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Abstract

In continuum mechanics, the prediction of defect harmfulness requires to solve approximately
partial differential equations with given boundary conditions. In this contribution boundary
conditions are learnt for tight local volumes (TLV) surrounding cracks in 3D volumes. A
non-parametric data-driven approach is used to define the space of defects, by considering
defects observed via X-Ray computed tomography [1, 2]. The dimension of the ambient space
for the observed images of defects is huge. A nonlinear dimensionality reduction scheme is
proposed in order to train a reduced latent space for both the morphology of defects and
their local mechanical effects in the TLV. A multimodal autoencoder [3] enables to mix
morphological and mechanical data. It contains a single latent space, termed mechanical
latent space. But this latent space is fed by two encoders. One is related to the images of
defects and the other to mechanical fields in the TLV. The latent variables are input variables
for a geometrical decoder and for a mechanical decoder. In this work, mechanical variables are
displacement fields. The autoencoder on mechanical variables enables projection-based model
order reduction as proposed in [4]. The main novelty of this paper is a submodeling approach
assisted by artificial intelligence. Here, for defect images in the test set, Dirichlet boundary
conditions are applied to TLV. These boundary conditions are forecasted by the mechanical
decoder with a latent vector predicted by the morphological encoder. For that purpose, a
mapping is trained to convert morphological latent variables into mechanical latent variables,
denoted “direct mapping”. An “inverse mapping” is also trained for error estimation with
respect to morphological predictions. Errors on mechanical predictions are close to 5% with
simulation speed-up ranging for 3 to 120. We show that latent variables forecasted by the
images of defects are prone to a better understanding of the predictions.

Keywords: Multimodal autoencoder; CNN; Transfer Learning; Finite Element Method;
Digital Twin

1. Introduction

The assessment of cracked structures is still an active field of research in mechanical
engineering [5]. Charts [6] can be used to estimate some quantities of interest on cracked
structures but they are not accurate enough and are focused on specific cases. Finite element
methods can be used to improve results and to deal with arbitrary crack configurations.
Chart-based and other equivalent methods give a criterion for deciding if a component is
safe or unsafe. Although this is sufficient in practice for deciding if a component must be

∗Corresponding author
URL: david.ryckelynck@mines-paristech.fr (D. Ryckelynck)



rejected, these approaches are less robust than methods making use of full-field numerical
computations, that provide more information as well as an understanding of the mechanical
phenomena involved. Nevertheless such an approach leads to prohibitive computation times
due to the fact that the crack needs to be meshed very finely. In this work focus is made on
planar cracks in 3D volumes.

Moreover mechanical data are expected to fulfill partial differential equations (PDE) and
neural networks have been proposed to solve partial differential equations in [7]. Machine
learning algorithms have recently been proposed to analyse the criticality of defects for
pipelines [8], in the aeronautical field [9] and for fabrication process [10]. Besides machine
learning and numerical simulation have proven their complementarity for example for the
study of defect in ball bearings [11]. The Simulation-driven machine learning approach is
very attractive when we have mechanical models at our disposal. The use of machine learn-
ing techniques enables us to get rid of the parametrization of the object to model. This is
crucial when considering defects observed by imaging techniques.

Besides the efficiency of multimodal autoencoder (MMAE) have recently been shown [12,
13]. The aim of this method is to use different inputs such as sound, text or images for
example and reconstruct them after having compressed them in a common smaller latent
space [3]. In the online phase a single input channel can be used to reconstruct all the output
channels, this is denoted the cross-modal reconstruction.

In the present work, we show that morphological data and mechanical data related to
defects are sharing a common latent space designed using MMAEs. In this paper a digital
twin of a specimen containing non parametric cracks is considered. A multimodal autoen-
coder is trained with two different channels being the 2D crack image and its associated 3D
displacement field. In the online phase the 2D image is used as input to reconstruct the 2
channels. The reconstructed displacement field is then transferred on the external surface of
a tight local volume (TLV) and used as boundary condition of a small finite element prob-
lem. Since the boundary conditions are learnt, a full-field numerical computations on the
entire system is not required. This results in better speed-up compared to a submodelling
approach where additional simulations at the global scale have to predict these boundary
conditions. Moreover, the bounding box in a submodel approach must be rather large so
that the crack-induced fluctuations on the boundary can be neglected. An accurate predic-
tion of the boundary conditions, including for small subdomains, is among the main goals
of the presently-developed MMAE model. Also, contrary to surrogate models, we carry out
classical finite element computations in the subdomain. This approach provides much more
information on the mechanical response induced by the crack, that may in turn be interpreted.

The reconstructed 2D image will be used to define an error indicator. We then deter-
mine whether a linear relationship exists between the 2D image reconstruction and the error
committed on 3D displacement field reconstruction.

2. Dataset and mechanical problem

In this work a tensile test is simulated on a specimen containing a crack inside the bulk
material. The size of the crack compared to that of the specimen is not negligible and may
have an impact larger than 20% on the limit load. The position of the crack varies slightly
in the middle plane of the specimen but the shapes and sizes of the cracks vary greatly.

The defect dataset that is used in this study are random 2D planar cracks. They are
generated by taking slices of 3D defects obtained from tomography [14, 2]. The resulting
defects are therefore 2D images representing non-parametric cracks. Hence it is important
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Figure 1: Histogram of the ratio between the perimeter of the convex envelope surface (P convex) and that of
the shape (P true).

to keep in mind that this dataset is purely artificial and is not based on actual images of
cracks. A large variety of cracks is obtained with various shapes and, for some of them, the
2D image containing the defect contains more than one crack. Since every crack is created
with a 2D image, they are all planar cracks. A histogram measuring how close the defects are
to a convex shape is represented in Fig. (1). The convexity criterion is the ratio between the
perimeter of the crack, seen as a shape in a plane, and that of the convex envelope, included
in the same plane.

