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ABSTRACT
Gravity currents are flows generated by the action of gravity on fluids
with different densities. In some geophysical applications, modeling
such flowsmakes it necessary to account for rotating effects, modify-
ing the dynamics of the flow. While previous works on rotating strat-
ified flows focused on currents of large Coriolis number, the present
work focuses on flows with small Coriolis numbers (i.e. moderate-to-
large Rossby numbers). In this work, cylindrical rotating gravity cur-
rents are investigatedbymeansof highly resolved simulations. Abrief
analysis of the mean flow evolution to the final state is presented
to provide a complete picture of the flow dynamics. The numeri-
cal results, showing the well-known oscillatory behavior of the flow
(inertial waves) and a final state lens shape (geostrophic adjustment),
are in good agreement with experimental observations and theo-
retical models. The turbulent structures in the flow are visualized
and described using, among others, a stereoscopic visualization and
videos as supplementary material. In particular, the structure of the
lobes and clefts at the front of the current is presented in association
to local turbulent structures. In rotating gravity currents, the vortices
observed at the lobes front are not of hairpin type but are rather of
Kelvin-Helmholtz type.

1. Introduction

Gravity or density currents are flows generated by the action of gravity on fluids with
different density. These flows manifest as currents of light fluid above a heavy fluid or as
currents of heavy fluid below light fluid. Gravity currents are important flows inmany engi-
neering and geophysical problems. Gravity currents are known tomove and transport large
amounts of mass and energy [1]. Some examples of these flows are snow avalanches in the
mountains, volcanic plumes, sand storms turbidity currents in the desert and oils spills
[1–3].

Rotational effects on gravity currents completely change the dynamics of the flow by
hindering free spreading [4,5]. In the turbulent regime, gravity currents are of a non-linear
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nature and exhibit a wide range of temporal and spatial scales [6]. Rotational effects bring
in another level of complexity to these flows, whichmake detailedmodelling a difficult task.

When gravity currents are restricted laterally, they spread with a statistically planar front
[7]. On the other hand, when the currents spread out in an horizontal plane with unhin-
dered motion in all directions, the front acquires a nominal cylindrical shape (see e.g.
experimental pictures in [8]). Non-rotating planar and cylindrical gravity currents have
been extensively studied analytically, experimentally and numerically. References [9] and
[7] are pioneering works that have addressed the lobe and cleft structure at the front of pla-
nar gravity currents. Great effort has been devoted to understand and explain the different
phases of spreading of gravity currents (see e.g. [10–13]). Patterson et al. [14] and Alahyari
and Longmire [15] have studied the internal structure of gravity fronts (see also [16–19]).
Three-dimensional highly resolved simulations of planar gravity currents have been per-
formed by Hartel et al. [20], Blanchette et al. [21], Birman et al. [22] and Cantero et al.
[6,23]. Three-dimensional highly resolved simulations of non-rotating cylindrical density
currents have been performed by Cantero et al. [8].

The rotation of the system imposes an intrinsic time scale TC = 1/�z at which rotational
effects will impact the flow, where �z is the angular velocity of the rotating system in the
direction normal to the flow spreading direction. On the other hand, gravity current fronts
develop with a characteristic time scale T = r0/U, where U is the characteristic velocity of
the gravity current front and r0 is the characteristic length scale for the front spreading (see
Section 2 for precise definitions). The ratio of these two time scales is the Coriolis number
C = T/TC (or equivalently the Rossby number Ro = TC/T).

Gravity currents subject to rotation have been studied by a number of authors.Hallworth
et al. [24] report experimental and numerical investigations of cylindrical gravity currents
in a rotating system with focus on the front dynamics in the range 0 ≤ C ≤ 0.4. Stegner
et al. [25,26] addressed the geostrophic adjustment of cylindrical fronts experimentally in
the range 0.4 ≤ C ≤ 1.8 (see also [27]). The book by Ungarish [28] presents great detail of
analytic models for rotating gravity currents (see also [29,30]). Recently, Salinas [31] has
performed highly resolved simulations of Coriolis effects on planar and cylindrical gravity
currents. As pointed out by Griffiths [4], ‘the vast body of work on instability in rotating
stratified fluids has assumed small Rossby numbers and small variations of layer depth, and
therefore does not capture the physics of density fronts’ (see e.g. [5,25,32–34]). The present
work focuses on flows with small Coriolis numbers (equivalently large Rossby numbers)
for which T< TC. Thus, the gravity current flows addressed in this work develop first their
intrinsic characteristics which are later affected by rotational forces.

Rotating cylindrical gravity currents are investigated bymeans of highly resolved numer-
ical simulations. Six three-dimensional simulations are reported with grid resolutions up
to 165-million points [31], various boundary conditions (‘free-slip’ and ‘no-slip’), two
Reynolds numbers and three Coriolis numbers. The work mainly focuses on describing
the turbulent structures present in the flow and their dynamics. We also report on the for-
mation and evolution of the lobe and cleft structure at the front. Although the adjustment
to the geostrophy is a well-known process (see e.g. [32]), a brief analysis and description
of the mean flow evolution to the final state is presented to provide a complete picture of
the flow dynamics and to stress the effect of friction at the bottom. Results such as the
maximum distance of propagation of the front in the first oscillation, the frequency of the
successive outward fronts oscillation and the final lens shape of the current are reported



Figure . (a) Closeup bottom view of the hairpin vortices HP for case () at t̃ = 6.25 visualised by an iso-
surface of λ̃ci = 3. Also depicted are the radial (r̂) and tangential (t̂) axis. (b) Stereoscopic visualisation of
vortex structures for case () at t̃ = 5 visualised by the iso-surface of swirling strength λ̃ci = 2. The figure
must be viewed with red–blue glasses.

and compared to theoretical models and available laboratory observations. Supplementary
material videos are available and referenced throughout the work.

2. Mathematical and numerical formulation

The problem under consideration is depicted schematically in Figure 2. It consists of a
rectangular tank rotating counterclockwise at a constant angular velocity �z along the
vertical axis z.

Co-rotating with the tank is heavy fluid of density ρ1, initially confined in a cylindrical
region of radius r0, occupying the full height of the domainH (blue shaded area in Figure 2),
and initially separated by a vertical partition from the lighter ambient co-rotating fluid of
density ρ0 (not shown). The heavy fluid is then released (at time zero) and the flow spreads
in the horizontal direction (x and y). A schematic representation of the density current
spreading is presented in Figure 2 as a gray shaded region.

