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A B S T R A C T

The chemistry of precipitations and stream waters in the critical zone of a small granitic catchment mainly
covered by grassland has been investigated backward (period 1990–1997). Major elements concentrations,
fluxes and budgets at annual and seasonal scales allowed evaluating the catchment response to variation trends
in atmospheric deposition and hydrological patterns. Acid precipitation was efficiently buffered by soil cations
exchange and mineral weathering processes, as attested by the dominance of Ca and HCO3 in stream waters. A
decrease of sulfate acidity in precipitation following clean air measures was accompanied by an increase of
alkalinity and a decrease of sulfate in stream waters. Waters of short residence time from water-saturated areas
in the valley bottom and rapid shallow circulations within slopes were a very effective diluted weathering end-
member contributing to stream outlet in high flow conditions, whereas evapotranspiration from saturated areas
and/or deep waters with long residence time influenced the stream water concentration pattern in low flow
conditions.
Water discharge controlled the variations of the annual and seasonal budgets of major elements, except for

nitrate and sulfate, mainly stored during summer. Soil legacy sulfate was mainly released during the first autumn
stormflows, with high peak concentrations decreasing rapidly from 1990 to 1992 and disappearing afterwards.
The output water flux was the main driver of the weathering rate in the acidification recovery period 1993–97,
contrary to the first period 1990–92 when acidification was still under way, as attested by the weathering
plateau (constant Si/ΣBC ratio). At that time, the intense weathering testifies the disturbance caused by acid-
ification process. However, this critical zone was resilient enough to allow rapid and significant recovery over a
few years following sulfur atmospheric abatement. For the future, the atmospheric nitrogen deposition pressure
remains still challenging in a global change context, which argues for the necessity of long-term observatories.

1. Introduction

The very thin interface between atmosphere, vegetation, soil and
bedrock at the earth surface, the so-called “critical zone” (Brantley
et al., 2006), has been under the pressure of human activities for dec-
ades and even centuries, particularly in industrialized countries of the
northern hemisphere (Wohl, 2013). Among these pressures, a lot of
industrial activities such as coal burning have led to emissions of sulfur
and nitrogen, which have largely contributed to acid precipitations
(Smith et al., 2011). Atmospheric circulation may spread these gaseous
emissions over hundreds of kilometres from the sources, resulting in
long range atmospheric pollution (Chin et al., 2007). Acid compounds

have consequently been deposited on the ecosystems and led to dis-
turbances such as soil and water acidification even in remote areas,
particularly in northern Europe, North America and Asia (Ulrich, 1984;
Probst et al., 1990b, Kreiser et al., 1995; Hettelingh et al., 2007; Pardo
et al., 2011; Burns et al., 2016).

Soils and bedrocks undergo natural weathering processes driven by
atmospheric CO2, precipitation and temperature (White and Blum,
1995; Oliva et al., 2003). However, these processes are disturbed under
the influence of strong acid (sulfuric and nitric) inputs by precipita-
tions, resulting in enhanced silicate weathering and/or soil base cations
depletion (Pačes, 1985; Amiotte Suchet et al., 1995). This disturbance is
more obvious where (i) the buffering capacity of the weathering
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hydrochemical features, fluxes and budgets on annual and seasonal
time steps at the catchment scale; (ii) to investigate the combined in-
fluences of hydrological conditions and atmospheric inputs on the cri-
tical zone response; (iii) to evaluate the disturbance of weathering
processes and the resilience of the catchment to this disturbance during
the nineties.

The key question is whether the disturbance of the critical zone by,
and its resilience to, sulfuric acid atmospheric inputs were detectable
over only a few years of survey.

2. Material and methods

2.1. Site description

The Ringelbach catchment is located at Soultzeren (Haut-Rhin) on
the eastern side of the Vosges Mountains (NE France). It is a 0.36 km2

research catchment, in which interdisciplinary studies on water cycle
dynamics have been conducted since 1976 (Mercier, 1982; Ambroise,
1995, 2016; Baltassat et al., 2005; Schaffhauser et al., 2014; Lucas
et al., 2017). It lies on a large south-facing versant, with elevation
ranging from 1000 to 750m and rather steep slopes (mean: 20°, max-
imum: 35°) (Fig. 1).

The climate is temperate mountainous, which is a transition be-
tween oceanic and semi-continental regimes. At 800m, mean monthly
temperatures range from 0 °C in January to 15.6 °C in July (Paul, 1982).
Precipitation is rather well distributed all over the year, with a mean
annual value of about 1230mm.yr−1 and a mean snowfall proportion
of about 16% (Humbert, 1982). Snow cover is frequent between No-
vember and April, but usually lasts only a few days because of frequent
thaws at this low altitude. Mean annual potential evapotranspiration is
about 650mm.yr−1 (Fouché-Roguiez, 1998).

The catchment exhibits a relatively complex 3-D geological struc-
ture resulting from both weathering and tectonics (Baltassat et al.,
2005). Bedrock consists of Hercynian porphyroid granite (“granite des
crêtes”) capped in its upper part (Hurlin and Heidenkopf summits) by a
residual cover of Triassic sandstones (Fluck et al., 1978). The por-
phyroid granite is medium-grained, relatively homogeneous, rich in
biotite, and made up of quartz, plagioclase, K-feldspar and amphibole.
There is a truncated saprolite at the top of its ante-Triassic weathering
profile (Wyns, 2012). The Triassic sandstone cover, which gently dips
towards the north, is composed of relatively thick, hard medium-
grained sandstone layers interstratified with a series of thinner beds of
relatively fine, clayey and indurated sand. Faults define three main
tectonic blocks (Heidenkopf, Hurlin and Bunker).

The superficial formations, which are usually a few meters deep
only, are mostly regolith (granitic arena) covered by slope and colluvial
deposits. Soils, which belong to the podzolic series, are characterized by
a weak structure, a coarse texture (more than 70% of sand and gravel)
and a high macroporosity. Soil water retention is low in mineral layers
but much higher in the upper layers (up to 0.70 at saturation) because
of their high organic matter content. The hydraulic conductivity is high
at saturation (> 10−4m/s), but decreases very rapidly as soon as the
soil dries out a little (Ambroise and Viville, 1986; Viville et al., 1986;
Reutenauer and Ambroise, 1992). No surface runoff is usually observed
on slopes. The vegetation cover consists in extensively pastured dense
grasslands and moorlands on granite and a pine forest on sandstone,
representing about 80% and 20% of the area, respectively.

The valley bottom is partly water-saturated throughout the year, but
the extent of the saturated areas varies largely, up to 8% of the catch-
ment area, depending on groundwater storage (Ambroise, 1988, 2016).
It is drained by three small streams, which can dry out locally and
temporarily during some late summers. Stream discharge at the outlet
ranges between less than 0.01 L.s−1 and more than 100 L.s−1, around a
mean of about 7.4 L.s−1 (i.e. 20.6 L.s−1.km−2 or 648mm.yr−1)
(Humbert, 1982). Discharge is usually high in winter and low in
summer and early autumn. Several springs are located along the

processes is low like in very sensitive areas of northern Europe (granitic 
areas with limited soil cover: Wright and Johannessen, 1980), and/or 
(ii) the acid inputs are very high due to regional coal burning sources 
like in north-eastern USA or the “Black Triangle” region in central 
Europe.

In the early eighties, the scientific communities have undertaken the 
hydrogeochemical survey of small catchments over the northern 
hemisphere to study these processes and quantify their intensity (Likens 
et al., 1977; Hornung et al., 1990; Davies et al., 1992). In France, the 
influence of acid atmospheric deposition has been particularly evi-
denced in the north-eastern region (Probst et al., 1990a; Party et al., 
1995; Dambrine et al., 1998; Pascaud et al., 2016). Surface water 
acidification was demonstrated in the Ardennes and some sensitive 
parts of the Vosges Mountains (Février et al., 1999; Probst et al., 1990b; 
Kreiser et al., 1995), and forest decline was related to soil acidification, 
base cation depletion and aluminium toxicity (Landmann and Bonneau, 
1995) as the initial step of the forest dieback observed in very polluted 
areas of other countries (Johnson and Siccama, 1983; Ulrich, 1984). 
The main concern about forest health has consequently focused Eur-
opean researches on biogeochemical cycles in small spruce forested 
catchments (Birkenes, Norway: Christophersen and Wright, 1981; Ly-
sina, Czech Republic: Pačes et al., 1985; Plynlimon, UK: Durand et al., 
1992; Strengbach, Vosges, France: Probst et al., 1992).

Over the last decades, recovery patterns from acidification have 
been detected in some places in Europe following clean air measures, 
but in a very variable way depending on pollution pressure and en-
vironmental characteristics (Dambrine et al., 2000; Evans et al., 2001; 
Marx et al., 2017). Moreover, few surveys have concerned catchments 
not covered by coniferous forests and with high weathering buffering 
capacity, since the influence of acid deposition was then more “hidden” 
and difficult to detect.