As shown in Fig. (1), a large percentage of the cracks are strongly non-convex. About
25% have a convexity ratio larger than 1.5. These cracks are inserted in a 3D specimen shown
in Fig. (2a). The information contained at the ends of the full specimen is poor and the
mesh is coarse therefore partial differential equations and their finite element approximation
are evaluated on the domain delimited by the red box shown on Fig. (2.a). This box is a
parallelepiped of dimension 200×100×34 mm3. The mesh contains about 170, 000 degrees of
freedom (but varies with the crack shape). The elements used are reduced linear tetrahedrons.
The ratio between the size of the elements on the ends and near the crack is around 40. The
Hausdorff parameter [15] used to control the remeshing is equal to 0.3. Fig. (2b) and Fig. (2c)
show the meshed zone of interest of the specimen and a cut view to see the size of the mesh
around the crack.

In the remainder of this study, the cracks are in the middle plane but the crack is not
necessarily centered in the box. Fig. (3) shows three images of cracks and below them the
insertion of the crack in the 3D structure for defects 4, 21 and 22 (note that only the free
surfaces are shown). For common crack shapes such as a penny shape, the limit load can be
analytically evaluated in such simple structures. But for non-parametric random cracks or for
structures containing multiple cracks that interact with each other, analytical results cannot
be obtained in general. Finite element simulation is an option to compute those quantities
though it usually leads to huge computation time. Despite the fact that the defect is large
enough to have an important effect on the structure, it needs to be meshed finely since its
size is much smaller than the whole structure. Hence elements around the cracks are much
smaller than elements on the border of the domain Ω as shown in Fig. (3). Moreover problems
such as volumetric locking and non convergence might appear due to the localization at the
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Figure 2: (a) Traction specimen example, (b) meshed zone of interest, (c) cut view of the meshed zone of
interest.

crack front [16, 17].
In this study a nonlinear problem that involves finite strains and plasticity is considered.

The Zset software [18, 19, 20, 21] is used. The primal variable of finite element models
in mechanics is the displacement field. In the finite element (FE) model [22], the shape
functions of the FE basis are denoted by (φj)

n
j=1 with n the number of discretization nodes.

It is convenient to introduce the functions φφφi = φj~ek where i = (j − 1) × d + k, i = 1, ...,
N , j = 1, ..., n, k = 1, ..., d, d is the dimension of the problem and ~ek refer to the canonical
vectors of a Cartesian coordinates system. The approximation of the displacement with the
shape functions (φφφi)

N
i=1 reads:

υυυ(x) = υυυ0(x) +
N∑
i=1

φφφi(x)ui, x ∈ Ω, (1)

where N = n × d is the number of degrees of freedom (DOF) of the structure, υυυ0 is a given
displacement field that fulfills Dirichlet boundary conditions, υυυ is the approximate finite
element solution and ~u = (ui)

N
i=1 the vector of the related degrees of freedom. For this work

a large strain formulation which uses a logarithmic strain measurement is used [23, 24]. The
mechanical equations for the prediction of the displacement field then read:

Strain gradient decomposition: F∼ = I∼+∇∼~u (2a)

Logarithmic strain: E∼ =
1

2
log(F∼

T .F∼) (2b)

Elastic/plastic partition is supposed: E∼ = E∼
e + E∼

p (2c)

Constitutive law in logarithmic space: T∼ = C∼∼
: E∼

e (2d)

Second Piola-kirchhoff stress: S∼= P∼∼
: T∼ (2e)

Second invariant of the stress tensor: J2(S∼) =

√
3

2
dev(S∼) : dev(S∼) (2f)

Yield stress: R0 (2g)
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Figure 3: 2D cracks and insertion in 3D specimen for (a) defect 4,(b) defect 21 and (c) defect 22.

Yield function: f(S∼, R0) = J2(S∼)−R0 (2h)

Relation with global Cauchy stress: σ∼= det(F∼)−1F∼ · S∼ · F∼
T (2i)

More details on the projector P∼∼
and the dual stress T∼ of the logarithmic strain E∼ are given

in [23, 24]. The material considered here is similar to aluminium. The Young modulus used
for this simulation is E = 70, 000 MPa, the Poisson coefficient is ν = 0.3 and the elasticity
limit is R0 = 400 MPa. Hardening is not accounted for in this study. This is the reason why
it is desirable to assist a submodel construction by artificial intelligence, via the selection of
approriate boundary conditions.

In order to save useful data around the crack, a parallelepipedic box is defined and is
refered to as the encoding mesh. With the goal of designing a common ambient space for
mechanical data, the solution of the full specimen is transferred on it. Since the encoding
mesh is much smaller and located at the same place as the crack, only the field around the
crack is transferred on it. The encoding mesh, containing 64× 64× 64 nodes, is defined using
regular hexahedral elements and therefore is equivalent to a 3D image with each element
representing a voxel. This allows using classical computer vision tools. Object detection
techniques [25] can be used to obtain the cracks position. In the present work, all cracks
are located in the same subdomain. Cracks are obtained from a database of 2D images
and inserted in the subdomain randomly, so that they are not necessarily centered in the
subdomain. The zone of interest where the crack is located is accordingly always the same. To
treat a more general problem where the crack position in the entire domain and its orientation
were random, additional parameters defining the position and orientation of the subdomain
would be required. Fig. (4) illustrates the process needed to obtain the encoded field that
contains the information around the crack. From left to right the figure 4 shows the 2D image
representing the crack, the insertion of the 2D crack in the 3D mesh, the logarithmic strain
along the vertical axis obtained with a finite element simulation (denoted E∼22

as in eq.2),
the position of the encoding mesh in the full structure and the encoding mesh containing the
transferred information.