This work considers flows in which the density difference between the heavy fluid and
lighter ambient fluid is small enough that the Boussinesq approximation is valid. Under



Figure . Schematic of the configuration for the cylindrical system. The system is rotating at a constant
angular velocity�z along the vertical axis z counterclockwise. Also depicted are the axis used to compute
the mean flow (radial r̂ and tangential t̂ axis).

these circumstances, and in a reference frame attached to the rotating tank, the dimension-
less governing equations are [24,28]

∂ũ
∂ t̃

+ ũ · ∇̃ũ = −∇̃ p̃+ H
r0

1
Re

∇̃2ũ − r0
H

ρ̃ ẑ + 2C̃(ṽ x̂ − ũŷ) , (1)

∇̃ · ũ = 0 , (2)

∂ρ̃

∂ t̃
+ ũ · ∇̃ρ̃ = 1

Re Sc
∇̃2ρ̃ . (3)

Here, ũ = {ũ, ṽ, w̃} is the dimensionless velocity, p̃ the dimensionless pressure and ρ̃ the
dimensionless density given by ρ̃ = (ρ − ρ0) / (ρ1 − ρ0) where ρ is the local fluid den-
sity. The last term on the right hand side of Equation (1) accounts for the effect of rota-
tion, i.e. the Coriolis force. The centrifugal force has been absorbed into the pressure term.
Dimensionless variables for Equations (1)–(3) are definedwith length scale r0, velocity scale
U = √

RgH with R = (ρ1 − ρ0)/ρ0, time scale T = r0/U and pressure scale ρ0 U2. The
gravitational acceleration is g = −g ẑ. Using the former time scale implies the assumption
that the local time scale is equal to the advective time scale in the momentum balance.
The dimensionless parameters in Equations (1)–(3) are the Reynolds, Schmidt and Corio-
lis numbers defined as, respectively,

Re = U H
ν

, Sc = ν

κ
and C̃ = �z r0

U
. (4)

Here ν is the kinematic viscosity and κ the molecular diffusivity of the scalar property that
changes the density of the fluid. The remaining parameter r0/H is the aspect ratio charac-
terising the initial conditions.

The governing Equations (1)–(3) are solved in a periodic dimensionless rectangular box
of size L̃x × L̃y × H̃ . For all simulations L̃x = L̃y because the current spreads radially in
the horizontal plane (x̃-ỹ). A fully de-aliased pseudo-spectral code [35] is employed with



Fourier expansions along the horizontal directions x̃ and ỹ and a Chebyshev expansion
with Gauss–Lobatto quadrature points along the vertical direction z̃. The flow field is time
advanced using aCrank–Nicolson scheme for the diffusion terms and a third-order Runge–
Kutta scheme for advection terms. Advection terms in Equation (1) are handled with the
Arakawamethod [36]. The buoyancy term is also advancedwith a third-order Runge–Kutta
scheme.

Periodic boundary conditions are imposed at the lateral (vertical) boundaries for all
variables. At the top wall we employ a ‘free-slip’ boundary condition for the velocity field
(∂ũ/∂ z̃ = 0) and a zero-gradient boundary condition for the density field (∂ρ̃/∂ z̃ = 0).
At the bottom wall, different boundary conditions are employed for the velocity field (see
Table 1 for details) and a zero-gradient boundary condition for the density field.

As an initial condition for the velocity field we imposed zero velocity in the entire
domain. For the density field we start our simulations with the heavy fluid confined in
a cylindrical region of radius r0 and height H (blue area in Figure 2) surrounded by the
lighter ambient fluid that occupies the rest of the domain. We added a small perturbation
to the density field to ensure that the rectangular platform of the domain and the grid do
not introduce any bias in the evolution of the front. The effect of the small random dis-
turbances in the initial condition has been studied before by Cantero et al. [37], who used
the same pseudo-spectral code as in this work. The density field was set up using an error
function (Equation (9) in [37]). It is stated in that paper that ‘the parameters used were
selected to produce a decorrelated interface with a white noise energy spectrum’. Using this
error function, we ensure that no artificially wavelength that could evolve in an artificial
lobe and cleft pattern is selected.

A detailed description of the implementation and validation of the code can be found in
[31] and [38]. The grid employed for every simulation is detailed in Table 1. The numerical
resolution for each simulation was based on the experience of previous works [6,8,23,37]
and selected to have between 6 and 8 decades of decay in the energy spectrum for all the
variables. The time step was selected to produce a Courant number smaller than 0.5. For
viscous rotating fluids, it is important to accurately capture the dynamics inside the so-
called Ekman layer defined as δEk = √

ν/�z which can be written in dimensionless form
as δEk/H =√

r0/H/

√
Re C̃. In the simulations reported here δEk/H is about 2%–5%, and it is

described by approximately 14 grid points. The simulations performed for this work were

Table . Numerical simulations performed for thiswork. The table shows the time atwhich the
fronts reach themaximumdistance of propagation for the first oscillation (t̃max), themaximum
distance of propagation of the fronts (rmax), the radius of the lens (rlens) and the frequency of
the front oscillations (ωp). ‘B.C.’ refers to the bottom boundary condition for velocity: ‘F.S.’ and
‘N.S.’ are ‘free-slip’and ‘no-slip’boundary conditions, respectively. All simulations have a ‘free-
slip’boundary condition at the top boundary and a Schmidt number Sc= .

Case C̃ Re L̃x × L̃y × H̃ Nx × Ny × Nz B.C. t̃max rmax rlens ωp

 .  × ×  × ×  F.S. . . . .
 .  × ×  × ×  F.S. . . . .
 .  × ×  × ×  F.S. . . . .
 .  × ×  × ×  N.S. . . .a .
 .  × ×  × ×  N.S. . . .a .
   × ×  × ×  N.S. − − − −
aFor these cases the radius of the lens continuously increases at very low velocity and the value reported
corresponds to the end of the oscillation period at t̃ = 100.



done in Intel Xeon E5-2660 CPUs processor with 16 cores and 64 GB of RAM. Each 75-
million-grid-point simulation took approximately 40 days and produced 2.3 TB of data,
while each 165-million-grid-point simulation took approximately 60 days and produced
4.8 TB of data.

3. Results and discussions

This work presents six simulations of cylindrical gravity currents with the geometrical con-
figuration depicted in Figure 2. A detailed description of the cases studied is presented in
Table 1. Cases (1)–(3) only differ in theCoriolis parameter, case (4) has a different boundary
condition at the bottom (‘no-slip’), and case (5) has a ‘no-slip’ bottom boundary condition
and a higher Reynolds number (Re= 8000). Case (6) is a simulation for Re= 8000 without
rotational effects. All simulations have a ‘free-slip’ boundary condition at the top bound-
ary, an initial aspect ratio of the initial condition r0/H = 1 and a Schmidt number Sc = 1.
In the case of planar non-rotating currents, Bonometti and Balachandar [39] showed that
the dynamics of the current is independent of the Schmidt number provided the Reynolds
number is large. The effect of Schmidt number in rotating gravity currents will be addressed
in a futuremanuscript. It is worthmentioning here, however, that the numerical results with
Sc= 1 present reasonable agreement with experimental observations for saline currents for
which Sc � 700.

3.1. Front dynamics

Rotational effects have a large impact on the development of the flow. One of the most
distinct effects is the inhibition of the flow to continuously spread. This well-known process
is called geostrophic adjustment (see e.g. [32]). This section presents the dynamics of this
process in the context of low Coriolis number from the point of view of detailed three-
dimensional numerical simulations.

... Shape and front evolution during geostrophic adjustment
Figure 6 showsmean density iso-surfaces for case (3) at several times: t̃ = 2.5, t̃ = 5, t̃ = 10
and t̃ = 20. Initially the current spreads as in the absence of rotation. Detailed description
and explanation of the dynamics of cylindrical gravity currents in the absence of rotation
can be found in Cantero et al. [8]. As the flow develops, the Coriolis force becomes stronger
and eventually becomes a dominant force.

Figure 6 shows the net effect of rotation on the spreading. For t̃ = 20 the front has only
advanced a distance of 0.1 as compared to t̃ = 10. Eventually the front reaches a final steady
lens shape (free-slip conditions) or quasi-steady lens shape (no-slip condition). The lens
shape for t̃ = 20 in Figure 6 is representative of the final current shape.