In parallel to these pollution-driven investigations initiated in the 
seventies, hydrologists have been particularly aware of the utility to set 
up long-term monitoring multidisciplinary research catchments to in-
vestigate processes, water pathways and contributing areas over a large 
range of climatic and geologic conditions (Ward, 1971; Swank and 
Crossley, 1988; Ambroise, 1994). Particularly, concentration/discharge 
relationships (Durum, 1953; Pinder and Jones, 1969; Feller and 
Kimmins, 1979), end-member mixing analysis (Miller and Drever, 
1977; Hooper et al., 1990) as well as mass balance approach (Hornung 
et al., 1990), were frequently used because of their well-established 
performance to assess hydrochemical processes, water and elements 
sources, and weathering intensity, particularly in small catchments.

In France, one of these pioneer remote sites is the Ringelbach 
catchment (Vosges Mountains), which is mainly covered by grassland 
and has passively been under the influence of long range atmospheric 
pollution. A pluriannual hydrochemical survey was set up in the nine-
ties with the objective to help understanding the hydrological func-
tioning using geochemical tracers, as in other sites in Europe or USA 
(Hornung et al., 1990; Likens et al., 1977). This survey combined de-
tailed hydrological data from various compartments of the critical zone 
and the associated chemical data. It allows (i) to set up hydrochemical 
budgets at time scales varying from season to year; (ii) to investigate 
and identify the water and element sources and pathways, and (iii) to 
compare the Ringelbach hydrochemical behavior to those of other 
sensitive silicate catchments with different vegetation cover submitted 
to the pressure of acid atmospheric inputs.

In a context of global change, it is a major concern today to get 
historical registrations by collecting and exploiting ancient databases. 
Such data mining at international level would help to reinforce hy-
potheses on processes acting in geosystems that are under anthro-
pogenic pressures or in a recovery stage from these pressures. 
Particularly, it would help to model in a robust way these patterns and 
functioning under a large range of environmental conditions.

By investigating the nineties data set of the Ringelbach research 
catchment, the objectives of this paper are: (i) to characterize the



sandstone/granite contact (SRV), along the fault Hurlin-Bunker (SH,
SRH, SP2M, SPUI) and at midslope of the block Hurlin (SAH). Two of
them, SPUI and, from May 1991 on, SP2M, are tapped for water supply
outside the catchment (Fig. 1).

2.2. Water fluxes measurement and sampling

The study period extends from January 1990 to August 1997, in-
cluding seven hydrological years (from September to August) usually
beginning with very low flow conditions.

The main meteorological parameters were continuously recorded at
the automatic weather station PSMG, and precipitation data at the
nearby heated chart-recording (Précis Mécanique) rain gauge PFAG,
both sites being in the close vicinity of the catchment (Fig. 1). Ac-
cording to data from Adjizian-Gérard (1994), a coefficient of 1.0325
has been applied to the PFAG data to determine the total precipitation
amount at the catchment scale. Discharges at the catchment outlet,
which is equipped with a very sensitive, carefully rated 26.5° V-notch
weir, were obtained from continuously measured stream water levels
(submerged ultrasonic SAB600/CR2M probe, OTT chart recorder). The
two springs SPUI and SP2M, which are connected to the same water
pipe, were gauged about weekly during the period 1990–1995, but
much more irregularly in 1996 and 1997, to determine the total ab-
stracted discharge, which remains limited to 1.75 L.s−1 by an overflow.

Bulk open field precipitation was collected in a polyethylene bucket
at the site PSMG, and sampled about weekly (with cumulative samples
over two or more weeks in case of too small amount). Stream water was
sampled at the outlet about weekly. This resulted in 258 precipitation
samples for the 305 weeks with significant amount and 348 stream
water samples over the 404-weeks period, leading to similar good
weekly sampling rates of 83 and 86%, respectively. The last sampling
date was July 29, 1997. To ensure a complete hydrological year, the
chemistry of August 1997 was estimated using data from periods with

similar conditions (August 1996 for precipitations, July 1997 for
streamflow). All waters were sampled using polyethylene bottles.

Spring water at both SPUI and SP2M could not be sampled regularly
during the study period (only 3 samples for SPUI in 1990, and 2 for SP2M
in 1991). But, as for the other mentioned springs, chemical analyses (28
for SPUI, 27 for SP2M) are available over the whole range of spring
discharge for the period 2001–2006 (Schaffhauser et al., 2014). Some
analyses (Schaffhauser et al., 2014) are also available for water sampled
in 2008–2010 at several depths within three boreholes drilled in 2005 in
or near the upper part of the catchment (Fig. 1): FHUR and FHEI (150m
deep, granite aquifer), FHEI2 (70m deep, sandstone aquifer).

2.3. Analytical techniques

Immediately after field sampling, water samples were filtered at the la-
boratory (using 0.45 µm Millipore cellulose acetate membrane) and kept in
the dark at 4 °C. Chemical analysis were performed rapidly: alkalinity by
Gran's titration (Mettler apparatus); Cl, NO3 and SO4 by ion chromatography
(Dionex apparatus); Na, K, Ca and Mg by atomic absorption spectrometry
(Perkin-Elmer spectrometer); NH4 and H4SiO4 by automatic colorimetry
(Technicon apparatus). PO4 was sometimes detected using first colorimetry
technique, then ion chromatography, but in most cases concentrations were
under the detection limit. NPOC was analyzed using a Shimadzu TOC 5000
analyzer. The detection limit for both cations C+ and anions A− con-
centrations was 0.001mmol.L−1 (even lower for Mg). The analytical accu-
racy was better than±2%. The mean relative ionic balance 200*[ΣC+ −
ΣA−]/[ΣC+ + ΣA−] was±5% for precipitation waters and less than±
10% for stream and spring waters, ensuring the quality of the data.

2.4. Calculation of fluxes and budgets

The Ringelbach catchment exchanges no significant lateral or deep
groundwater fluxes with its environment (Ambroise et al., 1996).

Fig. 1. Topographical and geological map of the Ringelbach catchment with location of the measurement and sampling sites.



1990–91, 1995–96; wettest: 1993–94, 1994–95). It includes long re-
cession periods during both warm and cold seasons, and extremely low
flows in August 1991 and 1992, when the stream (but not the tapped
springs) dried out during a few days. It also includes some major hy-
drological events, usually occurring in winter, like the exceptional
event of February 1990 (P= 195mm), which combined snowmelt and
heavy rainfall, or the major events of January 1995 (P=200mm) and
February 1997 (P=110mm). Except during December 1990, snow-
pack was neither significant nor lasting.

3.2. Chemical features of input and output water fluxes

The chemical composition of individual water samples and the as-
sociated water fluxes are given in Table EA-1 for precipitations and
Table EA-2 for stream waters, and the corresponding correlation tables
(between concentrations and parameters) in Table EA-3, as online
Supplementary data.

3.2.1. Mean ion concentrations and relative abundances
Mean annual molar concentrations are given in Table 1.
Open field atmospheric precipitations are slightly acidic, with a

mean pH of 4.9 (calculated from mean proton concentrations). NH4,
SO4 and NO3 are the dominant ions. The mean total dissolved salts
(TDS) is 6.4 mg/L, which is within the range of values in precipitations
measured in the nearby Strengbach catchment for the same period
(Probst et al., 1992; 1995a). This value is also consistent with data from
the MERA and RENECOFOR networks in charge of the long-term pre-
cipitations survey over France (Pascaud et al., 2016).

Stream waters at the outlet and abstracted spring waters (SPUI and
SP2M) are circumneutral and dominated by Ca and HCO3, as usually
observed in surface waters draining granitic areas (Meybeck, 2003). All
ions are more concentrated in abstracted spring water than in stream
water. It is particularly true for NO3. These results are in agreement
with preliminary studies on water chemistry in the Ringelbach catch-
ment (Fritz, 1982; Fritz et al., 1984; Probst et al., 1987; Alary, 1993;
Redon, 2005).

For each water sample, the proportions of the chemicals with re-
spect to the respective sum of anions or cations were calculated using
concentrations expressed in meq.L−1 and plotted in a Piper’s diagram
(Fig. 2).

On the anion triangle, most precipitation samples are on the sulfate
axis with a large variation of SO4 abundance (from about 20 to 70% of
the anionic charge), compensated by Cl+NO3. Because some of them
contain a significant proportion of HCO3, the samples scatter rather
largely. On the cation triangle, this is also observed for Ca and Mg
proportions, with Ca varying from 5 to 70% of the cationic charge,
while Mg is always lower than 10%. Protons and NH4 represent be-
tween 60 and 95% of the total monovalent ions.

For surface waters (stream and abstracted spring waters), the ca-
tions spread is relatively narrow, the most important variation con-
cerning Ca (between 40 and 60% of the cationic charge). On the op-
posite, the anions scatter largely, with a majority of samples having
more than 80% HCO3, but also with some samples dominated by SO4
(more than 40% of the anionic charge). Consequently, in the synthetic
diamond, samples are largely stretched along a gradient of com-
plementary values from dominant acid anions (Cl+NO3+SO4) to
buffering HCO3 ion.