Simulation on the full specimen are only made to generate the input arrays for the training
of the MMAE. During the online phase the MMAE generates a displacement field on the
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Figure 4: (a) 2D image representing the crack, (b) insertion of the 2D crack in the 3D mesh, (c) E∼22
field, (d)

position of the encoding mesh in the full structure and (e) the encoding mesh with the transferred information.

encoding mesh thanks to an input image of a crack. This displacement field on the encoding
mesh is then transfered on a subdomain extracted from the full mesh.

The mechanical equations on the displacement ~u(t) read:

div[σ(~u(t))
∼

] = ~0 applied on Ω

~u(t) = ~u0(t) applied on ΓBC

σ∼(~u(t)) · ~u = ~0 applied on Γ

(3)

where Ω represents the whole domain, ΓBC represents the surface where the Dirichlet bound-
ary conditions are applied and Γ represents the free surfaces where no boundary conditions
are applied (including the free surface of the crack lips). The tensor σ(~u(t)) is obtained with
the relation detailed in Eq. (2). In order to solve the partial differential equation described in
Eq. 3, a quasi-static approach is used. The scheme shown on Fig. (4) is applied on the whole
dataset of 2D images to generate 3D displacement fields expressed on the encoding mesh. The
defect dataset contains 1,055 2D images. Finite element predictions of the displacement field
have been performed for each defect. The mechanical dataset contains all the displacement
fields associated to their respective 2D images. They are saved on the encoding mesh. The en-
coding mesh is represented as a array of dimension 5. The first three dimensions represent the
spatial dimensions (x, y, z). The fourth dimension refers to the considered field either Ux, Uy
or Uz. The fifth dimension, denoted t, is the time. In this study the time is assimilated to the
incremental loading parameter and varies from 0 to 1. The displacement field is saved along
the encoding mesh in a 5-dimensional array T (j) so that T (j)[x, y, z, i, k] = U

(j)
i (x, y, z, tk)

where i ∈ {x, y, z} and U
(j)
i (x, y, z, tk) is the displacement in direction i at point (x, y, z) and

time tk for defect j. The tight local volume (TLV) is a part of the full mesh. It is extracted
around the crack where the needed information is located. The TLV model gives access to
all standard mechanical variables by using finite element modelling. This approach enables
transfer learning in the sense that all the modelling capabilities of the finite element method
do not need to be retrained and constitutes a huge asset of the developed method. As such,
the model does not need to be trained again when new quantities of interest or new element
types are used.
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3. Multimodal autoencoder and transfer learning

As explained in [26], feed forward neural network (FNN) is a classical architecture in
machine learning.A deep FNN contains many layers of artificial neural networks. The data is
given to an input layer and then pass through some hidden layers. The last layer is called the
output layer and gives the prediction. The weights w make a full the connection between the
neurons from different layers. During the prediction phase, the data flows in one way from the
input layer to the output layer. In the training phase, the global error defined by the mean-
squared difference between the target value and the FNN output will be back-propagated
through the hidden layers. This step is performed in order to update the weights, where the
objective is to minimize the global error. An activation function is attached to each neuron.
The output of each neuron is computed by multiplying the outputs from the previous layer
with the corresponding weights. For the neuron j in the layer k, the data of the previous layer
k − 1 is summed up and then altered by an activation function. The output of the neuron j
in layer k is computed as:

okj = f

(
Nk−1∑
i=1

wijo
k−1
i + bk−1

i

)
, (4)

where Nk−1 is the number of neurons in the previous layer k− 1, wij is the weight connecting
neurons i and j, ok−1

i is the output of the neuron i in layer k − 1. A common choice for the
activation function is the rectified linear function (“ReLu”):

f(x) =

{
x, if x ≥ 0,

0, otherwise.
(5)

The specific architecture of the FNN, such as the number of layers and the number of neurons
in each layer, has to be determined according to the complexity of the dataset. The global
error, also called loss function or network performance, is defined according to the difference
between the network prediction and the target data. The mean squared error can be used to
measure the loss (but many other loss function can be used):

E(~w) =
1

No

No∑
i=1

[oi(~w)− ti]2, (6)

where No is the number of outputs, oi is the ith output, ~w is the vector that contains the
weights of neural network, and ti is the ith target value. Training a feed forward neural network
is an optimization problem, where the global error is treated as the objective function.

One way to minimize the global error is to use the gradient descent algorithm to update
the weighs [27] with the following:

~wn+1 = ~wn − µ∂
~E(~wn)

∂ ~wn
. (7)

The term ∂ ~E(~wn)
∂ ~wn is evaluated with the back propagation [28]. In the training process, many

iterations are required to update the weights until the stopping criteria is fulfilled, where
one iteration is also known as one epoch. Since 2D images and 3D displacement fields are
considered in this work use of convolutional neuron networks is made. Good results for 2D
and 3D images have been obtained with this method [29]. Details on convolutional layers are
given in [4].
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Figure 5: Multimodal autoencoder representation.