A local equivalent height h is defined for the computation of the maximum distance of
front propagation. Shin et al. [40] and Marino et al. [13] defined a local equivalent height
in an unambiguous way as

h̃(r̃, θ̃ , t̃ ) =
∫ H̃

0
ρ̃ dz̃ , (5)
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Figure . Front location rF as a function of time t̃ for different thresholds of h, from δ = . to δ = ., for
(a) case (), (b) case (), (c) case (), (d) cases ()–() with scaling t̂ = �zt and r̂F = rC̃1/2/r0. Experimental
observations by Hallworth et al. [] are for Re= .×  (R) and Re= .×  (R), C̃ = 0.24 (R)
and C̃ = 0.26 (R) and Sc= .

r̃ being the radial position and θ̃ the azimuthal position. At locations where the entire layer
is occupied by the heavy fluid, the equivalent height is unity, whereas at locations where the
light fluid fills the entire layer, the equivalent height h̃ is zero. The local current height can
then be averaged over the azimuthal direction. The mean equivalent height is defined as

h(r̃, t̃ ) = 1
2π

∫ 2π

0
h̃(r̃, θ̃ , t̃ ) dθ̃ . (6)

Themean front location rF can now be defined as the radial positionwhere themean equiv-
alent height h becomes smaller than a small threshold δ. Precise definition can be found in
Cantero et al. [23]. Mean flow variables are computed as

f (r̃, z̃, t̃ ) = 1
2π

∫ 2π

0
f̃ (r̃, θ̃ , z̃, t̃ ) dθ̃ , (7)

where f̃ can be the density field or the velocity field.
Figure 3(a–c) shows the front location rF as a function of time for cases (1)–(3) and for

different threshold values of h. The upper curve corresponds to the threshold δ = 0.01. The
threshold δ = 0.01 captures adequately the dynamics of the front in agreement with flow
visualisations and it is used for the computation of front locations reported in this work.
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Figure . Comparison of numerical results with experimental observations and theoretical predictions
(see also Table ). Experimental observations by Hallworth et al. [] are for Re = . ×  (R) and
Re = . ×  (R), C̃ = 0.24 (R) and C̃ = 0.26 (R) and Sc � . (a) Time at which the fronts reach
the maximum distance of propagation for the first oscillation t̃max. Solid line: empirical law obtained
from shallow-water simulations []. (b) Maximum distance of propagation of the fronts r̃max. Solid line:
shallow-water solution for the steady-state lens in the case C̃ � 1 []. Dotted line: Box-model solution
[]. (c) Radius of the lens r̃lens. The solid and dotted lines are the same as in frame b. (d) Frequency of the
front oscillations ω̃p. Solid line: empirical law obtained in the experiments of Hallworth et al. [].

For all cases reported in Figure 3(a–c) the front moves outward for some time, until the
front velocity becomes zero, and then the current starts to move inward. This process is
repeated for several cycles. The dynamics of the front can also be observed in the video
supplied as supplementary material SupMatVideo1.avi. The first oscillation peak occurs
at t̃max ≈ 19.9, t̃max ≈ 15.8 and t̃max ≈ 11.3, for cases (1)–(3), respectively (see Table 1).
These times are in agreement with results reported by Ungarish [28] using a shallow water
model, where the maximum radius of the current occurs at t̃max ∼ 2/C̃ (for C̃ � 1). This
comparison is shown in Figure 4(a) together with experimental data from Hallworth et al.
[24]. These experimental data are also included in Figure 3(c) and present two distinct
aspects worth mentioning here. First, every new front oscillation reaches further away and,
second, there is a time delay of the experimental data with respect to the simulation results.
Note that the dimensionless numbers of the flow in our numerical simulations are notice-
ably different from those assumed in the laboratory.

Experimental data from Hallworth et al. [24] are for Re = 2.09 × 105 (run R11) and
Re= 2.93× 105 (R6), C̃ = 0.24 (run R11) and C̃ = 0.26 (run R6), and Sc= 700. Results of
Cantero et al. [23] show that the effect of Reynolds number on the front velocity of density
currents is minor as long as it is larger than Re � 4000. Furthermore, Bonometti et al. [39]



Figure . Effect of the Reynolds number. Front location rF as a function of time t̃ for different thresholds
ofh, from δ = . to δ = ., for (a) case () and (b) case (). Experimental observations by Hallworth et al.
[] for which Sc = : open squares (R), Re= . × , C̃ = 0.24; open triangles (R), Re = . ×
, C̃ = 0.26.

Figure . Mean density iso-surface contours for case (). The sequence shows the time development of
the current. The current shape for t̃ = 20 is representative of the steady state shape.

show that a variation from Sc = 1 to Sc = O(103) at Re � 10000 leads to a variation of the
front velocity of �5%. Although Cantero et al.’s [23] and Bonometti et al.’s [39] results are
for non-rotating currents, it is assumed that their findings remain valid for the low Cori-
olis number currents used in this work and thus that the comparison between the present
numerical results with the experiments of Halwworth et al. [24] is relevant. In view of these
observations, the discrepancies between numerical results and experimental observations
in Figures 3(c) and 4(a) can be mainly attributed to the different bottom boundary condi-
tions between experiments and numerical simulations for cases (1)–(3). Figure 3(d) shows



Figure . (a) Time evolution of kinetic energy Ek and potential energy Ep scaled with the initial potential
energy Ep for: (a) cases () and (); (b) cases () and (); (c) cases () and ().

the front location for cases (1)–(5) employing scales 1/�z for time and r0/C̃1/2 for length
giving dimensionless variables t̂ and r̂F . Reasonable collapse of the results is obtained for
these scales for each type of boundary condition. Figure 4(a) clearly shows the differences
in front spreading for cases (4) and (5) with ‘no-slip’ as compared to cases (1)–(3) with
‘free-slip’. Table 1 reports the delay on t̃max for cases (4) and (5) with respect to case (2).

At the first oscillation, the current reaches the maximum distances of propagation as
can be observed in Figure 3(a–c). These values are reported in Table 1 and are rmax ≈ 7.2,
rmax ≈ 5.7 and rmax ≈ 4.2, for cases (1)–(3), respectively. The larger the Coriolis number



the shorter the maximum propagation distance (see Section 3.1.2). Numerical solution of
the shallowwatermodel and boxmodel approximations [30] predict rmax = 6.1 and rmax =
5.0, respectively, for C̃ = 0.1. These model predictions differ from our results by 15% and
30%, respectively. Experimental observations byHallworth et al. [24] show values of rmax =
4.3 and rmax = 4 for C̃ = 0.24 and C̃ = 0.26, respectively (experiments R11 and R6 in [24]).
This comparison is shown in Figure 4(b).