Compared with stream waters, the granite spring waters are much
more homogeneous, with shorter linear scatters. The lower springs
(SPUI, SP2M, SAH) are concentrated in the buffering HCO3 end-
member (more than 60% of the anionic charge), while the upper ones
(SH, SRH) are relatively enriched in acid anions, particularly Cl+NO3.
Slightly lower Ca+Mg and SO4 proportions distinguish SP2M from
SPUI tapped waters. Sandstone waters from both the SRV spring and
FHEI2 borehole are similar, in between precipitations and the less

Element inputs by dry atmospheric deposits were assumed to be neg-
ligible between two rain events. Indeed, the catchment is located far 
from any local pollution sources and the vegetation is mainly composed 
of grassland with a limited forest cover. There is no significant ex-
portation of biomass, and the permanent vegetation can be considered 
in a stationary state over the study period. Therefore, elements budgets 
were computed by subtracting from the input fluxes (open field pre-
cipitations) the total output fluxes (stream water at the outlet plus the 
abstracted water from the two tapped springs SPUI and SP2M). Same 
procedures as already applied in the nearby Strengbach catchment 
(Probst et al., 1992) have been used to estimate the associated element 
fluxes from measured water concentrations and fluxes.

For precipitation inputs, element fluxes for each sampling time step 
(between two sampling dates) have been calculated by simply multi-
plying the element concentrations by the corresponding water volume. 
For stream water output, the volume of water flow between two con-
secutive sampling dates was multiplied by the mean concentration of 
these two instantaneous samples. Constant concentrations in stream 
waters have been assumed within each time step to allow flux dis-
tribution before and after any needed intermediate date. Such an as-
sumption of no significant chemistry variation within about weekly 
time steps may be rather crude for some periods, owing to the possible 
variability of both water fluxes and concentrations in case of a suc-
cession of storm events within the week. But the week has been con-
sidered as a time step short enough to get an accurate estimation of 
element fluxes over much longer periods (season, year) in such a small 
size catchment (Probst et al., 1992; Ferrant et al., 2013).

Because of lack of data, a specific procedure was used for estimating 
correctly the fluxes abstracted from the two tapped springs SPUI and 
SP2M, whose discharge and chemistry vary relatively slowly and reg-
ularly, with a variation range much larger for discharge than for con-
centrations. Daily spring discharges were interpolated from weekly 
measured instantaneous discharges using a simple daily water balance 
model (Ambroise, 2016). Daily spring concentrations were estimated 
from daily discharges using the significant loglinear relationships ob-
tained for 2001–2006 spring samples (see below § 3.3.1). The resulting 
element fluxes of both springs were then mixed proportionally to their 
discharges to derive the element fluxes of abstracted spring water, 
taking also into account the overflow threshold.

All specific fluxes were then cumulated to estimate the total flux 
over a given period. Budgets were calculated considering the hydro-
logical year, as well as the four well contrasted hydrological seasons 
identified for this catchment: autumn (September to November: rapid 
recharge of groundwater), winter (December to February: high flow 
conditions), spring (March to May: progressive depletion of ground-
water), summer (June to August: low flow conditions, but with many 
thunderstorms).

All mean annual and seasonal concentration values are flux-
weighted averages.

3. Results

3.1. Hydrological features

Annual water fluxes for the seven hydrological years 1990–97 are 
given in Table 1. Variations of daily precipitations and stream discharge 
are presented as online Supplementary data in Fig. EA-1. Mean annual 
values 1990–97 are 1162 mm.yr−1 for precipitations, 548 mm.yr−1 for 
stream discharge and 58 mm.yr−1 for the abstracted spring discharge 
(i.e. as much as 10% of the total output discharge). As a whole, the 
period is slightly drier than mean long-term conditions (Humbert, 
1982).

The study period appears particularly well suited for sampling and 
assessing the whole time variability of hydrogeochemical fluxes, as it 
corresponds to a sequence of contrasted hydrological years (driest:



buffered samples of stream water. Waters from the granite boreholes
are very concentrated in HCO3 and Ca+Mg (more than 80%), but with
a Mg proportion much higher in FHUR than in FHEI.

These patterns are consistent with the preliminary investigations done in
the eighties for precipitations and stream waters (Probst et al., 1987) and
with more recent data on spring waters (Schaffhauser et al., 2014).

Hydrological year Flux_H2O pH NH4 Na K Mg Ca H HCO3 Cl NO3 SO4 Si TDS
(September-August) mm.yr−1 – mmol.L−1 mg.L−1

Precipitations
mean annual 1162.2 4.91 0.0402 0.0130 0.0056 0.0025 0.0089 0.0128 0.0076 0.0173 0.0320 0.0165 0.0014 6.45
standard deviation 235.3 0.12 0.0176 0.0025 0.0016 0.0006 0.0030 0.0032 0.0063 0.0030 0.0136 0.0030 0.0005 2.10

Stream
mean annual 548.4 6.85 0.0011 0.0791 0.0265 0.0365 0.0695 0.0001 0.1647 0.0395 0.0025 0.0408 0.1295 34.52
standard deviation 228.2 0.09 0.0001 0.0045 0.0018 0.0059 0.0106 0.0000 0.0503 0.0092 0.0009 0.0092 0.0059 3.14

SPUI spring
mean annual 38.0 7.22 0.0010 0.1070 0.0564 0.0604 0.0892 0.0001 0.3456 0.0320 0.0235 0.0257 0.2016 55.25
standard deviation 9.4 0.01 0.0000 0.0013 0.0010 0.0021 0.0036 0.0000 0.0135 0.0004 0.0001 0.0001 0.0017 1.25

SP2M spring
mean annual* 23.2 7.14 0.0010 0.1050 0.0479 0.0419 0.0623 0.0001 0.2545 0.0280 0.0340 0.0183 0.1961 47.05
standard deviation* 3.4 0.02 0.0000 0.0017 0.0008 0.0012 0.0017 0.0000 0.0089 0.0000 0.0010 0.0002 0.0026 0.92

*: Values for the 6 hydrological years 1991–97.

Ca Cl + NO3

100 80 60 40 20 0 0 20 40 60 80 100

PSMG RLIM SPUI SP2M SRH SH SAH SRV FHEI2 FHEI FHUR

Fig. 2. Piper’s diagram of water samples in the Ringelbach catchment: 1990–1997 precipitations (PSMG) and stream (RLIM) (this study); 2001–2006 granite (SPUI,
SP2M, SRH, SH, SAH) and sandstone (SRV) springs; 2008–2010 granite (FHUR, FHEI) and sandstone (FHEI2) boreholes [data from Schaffhauser et al., 2014]. All
percentages are computed using concentrations expressed in meq.L−1.

Table 1
Flux-weighted mean and standard deviation for major elements concentrations in precipitations and output water fluxes over the period 1990–97 (7 hydrological 
years) in the Ringelbach catchment. pH values are computed using annual mean H concentrations. Note the shorter (6 hydrological years 1991–97) reference period 
for spring SP2M tapped from May 1991 on.



3.2.2. Trends in annual mean concentrations
The inter-annual concentration variability depends on the elements

(Table 1). In precipitations, the variation coefficient is maximal for HCO3
(83%) and greater than 40% for NH4, NO3 and H4SiO4, but it is lower than
20% for Cl and SO4. In stream water, the variability is reduced, from more
than 30% for HCO3 and NO3 to less than 7% for NH4, Na, K and H4SiO4.

In precipitations, a marked change in the variation trend is observed
for most elements (Fig. 3). During the first five years 1990–95, annual
mean concentration was rather constant for a large set of elements (NH4,
Na, Mg, Ca, Cl), whereas it increased for HCO3 and decreased for some
others (H, NO3 and SO4, and, to a lesser extent, K). As a consequence,
acidity decreased (from pH 4.8 to pH 5.1). During the last two years
1995–97, concentration of H, NH4, HCO3, NO3 and SO4 increased. The
highest concentration was observed in 1996–97 for all elements except H.

In stream water, similar variation patterns are observed (Fig. 3).
During the first period 1990–95, annual mean concentration of Na, K,
Mg, Ca and Si remained rather constant, whereas it increased for HCO3
and decreased for SO4 (and to a lesser extent, Cl). During the second
period 1995–97, concentration increased for Ca, Mg and HCO3, but the
increase was more obvious in 1995–96. As shown for SO4 and HCO3 in
Fig. 4, all elements also exhibited intra-annual cycles with significant
seasonal variations in concentration.

The regular decreasing trend observed in stream water for sulfate
over the whole period is compensated by the increase in alkalinity
(Figs. 3 and 4). Moreover, high concentration peaks of SO4 occurred
after the summer dry season between 1990 and 1992, but with a de-
ceasing intensity over time. Such peaks were no longer observed
afterwards (except a very limited one in 1995), and were reduced to
minor autumn fluctuations. During the first three years, and particu-
larly in 1991, summer stream discharge was much lower than in the
following years (Fig. 4).

3.3. Relationships between concentrations and water fluxes

3.3.1. Main correlations and patterns
In precipitations, concentrations of NH4, NO3 and SO4, TDS and the

electrical conductivity EC exhibit the most significant positive correlations,

as well as Na and Cl (Tab. EA-3a). In stream water, TDS, EC and pH are
mainly positively related with Ca, Mg, Na and HCO3, whereas H4SiO4 is
significantly correlated to Na, and K to Cl (Tab. EA-3b). Correlations in-
volving SO4 are weak or not significant, except a negative one with NPOC.
On the opposite, NPOC is positively related with pH, EC, Mg, Ca and
HCO3, because of increasing concentrations during low flow conditions.