Autoencoders enable to compress the input information in a much smaller latent space
and reconstruct it afterwards. This allows one to define a small latent space in which all the
information is condensed [30]. Many applications of this bottleneck effect exist: clustering the
data, denoising data or else exploring the smaller space. An autoencoder employs an input
layer and an output layer connected by one or more hidden layers. The output layer has the
same number of nodes (neurons) as the input layer. Its purpose is to reconstruct its inputs
(minimizing the difference between the input and the output) instead of predicting a target
value Y given inputs X . Therefore, autoencoders are selfsupervised learning models. They
do not require labeled inputs to enable learning [31]. The feature space F should have lower
dimensionality than the input space X . An autoencoder consists of two parts, the encoder
and the decoder, which can be defined as transitions Φ and Ψ such that:

Φ : X → F ,
Ψ : F → X ,

Φ,Ψ = argmin
Φ,Ψ

||X − (Ψ ◦ Φ)X||2,

dim(F)� dim(X ).

(8)

Multimodal autoencoders (MMAE) category, which is a specific branch of autoencoders,
are detailed in [3]. The main idea of MMAE is to take various inputs from different nature
(such as 2D images and 3D images) and to compress them in the same latent space before
rebuilding them. One of the main asset of MMAE it to remove some input channel during
the online phase in order to reconstruct all of the channels [32] as the red border suggests on
Fig. (5). xi are the different input channels, x̃i are the different output channels and Li is the
size of the latent space.

The aim of this article is to take advantage of this multi-modal aspect in order to train a
mapping between morphological data and mechanical predictions as a surrogate model for fast
mechanical prediction. A standard convolutional neuron network could be used to associate a
3D displacement field to a 2D image. But with a MMAE approach it is possible to interpret
how features are represented in the latent space. Moreover an innovative point of the study
is to use the reconstructed 2D image in order to create an error indicator depending on the
training set to evaluate whether the 3D displacement field is accurate or not. The proposed
MMAE has four modalities, in the sense that it has four encoders and four related decoders.
This architecture is motivated by the dimension of the displacement field on the encoding
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Figure 6: Modified MMAE approach and error indicator to generate displacement field on TLV.

mesh. Indeed this input contains the spatial information (3 dimensions), the temporal infor-
mation and the field information (Ux,Uy or Uz) which results in an array of dimension 5. In
order to reshape the dimension of the array into the usual dimensions of data in computer
vision, the three displacement fields are treated with three different modalities, using three
dedicated encoders and decoders.

The outputs of these three mechanical encoders are connected to the three inputs of the
mechanical decoders via a mechanical latent space by using dense layers, termed mechanical
dense layers, behind and in front of the latent layer. The mechanical latent space is a three
dimensional space. It has latent variables for each dimension of the displacement field and
there is no connection between these dimensions in the mechanical dense layers in front of the
3D latent space and behind it. The dimension of the latent space is 600. There are 200 latent
variables per component of the displacement field. Latent variables related to each dimension
of the displacement field are stacked together to create a common mechanical latent space.

The morphological encoder and decoder are connected to the mechanical latent space by
two additional dense layers, termed multimodal dense layers, behind and in front of the three
dimensional latent space. The inputs of the morphological encoder, being the 2D image, is
80×80 whereas for the displacement field is of size 64×64×64×5(×3). The (×3) is between
parenthesis to express that the three components of the displacement fields have separated
modalities. This architecture is represented on Fig. (6). The 4 encoders and decoders are
coupled together by the multimodal dense layers, named left fully connected and right fully
connected in Fig. (6). This architecture is non conventional and constitutes a important point
of this paper.

During the training phase of the MMAE we have noticed that the 3D displacement chan-
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Figure 7: Online scheme

nels are the hardest to fit. Hence a transfer learning is accordingly carried out in two steps,
the first step being used to train separate autoencoder for each modality and the second
step being used to train the weights of the muldimodal dense layers. In the second step, the
weights of convolutional layers and those of the mechanical dense layers are kept as constant.
Then we know the latent variables of the proposed MMAE at the end of the first step of
the transfer learning strategy. We also know morphological latent variables. Hence the mul-
timodal dense layers, left fully connected and right fully connected in Fig. (6), are trained
separately. The left fully-connected layer is trained to map the morphological latent coordi-
nates, expressed as a 70-components vector, to the mechanical latent coordinates, expressed
as a 600-components vector. The right fully-connected layer is trained as an inverse mapping
that maps the mechanical latent coordinates to the morphological latent coordinates.

Using MMAE, the morphological as well as mechanical latent coordinates can be obtained
from an image of a crack, and the associated displacement field can be predicted. The latent
variable in the mechanical latent space can be used to recover the input image from the
right fully-connected network. The discrepancy between the input and reconstructed images
may then be used to define an error indicator. Such error indicator is meaningful since the
reconstructed image and the displacement field come from a common latent space. Also, use
of a 2D crack is made to forecast a 3D displacement field on the encoding mesh. In parallel
the TLV is extracted from the full mesh of the target defect. The 3D displacement field from
the encoding mesh gives access to the Dirichlet boundary conditions applied on the TLV.
A standard FE prediction is then made with the displacement field on the external surface
applied as Dirichlet boundary conditions. Fig. (7) illustrates this methodology.

