 1 (ũ γ )(0)S 1 (a; ũγ ) + 1 γ η 2 (ũ γ )(0)S 2 (a, ũγ ) E ≤ C.
In particular,

1 √ γ p2 γ χ O + 1 √ γ φ2 γ χ O + 1 γ ξ 1 (ũ γ )(0)S 1 (a; ũγ ) + 1 γ η 2 (ũ γ )(0)S 2 (a, ũγ ) L 2 (Q) ≤ C, where C = C N, T, ũ L 2 (Qω) , y 0 L 2 (Q A ) , z 0 L 2 (Q A ) , f L 2 (Q) , z d L 2 (Q) > 0.
Now, proceeding as in Proposition 2.1, while using the latter inequality, we obtain that q2

γ L 2 (U ;H 1 k (Ω)) ≤ C N, T, ũ L 2 (Qω) , y 0 L 2 (Q A ) , z 0 L 2 (Q A ) , f L 2 (Q) , z d L 2 (Q) .
Finally from (85) and the latter inequality, we deduce (80).

Proposition 3.7 The adapted low-regret optimal control ũγ converges in L 2 (Q ω ) to the no-regret control ũ ∈ M.

Proof. In view of (67)-( 75), for i = 1, 2, there exists a subsequence of (ũ γ , ỹγ , zγ , ξi γ , S i (., ũγ ), ηi γ ) still denoted by (ũ γ , ỹγ , zγ , ξi γ , S i (., ũγ ), ηi γ ) and û 

∈ L 2 (Q ω ), ỹ, z ∈ L 2 (U, H 1 k (Ω)), ξi , ηi ∈ L 2 (U, H 1 k (Ω)), α i ∈ L 2 (0, A), τ i ∈ L 2 (Q T ) such that ũγ û weakly in L 2 (Q ω ), (91) 1 
Let ϕ, φ ∈ D(Q), by multiplying the first equation and the second equation of system (55) respectively by ϕ and φ, and integrating by parts over Q, we obtain

Q ỹγ L * 1 ϕ dt da dx = Q f ϕ dt da dx + Qω ũγ ϕ dt da dx, ∀ϕ ∈ D(Q), and 
Q zγ L * 2 φ dt da dx = Q O ỹγ φ dt da dx, ∀φ ∈ D(Q).
By taking the limit as γ → 0 in these latter identities, while using (91) and (93), we obtain

Q ỹL * 1 ϕ dt da dx = Q f ϕ dt da dx + Qω ûϕ dt da dx, ∀ϕ ∈ D(Q), and 
Q zL * 2 φ dt da dx = Q O ỹφ dt da dx, ∀φ ∈ D(Q).
An integration by parts gives

Q L * 1 ỹγ ϕ dt da dx = Q f ϕ dt da dx + Qω ũγ ϕ dt da dx, ∀ϕ ∈ D(Q),
Now on one of the hand, if we take in addition in (98), ϕ(•, 0,

•) = 0 in Q T , then it follows that ỹ(0, •, •) = y 0 in Q A . (100) 
Taking (100) in account, (99) yields

ỹ(•, 0, •) = 0 in Q A . (101) 
On the other hand, if we choose in addition in (99), φ such that φ(0,

•, •) = 0 in Q A , we obtain z(•, 0, •) = 0 in Q A . (102) 
Moreover taking (102) into account, (99) gives

z(0, •, •) = z 0 in Q A . (103) 
Therefore by ( 95)-( 97) and ( 100)-( 103), it follows that (ỹ, z) is solution to

           L 1 ỹ = f + ûχ ω in Q, L 2 z = ỹχ O in Q, ỹ = z = 0 on Σ, ỹ(0, a, x) = y 0 (a, x), z(0, a, x) = z 0 (a, x) in Q A , ỹ(t, 0, x) = 0, z(t, 0, x) = 0 in Q T . (104) 
By applying the same arguments as above for ( ξ1 γ , η1 γ ), ( ξ2 γ , η2 γ ), and using the convergences (93)-( 94), we infer that ( ξ1 , η1 ), ( ξ2 , η2 ) are respectively solutions to

           L * 1 ξ1 = η1 χ O in Q, L * 2 η1 = (z -z d )χ O in Q, ξ1 = η1 = 0 on Σ, ξ1 (T, •, •) = 0, η1 (T, •, •) = 0 in Q A , ξ1 (•, A, •) = 0, η1 (•, A, •) = 0 in Q T , (105) and  
          L * 1 ξ2 = η2 χ O in Q, L * 2 η2 = (z -z d )χ O in Q, ξ2 = η2 = 0 on Σ, ξ2 (T, •, •) = 0, η2 (T, •, •) = 0 in Q A , ξ2 (•, A, •) = 0, η2 (•, A, •) = 0 in Q T , (106) 
In addition, we get also ξ1 (., 0, .

