
HAL Id: hal-03509951
https://hal.science/hal-03509951

Submitted on 4 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

TRANSMUT-SPARK: Transformation Mutation for
Apache Spark

João Batista de Souza Neto, Anamaria Martins Moreira, Genoveva
Vargas-Solar, Martin A Musicante

To cite this version:
João Batista de Souza Neto, Anamaria Martins Moreira, Genoveva Vargas-Solar, Martin A Musicante.
TRANSMUT-SPARK: Transformation Mutation for Apache Spark. Journal of Software Testing,
Verification and Reliability, 2022, 32 (8), pp.e1809. �10.1002/stvr.1809�. �hal-03509951�

https://hal.science/hal-03509951
https://hal.archives-ouvertes.fr

HAL Id: hal-03509951
https://hal.archives-ouvertes.fr/hal-03509951

Submitted on 4 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

TRANSMUT-SPARK: Transformation Mutation for
Apache Spark - Long Version

Genoveva Vargas-Solar, João Batista de Souza Neto, Anamaria Martins
Moreira, Martin Musicante, João Batista, Souza Neto

To cite this version:
Genoveva Vargas-Solar, João Batista de Souza Neto, Anamaria Martins Moreira, Martin Musicante,
João Batista, et al.. TRANSMUT-SPARK: Transformation Mutation for Apache Spark - Long Ver-
sion. Journal of : Software Testing, Verification and Reliability, Wiley, In press, �10.1002/stvr�. �hal-
03509951�

https://hal.archives-ouvertes.fr/hal-03509951
https://hal.archives-ouvertes.fr

TRANSMUT-SPARK: TRANSFORMATION MUTATION FOR APACHE SPARK 1

TRANSMUT-SPARK: Transformation Mutation for Apache

Spark

João Batista de Souza Neto1,4*, Anamaria Martins Moreira2, Genoveva Vargas-Solar3

and Martin A. Musicante1

1Department of Informatics and Applied Mathematics (DIMAp), Federal University of Rio Grande do Norte (UFRN),

Natal, Brazil.

2Computer Science Department (DCC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.

3 French Council of Scientific Research (CNRS), LIRIS, Lyon, France.

4 Department of Informatics, Management and Design (DIGD-DV), Federal Center for Technological Education of

Minas Gerais, Divinópolis, Brazil.

SUMMARY

This paper proposes TRANSMUT-SPARK for automating mutation testing of Big Data processing code

within Spark programs. Apache Spark is an engine for Big Data Analytics/Processing that hides the inherent

complexity of parallel Big Data programming. Nonetheless, programmers must cleverly combine Spark

built-in functions within programs and guide the engine to use the right data management strategies to exploit

the computational resources required by Big Data processing and avoid substantial production losses. Many

programming details in Spark data processing code are prone to false statements that must be correctly and

automatically tested. This paper explores the application of mutation testing in Spark programs, a fault-

based testing technique that relies on fault simulation to evaluate and design test sets. The paper introduces

TRANSMUT-SPARK for testing Spark programs by automating the most laborious steps of the process and

fully executing the mutation testing process. The paper describes how the TRANSMUT-SPARK automates

the mutants generation, test execution, and adequacy analysis phases of mutation testing. It also discusses

the results of experiments to validate the tool and argues its scope and limitations.

Copyright © 2010 John Wiley & Sons, Ltd.

Received . . .

Softw. Test. Verif. Reliab. (2010)C Prepared using stvrauth.cls

DOI: 10.1002/stvr

SOFTWARE TESTING, VERIFICATION AND RELIABILITY

Softw. Test. Verif. Reliab. 2010; 00:2–61

Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/stvr
KEY WORDS: Apache Spark; Mutation Testing; Testing Tool; TRANSMUT-SPARK

1. INTRODUCTION

The Big Data phenomenon has introduced a series of processing challenges using greedy algorithms.

These algorithms call for well-adapted processing infrastructures and programming models to

support their execution on large-scale clustered architectures. Existing frameworks adopt either

control flow [1, 2] or data flow approaches [3, 4, 5]. Apache Spark [5] has emerged as one of the

main data-flow engines for parallel Big Data processing. It screens difficulties inherent to parallel

programming and distributed processing, allowing programmers to focus only on the algorithmic

aspects of parallel programs. Spark’s data flow programming model represents programs as directed

acyclic graphs (DAGs) that coordinate the execution of operations applied on datasets distributed

across several computing nodes.

Even with more minor painful ways of designing, programming, and executing big data parallel

processing programs, programmers still need to tune several aspects within their code and configure

resource allocation. The complexity of this tuning task is due to the number of aspects to

consider and can lead to errors. Therefore, testing programs becomes essential to avoid losses in

production [6]. In this context, software testing techniques emerge as relevant tools [7, 8]. This

paper addresses the testing of big data processing code weaved within Spark programs by exploring

the application of mutation testing [9].

Mutation testing is a powerful test technique where tests are designed to pinpoint specific faults

introduced in the code, the mutations. The quality of the resulting tests is closely dependent on how

representative these faults are for the programs developed in that specific language or programming

paradigm. In a previous paper [10] we proposed a transformation mutation approach that applies

mutation testing in Spark programs introducing mutation operators designed to simulate faults

∗Correspondence to: João Batista de Souza Neto, Department of Informatics and Applied Mathematics (DIMAp), Federal

University of Rio Grande do Norte (UFRN), Natal, Brazil. E-mail: jbsneto@ppgsc.ufrn.br

Copyright © 2010 John Wiley & Sons, Ltd.

Prepared using stvrauth.cls [Version: 2010/05/13 v2.00]

TRANSMUT-SPARK: TRANSFORMATION MUTATION FOR APACHE SPARK 3

specific to data flow programs. We conducted manual experiments to show our mutation operators

applicability to test Spark programs. Even if results were promising, we confirmed that mutation

testing could be laborious, time-consuming and prone to errors [11] if it is not partially automated.

We believe that mutation testing must be delegated to a tool to perform intensive testing and face

software development conditions that imply production speed and quality requirements. Therefore,

we propose TRANSMUT-SPARK that automates the Spark programs’ mutation testing process.

TRANSMUT-SPARK implements requirements that a mutation test tools must provide [12]: test

case handling, including the execution, inclusion, and exclusion of test cases; mutant handling, for

generating, selecting, executing and analyzing mutants; and adequacy analysis for calculating the

mutation score and generating reports. The paper shows how TRANSMUT-SPARK automates the

primary and most laborious steps of the process and enables the full execution of the mutation

testing process for Spark programs. These features were thoroughly validated through a new

complete round of experiments discussed in the paper and that enhance those described in a previous

paper [10]. Additionally, TRANSMUT-SPARK was experimentally compared with traditional

mutation testing done at the (syntactic) programming language level. Experiments showed that

TRANSMUT-SPARK is complementary to mutation testing for Scala programs that do not address

Big Data processing code. Thus, combining mutation testing approaches addressing programming

languages statements with TRANSMUT-SPARK can test both higher-level Big Data processing

code that is weaved within classic imperative programs and the more basic program constructs. The

contribution presented in this paper is twofold: (1) TRANSMUT-SPARK for automating mutation

testing of Big Data processing code weaved within Scala programs, (2) and an experimental battery

of tests evaluating the possibilities of mutation testing for Spark programs that could not be carried

out without the tool.

Accordingly, the remainder of the paper is organized as follows. Section 2 introduces the

background concepts behind TRANSMUT-SPARK namely Apache Spark and mutation testing.

Section 3 introduces related work concerning approaches addressing the problem of testing

programs implemented to run on top of big data processing platforms. Section 4 introduces the set

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)

Prepared using stvrauth.cls DOI: 10.1002/stvr

4 J. B. DE SOUZA NETO ET AL.

of mutation operators we propose for Apache Spark programs. Section 5 introduces TRANSMUT-

SPARK the tool that we propose for automating the process of testing Spark programs written in

Scala. Section 6 describes the experiments that we conducted for evaluating TRANSMUT-SPARK

as a testing tool. It also describes a comparative study on transformation mutation and traditional

mutation testing. Section 7 summarizes, analyses and discusses experimental results. Section 8

discusses the limitations and threats to validity. Finally, Section 9 concludes the paper and discusses

future work. https://www.overleaf.com/project/618a6bf5ad33492c9e33c0bc

2. BACKGROUND

The approach behind TRANSMUT-SPARK relies on two conceptual underpinnings: Apache Spark

and mutation testing. This section introduces the fundamental concepts of these components

underlying those that are key to understand the transformation mutation strategy for Big Data

processing code in Spark promoted by TRANSMUT-SPARK.

2.1. Apache Spark

Apache Spark [5] is an execution platform for large-scale data processing parallel programs

written in programming languages like Scala, Java, Python, and R. It is suited for embedding

machine learning algorithms and interactive analysis, such as exploratory queries on datasets within

programs. It offers libraries for working with structured data using an SQL-style API (SparkSQL),

machine learning (MLlib), streaming data processing (Spark Streaming) and graph processing

(GraphX) [13].

Spark prevents programmers from dealing with data distribution among cluster nodes and

ensuring fault tolerance and processes’ synchronization. For dealing with fault-tolerant data

distribution, Spark is based on a data abstraction called Resilient Distributed Dataset (RDD) [14].

An RDD represents a collection of data distributed through the nodes of a cluster that can be

processed in parallel within a Spark program. Fault-tolerance for RDD’s means that its partitions

can be reconstructed in case of failures emerging at execution time.

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)

Prepared using stvrauth.cls DOI: 10.1002/stvr

TRANSMUT-SPARK: TRANSFORMATION MUTATION FOR APACHE SPARK 5

sc.textFile("hdfs://...")

flatMap(line => line.split(" "))

map(word => (word, 1))

reduceByKey((a,b) => a + b)

lines

words

pairs

counts

D
a
ta

HDFS

Non functional aspects
Infrastructure

Transformations &
Actions

Spark Program

Directed Acyclic Graph (DAG)

saveAsTextFile("hdfs://...")

Figure 1. Spark program overview.

The general structure of a Spark program is shown in Figure 1. It consists of two types of blocks:

(1) functional aspects expressed by a data flow implementing the application logic; (2) operations

devoted to processing data (transformations) and guiding the way data is managed from memory to

cache and disk (actions).

As shown in Figure 1, the data used by a program are initially stored in a persistence support,

often in a distributed file system, for example, on HDFS (Hadoop Distributed File System) [1]. The

data are first retrieved from the persistence support and transformed into an RDD for executing a

Spark program. The data processing operations stated in a Spark program will then be applied to

this RDD. For example, the program in the figure is intended to count the occurrence of words in

a text dataset. The program runs through the dataset to first separate the lines of text into separate

words. So, for each word, a key/value tuple is created containing the word as key and the integer 1 as

value. Afterwards, key/value tuples are grouped by the key, and the values are aggregated, resulting

in a dataset with the words and their frequencies, i.e., the number of times a word appears in the

text. Finally, the resulting dataset is stored (e.g., HDFS). The sequence of operations applied in a

Spark program forms a DAG (Directed Acyclic Graph) representing the program’s execution plan

optimized by Spark when executed in a cluster.

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)

Prepared using stvrauth.cls DOI: 10.1002/stvr

6 J. B. DE SOUZA NETO ET AL.

In the program there are two classes of operations: transformations and actions. Understanding

the way the Spark platform executes them is essential to understand the implications of using them

within a program.

Transformations: create new RDDs from existing ones [13]. In Spark, transformations are

evaluated under a lazy evaluation [5] strategy †, that is until other computations need them. Spark

transformations can receive functions as input parameters and apply them over the RDDs elements

to generate a new RDD.

Spark’s transformations can be classified into the following types: (i) mapping (such as map and

flatMap), apply a function to map the values of an input RDD to an output RDD; (ii) filtering, filter

the values of an RDD based on a predicate function; (ii) grouping (groupBy, groupByKey), group

the values of an RDD based on a key; (iii) aggregation (reduceByKey, aggregateByKey), aggregate

values grouped by a key; (iv) set (union, intersection, subtract, distinct), similar to mathematical set

operations; (v) join (join, leftOuterJoin, rightOuterJoin, fullOuterJoin), join two RDDs on the basis

of a common key; (vi) sort (sortBy, sortByKey), sort the values in an RDD.

Transformations can be either narrow or wide, depending on the degree of distribution of the data

sets [14]. When each partition at the parent RDD is used by most of the child RDD partition,

there is a narrow dependency. Operations like map, flatMap and filter are examples of narrow

transformations. In wide transformations, all the required elements to compute the records in the

single partition may live in many partitions of parent RDD. Generally, this type of transformation

operates on key/value tuple datasets that need data grouped by key, such as reduceByKey and join

operations. This type of operation causes a reorganization of the data in the cluster to group values

that have the same key to the same partition. This process of data reorganization is called shuffling.

This mechanism involves copying and sending data between the cluster nodes, making it a complex

and costly process.

†In programming language theory, lazy evaluation, or call-by-need, is an evaluation strategy that delays the evaluation of
an expression until its value is needed (non-strict evaluation) and which also avoids repeated evaluations (sharing).

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)

Prepared using stvrauth.cls DOI: 10.1002/stvr

TRANSMUT-SPARK: TRANSFORMATION MUTATION FOR APACHE SPARK 7

1 val input = sc.textFile(”hdfs://...”)
2 val words = input.flatMap((line: String) => line.split(” ”))
3 val pairs = words.map((word: String) => (word, 1))
4 val counts = pairs.reduceByKey((a: Int, b: Int) => a + b)
5 counts.saveAsTextFile(”hdfs://...”)

Figure 2. Example of a Spark program.

Actions: return values that are not RDDs to the Driver or write the content of the RDD in some

storage system. Actions trigger the lazy evaluation execution of transformations. In this way, Spark

can optimize the execution of applications by executing narrow transformations in the same process

(pipeline) and create different stages for wide operations that trigger the shuffling process [14].

A Spark program execution is coordinated by a Driver through a SparkContext. The SparkContext

executes the main program function consisting of a sequence of operations on RDDs and manages

internal program information and deploys the operations on the cluster nodes [15].

Some of the main Spark actions are reduce, which aggregates all the values of an RDD into a

single value; collect, which returns to the Driver the contents of an RDD in the form of an array;

and saveAsTextFile, which saves the content of an RDD in a storage system.

Spark program example Figure 2 shows the code of the counting words example programmed in

Apache Spark using the Scala programming language. The program starts by reading a data set and

storing it in the input variable (line 1). Next, it applies the flatMap transformation, which separates

each line of text into words (line 2). The RDD with words is transformed into a key/value RDD

with the application of the transformation map which generates key/value pairs in which the key

is a word, and the value is the integer number 1 (line 3). The counting of words is done applying

the reduceByKey transformation, which groups the values per key. Then, it applies the (associative)

addition function to sums all the values, resulting in the RDD count, containing the frequency of

each word (line 4). The program terminates by calling the action saveTextFile which performs the

transformations and saves its result (line 5).

A particular characteristic of a Spark program is that it includes operations devoted to processing

data (application logic) and operations devoted to guiding the way data are managed to execute the

program (i.e., data swapped from disk to cache and memory, shared or replicated across different

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)

Prepared using stvrauth.cls DOI: 10.1002/stvr

8 J. B. DE SOUZA NETO ET AL.

processes and nodes, transmitted across processes). Data management decisions are independent of

the application logic but have a significant impact on its performance. Designing a Spark program

implies ensuring functional faults are inconsistencies within the code that may result in unexpected

behaviour when executed, for example, wrong transformations, incorrect parameters, and absence

of transformations. In this paper we focus on these types of faults (see Section 4).

2.2. Mutation Testing

De Millo et al. [9] proposed a fault-based testing technique named mutation testing. It consists of

creating variants of a program and then deriving tests that show that the variants behave differently

from the original program. These variants, called mutants, are obtained from the program to be

tested by performing minor modifications that simulate common faults or programmers mistakes.

These modifications are systematically created by using predefined rules, called mutation operators.