After several cycles of oscillation the flow reaches eventually steady state for cases (1)–
(3), for which the front spreading stops and the current assumes a lens shape. As a conse-
quence of bottom ‘no-slip’ boundary condition (see Section 3.1.2), cases (4) and (5) con-
tinue to spread outward for all times at a very low speed. Figure 8 shows the current shape
for case (2). Figure 8(a,b) shows the mean density field ρ for two time instances: t̃ = 15.8
corresponding to the time when the current reaches the maximum distance of propaga-
tion (first peak in Figure 3(b) for threshold δ = 0.01) and t̃ = 100 corresponding to a
time long enough for which front oscillations are small. For t̃ > 100 the front location dis-
plays oscillations below 5% and the final lens shape of the current can be assumed to have
been achieved. This shape is clearly seen in Figure 8(d) for t̃ = 100, which shows a density
iso-surface of ρ̃ = 0.01. The lens shape of the current at the steady state is in agreement
with experimental observations and shallow water models for rotating cylindrical gravity
currents [24]. This profile is known as ‘nose down’ because the head height becomes small
in the steady state. This type of profile is not seen in gravity currents without rotation [8].
Comparing Figures 8(c) (t̃ = 15.8) and 8(d) (t̃ = 100) we can see a small difference in the
lens radius, although the three-dimensional shape of the lens is different (more turbulent
structures that modify the interface at time t̃ = 15.8).

The steady state lens mean radius rlens is also influenced by the Coriolis parameter, in
particular rlens = 6.3, rlens = 5.3 and rlens = 4.1 for cases (1)–(3), respectively. The values
are also reported in Table 1. Analytic approximations of the shallow water equations [28]
predict steady state lens radius of rlens = 4.5, rlens = 3.7 and rlens = 2.8 for C̃ = 0.1, C̃ =
0.15 and C̃ = 0.25, respectively. These values differ by 30% from the numerical results.
This comparison is shown in Figure 4(c).

The front oscillatory behaviour until the flow reaches the steady state lens shape can
be characterised by the mean oscillation period T p. The mean oscillation period for each
simulation is defined as the averaged time interval on which the successive outward fronts
tracked by h and the threshold δ = 0.01 reach rlens (see Figure 3). The mean oscillation fre-
quency ωp is defined as ωp = 2π/T p. Values of ωp for all simulations are shown in Table 1.
For cases (1)–(3), these values satisfy the empirical linear relation ωp ≈ 2C̃. Similar labo-
ratory observations are reported for cylindrical gravity currents by Hallworth et al. [24].
These are shown in Figure 4(d).

... Mean flow dynamics and the effect of bottom boundary condition
In the absence of rotation, gravity currents spread radially transitioning through differ-
ent phases of spreading [23]. The rotation of the system modifies substantially this global
behaviour of gravity currents. As explained in Section 3.1, the flow develops initially as if
therewere no rotation on the system [8], but eventually it feels the effect of theCoriolis force
and retreats inwards. For the cylindrical coordinates shown in Figure 2 the mean Coriolis



Figure . (a) Density field ρ at t̃ = 15.8, for case (); (b) density field ρ at t̃ = 100, for case (); (c) Lens
shape at t̃ = 15.8 visualised by an iso-surface of density ρ̃ = 0.01, for case (); (d) steady state lens shape
at t̃ = 100 visualised by an iso-surface of density ρ̃ = 0.01, for case ().

force may be written as

− 2C̃ẑ × u = 2C̃
(
ut r̂ − ur t̂

)
, (8)

where ur and ut are the mean radial and mean tangential velocities, respectively.



Figure . Effect of the bottom friction on the span-averaged velocity profiles. Mean radial velocity ur as
a function of z̃ at r = 1 for (a) case () and (b) case (). Mean tangential velocity ut as a function of r at
z̃ = 0.025 and z̃ = 0.975 for (c) case () and (d) case ().

Mean radial velocity profiles (ur) as a function of z̃ for r = 1 are presented in Figure 9(a)
for case (2). Figure 9(c) shows the mean tangential velocity profiles (ut) as a function of
the radial position r for case (2) for vertical locations z̃ = 0.025 and z̃ = 0.975. When the
heavy fluid is released and starts to move in the positive radial direction as a result of the
buoyancy force, a Coriolis force in the negative tangential direction develops as seen in
Equation (8). The tangential Coriolis force induces flow in this direction. This effect can
be seen in Figure 9(a) for t̃ = 2.5, where a velocity in the positive radial direction ur ≈ 0.7
produces a Coriolis force component in the negative tangential direction which induces
a velocity ut ≈ 0.24 in the negative tangential direction at the front (see Figure 9(c) for
z̃ = 0.025 and t̃ = 2.5 at r ≈ 2). Consequently, a Coriolis force component in the negative
radial direction develops, which interacts with the buoyancy force. For t̃ = 5 the current
has felt the effect of the Coriolis force and the flow has started to retreat as seen in Figure
9(a) where the current velocity is negative for 0.04 < z̃ < 0.45. At t̃ = 10 the Coriolis force
has acted strongly on the flow and the body of the current is moving in the negative radial
direction as seen in Figure 9(a). At t̃ ≈ 20 the second inertial oscillation of the front occurs
(see Figure 3(b) for t̃ ≈ 20). This flow in the positive radial direction produces again aCori-
olis force in the negative tangential direction, and the process described above repeats itself
for several cycles. The oscillatory process described is the well-known dynamics of inertial
oscillations in the adjustment to geostrophy. At t̃ ≈ 100, the amplitude of the front location
oscillations drops significantly, and the current acquires the final lens shape similar to the
one seen in Figure 8(d) (geostrophic adjustment). At this time the mean radial velocity ur
is practically zero. Figure 9(c,d) displays also large values of positive tangential velocity for



0 < r̃ < 2 close to the top boundary. This is a consequence of the negative radial veloc-
ity that develops close to the top boundary forced by mass conservation and the outward
moving front in the bottom part of the domain. A negative radial velocity induces a pos-
itive tangential Coriolis force. The dynamics described before for mean flow can also be
observed in the video supplied as supplementary material SupMatVideo1.avi.

Cases (4) and (5) only differ by the value of the Reynolds number. Figure 5(a,b) shows
the front location for cases (4) and (5), respectively, as a function of time and for different
thresholds values of h. As can be observed in this figure, there is no major influence of the
Reynolds number for the range studied. The same conclusion can be drawn from other
parameters and we have decided no to show them here. On the other hand, the bottom
boundary condition influences quantities such as rmax, rlens and ωp [41].

The effect of the bottom boundary condition can be addressed by comparing cases (2)
and (4), which differ only on the bottom boundary condition: case (2) with a ‘free-slip’ and
case (4) with ‘no-slip’. Figure 5(a) shows that the maximum distances of propagation of the
front rmax is smaller than for case (2) (see Figure 3(d) and also Table 1 where rmax = 5.7 and
rmax = 4.5 for cases (2) and (4), respectively). This is consistent with the fact that the flow
in the radial direction for case (4) is further restricted by bottom shear owing to the ‘no-slip’
bottom boundary condition. This difference can also be seen by comparing Figure 9(a,b),
where vertical profiles of ur are presented for radial position r̃ = 1 for cases (2) and (4),
respectively. At t̃ = 2.5 the positive radial velocity for z̃ < 0.04 for case (4) is smaller than
for case (2), producing a weaker Coriolis force in the negative tangential direction. Thus
smaller negative tangential velocities of the flow are induced and, consequently, a weak-
ened Coriolis force in the negative radial direction. This produces the smaller inward radial
velocities seen in Figure 9(b) for times t̃ = 5 and t̃ = 10 as compared to Figure 9(a).

