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ABSTRACT
Curriculum-Based Course Timetabling is an NP-hard problem that
can be efficiently solved by metaheuristics. The International Time-
tabling Competition (ITC) 2007 was won by a hybrid local search
(HLS) combining Hill Climbing, Great Deluge and Simulated An-
nealing. HLS remains one of the best local search algorithms to solve
this problem. In this paper, we investigate the search landscape of
21 instances to analyze the behavior of the HLS components. We
also propose a new distance metric that aims to be more robust
and be less influenced by symmetry. Experiments show that the
HLS and the embedded simulated annealing have the same general
behavior but HLS leads to better robustness. This analysis strongly
suggests that the HLS components and/or parameter values should
be automatically configured to further improve performance.

CCS CONCEPTS
• Computing methodologies → Discrete space search.
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1 INTRODUCTION
University Timetabling is an active research area of NP-hard opti-
mization problems. Curriculum-Based Course Timetabling is one
variant of university timetabling where students belong to one
curriculum. Since 2002, the International Timetabling Competi-
tion makes algorithms compete on various timetabling problems.
Curriculum-Based Course Timetabling is one of the three prob-
lems tackled by the 2007 event. The winner algorithm is a hybrid
local search (HLS) designed by Müller [7]. It iterates sequentially
between two intensification algorithms, a Hill Climbing (HC) and

a Simulated Annealing (SA) with a cooling schedule, and a Great
Deluge (GD) algorithm to diversify the search.

The particularity of Curriculum-Based Course Timetabling in-
stances is the numerous equivalent timetables that can disturb the
neighborhood exploration. The author chose to take into account
this particularity in the design of HLS since the hill climbing and
the simulated annealing accept fitness-equivalent solutions. How-
ever, the choice of using both hill climbing and simulated annealing
is not explained by the author and we wonder if using simulated
annealing only would lead to same performance.

We chose to study HLS in particular because it is a local search
with good performance within a short running time and produces
results that remain competitive to this day, especially for a compar-
atively simple and generic hybrid method.

In this paper, we propose to analyze HLS and its algorithmic
components through a search landscape analysis. We propose a
new distance metric that we compare to two distance metrics of
the literature [2]. Our analysis shows that while HLS performance
is influenced by its components, the SA mechanism within is very
powerful by itself. We examine neutrality both at a global level and
at the search landscape level. The first one concerns only optima
produced by the HC procedure before GD, while the second deals
with all solutions explored during HLS process. We observe a high
level of neutrality at the latter level but almost none at the former.

The paper is organized as follows. Section 2 presents Curriculum-
Based Course Timetabling and its neighborhoods. Then, HLS and
its embedded algorithmic components are described in Section 3.
The search landscape is presented in Section 4 and the distance
metrics are explained. Section 5 gives the experimental protocol
to conduct the search landscape analysis and Section 6 presents
and analyzes the experimental results. The last section gives the
conclusion and discusses the perspectives.

2 CURRICULUM-BASED COURSE
TIMETABLING

Timetabling problems represent a class of NP-hard combinatorial
optimization problems where, basically, resources have to be as-
signed to events [3]. In the educational context, events are lec-
tures (classes) and resources are teachers, rooms and other specific
equipment like video projector. Timetabling problems are highly
studied by the Operations Research field, and several international
timetabling competitions (ITC) over years have been organized [11]
to encourage the design of algorithms and to evaluate their perfor-
mance. In this paper, we focus on a particular university timetabling
called Curriculum-Based Course Timetabling (CB-CTT). It is one of
the timetabling problems tackled in the ITC 2007 competition [10].
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2.1 Definition
The main difference with the general university timetabling prob-
lem is the implementation of the curriculum system. Indeed, a
student belongs to a curriculum, corresponding to several courses,
and a course implies a specific number of lectures. Here, a course
is given by one teacher only, but there is no limit on the number of
courses given by each teacher. A course can be included in two, or
more, different curricula. In that case students of each curriculum
will attend together the lectures of such a course.

A timetable is divided into days, themselves divided into times-
lots or periods. The number of timeslots per day is fixed by the
problem instance. For example for a semester, there are about 100
days. If the parameter Number of periods per day is 6, there are 600
timeslots for one semester. A solution consists in scheduling the
lectures in the timeslots and available rooms following hard and
soft constraints, detailed below.

2.2 Constraints
Within CB-CTT, a timetable has to respect four constraints to be
considered as feasible. These hard constraints may be described as
follows:

Conflicts: Two lectures from the same course or from the same
curriculum or with the same teacher cannot take place at
the same time.

