A Bayesian Approach to Morphological Models Characterization - Archive ouverte HAL Access content directly
Journal Articles Image Analysis & Stereology Year : 2021

A Bayesian Approach to Morphological Models Characterization

Abstract

Morphological models are commonly used to describe microstructures observed in heterogeneous materials. Usually, these models depend upon a set of parameters that must be chosen carefully to match experimental observations conducted on the microstructure. A common approach to perform the parameters determination is to try to minimize an objective function, usually taken to be the discrepancy between measurements computed on the simulations and on the experimental observations, respectively. In this article, we present a Bayesian approach for determining the parameters of morphological models, based upon the definition of a posterior distribution for the parameters. A Monte Carlo Markov Chains (MCMC) algorithm is then used to generate samples from the posterior distribution and to identify a set of optimal parameters. We show on several examples that the Bayesian approach allows us to properly identify the optimal parameters of distinct morphological models and to identify potential correlations between the parameters of the models.
Fichier principal
Vignette du fichier
2641-6915-2-PB.pdf (454.87 Ko) Télécharger le fichier
Origin : Publisher files allowed on an open archive

Dates and versions

hal-03510046 , version 1 (04-01-2022)

Identifiers

Cite

Bruno Figliuzzi, Antoine Montaux-Lambert, François Willot, Grégoire Naudin, Pierre Dupuis, et al.. A Bayesian Approach to Morphological Models Characterization. Image Analysis & Stereology, 2021, 40 (3), pp.171-180. ⟨10.5566/ias.2641⟩. ⟨hal-03510046⟩
53 View
50 Download

Altmetric

Share

Gmail Facebook X LinkedIn More