) = τ 1 , (107) 
and η2 (., 0, .) = τ 2 .

Now, using (91), ( 92), (94), and (69), we have from Lemma 3.2 that S i (., u γ ) S i (., û) weakly in D (0, A).

Hence, using (92) again and thanks to the uniqueness of the limit, we obtain S i (., ũγ ) → S i (., û) = 0 strongly in L 2 (0, A). Thus û ∈ M and we also have S i (.; û) L 2 (0,A) = 0. Since ũ is a No-regret control and û ∈ M , it follows from (48) that J(ũ, 0, 0) -J(0, 0, 0) ≤ J(û, 0, 0) -J(0, 0, 0),

Consequently,

Observing that ũγ solves the problem inf

v∈L 2 (Qω) J γ (v), we have J γ (ũ γ ) ≤ J γ (ũ) = J(ũ, 0, 0) -J(0, 0, 0), (110) 
which, in view of the definition of J γ given by (53), implies that

J(ũ γ , 0, 0) -J(0, 0, 0) + ũγ -ũ 2 L 2 (Qω) ≤ J γ (ũ γ ) ≤ J γ (ũ) = J(ũ, 0, 0) -J(0, 0, 0).
Using the convexity and lower semi-continuity of J on L 2 (Q ω ), ( 91) and (92), we obtain J(û, 0, 0) -J(0, 0, 0) + û -ũ 2 L 2 (Qω) ≤ lim inf γ→0 J γ (ũ γ ) ≤ J(ũ, 0, 0) -J(0, 0, 0), (111) which combining with (109) gives û -ũ 2 L 2 (Qω) ≤ 0. Hence, û = ũ in Q ω .

Thus the adapted low-regret controls converge in L 2 (Q ω ) to the no-regret control. Moreover from (112) and (104), it follows that (ỹ, z) = (y(ũ, 0, 0), z(ũ, 0, 0)) ∈ [L 2 (U ;

H 1 k (Ω))] 2 is the unique solution of            L 1 ỹ = f + ũχ ω in Q, L 2 z = ỹχ O in Q, ỹ = z
= 0 on Σ, ỹ(0, a, x) = y 0 (a, x), z(0, a, x) = z 0 (a, x) in Q A , ỹ(t, 0, x) = 0, z(t, 0, x) = 0 in Q T .

(113)

This completes the proof.

Proposition 3.8 The No-regret control ũ ∈ M is characterized by the functions ũ, (ỹ, z), ( ξ1 , η1 ), ( ξ2 , η2 ), (p 1 , p2 ), (q 1 , q2 ) and ( φ1 , φ2 ) which are unique solutions of the optimality system:

           L 1 ỹ = f + ũχ ω in Q, L 2 z = ỹχ O in Q, ỹ = z = 0
on Σ, ỹ(0, a, x) = y 0 (a, x), z(0, a, x) = z 0 (a, x) in Q A , ỹ(t, 0, x) = 0, z(t, 0, x) = 0 in Q T .

(114)

           L * 1 ξ1 = η1 χ O in Q, L * 2 η1 = (z -z d )χ O in Q, ξ1 = η1 = 0 on Σ, ξ1 (T, •, •) = 0, η1 (T, •, •) = 0 in Q A , ξ1 (•, A, •) = 0, η1 (•, A, •) = 0 in Q T , (115) 
           L * 1 ξ2 = η2 χ O in Q, L * 2 η2 = (z -z d )χ O in Q, ξ2 = η2 = 0 on Σ, ξ2 (T, •, •) = 0, η2 (T, •, •) = 0 in Q A , ξ2 (•, A, •) = 0, η2 (•, A, •) = 0 in Q T , (116) 
           L * 1 q1 = q2 χ O in Q, L * 2 q2 = (z -z d )χ O + λ 1 in Q, q1 = q2 = 0 on Σ, q1 (T, •, •) = 0, q2 (T, •, •) = 0 in Q A , q1 (•, A, •) = 0, q2 (•, A, •) = 0 in Q T , (117) 
           L 1 p1 = 0 in Q, L 2 p2 = p1 χ O in Q, p1 = p2 = 0 on Σ, p1 (0, •, •) = 0, p2 (0, •, •) = 0 in Q A , p1 (•, 0, •) = λ 2 , p2 (•, 0, •) = 0 in Q T , (118) 
           L 1 φ1 = 0 in Q, L 2 φ2 = φ1 χ O in Q, φ1 = φ2 = 0 on Σ, φ1 (0, •, •) = 0, φ2 (0, •, •) = 0 in Q A , φ1 (•, 0, •) = 0, φ2 (•, 0, •) = λ 3 in Q T , (119) 
and