Room occupancy: Only one lecture can take place at a time in a
room.

Availability: If a teacher is not available, their lectures cannot
take place.

Lectures: All lectures must be scheduled.

While hard constraints need to be obeyed, soft constraints may
be violated and only indicate some preferred outcome. The fewer
the violations, the better the timetable. This is the basis for the
objective function that drives the optimization process.

Four soft constraints were considered by ITC 2007 [10]. These
are listed below.

(1) Room Capacity: A maximum number of students can be
sat in the room.

(2) MinWorkingDays: A course has lectures which should be
scheduled within a minimum number of days in order to
avoid students having all lectures of one course over two
days, that would be inconvenient.

(3) Curriculum Compactness: Within each curriculum, lec-
tures on the same day should be consecutive, more precisely
if there are more than one lecture of one curriculum on
the same day, each needs to immediately precede or follow
another.

(4) Room stability: Lectures of a course should be in the same
room.

2.3 Objective function
The Curriculum-Based Course Timetabling Problem is a minimiza-
tion problem. The objective function to optimize is a weighted sum
of the constraint violations, as detailed in the following expression.

𝐶𝑜𝑠𝑡 (𝑠) =𝑅𝑜𝑜𝑚𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝑠) ∗ 𝜔𝑟𝑐 (1)
+𝑀𝑖𝑛𝑊𝑜𝑟𝑘𝑖𝑛𝑔𝐷𝑎𝑦𝑠 (𝑠) ∗ 𝜔𝑚𝑤 (2)
+𝐶𝑢𝑟𝑟𝑖𝑐𝑢𝑙𝑢𝑚𝐶𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠 (𝑠) ∗ 𝜔𝑐𝑐 (3)
+𝑅𝑜𝑜𝑚𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝑠) ∗ 𝜔𝑟𝑠 (4)

In the cost function, s is a solution and RoomCapacity(s) rep-
resents the number of RoomCapacity constraint violations in the
timetable represented by s. In the context of ITC 2007, and for our
work, the weights 𝜔𝑟𝑐 , 𝜔𝑚𝑤 , 𝜔𝑐𝑐 and 𝜔𝑟𝑠 are set to 1, 5, 2 and 1
respectively.

2.4 Neighborhood
Local search algorithms start from an initial solution and then
iteratively move from one solution to another in order to explore
the search space. This is based on a neighborhood relation. The
HLS method, described Section 3, uses six different neighborhoods.

The neighborhoods considered are listed below. Some of them
may be known under different names in the literature. In that case
we give the alternative names.

Lecture Move or Time Move: A lecture and a timeslot are se-
lected. The lecture is assigned to the timeslot.

Room Move: A lecture and a room are selected. The lecture is
assigned to the room.

Lecture Room Move or Lecture Swap: A lecture, a room and a
timeslot are selected. The lecture is assigned to the room
and timeslot. If the room is already used on this timeslot, the
timeslot and room of the selected lecture are swapped with
those of the conflicting lecture.

Room Stability Move: A course and a room are selected, then
each lecture of course is assigned to the room. If the room
is not available, the lectures of the course swap rooms with
the conflicting lectures.

MinWorkingDays Move: A course with a MinWorkingDays vio-
lation is selected. Lectures for that course, on days with more
than one lecture, are moved to another timeslot to minimize
MinWorkingDays violation. The room can be changed if it
is already used by other lecture.

CurriculumCompactness Move: A curriculumwith Curriculum-
Compactness penalty is selected. An isolated lecture within
the curriculum is assigned to a different timeslot so that it
becomes adjacent to other curriculum lectures. The room
can be changed if not available.

3 HYBRID LOCAL SEARCH
This paper focuses on the winning approach for ITC 2007 that
was proposed by Müller [7]. It is a hybrid method combining three
search algorithms.

In HLS, an initial solution is first constructed using Iterative
Forward Search (IFS) [6], then Hill Climbing (HC), Great Deluge
(GD) [4] and Simulated Annealing (SA) [5] are applied in sequence.
The result from SA is then fed back to HC. HLS stops when a
solution with a fitness value of 0 is found or when the maximum
run time is reached. This process is illustrated in Figure 1.
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Figure 1: HLS Method, IFS corresponds to Iterative Forward
Search, HC to Hill climbing and GD to Great Deluge.

IFS is the Iterative Forward Search proposed by Müller. It con-
sists in assigning resources to lectures in no specific order, then
if a resource cannot be assigned to a lecture, conflicting lectures
are unscheduled to free this resource. Therefore, the considered
resource is scheduled and the unscheduled ones return in the queue.
This method runs until all the timetable is scheduled.