For nodal fields, the transfer operator is straightforward. First, each node of the new
mesh, having Xnew as coordinates, is localized in the old mesh, then the shape functions φoldi
of the old mesh are used to compute the value of the field f on the new mesh:

f(Xnew) =
∑
i

φoldi (Xnew) · f(Xi), (9)

where Xi is the coordinate of the vertex i of the corresponding element. The error due
to the transfer has been measured by transferring the displacement field of the encoding
mesh as Dirichlet boundary conditions of the TLV without using the MMAE. The error
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Figure 8: ΩTV L ⊆ ΩEM .

results of the two transfers, the first one from the full mesh to the encoding mesh and the
second one from the encoding mesh to the TLV. The error is evaluated on the cumulated
plasticity (see Eq. 10). The error that is used is an extension of the normalized mean squared
error to continuous functions. Compairing the error based on the displacement and these
of the cumulated plastic strain on cases of the training set it appeared that the first error
measurement is more conservative than the second.

η =

1∫
dΩ

∫
(∆εpcum)2dΩ

1∫
dΩ

∫
(εpcumFOM)2dΩ

=

∫
Ω

(∆εpcum)2dΩ∫
Ω

(εpcumFOM)2dΩ
, where ∆εpcum = εpcumFOM − ε

pcum
Model, (10)

and where Ω describes the TLV domain, the subscript “FOM” refers to the Full Order Model
simulation and the subscript “Model” refers to the solution obtained with the MMAE ap-
proach detailed in this paper. After computing this error for all the defects of the dataset the
mean error has been computed and is equal to 0.07% and the standard deviation is 0.07%,
this shows that the transfer operations does not generate much error. Importantly, the TLV
must be included in the encoding mesh otherwise the field transfer from the encoding mesh
to the TLV cannot be done properly. The latter reads:

ΩTV L ⊆ ΩEM (11)

where ΩEM refers to the encoding mesh domain and ΩTLV to the tight little volume domain.
Fig. (8) illustrates this necessary condition.

4. Results and interpretability

The displacement field shows varying orders of magnitude depending on time and dis-
placement component. The MMAE is accordingly trained on the following rescaled field

T̃ (j):

T̃ (j)[x, y, z, i, k] =
T (j)[x, y, z, i, k]−mik

Mik −mik

,

Mik = max
x,y,z,j

T (j)[x, y, z, i, k],

mik = min
x,y,z,j

T (j)[x, y, z, i, k]

(12)

for a given defect j. Note that since the images of defects are binary images, these do not
need to be rescaled.

As explained in the previous section the four autoencoders have been trained separately (a
single 2D AE and three 3D AE) and two dense neuron networks have been trained afterwards
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Figure 9: 2D (a) and 3D (b) encoder architectures.

in order to map the morphological and mechanical latent spaces. Since the 3D displacement
field data are 4 dimensional (time and space) the filter channel (associated to the three color
red, green and blue) of the 3D convolution layers is used as another dimension enabling to
treat 4D data. In our case the filter channel will contain the displacement field (Ux,Uy or Uz).
Classical CNN architectures are presented in [33] and the same notation is used to present
the developed architecture. The 2D encoder is composed of two blocks of convolution and
max pooling followed by an additional convolution. Then two dense layers lead to the latent
space. For each layer the activation function is rectified linear (ReLu). Fig. (9) illustrates the
architecture of the 2D and 3D encoder. The yellow R symbolises that the activation function
is ReLu. The decoding part is exactly the same in the reverse way and the “max pooling”
blocks are replaced by “up sampling” blocks.

In this work the ReLu activation function has been used. This activation function some-
times generates gradient losses during the training when not large enough dataset are used.
We emphasize that the Exponential Linear Unit (ELU) activation function as an alternative.
More details on the architectures such as the number of filters or the number of trainable
parameters are given in Appendix A. The loss function used for each optimization is a L2
norm and the optimizer used is adam. Fig. (10) shows the loss in function of the epoch for
the optimization process.

The position in ΩEM where the error on the displacement field made by the MMAE in
average can be evaluated with Eq. (13).The nodes where the error ζ̄ is superior to 1% are
shown in red in Fig. (11). A circular crack with the mean diameter of the whole data set is
also drawn, so that:

ζ =
|UFOM − UMMAE|

Umean
, ζ̄ =

∑Ndefect

i=1 ζi
Ndefect

(13)

where Ndefect is the number of defects,UFOM and UMMAE refer to the solution for the dis-
placement field of the full order model and of the MMAE approach respectively. Umean is the
mean displacement in the encoding mesh.

The error is located on the crack front and more precisely on the two closest sides from the
front and the back of the specimen. For each 2D crack images the corresponding reconstructed
2D crack image and a reconstructed 3D displacement field is generated. Fig. (12) shows the
reconstructions for defects 122, 131 and 16 which are data from the training set.

One of the reason why MMAE are used in this work is to see whether a relation between
the error made during the online phase and the 2D image reconstruction can be made. The
information of the input image is encoded in the common latent space and so gives a global
indication, for both morphological and mechanical data, that would not be obtained if solely
the morphological AE was used. During the online phase the displacement field generated on
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Figure 10: Loss curve for each optimization.