In mutation testing tests must be designed to identify mutants from an original program. A test

should identify that the result obtained with a mutant is different from the result obtained with the

original program. When this occurs, the test is said to kill the mutant. A mutant and the original

program can have the same behavior; thus, the mutant cannot be killed. The mutant is said to be

equivalent, and it is removed from the test requirements set. The test developer can then use each

non-equivalent mutant as a guide to derive interesting test cases (i.e., input test data that will exercise

the program in such a way that if each of those specific faults were to be in the code, there would be

a test case in the test set that is capable of showing its presence to the tester). A typical example is

a mutant where a conditional construct guarded by a comparison of the kind a < b is changed into

a ≤ b. Unless we have a test case where a and b have the same value at this point, the mistake will

remain unnoticed.

Mutation testing coverage as a testing requirement can be determined from the ratio of the number

of killed mutants to the total number of mutants, not considering equivalent mutants. This ratio is

known as mutation score, being used as a quality measure for test sets [16]. The following formula

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)

Prepared using stvrauth.cls DOI: 10.1002/stvr

TRANSMUT-SPARK: TRANSFORMATION MUTATION FOR APACHE SPARK 9

calculates the mutation score:

ms(P, T) =
DM(P, T)

M(P)− EM(P)

where ms(P, T) is the mutation score for a program P and a test set T , DM(P, T) is the number of

mutants of the program P killed by the test set T , M(P) is the number of mutants generated from

P , and EM(P) is the number of mutants equivalent to P .

Create Mutants

Mutation Operators

Run T on P

No YesP(T)
correct?

Original
Program

P

Fix P

Mutants Set
M

Run T on M

Test Set
T

No

Yesms
reached?

Analyze and mark
equivalent mutants

No Yesms
reached?

Define threshold
Mutation Score (ms)

Figure 3. Mutation testing process (adapted from a proposal by Ammann and Offut [16]).

Applying mutation testing to a program involves the following steps: generation of mutants,

execution of the original program, execution of mutants, and analysis of living mutants to determine

whether or not they are equivalent [16]. This process is shown in Figure 3, the automated steps are

represented in bold boxes, and the manual steps are in dashed boxes. Given a program P , a set of

mutants M is created from the application of mutation operators in P . Then, a set of test cases T is

created, which can be designed based on the mutants in M or from another testing criteria based on

the choice of the test engineer. This test set T is then run with the program P . If the tests fail, it is

necessary to fix program P . Otherwise, T is run with the mutants in M . The mutation score (ms)

is calculated based on the number of dead and alive mutants with the test results. From that step,

it is necessary to decide whether or not the mutation testing process should continue. This decision

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)

Prepared using stvrauth.cls DOI: 10.1002/stvr

10 J. B. DE SOUZA NETO ET AL.

can be made based on the value of ms; if it is 1.0, it means that all non-equivalent mutants have

been killed by the test set T . However, it is not always feasible to kill all mutants, given that many

mutants can be created. Thus, at the discretion of the test engineer, it is possible to define a threshold

value for ms, generally close to 1.0, so that when this value is reached, the test set T is considered

good, so the process ends.

Mutation testing is one of the most challenging criteria to meet, given the significant effort

required to apply all of its steps, as shown in Figure 3. Given this process and the large number

of mutants generated, it is essential that mutation testing be supported by a tool that automates all

or part of the process. It is impractical to apply it manually in production.

Over the years, mutation testing has been actively investigated in the area of software testing

research [17]. Studies have identified mutation testing as one of the most efficient criteria for

detecting faults compared to other criteria, such as the works of Franklin et al. [18], Offut et

al. [19] and Walsh [20]. These results make mutation testing a reference in the software testing

area and are often used as a quality standard to evaluate other criteria, techniques, and test sets

in general [16]. As usual, with very flexible and powerful techniques, mutation testing success

depends on how this flexibility is instantiated to each situation. A good set of mutation operators

is needed to design tests that explore programs’ main potential problems in that specific language

or paradigm. Mutation testing for imperative programs requires different mutation operators than

those used for a functional language; similarly, an object-oriented program requires some mutation

operators to deal with particularities of object-oriented programming. Besides, in frameworks like

Apache Spark, Big Data processing code is weaved within a host programming language (e.g.,

Scala) code. This approach introduces a specific challenge for testing approaches like mutation,

which must test “classic” code in the host language and propose specific mutation strategies to

test the Big Data processing code. Our work addresses mutation testing for the parallel Big Data

processing code weaved within Scala programs in the context of Apache Spark like frameworks.

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)

Prepared using stvrauth.cls DOI: 10.1002/stvr

TRANSMUT-SPARK: TRANSFORMATION MUTATION FOR APACHE SPARK 11

3. RELATED WORK

Parallel programming models are based on the principle that significant problems can often be

divided into smaller ones, which can then be solved simultaneously. Regarding big data processing,

two strategies have emerged, namely control flow and data flow-based parallel programming. Under

the control flow strategy, a single system node controls the entire program execution (master,

orchestrator). In the data flow parallel model, the processes that execute the program trigger the

execution of other program components. Several databases projects focus on data flow control

models since they have good response times and throughput [21].

The most popular control flow-based model is MapReduce [22]. A MapReduce program has

two main components: A map procedure, which applies the same function to all the elements of

a key/value dataset, and a reduce procedure, which aggregates values based on their key. The map

component filters or sorts data (such as sorting students by the first name into queues, one queue for

each name). The reduce component usually summarizes data (like counting the number of students

in each queue, yielding name frequencies). MapReduce implementations such as Hadoop [1]

enhance reliability by supporting the construction of fault-tolerant systems.

Big Data processing programs reliability is essential because failures can generate large losses [6]

given the large number of computational resources required for their execution. In this context,

software testing becomes paramount in developing programs with higher quality and less failure-

prone during production. The studies presented by Camargo et al. [23] and Morán et al. [24] show

that works on testing in this context have increased interest in recent years. They reveal that few

systematic techniques and tools have been developed so far and that most have not reached a certain

level of maturity. Furthermore, most of the existing work has focused on programs that exclusively

follow control flow based parallel programming models like MapReduce [24], showing that the

testing of Big Data processing programs is still an open research area. This section presents the

state of the art of functional testing of large data processing programs.

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)

Prepared using stvrauth.cls DOI: 10.1002/stvr

12 J. B. DE SOUZA NETO ET AL.

The systematic review presented by Morán et al. [24] identified 54 works related to the

validation and verification process of control flow-based programming models, mainly based on the

MapReduce model. The study revealed that most areas focus on program performance, identifying

32 (59%) works related to performance testing. In contrast, only 12 (22%) works are focused on

functional testing, indicating a potentially promising subject in the area.

Works in the performance testing domain involve verifying non-functional requirements, such as

execution time and computational resources. Functional testing is related to the program’s functional

behaviour. We focus on functional testing of Big Data processing programs. We do not analyze

works on performance testing since they are mostly related to benchmarks, which is out of the

scope of our work.

We describe the works that test parallel data processing programs verifying their functional

behaviour to check whether their functional requirements are met.

3.1. Testing MapReduce (control flow-based) Programs

Testing MapReduce programs can be done dynamically (i.e., observing programs behaviour at

runtime) and statically (i.e., analyzing the source code). The following sections describe some

dynamic and static testing approaches for MapReduce programs implemented on top of different

platforms of the Apache Hadoop ecosystem‡.

Dynamic testing of control flow-based programs. The general principle is to execute a program to

verify its properties. The work presented by Csallner et al. [25] uses a symbolic execution technique

to search for faults and generate test cases. Therefore, they extract algebraic expressions from the

program representing the conditions that lead to different execution paths. From this, they derive

coded execution paths with correction conditions (which verify commutativity). Then, they use

a constraint solver to infer input values that violate the correction conditions. Input values are

then converted into test cases for the program. The testing technique has been implemented for

‡The Apache Hadoop project develops open-source software for reliable, scalable, distributed computing. The Hadoop
software library is a framework that allows for the distributed processing of large datasets across clusters of computers
using simple programming models (https://hadoop.apache.org).

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)

Prepared using stvrauth.cls DOI: 10.1002/stvr

https://hadoop.apache.org

TRANSMUT-SPARK: TRANSFORMATION MUTATION FOR APACHE SPARK 13

MapReduce programs in Hadoop. A similar approach was applied by Li et al [26] to test programs

in Pig Latin [27], a script language for data processing programs that run on Hadoop. The authors

expand the technique developed by Csallner et al. [25] to extract test paths by exploring the different

operations of Pig Latin.

Xu et al. [28] introduce a technique that tests properties in operations of stream processing

programs with the stream processing language SPL [29]. The technique seeks to verify properties

essential for the reliability and optimization of this type of program: non-determinism, selectivity,

blocking, statefulness, non-commutativity and partition interference. The technique uses random

data generation to dynamically check (with execution) whether or not these properties are verified.

MRTree [30] is a hierarchical classification of faults for MapReduce programs. The faults

presented in the classification are divided into faults related to the reduce operation and the combine

operation (an intermediate reduction operation performed right after map). Some examples of the

faults presented in MRTree are: (1) a non-commutative reduce operation that can generate different

results for the same dataset if data is processed in different orders; and (2) faults related to the

key/value data, such as inconsistencies between the key and the value or the issue of an incorrect

key/value pair, are checked. For each fault, the authors propose ad-hoc testing directives to mitigate

them. The same research group defined MRFlow [31], a technique that derives a data flow graph

from map and reduce operations. From this graph, test cases are generated using graph-based testing

techniques. In both papers [30, 31] authors do not describe a tool implementing their technique.

The method presented by Mattos [32] uses meta-heuristic search techniques to generate test data

dynamically. The approach evaluates two algorithms: the genetic and the bacteriological algorithm,

and conclude that the latter generates better test data. The authors applied mutation testing with three

mutation operators proposed for MapReduce-based programs to evaluate the work. They propose

an operator that inserts an operation combine with the same behaviour as the reduce; an operator

that removes the combine; and an operator that changes the number of processes that execute the

reduce. These operators simulate semantic faults concerning the understanding of the MapReduce

model. The conclusion is that the bacteriological algorithm performs well in generating test data

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)

Prepared using stvrauth.cls DOI: 10.1002/stvr

14 J. B. DE SOUZA NETO ET AL.

and contributes to identifying functional faults, but that it has not contributed to the identification of

faults related to the misunderstanding of the MapReduce model.

Li et al. [33] introduce a testing framework for Big Data processing programs that extracts test

data from real datasets. Their goal is to extract a subset of test data from the dataset itself, which will

be processed using input space partitioning techniques. The framework gets a representative subset

of data from the original dataset. This subset of test data is then applied in the validation process of

the program under test.

Static testing of control flow (MapReduce) programs. Some works test MapReduce programs

without considering the program’s execution, using formal methods and static analysis. A work by

Chen et al. [34] makes use of formal methods to verify the commutativity of reduce operations

in MapReduce programs. Since this program is executed in a parallel and distributed computing

environment, aggregation operations must be commutative and associative to ensure a deterministic

result. The constraint about determinism is explained by the fact that it is impossible to determine

the order in which the values will be processed [35]. The method presented in [34] extracts a series

of assertions and properties from the reduce operation. These assertions must be verified through an

external program, such as a model checker, to attest that the operation is commutative.

A method for static type analysis in MapReduce programs is proposed by Dörre et al. [36]. The

authors aim to identify type incompatibilities in the emission of key/value pairs in map, combine

and reduce operations. This static analysis is done automatically with the SNITCH tool (StatIc Type

Checking for Hadoop) proposed by the authors. Ono et al. [37] verify the correction of MapReduce

programs. This correction is done formally using Coq [38], an interactive theorem tester.

3.2. Data Flow Program Testing

Data flow programming is a paradigm that models a program as a directed graph of the data

flowing between operations. It promotes the modelling of programs as a series of connections among

operations. Explicitly defined inputs and outputs connect operations, which work like black boxes.

Instructions do not impose any constraints on sequencing except for the data dependencies. An

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)

Prepared using stvrauth.cls DOI: 10.1002/stvr

TRANSMUT-SPARK: TRANSFORMATION MUTATION FOR APACHE SPARK 15

operation runs as soon as all of its inputs become available. Thus, data flow languages are inherently

parallel and can work well in large, decentralized systems.

Data flow programming has been adopted by libraries and environments addressing data analytics

and processing like MatLab, R and Simulink. Big data parallel processing solutions like Apache

Spark [5], DryadLINQ [3], Apache Beam [4] and Apache Flink [2], also adopt data flow

programming models for implementing programs as processing data flows.

In general, testing a data flow program involves (i) defining testing criteria, (ii) classifying paths

on the data flow graph that satisfy these criteria, and (iii) developing path predicate expressions to

derive test input.

Testing data flow based data analytics programs. Data flow analytics has been promoted by

Simulink, Matlab and R environments. Models implemented as functions to be used within

programs in this context can also become complex to test. Therefore, approaches have been

devoted to promoting full or partial testing strategies. For example, the model checking engine

COVER [39] defines a verification methodology to assess the correctness of Simulink models.

COVER automatically generates test cases and adopts fault and mutation-based testing. Therefore,

coverage of a Simulink program by a test suite is defined in terms of detecting injected faults. The

work can compute test suites for given fault models using bounded model checking techniques.

MATmute [40] is based on an approach for automatically generating test suites for Scientific

MATLAB code. The approach introduced by Xu et al. [41] improves the dependability of data flow

programs by checking operators for necessary properties. The approach is dynamic and involves

generating tests whose results are checked to determine whether specific properties hold or not.

Testing data flow based big data parallel programs. For testing Apache Spark, DryadLINQ,

Apache Beam, and Apache Flink programs, it is possible to implement unit tests using external

libraries and functions provided by these systems. Libraries such as those developed by Karau [42]

and Otto Group [43] have adopted this strategy. They offer several utility classes for unit testing in

Apache Spark and Apache Flink, respectively. For Apache Beam and DryadLINQ, it is possible to

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)

Prepared using stvrauth.cls DOI: 10.1002/stvr

16 J. B. DE SOUZA NETO ET AL.

use native support that enables the definition of program entries, automates the execution of tests

and proposes test oracle to verifying program results. Although these libraries are essential for

implementing and executing tests, they do not support test cases’ design, which is a critical part of

the testing process.

Regarding test case design, the work by Riesco et al. [44] applies property-based testing [45] to

test Spark programs. This technique consists of generating random data, running the program under

test with this input data, and then verifying the program’s behavior through oracles that verify if

the program’s results meet specific defined properties through logical expressions. Riesco et al. [44]

present sscheck, a library for the application of property-based testing in Spark programs. That work

was extended by the same group ([46, 47]) to test stream processing programs with Spark Streaming.

The authors applied temporal logic to verify time-related properties, which is an essential variable

in stream processing. Their work was adapted for Apache Flink by Espinoza et al [48].

3.3. Discussion

Data processing programs operate on large amounts of data, making the data distribution across the

system nodes significantly important. In classic parallel processing programs systems, parallelism

is vital for avoiding processing bottlenecks. In contrast, in a data processing program, extensive

input and output data streams make the network and the disk I/O the bottleneck rather than the

CPU. Consequently, the use of parallelism is strongly determined by the communication across

the nodes of the system. Also, parallelism is exploited to enhance parallel disk I/O. A consensus

on parallel and distributed data processing system architectures has emerged, based on a so-called

shared nothing hardware design. In a shared nothing system several nodes, each having its own

processor, memory modules and secondary storage devices, are connected by a local area network

(LAN). The only way processors communicate with one another is by sending messages via this

interconnection network.

Parallel programs do not only include data processing operations (filtering, selection, clustering);

they include data I/O directives used to guide control and data sharing across nodes. Testing a control

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)

Prepared using stvrauth.cls DOI: 10.1002/stvr

TRANSMUT-SPARK: TRANSFORMATION MUTATION FOR APACHE SPARK 17

and data flow of a parallel processing program implies testing how data processing operations

and data management operations are coordinated during the execution of a parallel program. In

both cases, the code that implements the data processing operations using a target programming

language does not introduce further challenges than classic programs testing. However, program

testing must include the code used to deal with read/write operations, global/local variables used to

share data in memory/cache, and exchange it across processes. In data flow-based programs, testing

must consider the way data management operations are weaved in the program logic.