N ũ + q1 = 0, ( 120 
)
where 

λ 1 = lim γ→0 1 √ γ p2 γ χ O + 1 √ γ φ2 γ χ O + 1 γ ξ 1 (ũ γ )(t,
Then, proceeding as for ỹγ in the proof of Proposition 3.7, while using (121)-(122), we prove (117), ( 118) and (119). To obtain (120), we pass to the limit in (66) while using (91), ( 112) and (122). This completes the proof.

Conclusion

We used the notion of no-regret and low-regret to control a coupled model describing the dynamics of a degenerate population with age dependence and spatial structure with missing birth rates. The control considered acts on a part of the domain (0, 1), the observation is done on another part of the same domain. Then we introduce an appropriate Hilbert space and apply the Aubin-Lions Lemma to an appropriate auxiliary problem to prove that the adapted low-regret control converges towards a no-regret control that we characterize. So theoretically, this means that by acting on the small domain ω, we brought the state of infected in the subspace O to a desired state in order to reduce the disease. Unfortunately, because of the singularities which appear in the optimality system, we were not able to perform numerical experiments.

Proposition 3 . 3

 33 Let S 1 (•; v) and S 2 (•; v) be the functions defined respectively in (26) and (27). Then the maps v → S 1 (•; v) and v → S 2 (•; v) are continuous form L 2 (Q ω ) onto L 2 (0, A).

A 0 S

 0 i (a; ũγ )g(a) da → A 0 S i (a; ûγ )g(a) da = 0.

γ

  0, x)S 1 (a; ũγ ) + 1 γ η 2 (ũ γ )(t, 0, x)S 2 (a, ũγ ) γ , 0, 0)S 1 (a, ũγ )da, γ , 0, 0)S 2 (a, ũγ )da.Proof. We have already proved (114)-(116) (see proof Proposition 3.7). From (76), (77), (78), (79) and (80), we have there existλ 2 , λ 3 ∈ L 2 (Q T ), λ 1 ∈ L 2 (Q), p1 , p2 ∈ L 2 (U ; H 1 k (Ω)), φ1 , φ2 ∈ L 2 (U ; H 1 k (Ω)) and q1 , q2 ∈ L 2 (U ; H 1 k (Ω)) such that the following convergences hold in the weak sense:p1 γ (., 0, .) λ 2 , φ2 γ (., 0, .) λ 3 in L 2 (Q T ) and γ λ 1 in L 2 (Q),φ2 in L 2 (U ; H 1 k (Ω)).
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Hence

and

Now, we have ỹ, z ∈ L 2 (U, H 1 k (Ω)) and using ( 95) and (96), ỹt + ỹa , zt + za ∈ L 2 (U, H -1 k (Ω)). Hence ỹ, z ∈ W k (0, T ) and according to Remark 1, ỹ(0, •, •), z(0, •, •), ỹ(T, •, •) and z(T, •, •) exist and belong to

If we multiply the first equation and the second equation in (55) respectively by ϕ and φ, and we integrate by parts over Q, we obtain

and

By taking the limit as γ → 0 in these latter identities, while using ( 91) and ( 93), we obtain

and

ỹφ dt da dx.

An integration by parts gives

and

ỹφ dt da dx.

Taking (95) and (96) into account, we are lead to Q A (ỹ(0, a, x) -y 0 (x, a))ϕ(0, a, x) da dx + Q T ỹ(t, 0, x)ϕ(t, 0, x) dt dx = 0, (98) and Q A (z(0, a, x) -z 0 (x, a))φ(0, a, x) da dx + Q T z(t, a, x)φ(t, 0, x) dt dx = 0. (99)