Figure 11: Element of the encoding mesh where ζ̄ > 1% (red) with mean circular crack (grey)
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Figure 12: Initial crack images from training set, their reconstruction and the cross modal displacement field
reconstruction (cracks 122, 131 and 16 from the training set).

the encoding mesh generated by the cross modal reconstruction is transferred on the external
surface of the TLV. The error η of the online phase is based on the cumulated plasticity
defined by Eq. (10). The following error indicator η̃ is the average difference between the
original image and its reconstruction:

η̃ =

∑N
i=1 |P (i)− P̃ (i)|∑N

i=1 P (i)
, P (i), P̃ (i) ∈ {0; 1}, (14)

where P (i) and P̃ (i) represent the value of the pixel i for the original and reconstructed image
respectively. The number of pixel of the image is N = 84 × 84. In order to see whether a
linear relation between those two errors exists, for each simulation η̃ and η are plotted on the
same graph. Since there are few extreme values a probability density function is used to have
a clear insight of the tendency. A linear relation is defined with the least mean square and a
40% error cone is drawn on Fig. (13).

A tendency is observed but the precision of the indicator is not high, it would give a good
hint about the online computation. With a fixed criterion (here 5%) on the actual error η one
can evaluate the True Positive (indicator low and true error low), True Negative (indicator
high and true error high), False Positive (indicator low and true error high) and False Negative
(indicator high and true error low) repartition. This repartition is shown in Fig. (14).

If the estimated error is too high then a full finite element simulation should be made.
Therefore in order to be the more conservative the false positive should be minimized. More-
over the linear relation can be adapted in order to be more conservative if needed. In order
to see more precisely the error that can be encountered for defects, a 2D histogram is made
for defect 1042. This defect belongs to the test dataset hence the model has not been trained
on this defect. It shows the density of Gauss points according to their value of cumulated
plasticity and von Mises stress for the full order model (FOM) and for the developed model.
Since at the end of the simulation most of the points are fully plastic and the von Mises value
is equal to the limit stress R0 = 400MPa, the graphs are drawn at t=0.8. Remind that the
error is evaluated on the TLV only. This is represented in Fig (15).
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Figure 13: Error indicator evaluation map.

Figure 14: True Positive, True Negative, False Positive and False Negative repartition with a criterion of 5%
of error.
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Figure 15: Error Graph on εpcum and σMises t=0.8 for defect 1042 from test dataset.

Figure 16: εpcum with FOM (left) and with the model (right) on the TLV for defect 1042 from test dataset.

Almost all the points are included in the 25% error zone, showing the good performance
of the method for the defect 1042. The result maps of the cumulated plasticity for defect
1042 is shown Fig. (16).

It is clearly shown that the global aspect of the field between the two methods is highly
similar. In order to have a more global view of the capacities of the so developed model an
histogram of the error based on the cumulated plasticity (see Eq. 10) is made. Since the TLV
is included in the full mesh, the error is computed strictly on the TLV. The classical split
has been applied to train the model so the three sets “train”, “validation” and “test” are
represented on this histogram Fig. (17a).

The cumulated probability graph in Fig. (17b) shows that 95% of the defects have an error
below 9.8% for the training set, 12.4% for the validation set and 16.3% for the testing set.
Good results are achieved with the developed methodology. For every set of data the average
error is lower than 7% underlining the accuracy of the model. In order to put into relief the
need to developed such a model a naive model has been created. Instead of generating a
specific 3D displacement field for each 2D image, a mean displacement field is computed over
the training set. All the training data have been taken and a mean field have been generated
(see Fig. 19a). The latter is then used to apply the boundary condition on the TLV that are
free from defect dependency. As it has been done before, an histogram of the error made on
the cumulated plasticity is made for the test set and compared with the developed model.
Those results are shown on Fig. (18).
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Figure 17: (a) Probability density function and (b) cumulated probability of the error for the training,
validation and test sets

Figure 18: Histogram of the error for the test sets with the MMAE model and the naive model
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Figure 19: Encoding mesh with mean U2 field (a), εpcum field with FOM (b) and εpcum field with naive
method (c) for defect 989

Figure 20: Mesh of defect 1042 where ∆εpcum > 5% when (a) the BC are applied on the external surface of
the TLV and when (b) the BC are applied on the whole TLV.

Very high error are obtained with this method except for defects having a shape close
to the average shape in the training set. Indeed for small defects large displacements are
imposed on the external surface generating important strains and stresses. The difference
between the FOM and the naive model for defect 989 is shown on Figs. (19b,19c).

The fluctuation of the displacement field caught by the MMAE is therefore necessary to
achieve good performance. To the contrary one can question why the use of the MMAE
solution solely on the external surface is made and not on the whole domain. This would
made great different for the computation time since only the integration of the constitutive
law would be required. Therefore comparison is made on defect 1042 from the test set with
boundary conditions on the whole domain and solely on the external surface is made. Solely
the meshed domain where ∆εpcum > 5% is conserved in both case in order to see the impact
of the position of the boundary conditions. This is shown in Fig.( 20a), (20b).

The number of element where ∆εpcum > 5% is clearly inferior when the boundary condi-
tions are applied on the external surface. The fact that the boundary conditions are solely
on the external surface enables to make a finite element correction of the solution find by the
MMAE.

The use of MMAE allows one to represent each defect as a point encoded in the latent
space. Fig. (21) represents all the defect in the latent space, since the latent space is of
dimension 600 a multi dimensional scaling (MDS) is made to have a 2D representation of this
space [34, 35].

MDS is an information visualization method which consists in finding a low-dimensional
dataset ~Z0whose matrix of Euclidean distances d(~Z0) is an approximation of the input dissim-
ilarity matrix δ. To that end, a cost function called stress function is minimized with respect
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Figure 21: Low dimensional representation of the common latent space

to ~Z:

~Z0 = argmin
~Z

(∑
i<j

(δij − dij(~Z))2

)
(15)

From left to right the blue dots represent the defects 539, 938, 537 and 341 while the red dots
represent their nearest neighbour respectively being the defects 4, 612, 105 and 368.