The works presented previously focusing on parallel programs using the MapReduce

programming model do not provide tools for automatically testing programs, or they have not

been widely experimented [23, 24]. The principle of testing data flow-based programs involves

determining some programs’ properties by analyzing or verifying properties on the data flow. The

challenge consists of (automatically) generating tests and then developing tools for evaluating these

tests on top of programs. The characteristics of the programming languages promoting a data

flow programming model guide the type of generated tests that consider input and output data of

operations applies on top of them. This absence of testing support shows that testing Big Data

processing programs still lacks techniques and tools, mainly for testing programs that follow a data

flow model.

4. MUTATION OPERATORS FOR APACHE SPARK BIG DATA PROCESSING PROGRAMS

Mutation testing is based on the definition of “mutation operators” which operate on programs,

to simulate faults. Faults in a program are modeled beforehand according to the characteristics of

the programming language. For example, faults can be related to a missing iteration in a loop or a

mistake in an arithmetical or logical expression.

In a previous paper [10], we specified a set of mutation operators to mimic common faults and

mistakes in data flow parallel Big Data processing programs (such as Apache Spark programs).

These operators specify modifications in two levels:

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)

Prepared using stvrauth.cls DOI: 10.1002/stvr

18 J. B. DE SOUZA NETO ET AL.

1. the DAG that defines the program’s data flow, for example, changing the calling order of two

transformations;

2. inside transformations (see Section 2), such as changing the function passed as input to an

aggregation transformation.

The operators were defined using our experience in the development of a taxonomy of functional

faults in Apache Spark programs [49].

In this section we briefly describe a taxonomy of functional faults in Apache Spark programs [49]

(Section 4.1), followed by sections defining mutation operators by each level.

4.1. A Taxonomy of Functional Faults in Apache Spark Programs

The design of big data processing Spark programs includes ensuring their intended functional

behavior. Functional faults may result in unexpected behavior. Examples of these faults are the

use of wrong transformations, incorrect parameters and absence of transformations.

A set functional faults that may appear in Apache Spark Big Data processing programs are

classified in a taxonomy proposed by Souza Neto [49]. The taxonomy was proposed after the

analysis of Apache Spark documentation, other references in the literature, as well as the analysis

of the source code of Spark programs. The taxonomy classifies three main types of functional

faults related to the data flow, the strategy and order in which operations are called, and the use

of accumulators.

Faults related to the data flow of a Spark program refer to (i) an incorrect order in which operations

are called; and (ii) use of the wrong operation. To illustrate these faults, let us consider the Spark

code shown in Figure 4a that (correctly) analyzes log files to count the number of error messages.

Under the hypothesis that error messages contain the initial string “ERROR”, the code first filters

all messages starting with the word “ERROR”; then, it removes the beginning of each message, by

applying a map function. Finally, it filters messages containing the word “foo”.

In contrast, Figure 4b shows a version of the code where the two filtering operations are called

in the wrong order (inversion of lines 2 and 4) tagged with ∆1 and ∆3. By inverting the filters,

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)

Prepared using stvrauth.cls DOI: 10.1002/stvr

TRANSMUT-SPARK: TRANSFORMATION MUTATION FOR APACHE SPARK 19

1 val fooCount = logsRDD
2 .filter(.startsWith(”ERROR”))
3 .map(.split(’\t’)(2))
4 .filter(.contains(”foo”))
5 .count

(a) Correct Program

1 val fooCount = logsRDD
2 ∆1 .filter(.contains(”foo”))
3 ∆2 .flatMap(.split(’\t’))
4 ∆3 .filter(.startsWith(”ERROR”))
5 .count

(b) Faults in the Data Flow

1 val fooCount = logsRDD
2 ∆4 .filter(.endsWith(”ERROR”))
3 ∆5 .map(.split(’ ’)(2))
4 ∆6 .filter(.equals(”foo”))
5 .count

(c) Faults in Operations

Figure 4. Example of a Spark program for log analysis.

the result is different: First, the program obtains a list of messages containing the word “foo”,

including messages beginning with “ERROR”. Then, the function map removes the initial substrings

of each message. Consequently, the string “ERROR” is deleted from messages that correspond to

those intended to be retrieved. The final result is a list of messages that do not necessarily contain

“ERROR” at the top or contain this string in their “body”.

The line tagged with ∆2 in the code illustrates the incorrect use of an operation in a data flow.

The program statement uses the wrong type of map function since it calls flatMap instead of map.

The operation map expresses a one-to-one transformation, transforming each element of a collection

into one element of the resulting collection. In contrast, the operation flatMap expresses a one-to-

many transformation, so it transforms each element of a collection to 0 or more elements of the

resulting collection. The map operation applied on line 3 (Figure 4a) splits the log message using

the separator “\t” and filters the third element from the resulting data (RDD). The second version of

the code (Figure 4b) the operation flatMap (line 3) just splits the log message based on the separator

“\t”. The resulting data (RDD) contains all the strings containing this separator. Nothing is done

with the third element in comparison to the first version. Both programs produce a result of the

same data type (RDD[String]), but with different content.

The second type of fault identified in the taxonomy concern the way operations are used and

weaved to process data in a program. These faults include the incorrect definition of mapping,

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)

Prepared using stvrauth.cls DOI: 10.1002/stvr

20 J. B. DE SOUZA NETO ET AL.

filtering and aggregation operations, like passing an incorrect processing function as a parameter to

the transformation. For instance, consider the examples of faults shown in Figure 4c. An example

of an incorrect definition of filtering transformations in the code is tagged with ∆4 and ∆6. The

line tagged with ∆4 verifies whether the end of the message string is the word “ERROR” instead of

looking for that string at the beginning. The line tagged with ∆6 checks whether the whole message

corresponds to the string “foo” instead of just checking if it contains that word.

The line tagged with ∆5 illustrates the incorrect definition of a mapping transformation with

erroneous functions passed as parameters. In this case, the separator (“ ”) passed to the function

split called within the function map is different from the separator used in the correct version (“\t”).

Thus, the list of strings that will be generated by splitting the message using “ ” will be different

from those generated using “\t”. Thus, the selection in the mapping will produce different results in

both programs since the function selects the third substring.

This type of faults can also come up when using the following operations: (i) Choosing incorrect

binary operations (joins and set-like operations), for example calling the wrong type of join

operation§; (ii) Choosing the wrong sorting operations, for example, choosing the wrong order

option (ascending or descending); (iii) Incorrect treatment of duplicate data, like not removing

duplicate data from a result when necessary.

The third group of faults in the taxonomy concern Accumulators, which are variables that are only

operated by using associative operations, therefore, being efficiently supported in parallel programs.

Accumulators can be used to implement counters (as in MapReduce) or sums [13]. Spark natively

supports accumulators of numeric types, and programmers can add support for new types. In the

example below, we create an accumulator variable (accum) and use it to aggregate values within a

Spark operation:

var accum: LongAccumulator = sc.longAccumulator

sc.parallelize(Array(1, 2, 3, 4)).foreach(x => accum.add(x))

§Note that Spark proposes different implementations of the operator join with different semantics. The programmer must
be sure of the type of join pertinent to the application logic.

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)

Prepared using stvrauth.cls DOI: 10.1002/stvr

TRANSMUT-SPARK: TRANSFORMATION MUTATION FOR APACHE SPARK 21

Faults related to accumulators concern the commutative and associative properties of the

operations on them. Indeed, accumulators in Spark can be commutative and associative and the

right type must be chosen in the code depending on the way data should be shared across processes

to aggregate partial results. The programmer must have a clear understanding of the properties of

the task. The example below illustrates a mistake made when using a standard variable instead of

an accumulator. Spark handles variables and accumulators differently, a variable will be copied

and managed locally on each node in the cluster, so the final result will not contain the total sum

produced in parallel by all the nodes. In contrast with an accumulator, the final result will aggregate

the partial sums computed by each node.

var accum: Long = 0

sc.parallelize(Array(1, 2, 3, 4)).foreach(x => accum += x)

Through our study, we identified 16 possible faults that can appear in Spark programs. The reader

may refer to the first author’s thesis [49] for details on this study. In the next sections we define our

mutation operators [10], namely mutation operators for: data flow and transformations.

4.2. Mutation Operators for Data Flow

The operators defined in this group replace, swap and delete unary and binary transformations calls.

Recall that a unary transformation operates on a single input RDD and a binary transformation on

two input RDDs.

Unary Transformations Replacement (UTR) Replaces a unary transformation for another with

the same input and output types.

Unary Transformation Swap (UTS) Swaps the calling order of two unary transformations in the

program, provided that they have the same input and output signature.

Unary Transformation Deletion (UTD) Removes the call of a unary transformation that receives

and returns RDDs (both) of the same type in the program.

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)

Prepared using stvrauth.cls DOI: 10.1002/stvr

22 J. B. DE SOUZA NETO ET AL.

The operators Binary Transformation Swap (BTS) and Binary Transformations Replacement

(BTR) are similar to their unary versions, but operate on binary transformations.

Operators in this group change the DAG that defines the data flow of a Spark program. To illustrate

these mutation operators, let us consider the program shown in Figure 4a that filters error messages

in a log. Table I shows examples of the mutants that can be generated for this program applying the

data flow mutation operators. Mutant 1 was generated by the operator UTR, replacing the filtering

transformation in line 2 with the mapping transformation in line 3 and no changes in lines 3 and 4.

Mutant 2 was generated by the operator UTS swapping lines 2 and 3. Mutant 3 was generated by

the operator UTD deleting the filtering transformation from line 4.

Table I. Examples of mutants generated with the data flow mutation operators.

Id Operator Lines Mutation

1 UTR 2

val fooCount = logsRDD
.map(.split(’\t’)(2))
.map(.split(’\t’)(2))
.filter(.contains(”foo”))
.count

2 UTS 2, 3

val fooCount = logsRDD
.map(.split(’\t’)(2))
.filter(.startsWith(”ERROR”))
.filter(.contains(”foo”))
.count

3 UTD 4
val fooCount = logsRDD

.filter(.startsWith(”ERROR”))

.map(.split(’\t’)(2))

.count

4.3. Mutation Operators for Transformations

The operators of this group replace, invert, insert and delete specific transformations in a Spark

program: mapping, filtering, set-like, distinct, aggregation, join and order. Table II shows examples

of the mutation operators of this group using excerpts from the Spark programs shown in Figure 2

and Figure 4a. We also use other code snippets to illustrate mutation operators that modify

transformations that are not applied in previous programs’ examples. We also define reductions

rules that define the conditions in which the application of some operators override the application

of others.

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)

Prepared using stvrauth.cls DOI: 10.1002/stvr

TRANSMUT-SPARK: TRANSFORMATION MUTATION FOR APACHE SPARK 23

Table II. Examples of use of the transformation mutation operators.

Id Operator Fig. Line Mutation
1 MTR 2 2 val words =input.flatMap((line: String)=>...originalValue.headOption)
2 MTR 2 2 val words =input.flatMap((line: String)=>...originalValue.tail)
3 MTR 2 2 val words =input.flatMap((line: String)=>...originalValue.reverse)
4 MTR 2 2 val words =input.flatMap((line: String)=>...Nil)
5 NFTP 4a 4filter(! .contains(”foo”))
6 STR – – val rdd3 =rdd1.union(rdd2)
7 STR – – val rdd3 =rdd1.intersection(rdd2)
8 STR – – val rdd3 =rdd1
9 STR – – val rdd3 =rdd2
10 STR – – val rdd3 =rdd2.subtract(rdd1)
11 DTD – – val rdd4 =rdd3
12 DTI 2 2 val words =input.flatMap((line: String)=>line.split(””)).distinct()
13 DTI 2 3 val pairs =words.map((word: String)=>(word, 1)).distinct()
14 DTI 2 4 val counts =pairs.reduceByKey((a: Int, b: Int)=>a + b)).distinct()
15 ATR 2 4 val counts =pairs.reduceByKey((a: Int, b: Int)=>a))
16 ATR 2 4 val counts =pairs.reduceByKey((a: Int, b: Int)=>b))
17 ATR 2 4 val counts =pairs.reduceByKey((a: Int, b: Int)=>a + a)
18 ATR 2 4 val counts =pairs.reduceByKey((a: Int, b: Int)=>b + b)
19 ATR 2 4 val counts =pairs.reduceByKey((a: Int, b: Int)=>b + a)

20 JTR – –
val rdd4 = rdd3.leftOuterJoin(rdd2)

.map(x => (x. 1,
(x. 2. 1, x. 2. 2.getOrElse(””))))

21 JTR – –
val rdd4 = rdd3.rightOuterJoin(rdd2)

.map(x => (x. 1,
(x. 2. 1.getOrElse(0), x. 2. 2)))

22 JTR – –
val rdd4 = rdd3.fullOuterJoin(rdd2)

.map(x => (x. 1,
(x. 2. 1.getOrElse(0), x. 2. 2.getOrElse(””))))

23 OTD – – val rdd2 =rdd1
24 OTI – – val rdd2 =rdd1.sortByKey(ascending =false)

Mapping Transformation Replacement (MTR) Given a mapping transformation (map,

flatMap) that receives a mapping function f as parameter, the operator MTR replaces f by a

mapping function fm, where (a) fm returns a constant value of the same type as f , or (b) fm

modifies the value returned by f . For example, for a mapping function that operates on an integer

parameter, MTR defines five cases where fm defines the following value types to be returned: the

constants 0, 1, Max and Min (these two denote the largest and lowest values of the integer type),

and the original output value of f but with an inverted sign.

Table III shows mapping values of basic types and collections that we defined as output parameter

types for fm. In the table, x represents the value generated by the original mapping function; k and

v represent the key and value generated by the original mapping function in the case of key/value

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)

Prepared using stvrauth.cls DOI: 10.1002/stvr

24 J. B. DE SOUZA NETO ET AL.

tuples; km and vm represent modified values for the key and value, that correspond to the application

of other mapping values respecting the type.

Table III. Mapping values for basic and collections types.

Type Mapping Value
Numeric 0, 1,MAX,MIN,−x
Boolean true, false,¬x
String “ ”
List List(x.head), x.tail, x.reverse, Nil

Tuple (km, v) , (k, vm)
General null

To illustrate the MTR operator, consider the mapping transformation applied to line 2 of the words

count program in Figure 2: val words =input.flatMap((line: String)=>line.split(””)).

From this line, the MTR operator generates mutants 1–4 in Table II. For the sake of simplicity,

we are only showing the modified line, hiding some details, such as calling the original function to

obtain the original value we need in some mutants (originalValue refers to this original value).

Filter Transformation Deletion (FTD) this operator creates a mutant for each filter

transformation call in a given program, deleting one filter at a time.

Reduction rule: This operator is a specific case of UTD (unary transformation deletion) because

it generates mutants where filters that are a type of unary transformations have been deleted. So

during a mutation process, FTD is applied if UTD has not been applied before.

Mutant 3, shown in Table I illustrates mutant 3 generated with the operator UTD. The operator

FTD applied to the filtering transformation in line 4 of Figure 4a generates this mutant.

Negation of Filter Transformation Predicate (NFTP) Given a filter transformation call with a

predicate function p as input parameter, the operator NFTP replaces the predicate function p with

a predicate function pm that negates the result of the original function (pm(x) = ¬p(x)). As an

example of this operator, consider the same filtering transformation used to illustrate the operator

FTD. The operator NFTP in this transformation generates mutant 5 in Table II.

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)

Prepared using stvrauth.cls DOI: 10.1002/stvr

TRANSMUT-SPARK: TRANSFORMATION MUTATION FOR APACHE SPARK 25

Reduction rule: The application of this operator is overridden by applying the operators UTD or

FTD. Even if the mutants generated by the operator NFTP are not generated by the operators UTD

or FTD, we experimentally observed that tests designed to kill the mutants that delete unary/filtering

transformations kill the mutants that negated the filtering predicate (as those generated by NFTP).