Another distinctive effect of the ‘no-slip’ bottom boundary condition is that the maxi-
mum radius of the successive outward fronts are not smaller than in the previews oscilla-
tions (compare Figure 3(b) and Figure 5(a)). This behaviour was observed by Hallworth
et al. [24] in laboratory experiments and is not seen in case (2) with a ‘free-slip’ bound-
ary condition at the bottom. Experimental data from Hallworth et al. [24] for C̃ ≈ 0.25 is
included in Figure 5(a). This difference in behaviour as a result of the boundary condition
can be explained by analysing Figure 9(c,d), which present mean tangential velocity radial
profiles (ut) for z̃ = 0.025 and z̃ = 0.975 for cases (2) and (4), respectively.

As explained earlier, the lower positive radial velocities for case (4) produce a weaker
Coriolis force in the negative tangential direction and smaller tangential velocities. These
lower tangential velocities produce weaker Coriolis forces in the negative radial direction,
allowing the maximum distance achieved for each oscillation to be greater than the previ-
ous one. At later times (t̃ > 80), the Coriolis force in the negative radial direction cannot
balance the buoyancy force and the steady state is never reached for bottom ‘no-slip’ cur-
rents. A lens shape of the interface between the light and heavy fluid is observed however,
but with an increasing rlens over time. At this stage, the front advances at a velocity of the
order of uF = 10−4 for 80 < t̃ < 200, representing a variation of 1% of the front position.
Also, a slight increase in the frequency of the successive outward fronts ωp is observed
in case (4) as seen in Figure 5 and reported in Table 1. The effect of bottom boundary
condition on mean flow can also be observed in the video supplied as supplementary
material SupMatVideo2.avi.



Following the work of Necker et al. [42] we compute the kinetic energy Ek and potential
energy Ep:

Ek(t ) =
∫
V

1
2
(ũ · ũ) dV, Ep(t ) =

∫
V

ρ̃ · ẑ dV, (9)

where V is the entire domain. The Coriolis term does not contribute to the global energy
balance. Figure 7 shows the time evolution of kinetic energy Ek and potential energy Ep

scaled with the initial potential energy Ep0. In Figure 7(a) we compare case (6) (zero Cori-
olis number) with case (4) (non-zero Coriolis number). Both simulations have the same
bottom boundary condition (‘no-slip’). We can see a good agreement between both simu-
lations for early times, when rotation effects are small. The effect of the bottom boundary
condition is observed in Figure 7(b), which presents results for cases (2) and (4). These cases
differ only through the bottom boundary condition. It can be clearly seen that the ‘no-slip’
boundary condition restricts the motion of the current, producing lower values of kinetic
energy Ek/Ep0 for times t̃ � 2. Moreover, the kinetic energy seems to reach a constant value
after t̃ � 40when the steady-state lens shape is achieved. The kinetic energy corresponds to
azimuthal flowmotion. Figure 7(b) also shows that the potential energy Ep/Ep0 is larger for
case (4) (‘no-slip’) at early times. The effect of boundary condition on the potential energy
tends to be smaller for later times. After the first oscillation (see t̃max at Table 1) potential
energy increases and show an oscillatory behaviour as a result of flow contraction. This is
clearly seen in Figure 7(c), which shows results for cases (2) and (3) with ‘free-slip’ bound-
ary condition. After the initial acceleration phase and before t̃ � 16 the kinetic energy is
lower for case (3) with the highest rotational effect. This is the result of the stronger restric-
tion in the radial motion of the current. At later times when the currents reaches the steady
state, the kinetic energy is larger for case (3) produced by the larger azimuthal velocities. It is
interesting to see in Figure 7(c) that the increase in potential energy after the first oscillation
of the front is larger as the rotational effect increases. At later times, the potential energy
is larger for case (3), as the same initial density excess in both simulations is restricted to a
lens of smaller radius in case (3).

3.2. Evolution of three dimensional flow structures

Rotational effects generate distinctive turbulent structures not present in the absence of
rotation. Figure 10(a) shows the three-dimensional structure of the interface for case (2)
described by an iso-surface of density ρ̃ = 0.05 for time t̃ = 7.5. Also shown in this figure
are contours of density in the plane ỹ = 0 (gray contours). Figure 10(b) shows the iso-
surface of ‘swirling strength’ λ̃ci = 4 for the same case and time. The ‘swirling strength’ is
the absolute value of the imaginary portion of the complex eigenvalues of the local velocity
gradient ∇̃ũ, and gives a means to determine the compactness of the vortical structures of
the flow [43,44].

Figure 10(a) shows that the body of the current has azimuthal nominal symmetry,
while the interface at the head of the current is highly influenced by vertical Kelvin–
Helmholtz vortices identified as KH2 in Figure 10(b) surrounding the main horizontal
Kelvin–Helmholtz vortex core KH1. Similar structures were observed by Ungarish et al.
[29] in laboratory experiments. Hallworth et al. [24] mention the existence of some sort of
instabilities at the front but they did not describe them in detail.



Figure . (a) Three-dimensional structure of the interface for case () visualised by an iso-surface of den-
sity ρ̃ = 0.05 for t̃ = 7.5. Also shown in this figure are density contours for plane ỹ = 0 (gray contours
in inset figure). (b) Iso-surface of swirling strength λ̃ci = 4 for same case and time.

The effect of rotation on the three-dimensional structure of the currents for case (2)
can be seen in the video supplied as supplementarymaterial SupMatVideo3.avi. The vortex
structures developed at the front of the current for case (2) can be seen in the video supplied
as supplementary material SupMatVideo4.avi.

The turbulent structures that form in the current are richer in the case of ‘no-slip’
bottom boundary condition and high Reynolds number. The influence of rotation on the
three-dimensional structure of the currents is thus analysed for case (5) with the highest
Reynolds number simulated (Re= 8000) and with ‘no-slip’ bottom boundary condition. A
stereoscopic three-dimensional view (in side-by-side format) of the flow dynamics for case
(5) can be seen in the video supplied as supplementary material SupMatVideo5.avi.

Figures 11 and 12 show the time evolution of a composed view of the three-dimensional
structure of the interface between the light and heavy fluids and the swirling strength λ̃ci.
The interface is visualised by the density field and turbulent structures by the swirling
strength. Several turbulent structures are identified in these figures and can be followed
over time. The evolution of the flow structures identified in Figures 11 and 12 can be seen
in the video supplied as supplementary material SupMatVideo6.avi.



Figure . Three-dimensional structure for case () visualised by volume rendering of density ρ̃ (blue
shaded region in the back-facing half of the domain) and turbulent structures visualised by volume
rendering of swirling strength λ̃ci (gray shaded region in the front-facing half of the domain) for times
(a) t̃ = 2.5, (b) t̃ = 3.75, (c) t̃ = 5 and (d) t̃ = 6.25. The dynamics of the structures shown in this fig-
ure can be observed in video SupMatVideo.avi provided as supplementary material.



Figure . Same as Figure . (a) t̃ = 8; (b) t̃ = 9; (c) t̃ = 10; (d) t̃ = 12.5.



For t̃ = 2.5 (Figure 11(a)) counter-clockwise rotating Kelvin–Helmholtz vortices KH1
and KH1′ have already formed during the first stages of development of the flow. The sense
of rotation must be understood with the portion of the current spreading to the right. At
this time secondary Kevin–Helmholtz vorticesKH2 andKH2′ have also formed in between
KH1 and KH1′. Vortex cores KH2′ and KH1′ stop their radial motion at t̃ ≈ 5 as a result
of the Coriolis force in the negative radial direction. Figure 11(a) (for t̃ = 2.5) also shows
a clockwise-rotating vortex C1 forming at the bottom in front of vortex KH1 as a result of
bottom shear stress. As a consequence of rotation, a vertical vortex core VV1 forms at the
centre of the domain and an array of vertical Kelvin–Helmholtz vortices KH3 form at the
front of the current. Vertical vortices KH3 are initially formed near the bottom as stream-
wise vortex cores and the vertical part develops later as the rotational effects increases.