We remark one may use the reduced basis of the nearest neighbour in the common latent
space where a full order model is computed to solve the problem. This would be an alternative
since the latent space is common to the image and the displacement field. As shown in [36],
no bijection necessary exists between the mechanical and the morphological latent space.
This warrants the use of a common latent space generated with the MMAE. The technique
consisting in using a reduced basis recommended by a neurone network is called “ROM-
net” [37]. This approach works well for defects like gaz pores and has also been used in
[36]. Nevertheless this method offers non-optimal results when dealing with cracks. The
singularity at the crack tip is poorly represented on a reduced basis selected in a dataset
of reduced basis. As illustrated in Fig. (11), the error is located at the crack tip, which is
the zone of interest. Use of a submodelling approach and an adequate subdomain enables to
circumvent this problem.

5. High level engineering analysis to assess the safety of structures containing
cracks

The use of fracture assessement diagram (FAD) is common in the industry to certify
whether a structure containing cracks are still operational or not. The determination of the
stress intensity factor (SIF) and the limit load is necessary to use them [38]. Two domains
(safe and unsafe) can then be drawn on this diagram. Such mechanical quantities of interest
are usual outputs of finite element software in engineering. An explanatory FAD is given in
Fig. (22) which is taken from [39].
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Figure 22: FAD example with the different regions

With surrogate models, only specific quantities of interest can be computed. With the
presented work all quantities around the crack such as the stress intensity factor and the J
integral can be computed with classical finite element methods. On the contrary the limit
load is evaluated with the reaction forces at the extremities of the specimen. Not enough
information are present on the TLV to compute the limit load. The gappy proper orthogonal
decomposition enable to recover the full field when a reduced base is available. In this context
the use of MMAE happens to be a very relevant choice and constitutes a major point of this
paper. Indeed reduced basis can be computed for the training phase and then, during the
online phase, the reduced base of the k-nearest neighbours (k-NN) in the latent space can be
used to recover the full field and hence compute the limit load. This methodology consisting
in using a reduced base from another defect has already been used in the literature [37, 2].

Considering a reduced basis ~V and following on the Gappy POD [40], any vector ~u which

belongs to the column space colspan(~V ) of ~V may be recovered by using few entries ~u[F ] of

~u, if ~V [F , :] is a full column rank matrix. Here the set of degree of freedom F corresponds to
the ones of the TLV. Such recovery procedure takes the form:

~u ∈ colspan(~V ), ~u = ~V ·
(
~V [F , :]T · ~V [F , :]

)−1

· ~V [F , :]T · ~u[F ] (16)

Fig. (23) shows the global workflow that allows one to recover the full field by taking
advantage of the information contained in the latent space. Note that if more than one
reduced basis is selected (i.e. k > 1) to recover the full field, techniques have been developed
in [38, 41] to create a global basis based on many others.

The same idea can be used for the stress field σ using the reduced basis of the stresses
~V σ. Once σ is recovered it is possible to integrate this field on the top surface to obtain the
force at every time step and so the limit load. It is then possible to evaluate the limit load
for every defect by taking the reduced basis of its the nearest neighbour in the latent space.
To evaluate the J integral the information present in the TLV are sufficient. Two methods to
evaluated the J integral are used. One for which the J integral is computed as the mean on
the curvilinear abscissa and one more conservative method where J is equal to the maximum
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Figure 23: Full field recovery with use of the information contained in the latent space and gappy POD process

Figure 24: Limit load value with model and FOM (left) and J̄ with model and FOM (right)

value along the crack front. Both of these quantities are detailed in Eq. (17).

Jmax = max
s

J(s), J̄ =

∮
front

J(s)ds∮
front

ds
. (17)

Hence graphs to evalutate the error between the full order model (FOM) and the developped
model are computed over the validation and testing set. Fig. (24) shows that good results are
obtained, most of the points are contained in the 20% error zone. If a closer look at defect
1042 (belonging to the test set) is taken, its nearest neighbour in the latent space is the defect
53 (belonging to the training set). Fig. (25) shows the force displacement curve for defect
1042 with the described method and with a full order model (FOM).

The traction curve is also obtained with the developed methodology is very similar to the
curve of the FOM. Similarly it is possible to compute the J integral along the curvilinear
abscissa for defect 1042 at specific time step on Fig. (26). The mean error for each figure
reads:

µ =
1

Nnodes

∑
i≤Nnodes

|JFOMi − JModel
i ]

|JFOMi |
, (18)

where Nnodes refers to the number of nodes at the crack front and JFOMi and JModel
i refer to

the value of the J integral at the node i.
Good results are achieved for the computation of the J integral as well as for the limit

load, underlining the performance of the so developed model. When the limit load is reached
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Figure 25: Traction curve for defect 1042

(green zone in 25) at t = 0.6 the error on the J-integral curves starts to increase (see Fig. 26).
This is due to volumetric locking which is a common problem when cracked structures are
considered. This type of problem is not related to the developed method. It is intrinsic
to the finite element formulation and is an active field of research [16, 17]. Nevertheless to
draw accurate FAD diagram the solution up to the limit load is sufficient. Both quantities J
integral and limit load can be computed hence the loading path for a specific defect on FAD
diagrams can be drawn. FAD diagrams are usually drawn with the SIF rather than with the
J integral, the relation between these quantities is given in eq. 19.