Set Transformation Replacement (STR) For each occurrence of a set transformation (union,

intersection and subtract) in a program, this operator creates five mutants: (1-2) replacing

the transformation by each of the other remaining set transformations; (3) keeping just the

first RDD; (4) keeping just the second RDD; and (5) changing the order of the RDDs

in the transformation call (only for subtract, since union and intersection are commutative).

For example, given the following excerpt of code with a subtract between two RDDs:

val rdd3 = rdd1.subtract(rdd2)

The operator STR applied on this transformation creates the five mutants, described at lines 6–10

in Table II.

Distinct Transformation Deletion (DTD) For each call of a distinct transformation in the

program, this operator creates a mutant by deleting its call. As the distinct transformation removes

duplicated data from the RDD, this mutation keeps the duplicates. For example, the application of

DTD in the following excerpt of code generates the mutant 11 of Table II:

val rdd4 = rdd3.distinct()

Reduction rule: The DTD operator is a specific case of the operator UTD. It generates mutants

that are also generated by the operator UTD. So DTD is applied if UTD has not been applied before.

Distinct Transformation Insertion (DTI) For each transformation (other than distinct) in

the program, this operator creates a mutant inserting a distinct transformation call after that

transformation. Applying DTI to the transformations presented in Figure 2 generates the mutants

12–14 of Table II.

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)

Prepared using stvrauth.cls DOI: 10.1002/stvr

26 J. B. DE SOUZA NETO ET AL.

Aggregation Transformation Replacement (ATR) Given an aggregation transformation with an

aggregation function f as input parameter the operator ATR replaces f by a different aggregation

function fm. The definition of ATR considers five replacement functions. Given an original function

f(x, y), the corresponding replacement functions fm(x, y) are: (1) a function that returns the first

parameter (fm(x, y) = x); (2) a function that returns the second parameter (fm(x, y) = y); (3) a

function that ignores the second parameter and calls the original function with a duplicated first

parameter (fm(x, y) = f(x, x)); (4) a function that ignores the first parameter and calls the original

function with a duplicated second parameter (fm(x, y) = f(y, y)); and (5) a function that swaps the

order of the parameters (fm(x, y) = f(y, x)), which generates a different value for non-commutative

functions. Table II shows the mutants 15–19 as examples of mutants generated by the operator ATR

applied to the aggregation transformation on line 4 in Figure 2 (see this excerpt below).

val counts = pairs.reduceByKey((a: Int, b: Int) => a + b))

Join Transformation Replacement (JTR) For each occurrence of a join transformation ((inner)

join, leftOuterJoin, rightOuterJoin and fullOuterJoin) in a program, the operator JTR replaces that

transformation by the three remaining join transformations. Additionally, a map transformation is

inserted after the new join to adjust it, typing with the replaced one. This adjustment is necessary

to maintain the type consistency between the mutant and the original program. Indeed depending

on the join type, the left, right, or both sides can be optional, and the resulting RDD can be slightly

different. For example, replacing the transformation (inner) join by rightOuterJoin makes left-side

values optional. To keep type consistency with the original transformation, we map empty left-side

values to default values, in case of basic types, or null, otherwise.

To illustrate the operator JTR, consider the following code snippet that joins two RDDs:

val rdd4 = rdd3.join(rdd2)

Assuming that rdd2 and rdd3 are of types RDD[(Int, String)] and RDD[(Int, Int)], respectively, the rdd4 is

of type RDD[(Int, (Int, String))]. Applying JTR to this transformation generates the mutants 20–22 of

Table II. Taking mutant 21 as an example, replacing join with rightOuterJoin, the resulting RDD is

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)

Prepared using stvrauth.cls DOI: 10.1002/stvr

TRANSMUT-SPARK: TRANSFORMATION MUTATION FOR APACHE SPARK 27

of type RDD[(Int, (Option[Int], String))]. Thus, the map following the rightOuterJoin serves to set the

value of type Option[Int] to Int. When this value is empty (None), we assign the value zero (0).

Order Transformation Deletion (OTD) For each order transformation (sortBy and sortByKey)

in the program, this operator creates a mutant by deleting the transformation. From the code snippet

val rdd2 =rdd1.sortByKey(), the operator OTD generates mutant 23 in Table II.

Reduction rule: The operator OTD is a specific case of UTD, deleting unary transformations of a

specific type (order transformations). So, the application of UTD overrides the application of OTD.

Order Transformation Inversion (OTI) For each order transformation in a program, the operator

OTI creates a mutant where the ordering (ascending or descending) is replaced by the inverse

one. Considering the same code snippet that was used as an example for the OTD operator, the

application of the OTI operator in this transformation generates mutant 22 in Table II, where the

ascending ordering that is true by default was changed for false.

Reduction rule: The operators UTD and OTD override the operator OTI. Even if the operator OTI

generates different mutants as those generated by UTD and OTD, we experimentally observed tests

designed to kill the mutants that delete an order transformation (as those generated with UTD or

OTD) also kill the mutants generated by OTI that invert the order.

Figure 5 depicts the Apache Spark functional faults taxonomy presented in Section 4.1 (left side)

and the mutation operators presented in sections 4.2 and 4.3 (right side). In the figure we can also

see the relationship between them to see what types of fault each operator can simulate.

5. TRANSMUT-SPARK

This section presents TRANSMUT-SPARK (Transformation Mutation for Apache Spark), a tool

that automates the mutation testing process of Spark programs written in Scala. The tool was

developed as a plugin for SBT (Scala Build Tool) [50], a tool for building projects in Scala and

Java. TRANSMUT-SPARK automates the process of generating the mutants, applying the mutation

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)

Prepared using stvrauth.cls DOI: 10.1002/stvr

28 J. B. DE SOUZA NETO ET AL.

Apache Spark
Functional Faults

Taxonomy

Data Flow

Operations

Accumulators

Incorrect
Data Flow
Definition

Incorrect
Operation in the

Data Flow

Incorrect
Definition:
Mapping,
Filtering,

Aggregation

Non-Commutative
and Non-Associative

Aggregation

Incorrect
Binary

Operation

Incorrect
Treatment of

Duplicated Data

Incorrect
Sorting

Incorrect
Action

Use of Free
Variables
in Data

Accumulation

Incorrect
Accumulator

Definition

Mutation Operator
for Apache Spark

Programs

UTS

Data Flow

Transformations

UTR

UTD

BTS

BTR

MTR

FTD

NFTP

ATR

STR

JTR

DTD

DTI

OTD

OTI

Figure 5. Taxonomy of Apache Spark Functional Faults and corresponding Mutation Operators [49, 10].

operators presented in Section 4, executing the tests on the original program and the mutants, and

analyzing the test results, generating a report with metrics and process results.

5.1. Mutation Process Workflow

TRANSMUT-SPARK automates the main steps of the mutation testing process, which includes the

processes of mutants generation and execution of the tests with the mutants. The main functionalities

implemented by the tool are: program analysis, mutant generation, test execution and mutant

analysis.

Figure 6 shows an overview of the workflow implemented by TRANSMUT-SPARK. The figure

shows the tool’s main modules with their input and output and the flow among modules.

Program analysis: TRANSMUT-SPARK receives as input a source code containing the Spark

program under test (a). This code is analyzed by ProgramBuilder module (b) to identify the

principal elements and places necessary to apply the mutation operators. From this analysis, the

module generates an intermediate representation of the program (c) using an abstract model for

data flow programs [51]. In this model, a program is defined from a set of datasets (RDDs),

a set of transformations and a set of edges that make the connection between the datasets and

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)

Prepared using stvrauth.cls DOI: 10.1002/stvr

TRANSMUT-SPARK: TRANSFORMATION MUTATION FOR APACHE SPARK 29

TRANSMUT-Spark Process

MutantReducer

ProgramBuilder MutationManager

MutantAnalyzer

ProgramSource

 + program(): Type

Program

<<test>>
ProgramTests

Tests
Results

Mutans
Results

MutantRunner

Reporter

Report

Mutant

Mutant Mutant

(a) (b)
(c)

(d)

(e)

(f)(g)

(i)
(h)

(j)

(k)

(l)

(m)(n)

MetaMutantBuilder

Mutant Mutant

MetaMutant

Mutant Mutant

(o)(p)

Figure 6. Overview of the workflow of TRANSMUT-SPARK.

transformations, forming the data flow of the program, in the form of an Directed Acyclic Graph

(DAG).

Mutant generation: TRANSMUT-SPARK generates mutants for the Spark program under test by

applying the mutation operators presented in Section 4. The generated mutants are incorporated in

a single source code, called meta-mutant, in order to reduce the amount of code to be compiled

and managed. The task of generating the mutants is carried out by three of TRANSMUT-SPARK

modules.

First, the intermediate representation is passed to the MutationManager module (d),

responsible for applying the mutation operators presented in Section 4 and generating a set of

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)

Prepared using stvrauth.cls DOI: 10.1002/stvr

30 J. B. DE SOUZA NETO ET AL.

mutants (e). For each mutation operator, the module checks whether it applies to the set of

transformations. If so, it generates all the mutants that can be generated from this operator.

The next steps consist of generating executable versions of the mutants and executing them with

the test set to analyze the results. As mentioned in Section 2.2, mutation testing can have a high

computational cost due to the extensive amount of mutants that can be generated and executed

in the process. Because of that, different works have proposed techniques to reduce the costs

of mutation testing [52]. In TRANSMUT-SPARK we apply two techniques for cost reduction:

selective mutation [53], and Mutant Schema Generation (MSG) [54].

Selective mutation reduces the number of mutants that will be executed by removing redundant,

equivalent, or trivial mutants (which are easily killed). In TRANSMUT-SPARK, this technique is

applied by MutantReducer (f). This module takes the set of mutants (e) and applies reduction

rules to remove redundant mutants from the set. These rules were stated in Section 4 and they are

summarized in Table IV.

The reduction rules R1, R2 and R3 were established given the redundancy of the operators FTD,

DTD and OTD with the UTD operator which represents a general transformation deletion, as well

as the subsumption relationships between FTD and NFTP, and between OTD and OTI operators,

as discussed in Section 4. The reduction rules R4, R5 and R6 result from the analysis of the

experimental results described in Section 6. These results empirically showed that some of the

generated mutants do not lead to the design of new test cases. If the number of mutants had to be

reduced, these mutants would be good candidates to be removed. Note that the use of the module

MutantReducer is optional and configurable, so a user can select which reduction rules to apply

according to the needs of his/her project.

The module MutantReducer generates as output a new set of mutants (g), which is a subset

of the original without redundant mutants. On the next step, the set of mutants (g) is passed to the

module MetaMutantBuilder (h). This module implements MSG, the second cost reduction

technique applied in TRANSMUT-SPARK. In this technique, all the mutants are incorporated

into a single source program code, generating a “meta-mutant” that incorporates all the mutants

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)

Prepared using stvrauth.cls DOI: 10.1002/stvr

TRANSMUT-SPARK: TRANSFORMATION MUTATION FOR APACHE SPARK 31

Table IV. Reduction rules.

Rule Description
R1 Removes mutants generated with the mutation operators FTD, DTD and OTD

when the UTD operator has also been applied.
R2 Removes mutants generated with the mutation operator NFTP when the FTD or

UTD operators have also been applied.
R3 Removes mutants generated with the mutation operator OTI when the OTD or

UTD operators have also been applied.
R4 Removes the following mutants generated with the MTR operator: mutants that

map to Max and Min, when the mapping is to a numerical type; mutants that map
to “ ”, when the mapping is to the type string; mutants that map to x.reverse,
when the mapping is to a collection type; and mutants that map to null, when
the mapping is to any other type.

R5 Removes mutants generated with the mutation operator DTI when the distinct
transformation has been inserted after grouping or aggregation transformations.

R6 Removes the commutative replacement mutants (fm(x, y) = f(y, x)) generated
with the ATR mutation operator.

generated individually but that only needs to be compiled once. The MSG technique was used in

TRANSMUT-SPARK because it is faster than other techniques [55], such as the interpretation-

based technique that is used by classical mutation testing tools, such as Mothra [56], or the separate

compilation approach that is used by Proteum [12]. Thus, the MetaMutantBuilder module (h)

receives the mutant set (g) as input, aggregates all mutants into a single program, and generates a

meta-mutant as output (i).

Test execution: Then, the meta-mutant and the class that implements the tests (j) are passed to

the module MutantRunner (k). This module is responsible for managing the execution of the

tests with the original program and mutants. TRANSMUT-SPARK first executes the tests with the

original program and checks if their results are as expected. If the original program tests fail, the

tool ends the process and indicates that the original program or the tests need to be fixed. Otherwise,

the tool executes the test set for each mutant and stores its results (l).

Mutant analysis: These results are then passed to the MutantAnalyzer module (m), which is

responsible for analyzing the results of each mutant, checking whether the tests passed or failed, and

returning the status (killed or lived) of each mutant (n). Finally, the results of the analysis are passed

to the module Reporter (o) which is responsible for computing metrics, such as the number of

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)

Prepared using stvrauth.cls DOI: 10.1002/stvr

32 J. B. DE SOUZA NETO ET AL.

mutants, the number of killed mutants, and mutation score, generating reports with the results of the

process (p).

5.2. Implementation details and architecture

The TRANSMUT-SPARK tool is implemented in Scala [57]. We also chose Scala as the working

language supported by the tool. Scala is a high-level language that incorporates object-oriented and

functional programming; it is statically typed and executed in the JVM. Scala also is the most used

programming language for Spark, offering better interaction with programs in that language since

Spark was also developed in Scala [5].

TRANSMUT-SPARK was developed as a plugin for SBT (Scala Build Tool) [50], a tool

for building, managing, and deploying software projects in Scala and Java. SBT provides an

interactive command-line interface that automates different software development tasks, including

the compilation, tests, and publication of the project. SBT has the advantage of providing a

simplified configuration language, increase productivity with automated build and test tasks, and

can be easily extended through plugins [50]. Developing the tool as a plugin allows direct access to

the compiler and test execution components of SBT necessary to run the mutation testing process.

Lastly, a plugin can be easily added to any project that uses SBT as a build tool, not requiring

any additional installation, environment preparation, or specific operational system, making the tool

portable and quickly adopted by different projects.

Figure 7 presents an overview of the architecture of TRANSMUT-SPARK. The project is divided

into six sub-projects that implement modules responsible for different mutation testing processes.

Each sub-project is presented below:

util: contains utility classes that are used by all other modules;

code-analyzer: analyzes the source code of a Spark program, doing a syntactic and type

analysis. It generates an intermediate representation of the program;

mutation-manager: contains the classes that implement the mutation operators presented in

Section 4 and implements the modules for generating mutants, reducing mutants, implementing the

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)

Prepared using stvrauth.cls DOI: 10.1002/stvr

TRANSMUT-SPARK: TRANSFORMATION MUTATION FOR APACHE SPARK 33

 TRANSMUT-Spark

code-analyzer mutation-manager mutation-analyzer

util

core

 SBT Plugin

sbt-transmut

 Command-line Interface

Figure 7. Overview of the TRANSMUT-SPARK architecture.

reduction rules, and building the meta-mutant that aggregates all the mutants generated into a single

source code (modules (d), (f) and (h) in Figure 6);

mutation-analyzer: contains the interface to the module that manages the execution of the

tests with the mutants and the original program, and the module that analyzes the results of the

tests, indicating if the mutants were killed in the mutation testing process (modules (k), (m) and (o)

in Figure 6);

core: main project that aggregates the other modules, implements the tool settings and defines

the interface for the module that implements the mutation testing process. This module operates as

orchestrator for the workflow, to execute the mutation testing process presented in Figure 6;

sbt-transmut: implements the TRANSMUT-SPARK SBT plugin. This plugin defines the

tasks that can be executed through the command-line interface of SBT. In addition, this project

implements the concrete modules of the mutation testing process and test execution, dependent on

the compiler and test components of SBT.