Algorithms HC, GD and SA share the same neighborhoods de-
fined previously in Section 2.4. During the neighborhood explo-
ration, one of them is selected at random. Actually, the selection
probability is not completely uniform since the CurriculumCom-
pactness neighborhood has a lower probability of being selected
(only 0.1 the likelihood of the others). The author explains that this
neighborhood is the most computationally expensive. In order to
fairly balance the allocated time among neighborhoods, its selection
probability is lowered.

When two rooms, sharing the same properties, are available
to schedule a lecture, the resulting timetables have the same fit-
ness value and so, are equivalent. Müller [7] chose to take this
into account this CB-CTT specificity in the design of HLS directly.
Therefore, a solution is accepted not only when it strictly improves
upon the current solution but also if it has the same fitness. The
search space therefore includes neutral neighbors. This applies to
all three search algorithms. Moreover exploration follows a first
improvement strategy.

3.1 Hill Climbing
The HC embedded in HLS resembles the netcrawling algorithm pro-
posed by Barnett [1] since equivalent neighbors are accepted in the
neighborhood exploration. However, one stopping criterion, corre-
sponding to the number of iterations without finding a new best
global solution, has been added to avoid unsuccessful explorations
of plateaus, i.e., where the accepted solutions are fitness-equivalent.
This criterion is controlled by parameter n, fixed to 50,000 in HLS.

3.2 Great Deluge
GD acts as a perturbationmethod within HLS. Its aim is to move to a
different region of the search space once HC fails to find improving
solutions. While three of its parameters are static and are used to
compute the lower bound, the upper bound and the cooling rate
at the beginning of the run, two further parameters are dynamic.
The first one, denoted B, is initialized at the beginning of GD and
updated during the loop to control the strength of the perturbation.
The second parameter, denoted Mem (named at in the original paper),
memorizes the number of iterations of HLS without improvement
and sets bounds for the perturbation strength to allow more or less
diversification in order to escape the current local optimum.

Figure 2 illustrates the GD algorithm. For each application of
GD, parameters B and Mem are initialized. Then, while B is over a

Figure 2: Great Deluge algorithm

threshold, a neighbor is randomly selected in the neighborhood of
the current solution, a score is computed and depending on its value
relative to B, it replaces the current solution and/or B is updated.

3.3 Simulated Annealing
SA is applied after GD and uses the same strategy as HC: a first
improvement neighbor selection accepting neutral solutions. The
method features classic simulated annealing parameters: cooldown
factor, initial temperature and final temperature. SA uses the classic
cooling mechanism. Like HC, SA stops after a number of iterations
without finding a new best global solution that depends on instance
features. Details can be found in Müller [7].

4 SEARCH LANDSCAPES
Neighborhood relations between solutions induce a network struc-
ture where vertices are solutions and edges are neighborhood rela-
tions. A fitness or search landscape is a commonly-used metaphor
to describe such a structure. Solution fitness is considered as the
height of the landscape, thus forming surfaces that can be smooth
or rugged, and that may contain ridges and plateaus. These topo-
logical features influence the difficulty of the search. Naturally,
the metaphor has its limits given that any non-trivial landscape is
actually highly multidimensional.

Search heuristics, such as the local search components in HLS,
drive the search across the landscape looking for the best solution.
In addition to fitness, solutions can be compared using the notion of
distance. This enables quantifying the similarity between solutions.

4.1 Definition and Properties
Definition 4.1 (Landscape). A landscape may be formally de-

fined [12] as a triplet (𝑆, 𝑁 , 𝑓 ) where
• 𝑆 is a set of potential solutions, i.e. a search space,
• 𝑁 : 𝑆 −→ ℘(𝑆), the neighborhood structure, is a function
that assigns, to every 𝑠 ∈ 𝑆 , a set of neighbors 𝑁 (𝑠) (℘(𝑆) is
the power set of 𝑆), and

• 𝑓 : 𝑆 −→ R is a fitness function (the height in the landscape).

Definition 4.2 (Local optimum). A local optimum is a solution
𝑠∗ ∈ 𝑆 such that ∀𝑠 ∈ 𝑁 (𝑠∗), 𝑓 (𝑠∗) ≤ 𝑓 (𝑠). The inequality is not
strict, to allow neutral landscapes. In this definition a local minimum
is considered, without loss of generality.