K =
√
J.E ′ with: E ′ =

E

1− ν2
(19)

On FAD the loading and the SIF are respectively normalized by the limit load and the material
SIF (Kmat). The value of the material SIF is similar to the value of an aluminium material:
Kmat = 35 kJoule/m2. Fig. (27) shows the loading path for defect 1042 with the model and
with the reference FOM. The loading path is restricted to the domain up to the overloading
state as the structure necessarily belongs to the unacceptable flaws domain afterwards (see
Fig. 22). Recall that the reduced base of defect 53 has been used to compute the force since
it is the nearest neighbour of defect 1042 in the latent space. For each of the plotted path,
the value of the stress intensity factor K is equal to the maximum value around the crack
front. Both defects 1042 and 53 are represented on Fig. (27).

The loading path is similar to the reference one. Barely no error is made on the limit
load compared to the evaluation of SIF. This problem is partially due to volumetric locking
and bad pressure field computation around the front crack [17, 42]. speed-ups which are
obtained for all the defects are around 3 in average and up to 10 for the best. The value of
the speed-ups for each defect are represented on the histogram Fig. (28a).

The speed-ups can be improved by reducing the TLV but this will increase the error hence
a compromise between speed and accuracy has to be made as it is shown on Fig. (28b).

The strength of this method is that once the MMAE has learned the link between the
displacement field and the 2D images, any type of element can be used for the TLV. Moreover

22



Figure 26: J-integral along the curvilinear abscissa for defect 1042 at each time step

Figure 27: FAD with Model and FOM for defect 1042 (left) and the image of defect 1042 and 53, its nearest
neighbour (right).
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Figure 28: speed-up histogram (a) and variation of the speed-up with the size of the problem for defect 1042
(b) speed-up and error evolution curve in function of the number of DOF.

Figure 29: Smaller TLV for defect 1054

the mesh of the later can also be refined if needed. These modifications can enhance the speed-
up. A smaller TLV for defect 1054 has been defined which consists in a torus around the
front crack (see Fig. 29).

Other element type have been used with pressure control. They are more adapted for
cracked structures simulations than the linear tetrahedron with reduced integration. This
type of elements has additional degrees of freedom and need to be used with a quadratic
formulation of the element [43, 44]. Therefore the computation times are much larger than
the ones previously done. This is the reason why the training phase has not been done with
these elements. The same MMAE model that has been trained in the previous section is used.
The cumulated plasticity field obtained for defect 1042 with the MMAE approach and with
the FOM are shown in Fig. (30a) while Fig. (30b) shows the evolution of the error η and the
speed-up in function of the number of degrees of freedom also for defect 1042.

Much larger speed-ups are obtained with this configuration: up to 120 times faster (see
Fig. 30). This type of approach enable to take entirely profit from the submodelling approach
of the developed methodology. Nevertheless with such TLV the computation of the cumulated
plasticity works well but for the J integral it leads to high level of error when not enough
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Figure 30: (a) εpcum with FOM (up) and with the model (down) on the reduced TLV for defect 1042 and (b)
speed-up and error evolution curve in function of the number of DOF.

elements (radius of the thorus inferior to 4.5mm) around the front crack are present.

6. Conclusion

The mechanical effect of cracks in 3D volumes is known to be a function of crack morphol-
ogy. We show how a MMAE can be trained to learn this implicit function from experimental
data and simulation data. An automatic mechanistic simulation chain is required to get the
simulation data prior training the MMAE. A high level engineering analysis of the prediction
is enabled by using a mechanical submodel, termed tight local volume, feed by the MMAE
predictions. The encoding mesh, that supports simulation data, is a continuous mesh. It
does not allow to represent the discontinuity induced by cracks. Nevertheless, this encoding
mesh is sufficient to develop an artificial intelligence for boundary conditions on a tight local
volume. Good results have been achieved with the developed method. Low errors on the
whole TLV are obtained (around 5%). The need of such a method has been demonstrated by
comparing it with a naive model. All the standard outputs of a classical finite element com-
putation are available and enables one to draw FAD if needed. speed-ups between 3 and 120
are obtained. Better speed-ups have been obtained by reducing the TLV size to the detriment
of the accuracy. Indeed when large speed-ups are obtained the J integral is very inaccurate
due to the lack of element around the crack front. Moreover with this method, speed-ups
depends on the mesh hence with more complex geometries it would be possible to increase
the speed-up. Nevertheless the model suffers from a major limitation at the moment. The
position of the crack should, in full generality, be in the encoding mesh. Not all configurations
can accordingly be handled. Adding two new parameters for the position and orientation of
the crack could be an option. The encoding mesh would then be implanted according to these
parameters. The main asset of this method is that all the possible outputs of a standard fi-
nite element computation are also available with the so developed model hence it has been
possible to launch simulation with new elements though the MMAE model had been trained
with different elements. On the contrary a surrogate model would have larger speed-up but
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(a) (b)

(c)

Figure 31: Summary of the 2D autoencoder (a), the 3D autoencoder for any field U1, U2 or U3 (b) and the
fully-connected left and right neurone network (c).
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would be trained to predict only specific outputs and would need to be retrained each time
other output would be needed.

Appendix A. Detail of the 2D and 3D autoencoders

Details of the 2D and 3D autoencoders, as provided by the TensorFlow summary, are
given in Fig. (31).
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