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)

Prepared using stvrauth.cls DOI: 10.1002/stvr

34 J. B. DE SOUZA NETO ET AL.

For the development of the module ProgramBuilder, that belongs to code-analyzer and

does the syntactic and type analysis of the program code to be tested, we used the Scalameta¶, a

library for reading, analyzing, and transforming Scala code. This library was also used to implement

the mutation operators of mutation-manager to make the changes in the source code.

For the development of the SBT plugin (sbt-transmut), we take as reference the SBT

plugin of the tool Stryker [58], an open-source tool for traditional mutation testing of programs

in JavaScript, C#, and Scala. We used it because it implements functionalities similar to the ones

needed for our tool. Other modules of TRANSMUT-SPARK have been implemented differently

from the modules of Stryker.

For the development of the module MetaMutantBuilder, that belongs to

mutation-manager and receives a set of mutants and returns the meta-mutant, we used

the technique of mutation switching that is also applied by Stryker [58]. This technique consists

of putting all the mutants inside conditional expressions in the code and activating the mutant that

must be executed through an environment variable. The component that controls the execution

of the mutants is in charge of assigning values to that variable to indicate which mutant must be

executed.

The TRANSMUT-SPARK project has approximately 16k lines of code in Scala, including

10k lines of code of tests. TRANSMUT-SPARK is an open-source project distributed under the

MIT License. Details on the use of the tool and its source code can be found in the repository:

https://github.com/jbsneto-ppgsc-ufrn/transmut-spark.

5.3. Use of the tool

The following configuration steps must be done for executing TRANSMUT-SPARK. First, add it as

a plugin in a project that uses SBT and create a configuration file transmut.conf at the project’s

root. The file must contain at least the file names of the source code of the Spark program that will be

transformed (sources), and the names of the methods that encapsulate the program (programs). The

¶https://scalameta.org.

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)

Prepared using stvrauth.cls DOI: 10.1002/stvr

https://github.com/jbsneto-ppgsc-ufrn/transmut-spark
https://scalameta.org

TRANSMUT-SPARK: TRANSFORMATION MUTATION FOR APACHE SPARK 35

1 transmut {
2 sources: [”WordCount.scala”],
3 programs: [”wordCount”],
4 test−only: [”example.WordCountTest”]
5 }

Figure 8. Example of a TRANSMUT-SPARK configuration file.

Figure 9. Part of the HTML report generated by TRANSMUT-SPARK with metrics about the programs.

Spark program that will go through mutation testing must be encapsulated in a method, so only that

method is modified. Additional settings can be added to the file, such as a list of mutation operators

(the tool applies all by default), test classes and reduction rules that will be applied. Figure 8 shows

a configuration example for the program in Figure 2.

To execute TRANSMUT-SPARK, execute the command sbt transmut from the project

folder in the command-line terminal. This command triggers the execution of the mutation

testing process following the workflow presented in Figure 6. When the execution terminates,

TRANSMUT-SPARK generates reports with process results (HTML and JSON documents). The

reports include the information necessary to complete the mutation testing process. Figures 9, 10, 11

and 12 present part of the HTML report generated by TRANSMUT-SPARK for the program

presented in Figure 2. These report includes the metrics about the program (Figure 9); information

about the generated mutants (Figure 10); details of a mutant, such as its status and the code of

the original program and the mutant (Figure 11); and general metrics about the mutation operators

(Figure 12).

The reports show the mutants that are alive, and they can be analyzed to verify if they are

equivalent. Identifying equivalent mutants allows verifying if the mutation testing process must

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)

Prepared using stvrauth.cls DOI: 10.1002/stvr

36 J. B. DE SOUZA NETO ET AL.

Figure 10. Part of the HTML report generated by TRANSMUT-SPARK with information about the
generated mutants.

Figure 11. Part of the HTML report generated by TRANSMUT-SPARK with details of a mutant.

continue to achieve the established mutation score. To support the whole process, TRANSMUT-

SPARK has the command transmutAlive that causes the process to be executed again only for

the mutants that are alive of the last execution—this command tags in the report the mutants that

have been identified as equivalent. The identification of equivalent mutants is made by inserting their

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)

Prepared using stvrauth.cls DOI: 10.1002/stvr

TRANSMUT-SPARK: TRANSFORMATION MUTATION FOR APACHE SPARK 37

Figure 12. Part of the HTML report generated by TRANSMUT-SPARK with metrics from the mutation
operators.

identifiers in the tool settings in the field equivalent−mutants. This command forces the execution of

mutants identified as relevant but removed by the reduction module. It also allows new tests to

be inserted into the test class to kill non-equivalent mutants that are still alive. When using this

command, a new report is generated with the updated metrics and results. More details on the use

of the tool and its settings can be found in its repository.

6. EXPERIMENTAL SETUP

This section presents the experiments we conducted to evaluate TRANSMUT-SPARK. These

experiments are complementary to those presented in our previous paper [10] that validated the

transformation mutation approach.

6.1. Methodology

The experimental validation was designed to answer the following research questions about

TRANSMUT-SPARK:

RQ1 Is TRANSMUT-SPARK applicable under reasonable costs to fully automate the mutation

steps of the mutation testing process?

The strategy is to analyze the applicability and the costs of using TRANSMUT-SPARK in

Spark programs’ mutation testing process in contrast to the manual experiments [10].

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)

Prepared using stvrauth.cls DOI: 10.1002/stvr

38 J. B. DE SOUZA NETO ET AL.

RQ2 Which is the impact of activating the mutants reduction module in TRANSMUT-SPARK

performance?

The strategy is to compare TRANSMUT-SPARK performance when reduction rules are

applied for reducing the number of mutants.

RQ3 To which extent TRANSMUT-SPARK and existing Scala programs mutation testing tools are

complementary.

The strategy is to compare experimentally TRANSMUT-SPARK with existing mutation tools

and further assess the relevance of TRANSMUT-SPARK’s underlying approach.

The set of experiments to answer these questions was conducted, adopting a methodology to

measure the performance and interest of TRANSMUT-SPARK for automatizing testing and to

compare it with existing tools.

For answering RQ1 - RQ3 we used TRANSMUT-SPARK to apply mutation testing, as described

in Figure 3, to a set of nine representative Spark programs. For eight of the programs in the testing

battery, we used the tests developed for manual experiments presented in a previous version of this

research [10]. All tests were designed to kill non-equivalent mutants, aiming at a mutation score

(ms) of 1.0. RQ1 was tackled by the comparison between this previous experiment and the ones

carried out with TRANSMUT-SPARK. For RQ2 we activated the use of reduction rules to compare

results.

To answer to RQ3, we used Scalamu||, a traditional mutation testing tool to compare its results

with those obtained by TRANSMUT-SPARK. Scalamu tests Scala programs. The tool is based on

PIT [59], a state of the art tool for mutation testing of Java programs.

This experiment was designed to evaluate the performance of the (1) test set designed to kill the

mutants generated by TRANSMUT-SPARK in the mutation testing process with Scalamu; (2) test

set developed to kill the mutants generated by Scalamu in the process with TRANSMUT-SPARK.

∥https://github.com/sugakandrey/scalamu

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)

Prepared using stvrauth.cls DOI: 10.1002/stvr

https://github.com/sugakandrey/scalamu

TRANSMUT-SPARK: TRANSFORMATION MUTATION FOR APACHE SPARK 39

The idea is to show that, since both tools (and mutation approaches) target different facets of the

program, they may lead to tests that can identify different faults.

6.2. Experimental process

The mutation process with TRANSMUT-SPARK was executed in all of the testing batteries,

alternatively enabling and disabling the reduction module and then to evaluate the mutation score

obtained by the test set designed to kill Scalamu mutants. These experiments were performed on a

MacBook Pro with a 1,4 GHz Intel Core i5 processor, 16 GB of RAM (2133 MHz LPDDR3) and a

256 GB SSD.

Assessment metrics We adopted the following metrics for comparing the three experiments:

1. time spent by the test developer in the process;

2. number of mutants and equivalent mutants;

3. execution time of the tool for testing experiment cases;

4. Killed Ratio (KR) to assess each mutation operator.

KR gives insights about the extent to which mutation operators tend to generate mutants

challenging to kill, i.e., that simulate faults that would be more difficult to detect. For a set of tests

developed to achieve the mutation score of 1.0, KR corresponds to the ratio between the number of

tests that killed the generated mutants and the total number of tests executed with those mutants.

Low KR values show that mutants generated by a specific operator were killed by fewer tests,

meaning they were hard to kill. In contrast, high KR values indicate that mutants were easily killed.

Furthermore, a qualitative comparison criterion used was to observe the occurrence of errors in

the process.

Testing battery The testing battery used in the experiments consists of programs implementing

representative types of Big Data processing tasks such as analysis of texts and log files, queries in

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)

Prepared using stvrauth.cls DOI: 10.1002/stvr

40 J. B. DE SOUZA NETO ET AL.

tabular databases, and data recommendation using the collaborative filtering algorithm [60]. The

following lines briefly describe the programs applied in the evaluation**.

• Exploring tabular datasets: The programs ScanQuery, AggregationQuery,

JoinQuery and DistinctUserVisitsPerPage explore tabular datasets containing

websites data such as their ranking and visiting users. They implement the queries introduced

in the AMPLab Big Data Benchmark [61], a benchmark for large data processing systems.

• Analysing textual datasets: The programs NGramsCount and

NasaApacheWebLogsAnalysis analyse text datasets computing the frequency of

n-grams and analysing log messages to identify unique messages in different files.

• Analysing data thorugh programs with “complex” architectures (programs and sub-

programs): The programs MoviesRatingsAverage, MoviesRecomendation and

MovieLensExploration analyse datasets produced by the application MovieLens [62].

It is a system where users can rate movies and receive recommendations based on their

preferences. The program MovieLensExploration, composed of eight subprograms,

performs a series of exploratory analyzes on the datasets of MovieLens.

The last program in the testing battery (MovieLensExploration) has a complex architecture

that leads to many mutants, making it unsuitable for manual mutation testing. Because of that,

this program was not applied in out previous experiments [10] where the mutation testing process

was applied manually. As we did for the other programs in the previous experiment, tests for

MovieLensExploration were incrementally developed to achieve an ms of 1.0.

Test case design To illustrate our test development strategy, let us consider the word count

program shown in Figure 2. An example of a simple test for this program is an input data set

containing a single word string. The expected result for this input dataset is the number of times

that word appears, that is, only once. This simple test can kill mutants generated with the MTR

∗∗The programs used in the experiments of this work are publicly available at https://github.com/
jbsneto-ppgsc-ufrn/spark-mutation-testing-experiments.

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)

Prepared using stvrauth.cls DOI: 10.1002/stvr

https://github.com/jbsneto-ppgsc-ufrn/spark-mutation-testing-experiments
https://github.com/jbsneto-ppgsc-ufrn/spark-mutation-testing-experiments

TRANSMUT-SPARK: TRANSFORMATION MUTATION FOR APACHE SPARK 41

(mutation transformation replacement) operator that modifies the mapping transformations applied

in the program. However, the fact that this test only contains a single word makes it unable to kill

the mutants generated with the operators ATR (aggregation transformation replacement) and DTI

(distinct transformation insertion). We created a new test containing an input dataset with more

and repeated words to kill the mutants generated with these operators. The modifications of these

operators can be detected. So we created this new test to kill the specific mutants that stayed alive

with the first test. We terminated the process without creating more tests when no mutants were

alive. This process was followed in all the experiments so that each program’s test set had only the

tests necessary to kill all the mutants generated by the tool.

For the comparison between Scalamu and TRANSMUT-SPARK we designed a new set of tests

prepared to kill all mutations generated by Scalamu (i.e., ms of 1.0). We executed the two test

sets with each testing tool Scalamu and TRANSMUT-SPARK (using the reduction module) and

compared results. The programs used in this experiment were the same nine programs described

above.

Experiments For each program in the testing battery we performed the following experiments:

E1 (First Experiment): Manual mutation testing process. In this experiment, we applied the

mutation testing process manually to have a baseline of the evaluation of the mutation operators [10].

E2 (Second Experiment): TRANSMUT-SPARK, no reduction rules. In this experiment, we

applied the mutation testing process to evaluate the tool and compare its results with the manual

process. In this case, the reduction rules implemented in the tool were not applied.

E3 (Third Experiment): TRANSMUT-SPARK with reduction rules. This experiment tests the

effects of applying the reduction rules to the battery of tests of Experiment E2.

E4 (TRANSMUT-SPARK vs. Scalamu): In this experiment, we analyze and compare the

behavior of both tools by cross-applying the tests generated by one tool to the other. The objective

is to determine to which extent they are complementary.

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)

Prepared using stvrauth.cls DOI: 10.1002/stvr

42 J. B. DE SOUZA NETO ET AL.

Dealing with complex program structures (programs and subprograms) Applying the

transformation mutation approach to programs composed of subprograms (methods) requires some

strategic choices. In our previous manual experiment [10], transformations for generating mutants

considered subprograms as a single program. Thus, mutation operations were applied considering

the set of subprograms’ as a whole, and so, transformations in two different subprograms were

exchanged or replaced using the mutation operators. TRANSMUT-SPARK, in contrast, treats each

subprogram as an independent program, with its own set of transformations. Thus, each subprogram

is considered the transformations’ scope of visibility considered by mutation operators. This choice

had an impact on the number of generated mutants for each program.

7. RESULTS AND ANALYSIS

In this section, we present the results of our experiments, followed by a discussion to answer the

research questions proposed to guide the experiments.

7.1. RQ1: Applicability of TRANSMUT-SPARK to fully automate the mutation testing process

steps

The strategy adopted to answer RQ1 was to analyze the applicability and the costs of using

TRANSMUT-SPARK in Spark programs’ mutation testing process in contrast to the manual

experiments proposed in [10].

Table V aggregates the experiment results for each tested program and groups them concerning

the manual (column “First Experiment”), the automatic mutation testing results with the reduction

module disabled (“Second Experiment”) and enabled (“Third Experiment”). For each program, the

table shows the number of Spark transformations applied in the program (Transf.), the number of

tests developed for the program (Tests), the number of generated mutants (#M), the number of killed

mutants (#K) and the number of equivalent mutants (#E). Additionally, for the results obtained

with the tool, the table shows the tool’s execution time in seconds (Time (s)) and the number of

mutants removed by the reduction module (#R). The evaluation and discussion of the reduction

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)

Prepared using stvrauth.cls DOI: 10.1002/stvr

TRANSMUT-SPARK: TRANSFORMATION MUTATION FOR APACHE SPARK 43

Table V. Results of the experiments aggregated by program.

First Experiment Second Experiment Third Experiment
Program Transf. Tests #M #K #E #M #K #E Time (s) #M #K #E #R Time (s)

NGramsCount 5 5 27 22 5 32 27 5 243.2 23 22 1 9 176.8
ScanQuery 3 3 12 12 0 13 13 0 97.6 7 7 0 6 57.6

AggregationQuery 3 3 15 13 2 16 14 2 132.4 10 10 0 6 90.8
DistinctUserVisitsPerPage 4 2 16 10 6 17 11 6 142.6 11 7 4 6 98.2

MoviesRatingsAverage 5 4 25 22 3 19 14 5 182.8 13 11 2 6 135.6
MoviesRecomendation 12 5 37 33 4 56 41 15 524.4 35 24 11 21 355.2

JoinQuery 11 6 27 25 2 37 35 2 332.6 21 20 1 16 201.8
NasaApacheWebLogsAnalysis 7 4 55 49 6 38 28 10 323.6 31 21 10 7 286.2

Total 50 32 214 186 28 228 183 45 1979.2 151 122 29 77 1402.2

module will be discussed in the section devoted to answering the research question RQ2. The tool’s

total execution time includes the time it spends generating mutants, executing tests and generating

reports.

Figure 13 shows the results of the three experiments aggregated by program. The figure compares

the total number of mutants and equivalent mutants generated in the first (see columns Mutants 1 and

Equivalent 1) and second set of experiments (see columns Mutants 2 and Equivalent 2). Figure 14

also presents the result of the three experiments, but aggregated by mutation operators.