Even if some linear correlation coefficients are low or not sig-
nificant, concentrations of most elements tend to increase with de-
creasing bulk precipitation amount and, more obviously, with de-
creasing instantaneous discharge (Tab. EA-3, Fig. 5). Indeed, these
relationships, which are negative except for SO4 (Fig. 5d), are not linear
but of either power- or loglinear-type, as already observed in many
catchments (Durum, 1953; Feller and Kimmins, 1979). Despite some
rather large scatters in low flow conditions, they are highly significant
for major cations (Fig. 5a, b), HCO3 and H4SiO4 (Table 2). These re-
lationships allow estimating the quasi-asymptotic minimal concentra-
tions that would be observed for Q=250 L.s−1, a realistic estimation
of the maximal discharge possible in this catchment (see DWEM in
Table 2). The abstracted waters of both springs SPUI and SP2M have
also strong negative loglinear relationships with discharge for Ca, Mg,
Na, K, HCO3, H4SiO4 and TDS (Table 2).

The concentration-discharge relationships for SO4 and HCO3 show
marked but different contrasts between the two periods 1990–1992 and
1993–1997. For HCO3, both point scatters overlap in high flows, but the
1990–1992 scatter is more spread and less concentrated in low flows,
leading to two negative power-type concentration-discharge relation-
ships with different parameters and significance (Fig. 5c). On the op-
posite, for SO4 (Fig. 5d), the power-type relationship with discharge is
significant for the second period only and is positive, while the 1990–92
point scatter is largely spread for all discharge, with a lot of samples of
SO4 concentration above 0.060mmol.L

−1.

3.3.2. End-member mixing diagrams
As examples of the highly significant relationships observed be-

tween concentrations of major elements in stream water (Tab. EA-3b),
Ca, Mg and SO4 were considered in mixing diagrams (Fig. 6). The Ca vs
Mg diagram (Fig. 6a) includes the diluted water end-member DWEM,
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which is assumed to correspond to the estimated possible minimal
concentrations (Table 2). It includes also other water types that could
potentially influence the stream water composition: (i) open field pre-
cipitations (this study), (ii) spring and borehole waters from sandstone
(SRV, FHEI2) and granite (others) aquifers (Schaffhauser et al., 2014).

A highly significant positive linear relationship was found between
Ca and Mg in stream water (Eq. (1)), which can be considered as pas-
sing through the origin:

= = = <[Ca] 2. 017[Mg] 0.004 R 0 .95; n 348; p 0.0012 (1)

with concentrations [Ca] and [Mg] in mmol.L−1.
As both are strongly negatively related to discharge also, following a

discharge dilution pattern, a concentration decrease by a factor 5 was
observed from low to high water flow conditions. Each of all springs
follows a similar linear trend (see equations on Fig. 6a), but with much
shorter variation ranges than for stream. The relatively long pattern of
the shallow spring SAH, which is located at mid-slope of the granite
block Hurlin capped by sandstone (Fig. 1), overlaps the stream pattern,
while the four overlapping springs located along the main fault (SH,
SRH, SP2M, SPUI) are slightly enriched in Mg. On the opposite, the
sandstone spring SRV has a very short and less concentrated pattern,

and is relatively enriched in Ca. The precipitations are less con-
centrated, with a much more spread scatter, and therefore a less sig-
nificant positive linear relationship. All stream and spring linear re-
gression lines can be considered as passing through the origin,
indicating a rather constant Ca/Mg ratio over the whole concentration
ranges. Similarly, significant linear relationships of quasi proportion-
ality were observed in Mg/Na vs Ca/Na spring graphs also
(Schaffhauser et al., 2014).

Concerning SO4, two contrasted power-type relationships with Ca
(see equations in Fig. 6b) are observed above and below a SO4 con-
centration threshold of about 0.060 mmoles.L−1 (Fig. 6b). For most
samples, which are below this threshold, the relationship is negative
whereas for samples above this threshold (mostly the 1990–1992 au-
tumn samples), the relationship is positive. This is related with de-
creasing concentrations of both SO4 and Ca with increasing discharge
for the formers and the reverse for the latter ones. The maximal autumn
concentrations of both elements tend also to decrease from 1990 to
1992 towards the general pattern. Each year, it was in early autumn
(September-October) that the highest concentrations were observed,
with then a progressive decrease towards the high flow end-member of
the general pattern, which was reached again in late autumn
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(November). Similar relationships with SO4 are observed for Mg, Na
and, to a lesser extent, K (not shown).

Moreover, Ca+Mg is very significantly related to HCO3 but even
more to HCO3+SO4 in stream water over the whole period:

+ = + = = <[Ca Mg] 0. 772[HCO ] 0. 097 R 0. 85; n 348; p 0. 00013
2

(2)

+ = + + = = <[Ca Mg] 0. 933[HCO SO ] 0.021 R 0.98; n 348; p 0.00013 4
2

(3)

with concentrations expressed in meq.L−1.

3.4. Element fluxes and balances

3.4.1. Annual inputs and outputs
Annual fluxes of water and major elements as well as inter-annual

means and standard deviations in precipitation, stream and abstracted

spring waters, are presented in Table 3.
Precipitation inputs are within the range of open field element

fluxes measured over the same period in other nearby forested moun-
tainous catchments that are also under the pressure of long range at-
mospheric pollution (Black Forest: Feger et al., 1990; Vosges: Probst
et al., 1992, 1995a, 1995c). Except in 1996–97, annual fluxes of K, Mg,
Ca, HCO3, SO4, H4SiO4 and TDS follow the variations of annual pre-
cipitation amounts, with particularly low fluxes in the dry
1995–96 year. Na and Cl fluxes are linearly related to increasing water
fluxes during the first four years 1990–94. The total flux of nitrogen
compounds (NH4 and NO3) increased over the period, with no im-
portant reduction in the dry 1995–96 year. On the opposite, very high
fluxes were observed in 1996–97, while the precipitation amount was
average. They exceeded the mean fluxes over the other years by a factor
of 1.4–2.0 for most elements, and even by 2.2 for H4SiO4, 2.3 for NO3
and NH4, and 3.8 for HCO3.

Stream outputs of all elements are very significantly related with

Regression [C] vs Q NH4 Na K Mg Ca H HCO3 Cl NO3 SO4 Si TDS
Q in L.s−1 mmol.L−1 mg.L−1

power-type: [C]=b Qa

RLIM stream (N=348) significance level: p < 0.05, 0.01, 0.001 for R2 > 0.011, 0.019, 0.031, respectively
R2 – 0.497 0.011 0.592 0.620 0.466 0.543 0.049 – 0.079 0.262 0.648
power a 0.000 −0.082 −0.023 −0.194 −0.207 0.262 −0.266 0.113 – 0.105 −0.035 −0.135
coefficient b 0.001 0.096 0.026 0.057 0.111 7.E−05 0.290 0.023 – 0.029 0.138 46.803
DWEM (Qmax=250 L.s−1) 0.061 0.023 0.019 0.035 0.067 0.113 22.210

loglinear: [C]= a Log10(Q)+ b

SPUI spring (N=28) significance level: p < 0.05, 0.01, 0.001 for R2 > 0.140, 0.229, 0.346, respectively
R2 – 0.817 0.922 0.930 0.959 0.169 0.946 0.348 0.017 0.017 0.846 0.954
slope a – −0.012 −0.009 −0.019 −0.033 2.E−05 −0.124 0.003 −0.001 −0.001 −0.015 −11.417
intercept b 0.001 0.104 0.054 0.056 0.081 6.E−05 0.314 0.033 0.023 0.026 0.198 52.342

SP2M spring (N=27) significance level: p < 0.05, 0.01, 0.001 for R2 > 0.145, 0.237, 0.357, respectively
R2 – 0.736 0.672 0.783 0.734 0.153 0.775 0.014 0.351 0.285 0.903 0.798
slope a – −0.023 −0.010 −0.016 −0.022 4.E−05 −0.116 0.001 0.013 −0.003 −0.034 −11.943
intercept b 0.001 0.093 0.043 0.034 0.051 9.E−05 0.194 0.028 0.041 0.017 0.178 40.818
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Table 2
Relationships between element concentrations [C] and instantaneous discharge Q in stream and tapped spring waters. Power-type: RLIM stream, 1990–1997 water 
samples. Loglinear: SPUI and SP2M springs, 2001–2006 water samples (Schaffhauser et al., 2014). R2: coefficient of determination; N: number of samples. NH4 

detection limit: 0.001 mmol.L−1. Bold: R2 ≥ 0.64; underlined: 0.64 > R2 ≥ 0.36. DWEM: estimated concentrations of the stream Diluted Water End-Member.



annual discharge. Annual exportations are the highest during the wet-
test years 1993–94 and 1994–95, and the lowest during the driest years
1990–91 and 1995–96. H, NO3 and NH4 outputs only are always very
low and not directly related with annual discharge. Output fluxes are in
the lower range of fluxes usually exported in similar granitic moun-
tainous catchments (as example: Strengbach and Mont-Lozère: Probst
et al., 1995a, 1995c). H4SiO4 and HCO3 are the most exported com-
pounds, representing 36% and 29% of the total exported TDS, respec-
tively.