At t̃ = 3.75 (Figure 11(b)) almost all Kelvin–Helmholtz vortex cores seen in the picture
start to twist and bend. At this time the interaction of vortex KH1 with KH2 and KH1′ with
KH2′ starts. Also at this time, a new clockwise-rotating vortex C2 forms in front of vortex
KH2′ at the bottom.

All Kelvin–Helmholtz instabilities are the result of shear. Kelvin–Helmholtz vortices
KH1, KH1′, KH2 and KH2′ are the result of radial shear between the light and heavy fluids,
and vorticesKH3 are the result of tangential shear between the two fluids. This effect can be
better seen in Figure 13(a), which is a composed view of the iso-surface of density ρ̃ = 0.05
for time t̃ = 3.75 with two slices of the density field: one for plane ỹ = 0 and another for
plane z̃ = 0.05. Figure 13(b) shows a top view of the density in plane z̃ = 0.05. The time
evolution of the density top view in plane z̃ = 0.05 can be seen in the video supplied as
supplementary material SupMatVideo7.avi.

For t̃ = 5 (Figure 11(c)) new toroidal vortices KH4 form between vortices KH3 at the
front. The interaction of these vortices develops with KH3 vortices stretching and bending
around KH4 vortices. Vertical Kelvin–Helmholtz vortices KH3 (near the bottom) rise to
the top and bend around Kelvin–Helmholtz vortex KH1. This array of vortices is identified
as V1 in Figure 11(c).

At t̃ = 6.25 (Figure 11(d)) vortices V1 and KH3 strengthen while the other Kelvin–
Helmholtz vortices twist, bend and interact with each other, resulting in several clusters
of smaller scale vortices. At the body of the current a secondary flow starts to move inward
as a result of the Coriolis force in the negative radial direction. This inward flow gives ori-
gin to a set of hairpin vortices oriented toward the centre of the domain (vortices HP1 in
Figure 11(d)). Figure 1(a) shows a closeup bottom view of these hairpins visualised by an
iso-surface of λ̃ci = 3. Figure 1(b) shows a stereoscopic visualisation of vortex structures
in the current for case (5) at t̃ = 6.25. The figure must be viewed with red–blue glasses. A
better understanding of the vortex structure for case (5) at this time can be gained with the
video supplied as supplementary material SupMatVideo8.avi.

At t̃ = 8 and t̃ = 9 (Figure 12(a,b)), respectively, the array of vertical vorticesKH3 at the
front and vortices V1 stretch in the radial direction and move in the azimuthal direction.
The clusters of small scale vortices interact in a complex manner, making it difficult to
distinguish individual coherent vortex structures other than the vertical vortex VV1.

At time t̃ = 10 (Figure 12(c)), vertical Kelvin–Helmholtz vortices KH3 and V1 tilt and
stretch in the tangential direction as a result of rotation, and hairpin vortices HP2 start to
form at the front aligned in the azimuthal direction.



Figure . (a) Three-dimensional structure of the interface for case () visualised by a density iso-surface
of ρ̃ = 0, 05 for t̃ = 3.75. Also in this figure are depicted two slices of the density field: one for plane
ỹ = 0 (see inset figure) and another for plane z̃ = 0.05. (b) Top view of density in plane z̃ = 0.05 for
same case and time.

After t̃ = 12.5 (Figure 12(d)) the structures present in the flow are too weak (low values
of λ̃ci) to be identified.

3.3. Lobe and cleft structures at the front

The lobe and cleft structure at the front of gravity currents seen in Figures 11 and 12 is very
distinctive of these flows [2,3,7,9]. In the case of ‘no-slip’ bottom boundary conditions, a
layer of light fluid penetrates below the heavy fluid within the head resulting in an unstable
stratification. Hartel et al. [45] propose that the formation of lobes and cleft originates from
a gravitational instability at the unstably stratified region of the current front. Cantero et al.



Figure . Composite view of the front location visualised by contours of density ρ̃ = 0.05 in plane z̃ =
0. The time separation between the front locations is�t̃ = 0.25. (a) Case (): Re= , Sc= , C = 0.15
and ‘free-slip’boundary conditions (BC) at the bottom. (b) Case (): Re= , Sc= , C = 0.15 and ‘no-
slip’ BC. (c) Case (): Re = , Sc = , C = 0.15 and ‘no-slip’ BC. (d) Case (): Re = , Sc = , C = 0
and ‘no-slip’BC.

[8] present details of the lobe and cleft structure in cylindrical gravity currents with ‘no-slip’
bottom boundary conditions from highly resolved simulations and laboratory experiments
in the absence of rotation. The existence of the lobe and cleft structure for the case of ‘free-
slip’ bottom boundary conditions in the absence of rotation is not certain. Hartel et al. [20]
report that lobe and cleft structure is not present in the case of ‘free-slip’ bottom boundary
conditions (see also [46]).

Interestingly enough, the simulations presented in this work clearly show that, under
the effect of rotation, gravity currents acquire the lobe and cleft structure even for ‘free-slip’
bottom boundary conditions. These features can be seen for case (2) in Figure 14(a). In this
figure the front of the current is tracked by the contour of density ρ̃ = 0.05 and plotted over



Table . Information on the lobe and cleft structure of the front. rF is the mean
radial position of the front, N is the number of lobes observed at the front and λ̃l
is the mean wavelength of the lobes. The table also reports the corresponding
time instances, starting from the lobe and cleft structure initiation time.

Case C̃ Re t̃ rF N λ̃l

 .  . . ±  .
 .   . ±  .
 .  . . ±  .
 .  . . ±  .
 .  . . ±  .
 .   . ±  .
 .  . . ±  .
 .   . ±  .
 .  . . ±  .
 .  . . ±  .
 .   . ±  .
 .  . . ±  .
 .  . . ±  .
 .   . ±  .
 .  . . ±  .
 .   . ±  .
 .  . . ±  .
 .   . ±  .
 .  . . ±  .
 .  . . ±  .
 .  . . ±  .
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the z̃ = 0 plane (top view). The front location at several times separated by �t̃ = 0.25 are
superposed. Corresponding figures with the lobe and cleft structure of the advancing front
for cases (4), (5) and (6) can be seen in Figure 14(b–d), respectively. For cases (2), (4) and
(5) (simulations in a rotating frame of reference) the total span of time plotted covers the
first oscillation of the front (until ur = 0). The formation and dynamics of the lobe and cleft
structure can be seen in the videos supplied as supplementary material SupMatVideo3.avi
for case (2) and SupMatVideo6.avi for case (5).