In the context of HLS, the Hill Climbing component includes
a time-out condition that does not guarantee that the solution
obtained is a true local optimum because in some cases the neigh-
borhood of the obtained solution will not have been completely
explored. For this reason we call the solutions pseudo-local optima.
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Definition 4.3 (Basin of attraction). The basin of attraction of
some local optimum 𝑠∗

𝑖
∈ 𝑆 , according to a hill climbing operator ℎ,

is the set 𝑏𝑖 = {𝑠 ∈ 𝑆 |ℎ(𝑠) = 𝑠∗
𝑖
}.

Definition 4.4 (Plateau). A plateau is a set of connected solutions
that share the same fitness value. Two vertices in a plateau are
connected if they are neighbors with the same fitness.

As later detailed in Section 5, we observe pseudo-local optima
in order to sample a landscape (though currently only the fitness is
recorded). This therefore closely resembles Local Optima Networks
(LON) [9] that model the global structure of landscapes as graphs.
In these structures, nodes are local optima and edges represent
possible transitions induced by one or more operators, usually a
perturbation followed by a local search.

Plateaus may exist at the LON or pseudo-LON level. They may be
actual search landscape plateaus or connected basins of attraction.
We call the plateaus we observe with our sampling of HLS, pseudo-
LON plateaus. Plateaus at the LON level have been referred to as
meta-plateaus [13].

4.2 Distance Computation
In this study three distances are used. The first two come from
the literature [2] and we propose the third one. These metrics are
influenced by the solution output format, which contains lectures,
their courses, rooms, and the day and timeslot. There is no infor-
mation about the curriculum. The following metrics do not take
into account room information and focus on timeslot and course
information. This choice is motivated by the fact that, in real life,
changing a room for another one is often less important than the
timeslot because there are lot of similar room (by their capacity).

In order to be more explicit about the link between distances and
neighborhoods, we present each metric below and list the possible
distance values between neighbors. Room and RoomStability moves
are not concerned because rooms are not taken into account in the
distance computations.

4.2.1 Day and Timeslot Distance. This metric, or DistDT for short,
represents the most precise distance among the three. This is be-
cause, for each lecture of each course, if the lecture does not have
the same timeslot and the same day, distance increases by a single
unit. The goal of this metric is to compare if two timetables are
really the same within rooms.

DistDT between two neighbors may take the following integer
values depending on the neighborhood:

• Lecture Move: 1
• Lecture Swap: 1 or 2
• MinWorkingDays Move: 1 to NLecturescourse-1
• CurriculumCompactness Move: 1 to NLecturescurriculum-1

4.2.2 Timeslot Only Distance. This metric, or DistTO, is computed
as follows: for each lecture of each course, the day the lecture is
scheduled does not matter, only the difference in time of the day
matters. A one hour difference implies a distance of one unit. As
an example, if two timetables only differ by some lecture being
scheduled on Thursday 15 at 5pm in one timetable and on Monday
25 but also at 5pm in the other, they are considered the same. Thus
timetables that only differ by some permutation of days will be
considered equivalent.

DistTO between two neighbors may take the following values:

• Lecture Move: 0 or 1
• Lecture Swap: 0, 1 or 2
• MinWorkingDays Move: 0 to NLecturescourse-1
• CurriculumCompactness Move: 0 to NLecturescurriculum-1

4.2.3 Working Period Distance. We propose the Working Period
metric, or DistWP, in order to have a different point of comparison
between solutions, focused more on periods instead of dates.

DistWP is calculated as follows: for each course, the period be-
tween the first day and the last day a course is taught is computed.
Distance is increased by the gap between the two corresponding
working periods.

This metric is inspired by the Min Working Days soft constraint.
The aim is to compare the distribution of each course and consider
the global dynamics of timetables. In fact, the focus is not on when
but how long. Neighborhood operators all have the same range of
effect on this distance, except for room-linked operators. Indeed
the working period depends on only two lectures for each course
so one rescheduling can drastically extend or reduce the working
period. For example if a course is taught on the first day, and if one
of its lectures is moved on the last day (Lecture Move operator),
the distance is NTimeslots. DistWP may thus take values between
0 and NTimeslots for the Lecture Move operator.

5 EXPERIMENTAL PROTOCOL
HLS obtained the best performance on the instances proposed
by ITC 2007 for the CB-CTT problem and accordingly won the
competition. Yet, HLS is composed of three search components,
HC, GD and SA presented in Section 3. We propose to analyze the
behavior of HC and GDwhen run together (hereafter called HCGD),
SA and HLS in order to better understand the merits of each one.
HC by itself is of lesser interest because it is purely focused on
intensification and its performance is not as good.