0

20

40

60

NGramsCount
ScanQuery

AggregationQuery

DistinctUserVisitsPerPage

MoviesRatingsAverage

MoviesRecomendation
JoinQuery

NasaApacheWebLogsAnalysis

Mutants 1 Mutants 2 Mutants 3 Equivalent 1 Equivalent 2 Equivalent 3 Removed 3

Figure 13. Comparison of aggregated results by program.

Analysis of the number of mutants One crucial remark before comparing the number of mutants

of the first experiment and the ones with TRANSMUT-SPARK is the change in strategy concerning

the scope of Spark transformations to be considered during mutation. Recall that TRANSMUT-

SPARK treats subprograms as independent programs for generating mutants, thus reducing the

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)

Prepared using stvrauth.cls DOI: 10.1002/stvr

44 J. B. DE SOUZA NETO ET AL.

0

25

50

75

100

UTS BTS UTR BTR UTD MTR FTD NFTP STR DTI DTD ATR JTR OTI OTD

Mutants 1 Mutants 2 Mutants 3 Equivalent 1 Equivalent 2 Equivalent 3 Removed 3

Figure 14. Comparison of aggregated results by mutation operator.

number of transformations available to generate new mutants. In theory, then, the number of mutants

with TRANSMUT-SPARK should be smaller or equal to those of the first experiment if the tool

were not more thorough in the application of mutants than humans. Indeed, the mutant generation

process calls for a detailed analysis of target programs to identify possible modification points within

the code the lines where mutation operators can be applied. This process is challenging given the

number of generated mutants, making a manual generation prone to errors.

Figure 13 and Table V show that in most cases, the second experiment generated more

mutants than the first experiment, with up to 51% increase, in the case of the program

MoviesRecomendation. These results show that with TRANSMUT-SPARK we could indeed

generate mutants that were not generated in the manual process and thereby answer RQ1. Regarding

the programs NasApacheWebLogsAnalysis and MoviesRatingsAverage, the second

experiment generated around 30% and 24% fewer mutants than the first experiment. They were

the programs where the change of strategy had the greater impact. Observation of the equivalent

mutants shows that this number did not change in five programs of the original battery and was

more significant in the second experiment for three of the programs.

When observing the differences concerning the mutants generated by the operator, we could see

that some mutants were not generated in the manual process for UTD, MTR and DTI (see Figure 14

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)

Prepared using stvrauth.cls DOI: 10.1002/stvr

TRANSMUT-SPARK: TRANSFORMATION MUTATION FOR APACHE SPARK 45

and Table VI). On the other hand, the data flow swap and replacement mutation operators (UTS,

BTS, UTR, BTR), which consider other transformations on the same scope for mutation, generate

fewer mutants. In the first experiment, the data flow mutation operators (UTS, BTS, UTR, BTR and

UTD) generated approximately 20% of the mutants for the eight programs of the testing battery,

against 13.6% on the second experiment. This reduction had no negative impact on the results of

the second experiment because the tests that killed their mutants were also needed to kill mutants

of other operators. Concerning the other mutation operators, the number of mutants generated was

consistent in both experiments (with a slight difference for the STR operator where we automatically

eliminated some equivalent mutants while implementing the tool).

A total of 195 mutants were generated, 24 of which were equivalent regarding the program

MovieLensExploration, exclusively used by the TRANSMUT-SPARK experiments. This

amount corresponds to approximately 85% of the total mutants generated for the other eight

programs used in the experiments.

Analysis of the metric KR Table VI presents the results of the eight programs aggregated by

the mutation operator. In it, we can see the number of generated mutants (#M), the number of

equivalent mutants (#E) and the KR metric (KR (%)), as well as the number of mutants removed for

the experiments with the reduction module enabled in the tool (#R).

Mutation operators did not significantly differ between the first and second experiments regarding

KR. Exceptions observed are related to the change in strategy concerning the scope of Spark

transformations to be considered during mutation: (1) the operators BTS and BTR did not generate

mutants with TRANSMUT-SPARK; and (2) UTS generated fewer mutants and had a significant

variation in its KR.

The operators with better results were UTS, DTI, DTD, JTR, OTI and OTD with low KR values

(below 30%). These values show that fewer tests killed the mutants generated by them. In contrast,

the mutants generated by operators with high KR values, like MTR and NFTP, had their mutants

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)

Prepared using stvrauth.cls DOI: 10.1002/stvr

46 J. B. DE SOUZA NETO ET AL.

Table VI. Results of the experiments aggregated by mutation operator.

First Experiment Second Experiment Third Experiment
Operator #M #E KR (%) #M #E KR (%) #M #E #R KR (%)

UTS 11 2 67.6 4 2 25.0 4 2 0 25.0
BTS 1 0 75.0 0 0 – 0 0 0 –
UTR 22 2 39.0 8 2 37.5 8 2 0 37.5
BTR 2 0 37.5 0 0 – 0 0 0 –
UTD 6 0 32.0 19 0 32.9 19 0 0 32.9
MTR 82 5 76.1 91 9 73.8 48 4 43 67.1
FTD 7 0 34.4 7 0 36.1 0 0 7 –

NFTP 7 0 65.6 7 0 66.6 0 0 7 –
STR 10 2 34.4 8 0 34.4 8 0 0 34.4
DTI 31 10 27.7 49 25 26.2 42 18 7 26.2
DTD 1 0 25.0 1 0 25.0 0 0 1 –
ATR 20 4 46.4 20 4 46.4 16 0 4 46.4
JTR 6 3 22.2 6 3 22.2 6 3 0 22.2
OTI 4 0 30.0 4 0 25.0 0 0 4 –
OTD 4 0 20.0 4 0 16.6 0 0 4 –

killed by a more significant amount of tests. This result intuitively indicates that these operators

might be trivial.

The aggregated results by mutation operator of the program MovieLensExploration are

shown in Table VII. In this program, a total of 33 Spark transformations are applied. We developed

17 test cases to kill the 171 non-equivalent mutants generated by TRANSMUT-SPARK for the

program. The average execution time of the tool for this program was approximately 39.4 minutes

(2364.6 seconds). The reduction module automatically removed 65 of the generated mutants. The

tool’s average execution time was approximately 24.6 minutes (1475.8 seconds) with this reduction.

As shown in Table VII, the KR values show that the mutants generated with the operators MTR,

UTS and UTR were killed by most tests developed for the program MovieLensExploration.

As in the first experiment, the mutants generated with the operator MTR were the ones that died

more easily and contributed less in the test generation process since they did not need particular

tests to kill them. In contrast, the operators DTI, JTR and OTD had the lowest KR, indicating that

their mutants required more specific tests to be killed.

Analysis of the execution time of the mutation process The most significant difference between

the first two experiments was the time spent executing the mutation testing process. The

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)

Prepared using stvrauth.cls DOI: 10.1002/stvr

TRANSMUT-SPARK: TRANSFORMATION MUTATION FOR APACHE SPARK 47

Table VII. Results of the experiments for the program MovieLensExploration aggregated by mutation
operator.

Second Experiment Third Experiment
Operator #M #E KR (%) #M #E #R KR (%)

UTS 3 0 88.8 3 0 0 88.8
UTR 6 0 94.4 6 0 0 94.4
UTD 8 0 69.2 8 0 0 69.2
MTR 114 10 99.2 66 5 48 98.6
DTI 32 11 43.4 25 6 7 42.8
ATR 20 3 73.9 16 0 4 72.7
JTR 6 0 22.2 6 0 0 22.2
OTI 3 0 58.3 0 0 3 –
OTD 3 0 41.6 0 0 3 –
Total 195 24 – 130 11 65 –

experiments’ execution and analysis of the first experiment results took approximately four weeks,

with an average of roughly three days for each program. This work involved the manual generation

of the mutants, implementation of test cases, implementation of scripts for automatic execution of

the mutants, and manual collection and analysis of the results, being most of these laborious and

repetitive tasks.

The second experiment tested TRANSMUT-SPARK and showed it drastically reduces the

execution time of the mutation testing process. The tool automates three tasks: generating the

mutants, executing the tests, and analyzing the results. Thus, we put effort into developing test

cases and analyzing living mutants to identify equivalent ones. The work that took on average three

days for each program in the first experiment was done in a few hours in the second experiment.

This effort was significant for the program MovieLensExploration that was not applied in

the first experiment due to its complexity compared to the other programs, being impractical to

use the process manually. Thus, with the aid of TRANSMUT-SPARK, the effort in the mutation

testing process of MovieLensExploration was concentrated on the development of tests,

which remains manual.

For the eight programs in the first experiment, the process with TRANSMUT-SPARK took a few

minutes for each program (see Table V). We reused the tests of the first experiment; thus, we did not

consider the time spent in defining them. The program MoviesRecomendationwas the one that

generated the most significant amount of mutants and took the longest time to finalize the process

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)

Prepared using stvrauth.cls DOI: 10.1002/stvr

48 J. B. DE SOUZA NETO ET AL.

(approximately nine minutes). Regarding the program MovieLensExploration, we spent

approximately one day developing its tests, and the execution of the process took approximately

39 minutes on average.

Analysis of the generated mutants per operator We observed that the mutants generated by MTR

were trivially killed, particularly in cases where mutants were mapped to Max, Min, “ ”, x.reverse

and null. In contrast, MTR mutants mapped to other values had better results.

As discussed in Section 4, through the experiments, we confirmed the relation between couples of

operators FTD/NFTP and OTD/OTI that shows that the tests that kill FTD/OTD mutants always kill

NFTP/OTI mutants, but not the opposite. Finally, since UTD represents a general transformation

removal, the mutants generated with the FTD, DTD and OTD operators were also generated by

UTD. Thus, the application of the operator UTD overrides the application of FTD, DTD and OTD;

otherwise, mutants are duplicated. These results were used to define the reduction rules implemented

by the mutants reduction module. Table VII shows the number of mutants generated for each

mutation operator applied to the program MovieLensExploration. Note that the operator

MTR generated approximately 58% of the program’s mutants. Of the 33 transformations applied

in the program MovieLensExploration, 20 were mapping transformations (approximately

60%). The more significant mapping transformations explain the number of mutants generated by

MTR. As in the first experiment, the operator DTI generated the second largest number of mutants

and the most significant number of equivalent mutants.

7.2. RQ2: Impact of Mutants Reduction in TRANSMUT-SPARK performance

The strategy adopted to answer RQ2 was to compare TRANSMUT-SPARK performance when

reduction rules are applied for reducing the number of mutants.

Analysis of the impact of the mutants reduction module use Then columns Mutants 3 and

Equivalent 3 in Figure 13 compare the number of mutants and equivalent mutants generated with

TRANSMUT-SPARK using the reduction module. Finally, column Removed 3 shows the number

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)

Prepared using stvrauth.cls DOI: 10.1002/stvr

TRANSMUT-SPARK: TRANSFORMATION MUTATION FOR APACHE SPARK 49

of removed mutants by the reduction module. The differences between the results of the three

experiments aggregated by mutation operator can be seen in Figure 14.

The analysis of the results of the first and second experiments motivated the development of

the reduction rules introduced in Section 4 and the implementation of the reduction module of

TRANSMUT-SPARK. This module applies a selective mutation strategy [53] to remove equivalent,

redundant or trivial (i.e., mutants that are easily killed) mutants from the set of mutants generated

by TRANSMUT-SPARK. This strategy reduces the number of mutants to be executed, which are

more likely to contribute to the mutation testing process.

Table V and table VI show the results obtained by TRANSMUT-SPARK using the reduction

module on the eight programs of the testing battery (Third Experiment). Recall that we used

the same testing battery in the first and second experiments. Figure 13 and Figure 14 show the

experimental result with the reduction model disabled and enabled. Note that the reduction module

removed approximately 34% of the mutants generated by TRANSMUT-SPARK when the module

was disabled. The module removed approximately 35% of equivalent mutants. The reduction of

equivalent mutants reduces the effort required to analyze living mutants since equivalent mutants

need to be detected manually.

The programs MoviesRecomendation and JoinQuery had approximately 37% and 43%

fewer mutants than the second experiment, respectively. The mutants generated with the operators

FTD, DTD, OTD, NFTP and OTI were removed using the reduction rules R1, R2 and R3 (see

Table IV). Then, approximately 47% of the mutants generated by the operator MTR were removed.

For the operators DTI and ATR, all mutants removed by the module were equivalent.

The KR metric improved for the mutation operator MTR, reducing about 6.7%. The KR for the

operators DTI and ATR did not change when equivalent mutants were removed, and the metric

is not affected in this case. Finally, the removed mutants caused by the operators FTD, DTD,

OTD, NFTP and OTI had no adverse effects on the process because their mutants were redundant

with the mutants generated by the operator UTD. The application of these redundant mutants was

unnecessary because the operator UTD was applied.

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)

Prepared using stvrauth.cls DOI: 10.1002/stvr

50 J. B. DE SOUZA NETO ET AL.

For the program MovieLensExploration, the reduction module removed approximately

33% of the mutants generated by TRANSMUT-SPARK (see Table VII). In the case where only

equivalent mutants are considered, this reduction was around 46%. The most significant reduction

concerned the operator MTR, with 46% fewer mutants for the other eight programs. The KR of the

operators MTR, DTI and ATR dropped approximately 1% compared to the KR obtained without

the reduction module. Even if this variation was slight, the result is promising. It suggests that the

module could remove inefficient mutants from the process without harmful side effects like not

detecting failures.

One of the major impacts of the mutants reduction module was on the execution time. For the

eight programs used in the first experiment, the module reduced the total execution time of the

tool by 29%. For the program MovieLensExploration, this reduction was 37%. These tool

execution time reductions were proportional to the number of mutants removed. In general, the

third experiment’s results show that the mutants reduction module improved TRANSMUT-SPARK

results. The module could reduce the number of equivalent mutants and thereby the effort required

for identifying them. The module could remove redundant and trivial mutants. The module improved

the KR results for some mutation operators, which implies that it removed inefficient mutants.

Finally, the module reduced the tool’s execution time. Thus, the mutants reduction module achieved

its goal by reducing the costs of the mutation testing process of TRANSMUT-SPARK.

7.3. RQ3: Comparison of TRANSMUT-SPARK with Existing Scala Program Mutation Tools

For RQ3, we adopted the strategy of comparing experimentally TRANSMUT-SPARK with existing

mutation tools and further assess the relevance of TRANSMUT-SPARK’s underlying approach.

Comparison of TRANSMUT-SPARK with Scalamu Table VIII and Table IX show the

performance of the test set designed to kill the mutants generated by TRANSMUT-SPARK

(“TRANSMUT-SPARK Tests”) and the performance of the test set designed to kill the mutants

generated by Scalamu (“Scalamu Tests”). Besides, they show the number of tests designed for each

program (Tests), the number of generated mutants (#M), the number of mutants killed (#K), the

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)

Prepared using stvrauth.cls DOI: 10.1002/stvr

TRANSMUT-SPARK: TRANSFORMATION MUTATION FOR APACHE SPARK 51

Table VIII. Results obtained with TRANSMUT-SPARK using the reduction module for the comparative
experiment of TRANSMUT-SPARK and Scalamu.

Program TRANSMUT-SPARK Tests Scalamu Tests
Tests #M #K #E #R ms Tests #M #K #E #R ms

NGramsCount 5 23 22 1 9 1.00 4 23 18 1 9 0.82
ScanQuery 3 7 7 0 6 1.00 1 7 1 0 6 0.14

AggregationQuery 3 10 10 0 6 1.00 2 10 7 0 6 0.70
DistinctUserVisitsPerPage 2 11 7 4 6 1.00 1 11 7 4 6 1.00

MoviesRatingsAverage 4 13 11 2 6 1.00 6 13 7 2 6 0.64
MoviesRecomendation 5 35 24 11 21 1.00 9 35 24 11 21 1.00

JoinQuery 6 21 20 1 16 1.00 2 21 7 1 16 0.35
NasaApacheWebLogsAnalysis 4 31 21 10 7 1.00 3 31 15 10 7 0.71

MovieLensExploration 17 130 119 11 65 1.00 10 130 92 11 65 0.77
Total 49 281 241 40 142 1.00 38 281 178 40 142 0.74

Table IX. Results obtained with Scalamu for the comparative experiment of TRANSMUT-SPARK and
Scalamu.