At the beginning of the simulation the front evolves in an almost axisymmetric fashion
for all simulations despite the small perturbations that have been introduced in the initial
condition [37]. As the flow evolves the lobe and cleft structure develops for all cases. The
times for the initiation of the lobe and cleft structure are reported inTable 2. Table 2 presents
the radial position of the front (rF ), the number of lobes observed at the front (N) and the
mean wavelength of the lobes λ̃l defined as λ̃l = 2πrF/N for several time instances. The
quantification of the number of lobes at the front of the current is subject to interpretation,
andN is presented with the authors’ interpretation error. Table 2 clearly shows that the ini-
tiation time for the lobe and cleft structure depends on the Coriolis number, and that this



time is smaller as this number increases: t̃ ≈ 9.5 for C̃ = 0.1, t̃ ≈ 6.25 for C̃ = 0.15, and
t̃ ≈ 4.5 for C̃ = 0.25. The initiation of the lobe and cleft structure in the case of a ‘free-slip’
bottomboundary condition under the effect of rotation is directly related to the initiation of
vertical Kelvin–Helmholtz vortices at the front of the current resulting from shear between
the light and heavy fluids at the front (observe and compare SupMatVideo3.avi and Sup-
MatVideo4.avi supplied as supplementary material).

The flows in cases (4), (5) and (6) with a ‘no-slip’ bottom boundary condition start to
develop the lobe and cleft structures rather quickly as compared to case (2) with a ‘free-slip’
bottom boundary condition (see Table 2). Cases (2) and (4) present a direct comparison
since they only differ by the bottom boundary condition. The lobe and cleft structure starts
to develop at t̃ ≈ 3.75 for case (4) while for case (2) this happens at t̃ ≈ 6.25 as reported in
Table 2.

Comparing case (5) and case (6) in Table 2, it is observed that fewer lobes form in the
presence of rotation (see cases (5) and (6) in Table 2 at t̃ = 2.5). For case (6) the number of
lobes goes to a small period of adjustment where N increases first and then decreases. This
adjustment lasts until t̃ ≈ 6.25 and then N stays approximately constant (see also [8]). On
the other hand, N decreases monotonically with time for case (5). The decrease in N for
case (5) indicates that more lobe merging occurs than splitting in Figure 14(c). The mean
wavelength λ̃l of the lobes is very similar for case (5) and case (6) in the early stages of
formation, but λ̃l increases substantially after t̃ = 3.75 for case (5) owing mainly to lobes
merger. The increases of λ̃l for case (6) corresponds to the increase of rF rather than to a
decrease of N. From t̃ = 7.5 to t̃ = 10 the mean wavelength increases by 50% for case (5)
while for case (6) this increase is only 8%. This effect is clearly related to the growth of the
Coriolis force in the negative radial and azimuthal directions for t̃ ≈ 6 (see Section 3.2).
The deceleration of the flow in the radial direction and the azimuthal rotation induced by
rotation produce an increasedmerging of lobes for case (5) as compared to case (6) without
rotation.

Another effect of rotation on the lobe and cleft structure can be seen comparing Figures
14(c) and 14(d) for cases (5) and (6), respectively. Although the disturbances introduced
in the initial condition quickly develop into the lobe and cleft structures for both cases, in
a rotating frame of reference these structures move in the azimuthal direction over time
generating the characteristic footprint of rotating gravity currents.

The flow pattern and turbulent structures associated with the lobe and cleft structure of
the front are seen in Figure 15. Figure 15(a) shows a top view of the near-bed flow at the
front of the current for case (6) at t̃ = 3.75. The front is visualised by the density contour
ρ̃ = 0.05 at z̃ = 0.05 (thick black line). The vector field shows the horizontal flow (ũx and ũy
components) at z̃ = 0.05. Also shown in this figure are the contours of vertical velocity (ũz)
at z̃ = 0.05 (yellow: positive and blue: negative) and an iso-surface of λ̃ci = 2 identifying
hairpin vortices. Figure 15(b) is a front view of the current front for cases (6) for t̃ = 3.75 at
the location of cut AB in Figure 15(a) showing streamlines of the vertical flow field (ũx and
ũz components). Also shown in Figure 15(b) are the contours of vertical velocity (ũz, yellow:
positive and blue: negative). Corresponding figures for case (5) are shown in Figure 15(c,d).

The horizontal flow in the clefts for case (6) is slower than in the lobes and it deviates in
the azimuthal direction from the centre of the lobes to the clefts (Figure 15(a)). This flow
forms a pattern of near-bottom low-speed streaks at the front. Cantero et al. [6] report these



Figure . Visualisation of the current front near-bed flow at t̃ = 3.75 for (a, b) the non-rotating case ()
and (c, d) the rotating case (). (a) and (c): top view of the front visualised by the iso-contour ρ̃ = 0.05
at z̃ = 0.05 (thick black line). The vector field shows the horizontal flow (ũx and ũy) at z̃ = 0.05. Colour
contours show vertical velocity ũz at z̃ = 0.05 (yellow: positive and blue: negative) and an iso-surface
of λ̃ci = 2. The white dashed lines indicate the location of the vertical slices AB displayed in frames (b)
and (d). (b) and (d): side view of the current in the vertical planes AB for cases () and (). Solid lines are
streamlines in the vertical plane. Colour contours show vertical velocity (ũz , yellow: positive and blue:
negative). In (c) and (d), the velocity field is shown in the rotating frame of reference.



front near-bottom low-speed streaks for planar currents. The low speed streaks result from
the uplifting of lowmomentum fluid generated by the circulation cells seen in Figure 15(b).
This flow pattern has been postulated by Allen [2] and described in some detail by Cantero
et al. [8] from highly resolved simulations of cylindrical gravity currents in the absence of
rotation.

The iso-surface of λ̃ci in Figure 15(a) for case (6) shows hairpin vortices forming at every
lobe. The length scale of these hairpins is the lobe size. Cantero et al. [8] reported quasi-
streamwise bottom vortices at the cleft locations, and the present simulations clearly show
that these vorticeswere in fact the legs of the hairpin vortices that form at the front. Allen [2]
postulated the existence of pairs of counter-rotating vortices at the lobes, and Figure 15(a)
shows that the flow pattern is a consequence of a complete hairpin vortex at every lobe.

It is interesting to note that the flow pattern shown in Figure 15(a) for the vertical veloc-
ity ũz indicates that the legs of the hairpin vortices rotate so that the fluid between them
is pumped downward. This is opposite to the sense of rotation of hairpin vortices seen
in boundary layers [47]. This is clearly seen in Figure 16(a,b) which shows details of the
flow field at the front of the current in relation to the local hairpin vortices for case (6).
Figure 16(a) is a composed figure showing hairpin vortices visualised by a λ̃ci = 2 iso-
surface and the current front visualised by a ρ̃ = 0.05 iso-surface. The vertical plane shows
λ̃ci contours and vector velocity field of the flow. The front velocity has been subtracted
from the velocity flow field. The inset in Figure 16(a) shows that the location of the vertical
plane is at the centre of a hairpin vortex. Figure 16(b) shows a detail of the velocity vector
field of the flow at the hairpin head corresponding to the area marked with dashed lines in
Figure 16(a).