We use the source code provided by Müller [7], with the rec-
ommended parameter settings and the 21 instances of ITC 2007.
In these instances, the number of courses belongs to the domain
⟦30, 131⟧, the number of lectures to ⟦160, 390⟧, curricula ⟦13, 150⟧,
timeslots ⟦25, 45⟧ and rooms ⟦5, 20⟧.

We instrumented the original HLS code in order to be able to
record the fitness of each accepted solution during the HC and SA
steps. We also recorded the final solution obtained after each com-
plete run of HLS. Unfortunately recording the complete solution
representation for all solutions is currently prohibitively expen-
sive memory-wise, but finding an efficient way around this is an
interesting avenue for future research.

Initially, 1,000 runs of HCGD, SA and HLS were executed on Intel
Xeon Silver 4114 CPUs @ 2.20GHz with a run time of 300 seconds
each, for a total time budget of almost 220 days. The returned
solution of each run was recorded and used to analyze distances
DistDT, DistTO and DistWP with respect to the best known solution.
The fitness after each HC was also recorded to provide a somewhat
global picture. Recording the fitness of all accepted solutions within
each run would be prohibitively expensive to store, potentially
taking up 7 TB of space. In a second phase of the experiments (for
Section 6.3), only 100 additional runs were carried out (time budget
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of almost 22 days), this time recording each accepted solution fitness
during the HC and SA steps, thus providing a trace of each run.

6 SEARCH LANDSCAPE ANALYSIS
In this Section, we compare the performance between HLS, HCGD
and SA, we discuss the distance metrics and analyze the plateaus
to attempt to understand the structure of the landscape.

6.1 Performance Assessment
HLS is composed of three search algorithms, each presumably hav-
ing some impact on the efficiency of the overall approach. To inves-
tigate the contribution of SA, we disabled GD and HC. For HCGD
(Hill Climbing and Great Deluge), we disabled only the SA part of
the code. This allows the comparison between HCGD, SA and HLS.

To support the performance analysis, Table 1 provides summary
statistics of the fitness values for the solutions returned by each of
the three methods. For each instance, the best algorithm(s), accord-
ing to the Friedman statistical significance test, is indicated in bold.
Instances are classified into 4 groups, as explained hereafter.

SA seems to outperform HLS and HCGD for most instances.
Indeed, SA is the best on 12 out of 21 instances, HLS on 7 and
HCGD on 4. To investigate this observation further, we propose to
rank the algorithms for each instance. Table 1 shows the rank of
each algorithm, as given by the Friedman Test for each instance.
The sum of all ranks per method is then computed.

Contrary to expectations based on the previous observation,
HLS beats SA by a single point when the ranks are summed. In
fact Table 1 shows that HLS is only ranked first or second (and
never third), contrary to SA which underperforms at third place on
a number of instances.

We use the ranks as ameans to classify the instances into 4 groups
(A, B, C, and D). Group A corresponds to the two very easy in-
stances where the ranks do not actually mean anything much, as
ascertained from the distribution of fitness values. Instances where
HCGD comes third are in Group B and those where SA comes last
in Group C. The remaining two instances are in Group D. These
groups will help the analysis in following sections.

Results reported on Table 1 show that SA works well for most
of instances while some of them remain quite difficult. These latter
instances are in groups A and C where HCGD gets the best per-
formance. HLS performance is fairly consistent on each instance,
and that may explain why Müller exploited the advantages of both
HCGD and SA in sequence to win ITC 2007 [7]. These results give
interesting hints for future investigation to analyze and understand
how each algorithmic component could be optimally configured
and potentially triggered depending on instance or landscape char-
acteristics.

6.2 Analysis with the Distance Metrics
The distance metrics DistDT and DistTO are commonly used for CB-
CTT [2]. We compute the correlation between these distances and
our proposal DistWP using all solutions returned by the different
methods. DistDT and DistTO are highly correlated with a value of
0.9, and each one is correlated to DistWP with a value of 0.82 and
0.8 respectively. These high values indicate that they give similar
information about similarities between solutions.

