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Summary 

Objectives.  To  analyze  the  content  of  publications  within  the  medical  NLP  domain  in  2020.  Methods.
Automatic and manual preselection of publications to be reviewed, and selection of the best NLP papers of
the year. Analysis of the important issues. Results. Three best papers have been selected in 2020. We also
propose an analysis of the content of the NLP publications in 2020, all topics included. Conclusion. The two
main issues addressed in 2020 are related to the investigation of COVID-related questions and to the further
adaptation  and  use  of  transformer  models.  Besides,  the  trends  from the  past  years  continue,  such  as
diversification of languages processed and use of information from social networks. 
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1 Introduction 

Natural Language Processing (NLP) aims at providing methods, tools and resources designed in order to
mine textual and narrative documents, and to make it possible to access the information they convey [1].
While human languages are complex (as an example, learning a human language requires many years in
order to be fluent), the importance of using NLP approaches to mine documents produced by humans has
been pointed out since a long time [2]. In this synopsis, we first present the selection process applied this
year and then we analyze the content of  some publications.  More particularly,  we will  focus on several
important issues such as robustness of the methods, reproducibility of the results, as well as the originality of
the research questions addressed in 2020. 

2 The Selection Process 

In order to identify all papers published during the year 2020 in the field of NLP, we queried two databases:
MEDLINE1,  specifically  dedicated  to  the  biomedical  domain,  and  the  Association  for  Computational
Linguistics (ACL) anthology2, a database that brings together the major NLP conferences (ACL, International
Conference for Computational Linguistics (COLING), Empirical  Methods in Natural Language Processing
(EMNLP), International Conference on Language Resources and Evaluation (LREC), Annual Conference of
the North American Chapter of the Association for Computational Linguistics (NAACL), …etc.) and journals,
since some NLP studies concerning the biomedical domain are published in conferences and journals which
are not indexed by PubMed. 

(English[LA] AND journal article[PT] AND 2020[DP] 
AND (medical OR clinical OR natural) AND "language processing")

Figure 1: Query used for collecting candidate publications to be reviewed.

We applied the basic query we defined last year on MEDLINE (Figure 1): all journal papers published in
English in 2020, having abstract, and composed of sequences "clinical language processing" or "medical
language processing" or "natural language processing". As of 2020, January 9 th, we collected 767 entries.
We applied a similar query on the ACL anthology database and collected 10 entries. In order to process
those 777 papers, we automatically scored the papers. Indeed, all the candidate papers are not specifically
related to the NLP domain despite the use of one of the three sequences from the query. For instance, they
can  be related to  other  sections from the  IMIA Yearbook (Public  Health  and Epidemiology Informatics,
Decision Support, Knowledge Representation and Management, …etc.) without providing major issues for

1 https://pubmed.ncbi.nlm.nih.gov/

2 https://www.aclweb.org/anthology/ 



the NLP section. Hence, we applied three sets of rules we defined in 2018 while identifying best papers in a
previous edition, in order to compute global scores for each publication. 

The first set of rules is based upon the name of the journal (both full name and concepts found in the name): 

 the positive score is assigned to the main journals in which the biomedical NLP research is usually
published by the NLP community (Biomedical informatics insights, International Journal of Medical
Informatics,  Journal  of  the  American  Medical  Informatics  Association,  Journal  of  Biomedical
Informatics, BMC Bioinformatics); 

 the negative score is assigned to journals not specifically related to NLP, but to other domains such
as Cognitive studies and Communication disorders (Neuroscience, Human brain mapping, Operative
neurosurgery, Speech therapy, …etc.). We also dismiss survey papers and papers published in the
IMIA Yearbook. We manually defined this set of journals in order to rule out those false positives. 

The second set of rules relies on concepts found in both the title and abstract of papers: 

 the  positive  score  is  assigned  to  concepts  typically  involved  in  papers  related  to  NLP.  Those
concepts may be related to objectives, resources, and tools (such as natural language processing,
NLP,  named  entity  recognition,  NER,  part  of  speech,  POS,  tagged  words,  semantic,  syntax,
biomedical entity, meanings, electronic health record, EHR, reports, notes, clinical text, text corpus,
free  text,  unstructured  text,  tweets,  PubMed,  Social  Media,  MedDRA,  UMLS,  annotated  data,
Metamap);

 the negative score is assigned to concepts that are usually involved in studies related to disorders
involving anatomical  parts  or  language abilities (such as  word processing,  language production,
language  comprehension,  voice  quality,  left  posterior  superior  temporal  gyrus,  pSTG,  posterior
superior  temporal  sulcus,  pSTS,  inferior  fronto-occipital  fasciculus,  IFOF,  dorsolateral  prefrontal
cortex,  cortex,  language  lateralization,  chemical  fragment,  fragment  chemistry,  brain  structures,
verbal intelligence, cerebral, positive mismatch responses, pMMRs, prelingual, postlingual, cochlear,
aphasia, SAPS, cortical, language function, infants). 