The abstracted spring water output amounts to 11% of the stream
discharge in mean. When compared to stream water outputs, it appears
as relatively depleted in SO4 but enriched in Na, K, Mg, HCO3, H4SiO4
and TDS, and even strongly in NO3. The relative inter-annual flux
variability of output fluxes is much lower in springs than in the stream

for all elements except Cl, for which they are similar.
The resulting total output is therefore slightly different from that of

stream water, but falls within the range of fluxes measured in other silicate
catchments in the Vosges and the Massif Central (Probst et al., 1995c).
Annual total exportation flux of H4SiO4 (78.75 ± 29 kg.ha−1.yr−1 in
mean) is significantly related with the annual total water output flux:

= + = = <F 0.12 Q 6.24 R 0. 99; n 7; p 0. 001H4SiO4 tot
2 (4)

with FH4SiO4 in kg.ha
−1. yr−1 and Qtot in mmH2O.yr

−1.
Annual mass balance indicates a net exportation of most elements,

but a net annual storage of N compounds (NH4 and NO3) over the
period. Most net annual fluxes are well related with the annual total
water output flux. Between the driest and wettest years (1990–91 and
1993–94, respectively, with a precipitation ratio of 1.7), the net

Hydrol. year H2O NH4 Na K Mg Ca H HCO3 Cl NO3 SO4 H4SiO4 TDS
(Sept.-August) mm.yr−1 kg.ha−1.yr−1

Precipitations input
1990–91 834.6 4.978 2.453 2.041 0.543 2.877 0.138 1.407 5.171 16.717 14.952 0.954 52.229
1991–92 1240.1 6.134 3.128 2.531 0.606 3.784 0.184 2.896 6.712 19.471 18.190 1.255 64.892
1992–93 1148.1 7.078 3.451 2.309 0.706 3.272 0.170 2.415 7.110 19.301 18.334 1.148 65.293
1993–94 1436.5 8.069 4.290 2.603 0.801 4.685 0.125 6.150 8.192 18.744 19.025 1.593 74.276
1994–95 1432.8 7.914 4.632 2.343 0.851 4.354 0.116 5.715 9.433 20.072 17.750 1.915 75.097
1995–96 897.9 7.797 1.924 1.703 0.411 2.683 0.120 4.787 4.309 19.356 14.457 1.001 58.550
1996–97 1145.1 15.941 4.601 4.029 1.073 7.132 0.162 14.771 9.309 43.024 23.748 2.840 126.630
mean annual 1162.2 8.273 3.497 2.509 0.713 4.112 0.145 5.449 7.177 22.383 18.065 1.530 73.852
STD 235.3 3.560 1.067 0.736 0.219 1.521 0.027 4.471 1.964 9.164 3.058 0.671 24.639

Stream output
1990–91 315.1 0.063 5.889 3.467 2.593 8.163 0.000 22.315 6.272 0.512 16.710 41.205 107.190
1991–92 528.5 0.097 9.315 4.813 4.099 13.014 0.001 37.936 7.575 0.582 24.980 64.000 166.413
1992–93 447.5 0.084 8.562 4.746 3.713 11.986 0.001 39.103 7.495 0.681 19.123 58.378 153.872
1993–94 880.3 0.168 15.614 8.802 7.312 23.080 0.001 86.219 10.146 1.606 33.278 110.070 296.298
1994–95 843.7 0.152 14.062 8.385 6.738 20.972 0.001 81.972 9.273 1.947 28.519 97.533 269.554
1995–96 331.6 0.068 6.524 3.708 3.891 12.123 0.000 52.631 4.161 0.628 9.729 42.466 135.930
1996–97 492.2 0.091 8.723 5.193 4.826 14.754 0.001 58.906 5.848 0.306 15.067 59.279 172.993
mean annual 548.4 0.103 9.813 5.588 4.739 14.870 0.001 54.154 7.253 0.895 21.058 67.562 186.036
STD 228.2 0.041 3.672 2.147 1.703 5.306 0.000 23.559 2.046 0.622 8.239 26.443 70.059

Springs output
1990–91 29.6 0.005 0.738 0.654 0.434 1.060 0.000 6.288 0.329 0.445 0.714 5.787 16.455
1991–92 67.0 0.012 1.624 1.383 0.857 2.085 0.000 12.477 0.730 1.138 1.480 12.786 34.572
1992–93 61.9 0.011 1.505 1.280 0.797 1.946 0.000 11.645 0.668 1.067 1.354 11.826 32.098
1993–94 79.3 0.014 1.910 1.628 1.004 2.441 0.000 14.591 0.868 1.346 1.754 15.064 40.621
1994–95 71.3 0.013 1.720 1.464 0.903 2.198 0.000 13.147 0.778 1.213 1.571 13.557 36.565
1995–96 49.0 0.009 1.217 1.035 0.656 1.607 0.000 9.666 0.520 0.838 1.069 9.504 26.120
1996–97 50.5 0.009 1.252 1.071 0.680 1.663 0.000 9.980 0.544 0.842 1.124 9.798 26.961
mean annual 58.4 0.011 1.424 1.216 0.762 1.857 0.000 11.114 0.634 0.984 1.295 11.189 30.485
STD 16.7 0.003 0.390 0.325 0.189 0.457 0.000 2.740 0.182 0.302 0.352 3.096 8.034

Total output
1990–91 344.7 0.068 6.627 4.121 3.027 9.223 0.001 28.603 6.602 0.957 17.424 46.992 123.645
1991–92 595.6 0.110 10.939 6.196 4.956 15.099 0.001 50.413 8.306 1.720 26.460 76.786 200.985
1992–93 509.4 0.095 10.067 6.026 4.510 13.932 0.001 50.748 8.163 1.748 20.477 70.204 185.970
1993–94 959.6 0.182 17.525 10.430 8.316 25.522 0.001 100.811 11.013 2.952 35.032 125.134 336.918
1994–95 915.0 0.165 15.782 9.850 7.641 23.170 0.001 95.119 10.050 3.160 30.091 111.090 306.119
1995–96 380.5 0.077 7.741 4.743 4.547 13.731 0.000 62.297 4.681 1.466 10.798 51.971 162.050
1996–97 542.7 0.100 9.974 6.264 5.506 16.416 0.001 68.886 6.391 1.148 16.191 69.077 199.955
mean annual 606.8 0.114 11.237 6.804 5.500 16.727 0.001 65.268 7.887 1.879 22.353 78.750 216.520
STD 242.6 0.043 4.015 2.420 1.863 5.697 0.000 25.665 2.194 0.855 8.532 29.136 76.991

Balance (input – output)
1990–91 489.9 4.910 −4.174 −2.080 −2.484 −6.346 0.137 −27.196 −1.431 15.760 −2.472 −46.039 −71.416
1991–92 644.6 6.024 −7.811 −3.665 −4.350 −11.315 0.183 −47.517 −1.594 17.750 −8.269 −75.530 −136.093
1992–93 638.8 6.982 −6.617 −3.717 −3.804 −10.660 0.170 −48.333 −1.053 17.553 −2.143 −69.056 −120.677
1993–94 477.0 7.886 −13.235 −7.827 −7.516 −20.837 0.124 −94.661 −2.821 15.792 −16.007 −123.540 −262.642
1994–95 517.8 7.749 −11.150 −7.507 −6.790 −18.815 0.115 −89.403 −0.617 16.913 −12.341 −109.175 −231.022
1995–96 517.3 7.720 −5.816 −3.040 −4.135 −11.048 0.120 −57.509 −0.372 17.890 3.659 −50.969 −103.501
1996–97 602.4 15.841 −5.373 −2.235 −4.433 −9.284 0.162 −54.115 2.918 41.876 7.557 −66.237 −73.325
mean annual 555.4 8.159 −7.740 −4.296 −4.788 −12.615 0.144 −59.819 −0.710 20.505 −4.288 −77.221 −142.668
STD 71.2 3.558 3.294 2.389 1.754 5.235 0.027 24.064 1.787 9.465 8.460 28.920 75.439

Table 3
Annual input and output fluxes and balances of water and major elements for the 7 hydrological years 1990–97 in the Ringelbach catchment. Ptot: catchment 
precipitation input; Qstr: stream water output; Qspr: abstracted spring water output; Qtot: total surface water output. STD: standard deviation. Note that the annual 
water balance Ptot – Qtot can be considered as an estimation of annual evapotranspiration.



exportation is increased by a factor of 2.7 to 3.7 for Na, K, Ca, Mg,
HCO3 and H4SiO4, and even 6.5 for SO4. Nitrogen storage is very high
in 1996–97 and minimal in 1990–91. Chloride budget is well-balanced.
Sulfate is exported on average, but its net output flux is not related with
the total water output flux. Sulfate net exportation was maximum in
1993–94 and 1994–95, whereas a net storage occurred in 1995–96 and
1996–97. Bicarbonate and H4SiO4 present by far the highest net ex-
portation fluxes (42% and 54% of the net exported TDS, respectively),
since their inputs by precipitation are very low or negligible with re-
spect to outputs, except in 1996–97 for HCO3.