Figure 3 presents scatter plots for HCGD (blue points), SA (green
points) and HLS (red points) and the three distance metrics DistDT
(left), DistTO (middle) and DistWP (right). Following the groups
defined in Section 6.1, only one instance per group is presented.
Instances 01, 06, 12 and 13 were chosen because the shape of the
scatter plots is representative of their own group, featuring the same
general behavior. The x-axis represents the distance between the
1,000 optima and the best known solution and the y-axis their fitness.
Clearly, the scatter plots of the three distance metrics show the
same general shape for each single instance. However, the values of
the distance metrics are different. DistWP gives the smallest values
while DistDT the highest one. DistWP implies the most narrow
scatter plots regardless of the instance. That could be interpreted
as a proof of the robustness of this metric. Indeed, we proposed
DistWP in order to be less sensitive to what can be considered as
symmetric solutions, such as solutions exhibiting month shift or
the exchange of all timeslots between two courses. This will be
useful for our future work.

For instances in Groups A, B and D, the values of the three
distance metrics are very different and almost do not overlap each
other. However, for instances of group C, DistTO and DistWP share
identical values even if DistWP values are lower.

For Groups B, C and D, the scatter plots do not show an ob-
servable fitness-distance correlation for any Distance metric. In
particular, it means that the solutions found by HCGD, SA and HLS
may be close in quality to the best known solution even if they can
be very different. This may suggest a shallow valley structure [8]
because it seems that the bottom of the basin of attraction of the
best solution is fairly large and composed of plateaus since many
solutions are equivalent, sharing the same fitness value.

6.3 Neutrality Analysis
Neutrality, or the lack thereof, can be observed at different levels.
To achieve some insight into what can be considered the global
level of the landscape, let us first consider the pseudo-local optima
returned by each HC call when running HLS. These are recorded
across 1,000 runs per instance in order to obtain as many fitness
sequences.

These sequences can give us some insight into the nature of the
pseudo-LON plateaus (Section 4.1). A pseudo-LON plateau may be
part of an actual plateau.

We choose to observe the number of consecutive iterations that
have the same fitness in order to gauge how easy it is for HLS to
escape from a pseudo-LON plateau. For example, say we observe
the sequence 15 12 12 11 10 5 5. We can count the plateaus: there are
two of them, at fitness 12 and 5. And we can compute the fraction
of iterations that form part of a plateau, here 4 out of 7 iterations.
This is in fact the neutral degree, i.e., the percentage of neutral
solutions divided by all the solutions considered.

The third column of Table 2 gives the mean neutral degree for
HLS for each of our 21 instances. The numbers seem to indicate that,
at the pseudo-LON level, there are actually not so many plateaus
and that the Great Deluge perturbation is relatively successful in
escaping from pseudo-LON plateaus. Note that further analysis
shows that, when it succeeds, the escape mechanism followed by
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Table 1: Fitness values of the local optima found by HCGD, SA and HLS. For each distance, the minimum, the average, the
median, the standard deviation and the maximum are reported. Bold values mean that the algorithm is statistically better
than the others. The rank of each method is provided in the three last columns. The four groups are based on these rankings.

Gr Inst HCGD SA HLS Rank
Min Mean(sd) Med Max Min Mean(sd) Med Max Min Mean(sd) Med Max HCGD SA HLS

A 01 5 5(0) 5 5 5 5.1(0.2) 5 7 5 5(0) 5 5 1 3 1
11 0 0(0) 0 0 0 0(0) 0 1 0 0(0) 0 0 1 3 1

B

02 40 72.9(14.4) 71 138 39 61.6(8.3) 61 103 37 58.2(7.5) 58 80 3 2 1
03 70 93(9.9) 92 128 68 91(8.2) 91 127 69 84.9(5.9) 85 102 3 2 1
06 41 67(9.7) 66 99 35 51.7(5.4) 52 70 40 55.5(5.9) 55 77 3 1 2
07 8 32.2(9.2) 32 62 6 15.4(3.4) 15 26 8 20.1(4.4) 20 36 3 1 2
08 39 45.7(3.2) 45 59 37 42.8(2.5) 43 51 39 44.5(2.8) 45 54 3 1 2
10 16 40.8(9.1) 40 75 8 18.9(4.8) 19 34 9 21.5(5.1) 21 37 3 1 2
14 51 61.2(4) 61 79 51 59.9(3.6) 59 76 51 60.3(3.2) 60 72 3 1 2
15 68 92.2(9.9) 91 130 69 90.3(8.2) 90 127 68 85.1(5.8) 85 106 3 2 1
16 34 57.1(8) 57 82 26 38.8(4.9) 39 60 26 41.3(5.5) 41 58 3 1 2
17 66 87.3(7.5) 87 114 66 82.1(5.2) 82 100 67 84(5.4) 84 99 3 1 2
19 58 77.7(8.8) 77 112 59 70(4.9) 70 91 58 69.7(4.4) 69 84 3 1 1
20 18 52.1(13.3) 51 93 16 31.5(6) 31 53 19 36.5(6.8) 36 64 3 1 2
21 92 118.6(10.2) 118 156 88 106.6(6.5) 106 139 90 107.8(7.2) 108 132 3 1 2