Program TRANSMUT-SPARK Tests Scalamu Tests
Tests #M #K #E ms Tests #M #K #E ms

NGramsCount 5 15 11 1 0.79 4 15 14 1 1.00
ScanQuery 3 3 2 0 0.67 1 3 3 0 1.00

AggregationQuery 3 3 2 0 0.67 2 3 3 0 1.00
DistinctUserVisitsPerPage 2 1 1 0 1.00 1 1 1 0 1.00

MoviesRatingsAverage 4 28 20 2 0.77 6 28 26 2 1.00
MoviesRecomendation 5 44 34 1 0.79 9 44 43 1 1.00

JoinQuery 6 3 2 0 0.67 2 3 3 0 1.00
NasaApacheWebLogsAnalysis 4 7 5 0 0.71 3 7 7 0 1.00

MovieLensExploration 17 51 45 2 0.92 10 51 49 2 1.00
Total 49 155 122 6 0.82 38 155 149 6 1.00

number of equivalent mutants (#E), the number of mutants removed by the reduction module (#R)

and the mutation score (ms). The mutation score values highlighted in blue indicate the cases with

the same ms for the two test sets to insist on the comparison. The cases highlighted in green are

those with an ms of 1.0. The cases highlighted in red are those with an ms below 1.0.

Analysis of the comparison of TRANSMUT-SPARK with Scalamu As shown in tables VIII

and IX, the test set’s performance was different for each tool. The columns “TRANSMUT-SPARK

Tests” in Table VIII, and “Scalamu Tests” in Table IX show that both tools achieved a mutation

score 1.0. This score value was expected, given that we developed a specific test set for each tool. In

contrast, note that the mutation score (ms) of the test set designed for Scalamu achieved lower score

values by TRANSMUT-SPARK and vice-versa. The test set designed to kill the mutants generated

by Scalamu achieved an average ms of 0.74 killing TRANSMUT-SPARK mutants generated with

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)

Prepared using stvrauth.cls DOI: 10.1002/stvr

52 J. B. DE SOUZA NETO ET AL.

the reduction module enabled. The test set designed to kill the mutants generated by TRANSMUT-

SPARK achieved an average ms of 0.82 killing Scalamu generated mutants. These results show that

tests designed to kill TRANSMUT-SPARK mutants did not kill all of Scalamu mutants, and vice-

versa. Thus, the results showed that one tool could complement the other since developing tests to

kill the mutants of just one tool is not enough to kill all the mutants generated by the other.

7.4. Analysis and Discussion

The main goal of the experiments was assessing the use of a testing tool for testing Spark programs

(compared with a less systematic and error-prone manual process). We also verified to which extent

the tool allows more extensive, more realistic tests.

The manual experiment let us define a baseline that serves as a reference to assess two main

aspects regarding the tool ([RQ1 answer]):

1. Automation makes the mutation testing process more agile. It prevents programmers or people

testing the tool to perform manual tasks far away from the objective of the task, which

is assessing Spark data processing code. With the baseline as a reference, it is possible to

determine to which extent an agile and automated process can: (i) lead to the generation of

more mutants, (ii) calibrate the reduction strategy, (iii) easily compare the testing results,

(iv) eventually activate/deactivate mutants, and (v) thoroughly analyse them understand and

calibrate the testing process. Our results show that it is essential to have a tool with the

facilities offered by TRANSMUT-SPARK within a testing process.

2. Keeping quantitative track of the testing process. TRANSMUT-SPARK also produces

statistics that are useful to generate quantitative results about the testing process with metrics

that can be representative to compare testing tasks under different conditions. A manual

process would imply that programmers drag the pencil with a considerable burden to produce

these testing results.

Concerning mutation operators through the tool’s implementation, we could profile the set of

operators, identifying those that override specific ones. This result let us define a “minimum” set of

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)

Prepared using stvrauth.cls DOI: 10.1002/stvr

TRANSMUT-SPARK: TRANSFORMATION MUTATION FOR APACHE SPARK 53

mutation operators adapted to Spark programs. Identifying this “minimum” set is a significant result

obtained through experiments that let us define the reduction module of TRANSMUT-SPARK. The

goal of this module was achieved because the experiments showed that it contributed to reduce

mutation testing process costs by removing inefficient mutants (i.e., that did not contribute to the

testing process) and reducing the tool’s execution time ([RQ2 answer]).

Traditional mutation testing and transformation mutation are complementary because they refer

to different facets of the program and simulate different faults. In traditional mutation testing,

modifications are made on the syntactic facet, and in consequence, it depends on the syntax

of the programming language [16]. This approach mimics programming faults through syntactic

deviations in the program, such as replacing one arithmetic operator with another. In contrast,

transformation mutation simulates faults related to the definition of the data flow and specific

transformations used in a data processing program independent of the programming language. The

results of the TRANSMUT-SPARK and Scalamu comparison experiment confirm the hypothesis

that both mutation approaches are complementary, and they are needed to thoroughly test a Scala

program weaving code for processing data using Spark libraries operations ([RQ3 answer]).

8. THREATS TO VALIDITY AND LIMITATIONS

The experimental validation presented in this work was the first attempt to evaluate our approach

and tool. The experiments have some limitations and threats to their validity.

The first limitation is related to the testing battery. Programs implement code that focuses on the

pure Big Data processing tasks within applications because TRANSMUT-SPARK tests this type of

code and not the code that wraps these tasks. This choice implies that the programs of the testing

battery are simple in terms of the number of lines, program logic, and scope, giving the impression

of not being adapted for testing complex, industrial applications. Nevertheless, the complexity of the

programs in the testing could increase by concatenating several Big Data processing tasks. However,

this strategy does not seem realistic because, usually, applications do not combine several analytics

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)

Prepared using stvrauth.cls DOI: 10.1002/stvr

54 J. B. DE SOUZA NETO ET AL.

targets at a time. Besides, the phases of the analytics process like data preparation, cleaning, training

and applying models [63] are treated as separated programs, just as we did with our testing battery.

Figure 5 shows that the mutation operators were defined based on the taxonomy resulting from

a thorough study of Spark programs and Big Data processing operators. The use of the taxonomy

prevents the empirical definition of mutation operators. In the same way, the experiments and faults

used to define tests correspond to those of the taxonomy. This strategy ensures that experiments

thoroughly test the families of faults that can come up in Spark Big Data processing code and assess

the whole battery of operators proposed by our approach. The strategy is inspired from the mutation

testing approach proposed by Ferrari et al. [64].

A second limitation for our study is related to the tests designed to kill mutants in experiments.

Our goal in the experiments was to design tests that would kill all generated non-equivalent

mutants. Thus, experiments provide a quantitative profile of the approach and its automation. The

experiments are not defined to assess the approach and tool concerning other criteria (such as graph-

based or input partitioning coverage [16]), and they do not provide insight to compare the results

against other testing techniques. Also, the fact that the authors themselves develop the tests in the

experiments may usually introduce a bias in the evaluation. We mitigated this threat by building

the test set from simple tests as shown in Section 6.2 as a starting point and evolving the set with

new simple tests when needed until reaching a mutation score of 1.0. We managed to avoid having

unnecessary tests, and more importantly, unnecessarily complex tests. Consequently, the developed

tests all contributed to the testing process and, at the same time, were not more powerful than

required by the process.

Rationale of limitations and outreach TRANSMUT-SPARK relies on mutation operators, aimed

at discovering specific faults (see Section 4). These operators only deal with (1) wrong data flow

definition, and (2) inappropriate use of Spark built-in operations and their parameters. Aspects

concerning misuse of variables for data sharing across distributed parallel processes deserves a

thorough study and probably the design of an ad-hoc testing process and this is part of our

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)

Prepared using stvrauth.cls DOI: 10.1002/stvr

TRANSMUT-SPARK: TRANSFORMATION MUTATION FOR APACHE SPARK 55

future work. TRANSMUT-SPARK also relies on reduction rules that apply a selective mutation

approach [53] to remove redundant and inefficient mutants.

The current version of TRANSMUT-SPARK implements a simple strategy for managing test

cases and mutants. Regarding tests, TRANSMUT-SPARK operates at the test class level, where a

class can contain the implementation of one or more test cases. The tool allows specifying which

test classes should be executed or not in the testing process. However, it cannot deal with a finer

granularity, by selecting test cases within classes.

Regarding mutants, it is possible to define which operators will be applied or not in the

process, but the tool does not allow to select and execute individual mutants. This is due to

the fact that TRANSMUT-SPARK executes all the testing steps sequentially within a unique

process (see Figure 6). The process is not interactive to let calibrate steps according to partial

results—for example, select mutants to be executed between the generation and execution steps.

Still, TRANSMUT-SPARK can execute a subset of mutants that survived a previous testing process.

It also lets tag equivalent mutants to avoid unnecessary executions. TRANSMUT-SPARK allows

tests to be added incrementally to the process, such that new tests can be developed to kill mutants

that previous tests could not kill. These functionalities reduce the process execution time because

only the necessary mutants are executed.

The program code TRANSMUT-SPARK can only test Spark programs built using the patterns it

supports. Otherwise, programs have to be refactored before they are tested with TRANSMUT-

SPARK. We decided to support specific patterns for the first version of TRANSMUT-SPARK

to facilitate (1) controllability because the program can run independently of the context; (2)

observability of the program elements (datasets and transformation) and behavior in the tests. These

characteristics are fundamental to enable the automation of tests [16].

9. CONCLUSIONS AND FUTURE WORK

This paper introduced TRANSMUT-SPARK, a transformation mutation tool for Spark Big Data

processing programs. TRANSMUT-SPARK automates the primary and most laborious steps of

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)

Prepared using stvrauth.cls DOI: 10.1002/stvr

56 J. B. DE SOUZA NETO ET AL.

the mutation testing process [12] and fully executes the testing process for Spark programs.

TRANSMUT-SPARK implements operators for mutating the data flow and the transformations

composing a Spark program [10]. TRANSMUT-SPARK deals with test case handling with the

possibility for executing, including, and excluding test cases. TRANSMUT-SPARK also deals with

mutant handling by generating, executing, and analyzing mutants. Finally, TRANSMUT-SPARK

performs an adequacy analysis, calculating the mutation score and generating reports. The current

version of TRANSMUT-SPARK is available on Github.

Through the description of the tool and experiments, the paper shows that TRANSMUT-SPARK

is complementary to classical mutation testing tools addressing the data processing aspects of

Spark programs. Experiments show that TRANSMUT-SPARK and Scalamu combined can lead

to validation of both Scala code and weaved Spark data processing code. For the time being,

the experiments run on TRANSMUT-SPARK have addressed representative data processing code,

validating the mutation operators proposed in a previous work [10].

The assessment scores obtained experimentally (mutation score, killed ratio and process/execu-

tion time) showed promising results of TRANSMUT-SPARK in the process of testing Spark data

processing programs. We can further use other testing batteries with programs that implement more

processing tasks and compare results with other testing approaches. Our future work will tackle

testing classic programs weaving data processing code using classical testing techniques (such as

input space partitioning and logical coverage [16]) and with other work in the field [44].

Finally, our mutation operators [10] were formalized with the model for data flow programs

presented in a previous paper [51], based on characteristics of different systems, including Apache

Flink [2], Apache Beam [4], and DryadLINQ [3]. Thus, we also plan to extend TRANSMUT-

SPARK to apply mutation testing to programs in other systems besides Spark.

ACKNOWLEDGEMENT

This study was partially funded by the Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior -

Brasil (CAPES) - Finance Code 001.

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)

Prepared using stvrauth.cls DOI: 10.1002/stvr

TRANSMUT-SPARK: TRANSFORMATION MUTATION FOR APACHE SPARK 57

REFERENCES

1. Hadoop. Apache Hadoop Documentation 2019. URL https://hadoop.apache.org/docs/r2.7.3/.

2. Carbone P, Ewen S, Haridi S, Katsifodimos A, Markl V, Tzoumas K. Apache Flink: Stream and Batch Processing

in a Single Engine. IEEE Data Engineering Bulletin 2015; 38(4):28–38.

3. Yu Y, Isard M, Fetterly D, Budiu M, Erlingsson U, Gunda PK, Currey J. DryadLINQ: A System for General-purpose

Distributed Data-parallel Computing Using a High-level Language. Proceedings of the 8th USENIX Conference on

Operating Systems Design and Implementation, OSDI’08, USENIX Association: Berkeley, CA, USA, 2008; 1–14.

URL http://dl.acm.org/citation.cfm?id=1855741.1855742.

4. Beam A. Apache Beam: An advanced unified programming model 2016. URL https://beam.apache.org/.

5. Zaharia M, Chowdhury M, Franklin MJ, Shenker S, Stoica I. Spark: Cluster Computing with Working

Sets. Proceedings of the 2Nd USENIX Conference on Hot Topics in Cloud Computing, HotCloud’10,

USENIX Association: Berkeley, CA, USA, 2010; 10–10. URL http://dl.acm.org/citation.cfm?id=

1863103.1863113.

6. Garg N, Singla S, Jangra S. Challenges and Techniques for Testing of Big Data. Procedia Computer Science 2016;

85:940 – 948, doi:https://doi.org/10.1016/j.procs.2016.05.285. URL http://www.sciencedirect.com/

science/article/pii/S1877050916306354, international Conference on Computational Modelling and

Security (CMS 2016).

7. Meeker WQ, Hong Y. Reliability Meets Big Data: Opportunities and Challenges. Quality Engi-

neering 2014; 26(1):102–116, doi:10.1080/08982112.2014.846119. URL https://doi.org/10.1080/

08982112.2014.846119.

8. Liu J, Li J, Li W, Wu J. Rethinking big data: A review on the data quality and usage issues. ISPRS

Journal of Photogrammetry and Remote Sensing 2016; 115:134 – 142, doi:https://doi.org/10.1016/j.isprsjprs.2015.

11.006. URL http://www.sciencedirect.com/science/article/pii/S0924271615002567,

theme issue ’State-of-the-art in photogrammetry, remote sensing and spatial information science’.

9. DeMillo RA, Lipton RJ, Sayward FG. Hints on test data selection: Help for the practicing programmer. Computer

April 1978; 11(4):34–41, doi:10.1109/C-M.1978.218136.

10. Souza Neto JBd, Martins Moreira A, Vargas-Solar G, Musicante MA. Mutation Operators for Large Scale Data

Processing Programs in Spark. Advanced Information Systems Engineering, Dustdar S, Yu E, Salinesi C, Rieu D,

Pant V (eds.), Springer International Publishing: Cham, 2020; 482–497. URL https://doi.org/10.1007/

978-3-030-49435-3_30.

11. Maldonado JC, Delamaro ME, Fabbri SCPF, da Silva Simão A, Sugeta T, Vincenzi AMR, Masiero PC.

Proteum: A Family of Tools to Support Specification and Program Testing Based on Mutation. Springer

US: Boston, MA, 2001; 113–116, doi:10.1007/978-1-4757-5939-6 19. URL https://doi.org/10.1007/

978-1-4757-5939-6_19.

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)

Prepared using stvrauth.cls DOI: 10.1002/stvr

https://hadoop.apache.org/docs/r2.7.3/
http://dl.acm.org/citation.cfm?id=1855741.1855742
https://beam.apache.org/
http://dl.acm.org/citation.cfm?id=1863103.1863113
http://dl.acm.org/citation.cfm?id=1863103.1863113
http://www.sciencedirect.com/science/article/pii/S1877050916306354
http://www.sciencedirect.com/science/article/pii/S1877050916306354
https://doi.org/10.1080/08982112.2014.846119
https://doi.org/10.1080/08982112.2014.846119
http://www.sciencedirect.com/science/article/pii/S0924271615002567
https://doi.org/10.1007/978-3-030-49435-3_30
https://doi.org/10.1007/978-3-030-49435-3_30
https://doi.org/10.1007/978-1-4757-5939-6_19
https://doi.org/10.1007/978-1-4757-5939-6_19

58 J. B. DE SOUZA NETO ET AL.

12. Delamaro ME, Maldonado JC. Proteum-A Tool for the Assessment of Test Adequacy for C Programs. Proceedings

of the Conference on Performability in Computing Systems (PCS’96), New Brunswick, New Jersey, 1996; 79–95.