Under the effects of rotation, the formation and evolution of vortex structures at the
front is quite different. The internal flow rotation rolls-up the density interface at the front
forming vertical Kelvin–Helmholtz vortices identified asKH3 in Figure 11(b). Figure 15(c)
for case (5) shows a top view of the near-bed flow at the front of the current for case (5) at
t̃ = 3.75. Figure 15(d) is a front view of the current front for cases (5) for t̃ = 3.75 at the
location of cut AB in Figure 15(c) showing streamlines of the vertical flow field (ũx and ũz
components) for case (5) at t̃ = 3.75. The rigid body rotation velocity has been subtracted
from the velocity field. The effect of rotation on the turbulent structures at the front can be
seen by comparing Figures 15(a) and 15(b)with Figures 15(c) and 15(d). Figure 15(c) shows
that the horizontal flow field at the lobes is not directed in the azimuthal direction towards
the clefts as in case (6) (see Figure 15(a)). Instead, an anticlockwise circulation at the lobes
is produced consistent with the vertical Kelvin–Helmholtz vortices. Figure 15(c) also shows
that the vertical flow is upward in the lobes and clefts for z̃ = 0.05where the vertical Kelvin–
Helmholtz vortices are, as opposed to case (6) for which the flow is upward at the cleft
locations only (see Figure 15(a)). Figure 15(d) shows the flow pattern consistent with the
horizontal streamwise portion of theKelvin–Helmholtz vorticesKH3 (Figure 11(b)), which
is quite different from the flow pattern seen in Figure 15(b).

The comparison of the vortical structures at the front of non-rotating/rotating gravity
currents with/without bottom friction is depicted in Figure 16. While hairpin vortices are
clearly visible in the non-rotating current (Figure 16(a,b)), they are absent from the rotat-
ing cases. In rotating cases, however, vertical Kelvin–Helmholtz vortices can be observed
(Figure 16(c,d)). When a free-slip boundary condition is used (Figure 16(c)) these vortices
are almost perpendicular to the bottom, while in the case of no-slip boundary condition,



Figure . Visualisation of the vortical structures for (a, b) the non-rotating case (), (c) the rotating F.S.
case () and (d) the rotating N.S. case (). (a) and (d): composed figure showing (a) hairpin vortices visu-
alised by aλci =  iso-surface for case () and (d) vertical Kelvin–Helmholtz vortices visualised by aλci = 
iso-surface for case (). The current front is visualised by a ρ̃ = 0.05 iso-surface. The vertical plane shows
λci contours and vector velocity field of the flow. The front velocity has been subtracted from the velocity
flow field for case () and the rigid body rotation has been subtracted from the velocity flow field for case
(). The inset in frame (a) shows the location of the vertical plane, which is at the centre of a hairpin vortex
for case () making it possible to clearly identify the sense of rotation of the head of the hairpin vortex. In
frame (c) the vertical plane is located at themiddle point between vertical Kelvin–Helmholtz vortices. (b)
Zoomof the flow in the areamarkedwith dashed lines in frame (a). (c) Vertical Kelvin–Helmholtz vortices
visualised by a λci =  iso-surface for case ().

the vertical Kelvin–Helmholtz vortices are connected to some near-bed quasi-streamwise
vortices.

4. Summary and conclusions

This work presents highly resolved simulations of cylindrical gravity currents with rota-
tional effects, focusing on flows with small Coriolis numbers (equivalently large Rossby
numbers) for which the gravity current develops its intrinsic characteristics before being
affected by rotation. In this sense the present work complements the vast body of investiga-
tions on the dynamics of rotating stratified fluids, developedmainly in the area of geophys-
ical flows, which assumed large Coriolis numbers (equivalently small Rossby numbers).

Highly resolved simulations have been performed for three different Coriolis numbers
C̃ = 0.1, 0.15 and 0.25, and two different Reynolds numbers Re = 4000 and 8000 with
resolutions of up to 165-million grid points.



One of the most distinct effects of rotation is the inhibition of the flow to continuously
spread (geostrophic adjustment).When the heavy fluid is released and starts tomove in the
positive radial direction, a Coriolis force in the negative tangential direction develops. The
tangential Coriolis force induces flow in this direction, producing a Coriolis force compo-
nent in the negative radial direction, which eventually interacts with the buoyancy force
slowing the front down. Eventually, the radial momentum balance is mainly between Cori-
olis and buoyancy forces. Under these conditions the currents acquire a lens shape. The
lens shape is reached through a transient in which the front of the current oscillates back
and forth several times as a consequence of the transient imbalance of the buoyancy and
Coriolis forces (inertial oscillations).

Themain flow characteristics obtained in the present simulations are in reasonably good
agreement with experimental observations [24] and theoretical models, namely box-model
[29] and shallow-water equations [28]. In particular, the mean oscillation frequency ωp is
found to satisfy the experimental linear relation ωp ≈ 2C̃, and the maximum distance of
propagation of the front rmax scales as 1/C̃1/2. Note, however, that rmax found in the simula-
tions using no-slip boundary conditions (Figure 4(b)) is somewhat smaller than the exper-
imental results of [24]. This may be an effect of the Reynolds number which is about 50
times lower in the simulations than in the experiments (Re = 2.09 × 105 for R11 and Re =
2.93 × 105 for R6 of [24], while Re = 4 − 8 × 103 in the present numerical simulations).

The bottom boundary condition has an influence on the flow development. In the case
of ‘no-slip’ bottom boundary conditions the values of the Coriolis force are reduced close
to the bottom and cannot fully balance the buoyancy force. As a consequence, a steady state
lens shape is never reached. At this stage, however, the front advances at a velocity of only
uF ≈ 10−4. Another effect of the ‘no-slip’ bottom boundary condition is that the maximum
radius of the successive outward fronts are not smaller than in the previous oscillations, as
opposed to the cases with ‘free-slip’ bottom boundary condition. This behaviour was also
reported by Hallworth et al. [24] from laboratory observations.

The high resolution of the simulations allows for the identification of several turbulent
structures in the flow. A detailed description of the structures’ evolution is presented. In
the absence of rotation, the simulations show the formation of large hairpin vortices at the
front. These hairpin vortices’ locations coincide with the lobes’ locations and they span the
complete width of the lobes. Interestingly enough, the flow pattern at the front shows that
the legs of the hairpin vortices rotate in the opposite sense as compared to hairpins found
in boundary layers, inducing upward flow at the cleft locations and downward flow at the
lobes locations.

Under the influence of rotation, the flow pattern completely changes at the front of the
current displaying vertical Kelvin–Helmholtz vortices in place of the hairpin vortices seen
in the absence of rotation.

Finally, themanuscript also reports on the lobe and cleft structure of the front. Although
the existence of these structures for the case of “free-slip” bottomboundary conditions is not
certain, the simulations presented in this work clearly show that gravity currents acquire
the lobe and cleft structure at the front under the effect of rotation. The initiation of the lobe
and cleft structure under these circumstances is directly related to the initiation of vertical
Kelvin-Helmholtz vortices at the front of the current. These vortices develop more rapidly
in the case of ‘no-slip’ bottom boundary conditions, even before rotational effects become



dominant. The net effect of rotation on the lobe and cleft structure is an augmentation of
lobe merging produced by the deceleration of the flow (induced by the Coriolis force in the
negative radial direction) and the azimuthal rotation (induced by the Coriolis force in the
azimuthal direction).

It should bementioned that in the present simulations, the value of the Schmidt number
is set to unity. However, contrary to non-rotating gravity currents, the thickness of the front
is not sharp anymore (see e.g. Figure 6) but rather spreads up to several initial radii. The
processes involved in such a spreading may be, among others, mass diffusion enhanced by
convective mixing. One thus may wonder if Schmidt effects may play a role in the present
rotating configuration. Such an investigation is beyond the scope of the present paper and
is left for future work.
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