C

05 286 331.9(13.6) 332 384 296 362.5(29.8) 358 521 300 335.9(14.1) 336 403 1 3 2
09 97 109.2(4) 109 124 97 110.3(4.7) 110 125 99 109.3(3.7) 109 122 1 3 1
12 306 345.4(9) 346 396 325 373.1(15.4) 374 417 322 350.7(8.8) 351 384 1 3 2
18 69 85(3.8) 85 98 75 92.6(5.3) 93 109 74 87.2(3.4) 87 96 1 3 2

D 04 35 40.9(3.2) 41 52 35 39.8(2.8) 39 49 35 40.9(2.6) 41 51 2 1 2
13 59 73.8(3.9) 74 84 59 73(4.7) 73 87 63 74(3.8) 74 84 2 1 2

SA andHC intensification phases does not necessarily reach a better
solution.

Naturally, the low degree of neutrality at the pseudo-LON level
does not mean that there is little neutrality at the search landscape
level, as we will see shortly. Neutrality is a well-known property
of timetabling problems and has been demonstrated via landscape
analysis, for instance by Ochoa et al. [8]. This previous work shows
there are multiple pseudo-LON plateaus that are not necessarily of
the same fitness and this is what we are observing here, with Great
Deluge usually being able not to fall back into the same pseudo-LON
plateau (or at least the same fitness level).

Another landscape characteristic that can be obtained from the
fitness sequences is auto-correlation, a proxy for ruggedness, i.e.,
the measure of how smooth or rugged a landscape is. Following
the approach in [8], we computed the auto-correlation with a step
of 1 for each sequence. Moreover we use the auto-correlation to
get correlation length. This represents the largest time lag between
two points where there is some correlation. The smaller the length,
the more rugged the landscape.

The auto-correlation computation shows that the correlation
length is quite low: below 2 for each instance. So we can conclude
that the landscape at the pseudo-LON level is rugged. And the
smoothest landscapes are for instance 05 and 12 with a length of
about 2. A deeper study of instance characteristics might explain
the ruggedness at this level.

Let us focus now on the search landscape level. Recall that we
recorded the fitness of all accepted solutions during HC and SA

phases across 100 runs in a second experiment phase. This allowed
us to compute the neutral degree but this time at the level of ac-
cepted solutions within the run (the landscape level), and not only
after each HC (the global level). Numbers are provided in Table 2.

At the landscape level, we can observe neutrality, and that there
is a striking difference between HCGD and the two other meth-
ods. In fact the neutral degree for HCGD is almost 100% for all
instances. That means HCGD spends most of its time on plateaus
and that is probably the cause of its weakness. HLS also features a
comparatively high neutral degree on most instances, whereas we
observe the opposite for SA. Clearly, the neutral degree for HLS is
influenced by the combination of HCGD and SA.

SA presents a neutral degree of around 50% in most of the cases.
This could be explained by the fact that each time SA accepts a
worse solution, a new improvement is found just after. However for
instances of groups A and C (the most difficult for SA), the neutral
degree is usually lower. That could mean that SA, on these instances,
meets too many poor solutions and so accepts a lot of degradation
in the quality of solutions, which then causes artificially many
improving solutions (it is easy to improve once there has been a lot
of degradation).

Table 3 shows the size of plateaus encountered during solving.
Size represents the number of equal-fitness solutions successively
observed until a new strictly improving solution. Table 3 displays
means of medians and not actual medians due to how the data is
recorded because of its size. In fact there are too many plateaus
to compute real medians in reasonable time, for one instance file
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Figure 3: Fitness-Distance Scatter Plots for the three distance metrics. HCGD, SA and HLS solutions are represented in blue,
green and red respectively. Distance is on x-axis and Fitness on the y-axis.
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Table 2: Mean neutral degree for each instance and method,
for accepted solutions within the HC and SA phases and
mean neutral degree for HLS at the pseudo-local optima
level across 100 runs.