3.4.2. Seasonal inputs and outputs
Mean seasonal fluxes and balances of water and elements and their

variability are given in Table EA-4 (as online Supplementary data) and
Fig. 7.

In precipitations, mean seasonal element fluxes vary according to
the season (Fig. 7a). Fluxes of some elements, such as Na, Cl and HCO3,
are related with seasonal precipitation amounts. For other ions, parti-
cularly SO4, NO3 and NH4, input fluxes are the most important in spring
and summer, when precipitations amount is the lowest. Standard de-
viations are very large, particularly in winter for most elements and also
in summer for NO3.

Seasonal mass balances (Fig. 7b) indicate a net exportation for most
elements whatever the season. Net fluxes are related with total water
output for Na, K, Mg, Ca, HCO3 and H4SiO4, as already observed on the
annual basis (Table 3). Net exportations are maximal in winter and
spring, and minimal in summer. This is particularly true for H4SiO4
with a flux even two times higher in winter than in spring. Chloride
budget is well-balanced, with a small exportation in winter and a small
storage in summer, but these mean values are lower than standard
deviations. On the opposite, nitrogen compounds (NH4, NO3) are stored
whatever the season, with a trend of highest storage in summer and, to
a lesser extent, in spring. Sulfate mass balance exhibits a contrasted
pattern, with a well-balanced budget in autumn and spring, a sig-
nificant loss in winter (high flow conditions) and a storage in summer
(low flow conditions).

4. Discussion

4.1. Origin of the elements and role of hydrology on chemical fluxes

The influence of long range atmospheric pollution on the compo-
sition of Ringelbach precipitations is attested by their slight acidity and
the presence of some strongly related dominant compounds such as
NH4, SO4 and NO3. This is consistent with observations made during the
study period in most remote sites surveyed in northern France and
Europe (Probst et al., 1990a, 1995c; Rogora et al., 2006; Sicard et al.,
2007; Smith et al., 2011). The persistent and correlated concentration
trends observed for Ca and Mg, and for Na and Cl indicate a common
origin, which is mainly continental for the formers and marine for the
latters (Probst et al., 1990a, 1995b; Dambrine et al., 1995; Pascaud
et al., 2016). Indeed, the continental origin of part of Ca is indicated by
its positive relationship with NO3 and SO4 due to the influence of Ca-
enriched pollution particles (Pascaud et al., 2016). Seasonal fluxes also
confirm the marine origin of Na and Cl (mainly in winter) and the
continental/anthropic origin of N and S compounds (mainly in spring
and summer).

The annual input fluxes for Na, K, Ca, Cl and SO4 are as a whole
related with the precipitation amount, with values that are high for wet
years (1994–95) and low for dry years (1990–91 and 1995–96), even
though the highest input fluxes are observed in 1996–97 with an
average precipitation amount. Particularly, for anthropogenic ions such
as NH4 and NO3, the mean concentrations are almost double the whole
period averages. On the opposite, SO4 did not evolve in the same pro-
portion contrary to what is observed in previous years. The very rainy
period of the second half of February 1997 (P=191mm) alone is re-
sponsible for these particular year increases. It represents 16% of the
annual precipitations, but more than 25% of the annual fluxes for all
elements (except H), and even 42% for NH4 and 59% for HCO3. High
natural inputs of Ca and HCO3 derived from carbonate particles origi-
nating Sahara dust (Dambrine et al., 1995; Probst et al., 1995c), usually
occurring in February-March, may contribute to significant annual
fluxes enrichment. Indeed, such events were identified in 20–23/12/
1996 and 19–23/01/1997. However, during the period of the major
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Fig. 7. Inter-annual means and stan-
dard deviations of seasonal fluxes of
water and major elements over the
1990–97 period in the Ringelbach
catchment: (a) precipitation inputs; (b)
mass balance (input–output). Ptot: total
catchment precipitation amount; Qtot:
total water output. Variation bar:
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residence time increases, and as long as the bedrock is not yet depleted
in weatherable minerals, weathering processes become more efficient
(Drever, 1982). This is consistent with spring waters that are more
concentrated (TDS, base cations, HCO3) downslope (SPUI) than mid-
and upslope (SP2M, SRH and SH) (Table 1) (Schaffhauser et al., 2014).
This also explains the contrast in water chemistry between these granite
springs and the SRV spring draining sandstone, which has a buffering
capacity of weathering lower than granite (as shown in other places in
the Vosges: Probst et al., 1999). There is also some differentiation
among the granitic springs. On one hand, the waters of the midslope
SAH spring draining a granite block covered by sandstone overlap
stream waters, thus suggesting a same origin and dilution pattern. On
the other hand, the four fault springs (SH, SRH, SP2M, SPUI) define a
unique linear regression line also passing through the origin, but a little
more tilted in direction of the FHUR cluster. This suggests similar
water-rock interactions along the granitic slope, but with weathering
intensity increasing downslope (Schaffhauser et al., 2014).

Nevertheless, the whole bundle of regression lines (stream and
spring waters) converging to the origin through most precipitations
samples and their flux-weighted mean suggest the flux-weighted mean
precipitation chemistry to be their possible common “diluted water-
end-member”. In reality, this point would never be reached, as the
precipitation chemistry changes as soon as water reaches the soil.
Therefore, the minimal possible concentrations derived from [C] vs Q
relationships (Table 2) provide practically a good estimate of the stream
DWEM. It may correspond to precipitations water having had a very
little interaction time with soils before reaching the stream, because of
rapid surface or subsurface flows and/or short pathways. Indeed, it is
very close to, and in between, the most diluted samples of both the
upslope granite SH and SRH springs and the sandstone SRV spring.

Water-saturated areas that are directly connected to the stream in
the valley bottom are the only permanent interface between atmo-
spheric, surface and subsurface waters (Ambroise, 2004). Consequently,
they may have a huge influence on hydrogeochemical transfers to the
stream because of their highly reactive responses to both local pre-
cipitations and evapotranspiration (Ambroise, 2016). Precipitations on
them have an about proportional diluting effect on stream water, as
they rapidly provide to the stream outlet water fluxes that are little
concentrated for some elements because of very short interaction time
with the saturated soil. Nevertheless, during hydrological events, they
were also shown to strongly influence the relative contribution of some
key concentrated elements, like carbon, as demonstrated in the nearby
Strengbach catchment (Idir et al., 1999; Ladouche et al., 2001). The
drainage water of these areas in the Ringelbach was not sampled during
high flow, but we can suppose that its composition is not so far from the
DWEM end-member, and may contribute actively to the major elements
dilution in steam waters.

Inversely, evapotranspiration from these areas may generate marked
inverse daily oscillations of stream discharge and concentrations in late
spring and summer (Fritz et al., 1984). Because the concentrations re-
lationships in stream water pass through the origin (Fig. 6a), this pro-
portional concentrating effect of evapotranspiration may help explain
that stream concentrations for low discharges, mainly observed in the
warm season, reach much higher values than in the sampled granitic
springs. It may also help explain the rather large dispersion observed on
[C] vs Q graphs in mid and low flows, because of sampling during re-
cession periods that are more or less influenced by evapotranspiration
(Fig. 5). As a result, despite their small variable extent, these areas may
control variations in stream water discharge and chemistry during storm
events and large parts of the warm season. However, we cannot exclude
as another concentrated end-member a not yet sampled contribution of
some granitic deep waters to sustain discharge of the stream and SAH
spring during very low water conditions.

The intensity of the catchment drainage plays a major role in the
variations of the output fluxes (Table 3). The highest annual con-
centrations in stream waters for most ions are observed in 1995–96

specific February 1997 event, no Saharan dust event was clearly de-
tected, the air masses originating from the west. A local/regional an-
thropogenic input could be evoked since it was also detected in the 
nearby Strengbach observatory catchment (Pierret et al., 2018, in 
press).

The decreasing trend observed in precipitation concentrations for 
acidic compounds over the study period has mainly to be related with 
the decreasing trend in SO2 emission observed in the industrial coun-
tries of the northern hemisphere (Smith et al., 2011; Rice et al., 2014; 
Pascaud et al., 2016). As a consequence, annual H concentrations de-
creased by about 25% over the period, mainly because of H reduction in 
both winter and spring precipitations. The decrease is of 35%, when not 
considering the very dry year 1990–91 and the particular year 
1996–97. The acidity decrease at the beginning of the period is ex-
plained by the decrease in both sulfur and oxidized nitrogen, while its 
increase back to the initial value in the last two years might be mainly 
related with some increase in nitrogen pollution (Fig. 3). However, 
trends for nutrient nitrogen are less obvious to identify because of 
multiple N sources and N transformation processes in the atmosphere, 
as observed in survey networks (Pascaud et al., 2016). This evolution is 
consistent with the general pattern observed in France and Europe, 
showing a switch from sulfur to nitrogen as dominant pollutant 
(Coddeville et al., 2016; Marx et al., 2017).