13. Spark. Apache Spark Documentation 2019. URL http://spark.apache.org/docs/2.2.0/.

14. Zaharia M, Chowdhury M, Das T, Dave A, Ma J, McCauley M, Franklin MJ, Shenker S, Stoica I. Resilient

Distributed Datasets: A Fault-tolerant Abstraction for In-memory Cluster Computing. Proceedings of the 9th

USENIX Conference on Networked Systems Design and Implementation, NSDI’12, USENIX Association: Berkeley,

CA, USA, 2012; 2–2. URL http://dl.acm.org/citation.cfm?id=2228298.2228301.

15. Ganelin I, Orhian E, Sasaki K, York B. Spark: Big Data Cluster Computing in Production. Wiley, 2016.

16. Ammann P, Offutt J. Introduction to Software Testing. Second edition edn., Cambridge University Press: New York,

NY, 2017.

17. Jia Y, Harman M. An analysis and survey of the development of mutation testing. IEEE Transactions on Software

Engineering Sep 2011; 37(5):649–678, doi:10.1109/TSE.2010.62.

18. Frankl PG, Weiss SN, Hu C. All-uses vs mutation testing: An experimental comparison of effectiveness. Journal of

Systems and Software 1997; 38(3):235 – 253, doi:https://doi.org/10.1016/S0164-1212(96)00154-9. URL http:

//www.sciencedirect.com/science/article/pii/S0164121296001549.

19. Offutt AJ, Pan J, Tewary K, Zhang T. An experimental evaluation of data flow and mutation testing. Softw.

Pract. Exper. Feb 1996; 26(2):165–176, doi:10.1002/(SICI)1097-024X(199602)26:2⟨165::AID-SPE5⟩3.0.CO;

2-K. URL http://dx.doi.org/10.1002/(SICI)1097-024X(199602)26:2<165::AID-SPE5>

3.0.CO;2-K.

20. Walsh PJ. A measure of test case completeness. PhD Thesis, State University of New York at Binghamton,

Binghamton, NY, USA 1985. AAI8514636.

21. Teeuw W, Blanken H. Control versus data flow in parallel database machines. IEEE transactions on parallel

and distributed systems Nov 1993; 4(4):1265–1279, doi:10.1109/71.250104. Imported from EWI/DB PMS [db-

utwente:arti:0000002027].

22. Dean J, Ghemawat S. MapReduce: Simplified Data Processing on Large Clusters. OSDI’04: Sixth Symposium on

Operating System Design and Implementation, San Francisco, CA, 2004; 137–150.

23. Camargo LC, Vergilio SR. Mapreduce program testing: a systematic mapping study. Chilean Computer Science

Society (SCCC), 32nd International Conference of the Computation, 2013.

24. Morán J, de la Riva C, Tuya J. Testing MapReduce programs: A systematic mapping study. Journal of Software:

Evolution and Process 2019; 31(3):e2120, doi:10.1002/smr.2120. URL https://onlinelibrary.wiley.

com/doi/abs/10.1002/smr.2120.

25. Csallner C, Fegaras L, Li C. New ideas track: Testing mapreduce-style programs. Proceedings of the 19th ACM

SIGSOFT Symposium and the 13th European Conference on Foundations of Software Engineering, ESEC/FSE ’11,

ACM: New York, NY, USA, 2011; 504–507, doi:10.1145/2025113.2025204. URL http://doi.acm.org/

10.1145/2025113.2025204.

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)

Prepared using stvrauth.cls DOI: 10.1002/stvr

http://spark.apache.org/docs/2.2.0/
http://dl.acm.org/citation.cfm?id=2228298.2228301
http://www.sciencedirect.com/science/article/pii/S0164121296001549
http://www.sciencedirect.com/science/article/pii/S0164121296001549
http://dx.doi.org/10.1002/(SICI)1097-024X(199602)26:2<165::AID-SPE5>3.0.CO;2-K
http://dx.doi.org/10.1002/(SICI)1097-024X(199602)26:2<165::AID-SPE5>3.0.CO;2-K
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2120
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2120
http://doi.acm.org/10.1145/2025113.2025204
http://doi.acm.org/10.1145/2025113.2025204

TRANSMUT-SPARK: TRANSFORMATION MUTATION FOR APACHE SPARK 59

26. Li K, Reichenbach C, Smaragdakis Y, Diao Y, Csallner C. Sedge: Symbolic example data generation for dataflow

programs. 2013 28th IEEE/ACM International Conference on Automated Software Engineering (ASE), 2013; 235–

245.

27. Olston C, Reed B, Srivastava U, Kumar R, Tomkins A. Pig latin: A not-so-foreign language for data processing.

Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, SIGMOD ’08, ACM:

New York, NY, USA, 2008; 1099–1110, doi:10.1145/1376616.1376726. URL http://doi.acm.org/10.

1145/1376616.1376726.

28. Xu Z, Hirzel M, Rothermel G, Wu K. Testing properties of dataflow program operators. 2013 28th IEEE/ACM

International Conference on Automated Software Engineering (ASE), 2013; 103–113.

29. Hirzel M, Andrade H, Gedik B, Jacques-Silva G, Khandekar R, Kumar V, Mendell M, Nasgaard H, Schneider S,

Soulé R, et al.. Ibm streams processing language: Analyzing big data in motion. IBM Journal of Research and

Development 2013; 57(3/4):7:1–7:11.

30. Morán J, d l Riva C, Tuya J. Mrtree: Functional testing based on mapreduce’s execution behaviour. 2014

International Conference on Future Internet of Things and Cloud, 2014; 379–384, doi:10.1109/FiCloud.2014.67.

31. Morán J, Riva Cdl, Tuya J. Testing Data Transformations in MapReduce Programs. Proceedings of the 6th

International Workshop on Automating Test Case Design, Selection and Evaluation, A-TEST 2015, ACM:

New York, NY, USA, 2015; 20–25, doi:10.1145/2804322.2804326. URL http://doi.acm.org/10.1145/

2804322.2804326.

32. Mattos AJd. Test Data Generation for Testing MapReduce Systems. M.Sc. thesis, Universidade Federal do Paraná

2011.

33. Li N, Escalona A, Guo Y, Offutt J. A scalable big data test framework. 2015 IEEE 8th International Conference on

Software Testing, Verification and Validation (ICST), 2015; 1–2.

34. Chen YF, Hong CD, Sinha N, Wang BY. Commutativity of reducers. Tools and Algorithms for the Construction

and Analysis of Systems, Baier C, Tinelli C (eds.), Springer Berlin Heidelberg: Berlin, Heidelberg, 2015; 131–146.

35. Chen YF, Hong CD, Lengál O, Mu SC, Sinha N, Wang BY. An executable sequential specification for spark

aggregation. Networked Systems, El Abbadi A, Garbinato B (eds.), Springer International Publishing: Cham, 2017;

421–438.

36. DÖRRE J, APEL S, LENGAUER C. Static Type Checking of Hadoop MapReduce Programs. Proceedings of the

Second International Workshop on MapReduce and Its Applications, MapReduce ’11, Association for Computing

Machinery: New York, NY, USA, 2011; 17–24, doi:10.1145/1996092.1996096. URL https://doi.org/10.

1145/1996092.1996096.

37. Ono K, Hirai Y, Tanabe Y, Noda N, Hagiya M. Using Coq in Specification and Program Extraction of Hadoop

MapReduce Applications. Software Engineering and Formal Methods, Barthe G, Pardo A, Schneider G (eds.),

Springer Berlin Heidelberg: Berlin, Heidelberg, 2011; 350–365.

38. Bertot Y, Castran P. Interactive Theorem Proving and Program Development: Coq’Art The Calculus of Inductive

Constructions. 1st edn., Springer Publishing Company, Incorporated, 2010.

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)

Prepared using stvrauth.cls DOI: 10.1002/stvr

http://doi.acm.org/10.1145/1376616.1376726
http://doi.acm.org/10.1145/1376616.1376726
http://doi.acm.org/10.1145/2804322.2804326
http://doi.acm.org/10.1145/2804322.2804326
https://doi.org/10.1145/1996092.1996096
https://doi.org/10.1145/1996092.1996096

60 J. B. DE SOUZA NETO ET AL.

39. Brillout A, He N, Mazzucchi M, Kroening D, Purandare M, Rümmer P, Weissenbacher G. Mutation-based test

case generation for simulink models. International Symposium on Formal Methods for Components and Objects,

Springer, 2009; 208–227.

40. Movva V. Automatic test suite generation for scientific matlab code. M.Sc. thesis, University of Minesota 2015.

41. Xu Z, Hirzel M, Rothermel G, Wu KL. Testing properties of dataflow program operators. Proceedings of the 28th

IEEE/ACM International Conference on Automated Software Engineering, ASE’13, IEEE Press, 2013; 103–113,

doi:10.1109/ASE.2013.6693071. URL https://doi.org/10.1109/ASE.2013.6693071.

42. Karau H. Spark testing base 2015. URL https://github.com/holdenk/spark-testing-base.

43. Otto Group. Flinkspector 2016. URL https://github.com/ottogroup/flink-spector.

44. Riesco A, Rodrı́guez-Hortalá J. sscheck: Scalacheck for spark 2015. URL https://github.com/juanrh/

sscheck.

45. Claessen K, Hughes J. Quickcheck: A lightweight tool for random testing of haskell programs. Proceedings of the

Fifth ACM SIGPLAN International Conference on Functional Programming, ICFP ’00, Association for Computing

Machinery: New York, NY, USA, 2000; 268–279, doi:10.1145/351240.351266. URL https://doi.org/10.

1145/351240.351266.

46. Riesco A, Rodrı́guez-Hortalá J. Temporal random testing for spark streaming. Integrated Formal Methods, Ábrahám

E, Huisman M (eds.), Springer International Publishing: Cham, 2016; 393–408.

47. RIESCO A, RODRÍGUEZ-HORTALÁ J. Property-based testing for spark streaming. Theory and Practice of Logic

Programming 2019; 19(4):574–602, doi:10.1017/S1471068419000012.

48. Espinosa CV, Martin-Martin E, Riesco A, Rodrı́guez-Hortalá J. Flinkcheck: Property-based testing for apache flink.

IEEE Access 2019; 7:150 369–150 382.

49. Souza Neto JB. Transformation Mutation for Spark Programs Testing. PhD Thesis, Federal University of Rio

Grande do Norte (UFRN), Natal-RN, Brazil 2020. (In Portuguese).

50. Suereth J, Farwell M. SBT in Action: The Simple Scala Build Tool. 1st edn., Manning Publications Co.: USA, 2015.

51. Souza Neto JB, Moreira AM, Vargas-Solar G, Musicante MA. Modeling Big Data Processing Programs. Formal

Methods: Foundations and Applications, Carvalho G, Stolz V (eds.), Springer International Publishing: Cham,

2020; 101–118.

52. Usaola MP, Mateo PR. Mutation testing cost reduction techniques: A survey. IEEE Software 2010; 27(3):80–86.

53. Offutt AJ, Rothermel G, Zapf C. An experimental evaluation of selective mutation. Proceedings of 1993 15th

International Conference on Software Engineering, 1993; 100–107.

54. Untch RH, Offutt AJ, Harrold MJ. Mutation analysis using mutant schemata. Proceedings of the 1993 ACM

SIGSOFT International Symposium on Software Testing and Analysis, ISSTA ’93, Association for Computing

Machinery: New York, NY, USA, 1993; 139–148, doi:10.1145/154183.154265. URL https://doi.org/10.

1145/154183.154265.

55. Offutt AJ, Untch RH. Mutation 2000: Uniting the Orthogonal. Springer US: Boston, MA, 2001; 34–44, doi:

10.1007/978-1-4757-5939-6 7. URL https://doi.org/10.1007/978-1-4757-5939-6_7.

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)

Prepared using stvrauth.cls DOI: 10.1002/stvr

https://doi.org/10.1109/ASE.2013.6693071
https://github.com/holdenk/spark-testing-base
https://github.com/ottogroup/flink-spector
https://github.com/juanrh/sscheck
https://github.com/juanrh/sscheck
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/154183.154265
https://doi.org/10.1145/154183.154265
https://doi.org/10.1007/978-1-4757-5939-6_7

TRANSMUT-SPARK: TRANSFORMATION MUTATION FOR APACHE SPARK 61

56. Choi BJ, DeMillo RA, Krauser EW, Martin RJ, Mathur AP, Offutt AJ, Pan H, Spafford EH. The Mothra tool set

(software testing). [1989] Proceedings of the Twenty-Second Annual Hawaii International Conference on System

Sciences. Volume II: Software Track, vol. 2, 1989; 275–284 vol.2, doi:10.1109/HICSS.1989.48002.

57. Odersky M, Spoon L, Venners B. Programming in Scala: Updated for Scala 2.12. 3rd edn., Artima Incorporation:

Sunnyvale, CA, USA, 2016.

58. INFO SUPPORT. Stryker Mutator 2020. URL https://stryker-mutator.io.

59. Coles H, Laurent T, Henard C, Papadakis M, Ventresque A. Pit: A practical mutation testing tool for java (demo).

Proceedings of the 25th International Symposium on Software Testing and Analysis, ISSTA 2016, Association

for Computing Machinery: New York, NY, USA, 2016; 449–452, doi:10.1145/2931037.2948707. URL https:

//doi.org/10.1145/2931037.2948707.

60. Sarwar B, Karypis G, Konstan J, Riedl J. Item-based Collaborative Filtering Recommendation Algorithms.

Proceedings of the 10th International Conference on World Wide Web, WWW ’01, ACM: New York, NY, USA,

2001; 285–295, doi:10.1145/371920.372071.

61. AMPLab. Big data benchmark 2019. URL https://amplab.cs.berkeley.edu/benchmark/.

62. Harper FM, Konstan JA. The MovieLens Datasets: History and Context. ACM Trans. Interact. Intell. Syst. Dec

2015; 5(4):19:1–19:19, doi:10.1145/2827872.

63. Zöller MA, Huber MF. Benchmark and survey of automated machine learning frameworks. Journal of Artificial

Intelligence Research 2021; .

64. Ferrari FC, Maldonado JC, Rashid A. Mutation testing for aspect-oriented programs. 2008 1st International

Conference on Software Testing, Verification, and Validation, 2008; 52–61, doi:10.1109/ICST.2008.37.

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)

Prepared using stvrauth.cls DOI: 10.1002/stvr

https://stryker-mutator.io
https://doi.org/10.1145/2931037.2948707
https://doi.org/10.1145/2931037.2948707
https://amplab.cs.berkeley.edu/benchmark/

	1 Introduction
	2 Background
	2.1 Apache Spark
	2.2 Mutation Testing

	3 Related Work
	3.1 Testing MapReduce (control flow-based) Programs
	3.2 Data Flow Program Testing
	3.3 Discussion

	4 Mutation Operators for Apache Spark Big Data Processing programs
	4.1 A Taxonomy of Functional Faults in Apache Spark Programs
	4.2 Mutation Operators for Data Flow
	4.3 Mutation Operators for Transformations

	5 TRANSMUT-Spark
	5.1 Mutation Process Workflow
	5.2 Implementation details and architecture
	5.3 Use of the tool

	6 Experimental Setup
	6.1 Methodology
	6.2 Experimental process

	7 Results and Analysis
	7.1 RQ1: Applicability of TRANSMUT-Spark to fully automate the mutation testing process steps
	7.2 RQ2: Impact of Mutants Reduction in TRANSMUT-Spark performance
	7.3 RQ3: Comparison of TRANSMUT-Spark with Existing Scala Program Mutation Tools
	7.4 Analysis and Discussion

	8 Threats to validity and Limitations
	9 Conclusions and Future Work