Gr Inst Global Level Landscape Level
HLS HCGD SA HLS

A 01 7.76 99.20 29.80 37.40
11 0.20 99.50 35.50 85.60

B

02 9.23 99.10 53.40 46.30
03 3.43 99.10 38.70 44.90
06 1.41 99.20 48.10 52.90
07 3.12 99.10 55.40 48.50
08 12.65 99.30 49.80 69.70
10 2.15 99.20 53.70 75.60
14 3.58 99.10 46.40 94.10
15 8.98 99.10 45.10 97.80
16 2.48 99.10 52.50 99.00
17 2.44 99.30 50.40 99.20
19 5.18 99.30 42.50 79.60
20 0.97 99.00 55.80 59.10
21 4.90 99.30 52.00 80.00

C

05 2.66 99.10 36.00 51.00
09 3.72 99.20 48.00 95.40
12 1.47 99.10 50.40 78.90
18 4.40 99.20 29.30 98.40

D 04 1.85 99.20 50.20 45.60
13 3.28 99.40 43.60 74.70

weighs more than 10 GB. An major difference between the mean
and the mean of medians can be observed for HCGD and for some
instances for HLS. This implies that there are very large plateaus
which impact the mean.

Moreover mean and mean of medians confirm HCGD has almost
always larger plateaus; that explains the worst results due to the
consequent time wasted during plateau exploration. SA features
a constant low plateau size between 2 and 4. The HLS plateau
sizes are as expected, since HLS sometimes acts as HCGD but with
smaller plateaus and sometimes as SA. As one may recall, HLS is
composed of HCGD followed by SA. Furthermore there are no real
pattern which could help us to predict the instance group or the
single best method to use. Nevertheless, we know that SA and HLS
obtain the best results and we can observe that their plateau sizes
are smaller. As one may expect, less time spent exploring plateaus
leads to better results.

7 CONCLUSION
In this paper we conducted a search landscape analysis of HLS and
two of its search components when solving the CB-CTT problem:
a hill climbing with a perturbation mechanism (HCGD) and a pure
simulated annealing (SA). HLS won the ITC competition in 2007
but still remains one of the best algorithms to solve the provided
instances. Our experiments show that HLS has been designed, as
one might expect, to benefit from the advantages of both HCGD and
SA. In order to analyze the structure of the landscape, we propose a

Table 3: Plateau size at search landscape level, whereMedian
represents the mean across runs of the median plateau size
in each run.

Inst HCGD SA HLS
Mean Median Mean Median Mean Median

01 197.40 14.1 2.80 2 2.60 2.2
11 271.10 21.7 3.00 2 4.80 14.4
02 163.50 20.8 3.50 2.3 3.10 2.1
03 186.20 18.8 2.90 2.1 3.00 2.2
06 211.00 18.3 3.30 2.1 3.00 3.9
07 156.40 22.7 3.70 2.4 2.90 3.6
08 208.80 25.4 3.30 2.1 3.00 12.7
10 168.80 24.6 3.50 2.5 3.00 14.8
14 212.90 16.5 3.20 2.1 4.60 15.3
15 180.30 19 3.10 2.1 8.50 18.5
16 171.10 19.5 3.40 2.3 58.90 19.6
17 208.00 23.6 3.40 2.2 155.70 23.2
19 203.00 23.3 3.00 2.1 3.20 15.3
20 144.60 16.7 3.70 2.4 3.00 5.7
21 235.90 25 3.40 2.3 3.20 16.7
05 265.40 22 3.00 2.2 3.20 3.5
09 205.40 21.7 3.20 2.1 4.80 20
12 222.50 18.6 3.20 2.4 3.30 12.1
18 389.10 17.8 2.60 2 22.40 17.2
04 207.10 19.8 3.40 2.1 2.90 2.8
13 254.60 24.1 3.10 2.1 3.00 14

new distance metric based on the working periods. This distance is
highly correlated with the two metrics usually used in the literature
and gives smaller distances between local optima. This distance is a
good candidate for a more detailed landscape analysis, such as the
analysis of local optima networks [9], without loss of information
regarding the other ones. This is part of our planned future work.
This will build upon an ongoing reimplementation from scratch of
HLS because the original HLS cannot be easily instrumented given
that not all the source code is publicly available.

We also looked into the nature of the neutrality, both at a global
and at a search landscape level. Interestingly, we observed opposite
behaviors. This may point to some landscape features from these
levels being more useful than others to guide the search in the
context of a landscape-aware algorithm.

The parameter values of HLS, as well as the algorithmic com-
ponents, have been manually fixed by its original author. These
choices are debatable following the fairly similar average perfor-
mance betweenHLS and the embedded simulated annealing.Within
the context of hyper-heuristic search, we would like to create a pro-
gram that automatically configures the best algorithm betweenHLS,
HCGD, SA, or others, using instance and landscape characteristics
to obtain the best solution.
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