The mean annual open field proton input flux (0.144 kmol.-
ha−1.yr−1) is much lower than that registered in the previous ten or 
twenty years for instance in forested sites in the Vosges (1.17 kmol.-
ha−1.yr−1: Probst et al., 1995c) and the Czech Republic (more than 5 
kmol.ha−1.yr−1: Pačes, 1985, Dambrine et al., 1993), if taking into 
account dry deposition. The incoming acidity (mean precipitation 
pH = 4.9) is buffered within the critical zone by soil cations exchange 
and weathering processes (mean stream water pH = 6.8), as attested by 
the strong relationships observed between silica, alkalinity and base 
cations, despite relatively low mean total weathering fluxes 
(803 kmolSi.ha−1.yr−1). This results in calcium-bicarbonate dominance 
in stream and abstracted spring waters (Probst et al., 1987). Strong 
links between Si and Na and their corresponding budgets demonstrate 
the dominant weathering of plagioclases (Drever, 1982). Nitrates ori-
ginating from deposition by precipitations are not exported. They are 
consumed by vegetation or other biological organisms and transformed 
by biogeochemical processes such as denitrification due to microbial 
activity within soils. This is especially the case in the hydromorphic 
water-saturated valley bottom, which acts as a major specific biogeo-
chemical reactor (Cirmo and McDonnell, 1997) within the critical zone. 
This is particularly true in summer, as evidenced by the higher N 
summer storage (Fig. 7). In view of the uncertainty in the calculated 
fluxes, the equilibrated Cl mass balance is consistent with a dominant 
marine origin.

As shown on the Ca vs Mg mixing diagram (Fig. 6a), base cations in 
stream water cannot be explained by a simple conservative mixing 
between two clearly identified water types of constant chemistry, par-
ticularly regarding the considered abstracted springs which exhibit a 
similar dilution pattern as stream waters. The position of the well-de-
fined linear stream water pattern between deep waters from granite 
(FHUR and FHEI) and sandstone (FHEI2, consistent with the SRV spring 
pattern), indicates the influence of some mixing of these components. 
Indeed, in very low flow conditions, the regression lines of stream and 
granitic springs do not pass through the two borehole clusters, far from 
each other. Especially for the very little transmissive FHUR, borehole 
waters, which are much more concentrated than spring waters and 
whose chemistry results from very long interaction times with bedrock 
(Lucas et al., 2017), appear to be about disconnected from the more 
superficial and mobile waters supplying springs. Rather than being 
limited by a not yet identified “concentrated end-member”, the higher 
spring concentrations probably depend mainly on actual residence 
times under the constraint of following the regression line expressing 
local water-rock interactions. Indeed, as soon as the groundwater



= = = <F 0.039Q 0.830 R 0.995; n 4; p 0.01SO4
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tot
2 (5)

with FSO4autumn in kg.ha−1.season−1 and Qtot in mmH2O.season−1.
However, the singular seasonal pattern of sulfate with a net release

in winter and a net storage during summer cannot be related with the
well distributed precipitation inputs over the year (Fig. 7). Rice and
Bricker (1995) also noted that the stream water concentrations of at-
mospherically derived components, particularly sulfate, increased in
winter when the water table was above the regolith-bedrock interface
and stream discharge consisted primarily of shallow groundwater from
the regolith. Other processes should have influenced sulfates during the
three first autumns (1990–1992) since SO4 output fluxes were much
higher (by a decreasing factor of 3.4, 2.6 and 1.35, respectively) than
those predicted by the above relationship (see § 4.2). The progressive
lowering of near-surface water tables in summer allows reduced sulfur
stored in peatland or hydromorphic soils to be oxidized due to addition
of atmospheric oxygen or oxygen-saturated water (Clark et al., 2012).
This could have occurred in the Ringelbach valley bottom during the
very dry 1990–1992 summers resulting in a dramatic shrinking of
water-saturated areas.

4.2. Disturbance and resilience to acidification: weathering influence

The very significant relationship between Ca+Mg and HCO3 con-
centrations (Eq. (2)) in output fluxes over the whole study period in-
dicates that Ca+Mg outputs are mainly controlled by weathering
processes. However, this relationship is still improved when con-
sidering HCO3+SO4 (Eq. (3)), instead of HCO3 alone, particularly
during the beginning of the period (1990–1992, i.e. the brown points
isolated in Fig. 6d). This testifies that the acidification processes led to
soil base cation depletion. Calcium and Mg were released particularly
during autumn in association with high SO4 exportation (Fig. 6), fol-
lowing summer period of intense mineralization processes in soils. The
acidification led to a loss of alkalinity compensated by strong acid an-
ions (i.e. mainly sulfates), as also demonstrated for a set of small
streams draining coniferous forests in the Vosges mountains during that
period (Probst et al., 1995d). The sulfates produced and/or stored in the
valley bottom were then easily leached by the first summer/autumn
storm events, when connected water-saturated areas are the main, if not
the only, area contributing to storm flow. This might explain the highly
concentrated SO4 release in summer/autumn, by desorption of sulfates
accumulated in soils during the last decades, when sulfur deposition
was much higher (CITEPA, 2017). Such a mechanism was also de-
scribed in other granitic catchments in the Vosges and other critical
zones impacted by sulfur pollution (Probst et al., 1992; Marx et al.,
2017), as well as in cambisols (similar to those found in the Ringelbach
catchment) at sites of reduced acid deposition (Alewell and Matzner,
1993).

Wetland and soil waters provide environmental memories of in-
herited pollutant sulfates (Marx et al., 2017). Indeed, since the Ring-
elbach bedrock does not contain any sulfur, the switch of sulfur mass
balance from negative to positive values between the first and last
years, argues for the decreasing desorption of sulfates provided by
precipitations and accumulated in soils (Rice et al., 2014). As stated
above, the dry conditions observed in autumn might have influenced
the sulfur release by the first autumnal floods (Aherne et al., 2006), but
they are not the only influencing factor since the driest autumn 1992
was not followed by a major sulfur flood release. Indeed, with respect to
the autumn SO4 fluxes estimated using the 1993–96 regression (Eq.
(5)), the observed relative excess ratio decreased from 3.4 to 1.35 be-
tween 1990 and 1992. This decreasing autumnal S release until 1992 as
well as the absence of SO4 autumnal peaks afterwards, indicate that
sulfur storage/adsorption in soils became no more dominant from 1993
on (Fig. 4). This trend suggests that the sulfate amount in soils has
significantly decreased following the locally measured decrease in
sulfate and proton deposition, in accordance with the global trend in
France but also in Europe and North America (Pascaud et al., 2016;
Smith et al., 2011; Rice et al., 2014). It can be interpreted as a testi-
mony of soil resilience against sulfate excess, as observed in other sites
highly impacted by acid rain (Dambrine et al., 1995; Probst et al.,
1995c; Marx et al., 2017). Indeed, this release of excess sulfate from
soils in 1990–93 occurred earlier than in some other European sites
(Vuorenmaa et al., 2017) and led to autumnal stream water con-
centrations ranging between 0.221mmol.L−1 during the first flood
events and 0.045mmol.L−1, which corresponds to the highest con-
centrations of the “normal” seasonal cycles observed in the latest years
1992–1997 (Fig. 6b).

The decreasing proton and sulfate inputs by precipitations and the
lower SO4 desorption decreased the depletion of Ca and Mg from soils
after 1992. From 1993 on, the Ca release pattern is consistent with a
resilient process mainly through weathering of granite minerals, and is
then related to simple dilution by precipitations (Table 3).

To evaluate the capacity of the critical zone to buffer the acidity
input, the annual so-called acidification rate AR [eq.eq−1] was calcu-
lated using HCO3 and SO4 fluxes in total output water (Table 3):

= +AR (F F )/ FHCO3 SO4 HCO3 (6)

with fluxes FHCO3 and FSO4 in eq.ha
−1.yr−1. The higher the AR value

above one, the lower the buffering capacity of the critical zone. The
acidification rate decreased very significantly and loglinearly over the
study period from 1.95 to 1.23 (Fig. 8a), indicating the progressive
acidification recovery of the Ringelbach critical zone, tending to 1.0
when sulfate pool in soils will be almost depleted. This can be related to
the decreasing trend of sulfate acidic precipitation inputs in the
catchment (Fig. 3) and the efficient response of the soil/bedrock in
terms of weathering processes s.l. (i.e. including exchange processes)
(Bricker et al., 2003; Pačes, 1985). It is worth noting that the 1995–96
AR value is slightly lower than expected from the fitted loglinear curve
(Fig. 8a). This indicates a higher buffering response for this dry year,
because of both an even lower acid input by precipitations (Table 3)
and a longer water residence time enhancing weathering reactions
(Fig. 3).

In addition, two other ratios computed from total output data were
compared (Fig. 8b): (i) the Si/ΣBC ratio between the annual molar Si
flux and the sum ΣBC of the equivalent fluxes of base cations (Ca, Mg,
Na, K), which is an indicator of the intensity of the weathering pro-
cesses s.l., and (ii) the SO4/HCO3 ratio of annual molar fluxes, which is
an indicator of the acidification status of the critical zone. During the
first three years 1990–1993 with acidification conditions (SO4/HCO3
values exceeding 0.25), the Si/ΣBC ratio remains almost constant at a
maximum value of about 0.44, independently of the varying acidifica-
tion and drainage intensity (Fig. 8b). This so-called “weathering pla-
teau” at 0.44 indicates that both weathering and soil exchange pro-
cesses are proportionally enhanced (joined increases of Si and base

with the lowest annual discharge (Fig. 3). For all elements, drainage 
variations also govern the inter-annual variations of seasonal exporta-
tions by stream and abstracted spring waters (Fig. 7). As classically 
found in most surveyed streams, the intra-annual cycles observed for all 
elements are mainly due to changing dilution-concentration processes 
in relation with variations in hydrological fluxes (Feller and Kimmins, 
1979). For elements originating from weathering like Na, Mg, Ca and 
HCO3, the most significant relationships with stream discharge are 
observed during very rainy events, when dilution processes by rain-
water contribution is the most obvious. Strong relationships with dis-
charge are also observed for Ca, Mg, NO3, K, HCO3, H4SiO4 and TDS for 
the two tapped springs (SPUI and SP2M), indicating a strong buffering 
influence of silicate weathering processes.

Like for most other elements, the drainage intensity influences 
sulfur leaching, as indicated by its major exportation during the wet 
1993–94 and 1994–95 years. The major control of SO4 output flux by 
total discharge is indicated by the significant linear relationship for the 
four last autumns 1993–1996 (Eq. (5)):



cations fluxes regarding proton inputs). Indeed, recent experiments
have demonstrated that non-crystalline soil phases can provide sig-
nificant Ca and Mg amounts and compensate soil base cations depletion
(Van der Heijden et al., 2017). In granitic bedrocks, some trace minerals
like apatite can also be dissolved in more acid conditions and contribute
to higher Ca release without silica (Probst et al., 2000). In contrast,
during the last four years 1993–97 (with SO4/HCO3 values lower than
0.25), both ratios vary along a perfect positive linear relationship (see
equation on Fig. 8b), in the same way as the annual discharge. At the
temperature conditions prevailing in the catchment, and as soon as the
critical zone has recovered from acidification process, the catchment
drainage remains the main driver of the weathering processes of silica
minerals, as already suggested for silicate areas by White and Blum
(1995) and Millot et al. (2002). Moreover, this study also evidences that
acidification increased silica flux together with an enhanced base ca-
tions release, a result that was put forward as an hypothesis, but which
was not possible to detect by Oliva et al. (2003) using a dataset of si-
licate catchments distributed worldwide. Nonetheless, the resulting
weathering in the Ringelbach catchment is low, according to the low
mean total exportation of silica (819molSi.ha

−1.yr−1) and base cations

(1950 eq.ha−1.yr−1) over the whole period.
The relative acidification status of the Ringelbach catchment was

also evaluated by expressing the mean Si/ΣBC ratio as a function of the
mean base cations flux ΣBC in total exportation. A highly significant
power-type curve could be fitted when using data from a set of well
monitored small crystalline catchments representing a large range of
acidification conditions (Fig. 8c). On this remarkable relationship, the
Ringelbach catchment (mainly covered by grassland, with a small pine
forest on the top) occupies a middle position, just a little above the
nearby spruce-forested Strengbach catchment in the Vosges mountains
and below the grassland and spruce catchments from the less air-pol-
luted Massif Central in France. It is far from both extreme conditions: on
the upper end, remote catchments covered by mixed deciduous forests
receiving low pollution input (Massif Central, USA, Canada); on the
lower end, the very acidified spruce-forested damaged catchment near
major pollution sources (“Black Triangle” in Czech Republic), where
soil base cations depletion is very strong. It is worth noting that nearby
catchments in both the Vosges and Massif Central exemplify the specific
acidifying effect of spruce forest cover. Indeed, spruce cover enhances
dry deposition of acid atmospheric inputs and their effects on the cri-
tical zone, such as base cation depletion (Landmann and Bonneau,
1995).

Long-lasting acid precipitation inputs linked to sulfur emission have
indeed impacted this remote mountain catchment and disturbed its
biogeochemical behavior. However, this catchment demonstrated a
strong capacity of resilience within a few years of reduced sulfur inputs,
because of the significant acidity buffering efficiency of both soil cation
exchange capacity and granite weathering. Such a resilience might be
less obvious or efficient elsewhere in case of lower buffering capacity by
silicate weathering or much higher strong acid inputs and sulfate sto-
rage in soils, like in the “Black Triangle” (Marx et al., 2017) or in other
sites of Europe (Prechtel et al., 2001). In France, this was the case in
more sensitive critical zones, where critical loads have been exceeded
(Party et al., 1995; Probst et al., 1995d; Février et al., 1999; Moncoulon
et al., 2004, 2007). The capacity of resilience against nitrogen acid
deposition, whose impact is nowadays largely spread over remote areas
also (Rogora et al., 2006), still needs to be assessed. But the associated
mechanisms are much more difficult to identify, and the resilience more
hazardous to predict for this element, because of its speciation, its
complex cycle and its strong modifications and interactions within the
critical zone, the so-called “nitrogen cascade” (Galloway et al., 2003).

5. Conclusions

This study aimed at investigating the buffering response of a
granitic mountainous grassland critical zone (North-Eastern part of
France) in the nineties, in a context of decreasing acid precipitation
inputs and considering the influence of various hydrochemical condi-
tions. Following clean air measures, the acidity of open field pre-
cipitations decreased in relation with the decrease of sulfur and oxi-
dized nitrogen compounds originating from long range transboundary
pollution. The moderate incoming acidity was efficiently neutralized by
weathering processes, as indicated by the dominance of base cations,
alkalinity and silica in stream waters. Like in most European countries,
the inverse trends (increasing for alkalinity, decreasing for sulfates)
observed in output fluxes expressed the response of the critical zone to
the sulfate and protons decrease in precipitations. The soil inheritance
of the impact of this pollution during previous decades and of the cri-
tical zone disturbance was attested by the sulfur release associated to
high base cation depletion during the first years of the period, parti-
cularly with autumn flood flows following dry summers.

The increased water residence time during dry years and the bed-
rock richness in weatherable minerals (granite vs sandstone) explained
the higher buffering efficiency. A constant weathering rate was evi-
denced when acidification was still obvious. The weathering buffering
rate of the Ringelbach critical zone fitted with the remarkable curve
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Fig. 8. Acidification recovery and weathering conditions during the period
1990–97 in the Ringelbach catchment: (a) annual trend for the acidification
rate ARtot in total output water; (b) relationship between annual flux ratios Si/
ΣBC (with ΣBC= sum of base cations equivalent fluxes) and SO4/HCO3 in total
output water; (c) relationship between mean annual flux ratios Si/ΣBC and ΣBC
in total exportation fluxes for a set of small research catchments on crystalline
bedrock with different vegetation cover submitted to a large range of pollution
pressure: Vosges/F: RB (Ringelbach, grassland: this study), SB (Strengbach,
spruce forest: Probst et al., 1995b); Massif Central/F: Mont-Lozère catchments
(Durand et al., 1992): MLs (spruce forest), MLg (grassland), MLd (beech forest);
CZ (Vysoca Pec/Black Triangle/CZ, damaged spruce forest: Pačes, 1985); USA
(Cone Pond/NH, spruce-fir forest: Hyman et al., 1998); CAN (Edelweiss Creek/
BC, mixed forest: Hudson and Golding, 1997).
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obtained using a worldwide set of remote sites representing a large 
range of acid atmospheric inputs and resulting base cations depletion. 
Acid inputs have thus disturbed the weathering rate s.l. consistently 
with other places from the Vosges in an intermediate position between 
very lowly and highly impacted sites, regarding the intensity of the acid 
deposition. Acidification recovery was regular over the period and it 
occurred earlier than in some other European sites, as attested by the 
absence of autumn peaks of sulfate release after 1992. The annual 
discharge was a key factor regulating silica and base cations fluxes at 
the seasonal scale and at the annual scale, following acidification re-
covery.

Finally, the contributing areas of springs and stream waters act as 
open reactors, whose output water chemistry is controlled by three 
main processes, which appear to have each about proportional effect on 
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teractions depending on residence time, diluting effect by precipitation 
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concentrations of both springs and stream move up and down along 
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season, the range of this “yo-yo” behavior is amplified towards higher 
concentrations in low flow conditions by the concentrating effect of 
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or strong hydrological events in the critical zone may delay or accel-
erate the release in stream water of sulfur and nitrogen from soils and 
sensitive areas, where S and N storage is still significant. The increase of 
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storage of nitrogen compounds, indicated that it might be of major 
concern for the critical zone in a context of global change for the future. 
This highlights the necessity to perform long-term surveys of the critical 
zone to identify key processes and the influence of such strong driving 
factors on output fluxes and mass balances, to detect changes in pol-
lution patterns and provide strong validation data for modelling pre-
dictions.
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