The  third  set  of  rules  is  also  applied  on  titles  and  abstracts,  and  covers  the  concepts  describing  the
methodology used in papers: 

 the positive score is assigned to papers using classical NLP methods or evaluation metrics (such as
annotation  tool,  text-mining,  rule-based,  regular  expression,  lexicon,  CRF,  recall,  precision,  F1-
score, F-measure, accuracy, Inter-annotator agreement, Kappa, classify/classifier,  detect,  extract,
extraction, predict, predicting, text simplification, lexical simplification);

 the negative score is assigned to papers claiming to use the NLP methods, such as pointed out by
sequences  like  using  natural  language  processing,  using  NLP,  perform  a  Natural  Language
Processing analysis.  Such papers are downgraded because the NLP claims are usually limited to
the use of existing and ready-to-use NLP tools while the main contribution of papers is related to the
analysis of tool results rather than to the improvements made to NLP methods by researchers who
take advantage of existing tools. 

Figure 2: Distribution of papers according to the filter scores (violet bars indicate the total number of papers,
pink bars indicate papers kept in the top-15 best papers).

For each of the 777 candidate papers, the final score ranked from 0.05 to 1 (Figure 2). On this figure, the
violet bars indicate the total number of papers for each computed grade, while the pink bars indicate the
papers we kept in the top-15 best papers’ list. This score has been used as a meta element during the



manual selection of the top-15 papers. Indeed, the section editors did not fully rely on the scores but only
used  them as  additional  information.  Hence,  both  section  editors  independently  browsed the  abstracts,
keywords and automatic scores, and assigned a Yes / Maybe / No score to each paper. All papers having at
least one Yes or Maybe score have been kept for the next step of the selection. At this stage, 143 candidate
papers remain (i.e., a subset of 18.4% of the whole dataset). We then performed an adjudication process, in
order to choose the final 15 candidates to be proofread by external reviewers. We payed attention to the
topics addressed by the researchers and to their geographic origin so as to provide enough diversity. As a
result,  out of  the fifteen papers, four come from the USA, three from China,  and one from each of  the
following countries: Finland, Germany, Italy, Peru, Spain, Turkey, and United-Kingdom. This is the first time
we select a paper from South America in our top-15 best paper candidates. 

In the next sections, we present the main issues and approaches addressed in the preselected publications. 

3 Current Trends in Biomedical NLP 

Since a few years,  we observed the increasing use of transformer models based on word embeddings.
Those models are useful to capture the context of words. When they achieve to cover adequately the domain
(e.g.,  clinical  domain) or the properties of  a given corpus (e.g.,  clinical  texts),  they allow to obtain high
performances  w.r.t.  approaches  that  do  not  use  such  models.  Several  transformer  models  have  been
released  during  the  last  years:  currently,  the  most  famous  one  is  BERT,  a  multilingual  generic  model
provided by Google [3]. 

Based on this model, several other models were produced: (i) either specific to a domain such as BioBERT
[4] for the biomedical domain; or (ii) specific to a language, such as BERTje [5] for Dutch, FlauBERT [6] and
CamemBERT [7] for French, GottBERT [8] for German, AlBERTo [9] and UmBERTo3 for Italian, or BETO
[10] for Spanish; or (iii) specific to a given task such as MRCBert [11] for summarization or SQuADBERT 4 for
question-answering,  trained  on  the  Stanford  Question-Answering  Dataset  [12].  Conversely,  almost  all
previous methods still disappeared, due to their relative high lifespan: Word2vec [13], GloVe [14], and ELMo
[15]. New approaches are coming, with an increasing number of parameters in those new models, especially
the Generative Pretrained Transformer (GPT) series provided by OpenAI: GPT-25 [16] for text generation,
and GPT-3 [17] for all tasks of NLP (using up to 175 billion parameters). 

As a consequence, there is a harmful race for being the first to produce such resources, which implies to
rapidly publish a paper in the first available conference or workshop, or on the arXiv deposit, in order to be
cited. Nevertheless, this also implies that such papers would certainly never be identified as best paper
candidates for the NLP chapter of the IMIA Yearbook, unless they are indexed in PubMed, or published in an
NLP conference that we, co-editors of the NLP section, used to visit. 

Nevertheless, an opposite way has also been observed, with authors searching for a green research that
does not use models which are not environmentally friendly (expensive in terms of hardware, running time,
and CO2 footprint). This way has been investigated by Poerner et al. [18] which proposed a GreenBioBERT
model that has been produced using Word2vec to train a model on a new target domain (namely, on the
COVID-19 issue) along with an alignment of vectors from the existing BioBERT model and the model trained
with Word2vec. 

In terms of architecture, the most commonly used for NLP tasks currently is a bidirectional LSTM, which
permits to capture both left and right contexts, plus a final Conditional Random Field (CRF) layer to refine the
outputs (BiLSTM-CRF). Those methods achieve excellent results but need high computation resources to
train new models, currently only available in huge data centers, which implies an important CO2 footprint.
The main issue is how to use such models on new domains, new languages, or for a new task? Instead of
training new models, alternative solutions exist, such as fine-tuning of existing models, domain adaptation,
transfer learning, as done by Jin et al. [19] to predict clinical trial results. Nevertheless, such models remain
expensive. 

3.1 Languages Addressed 

3 https://github.com/musixmatchresearch/umberto

4 https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad

5 https://openai.com/blog/better-language-models/



In relation with the languages processed, work with texts written in English represents the largest part of
publications. Indeed, there is a significant number of existing corpora, datasets and resources available in
English. Yet, we observe an increasing number of publications dedicated to other languages and a greater
variety of languages: Arabic [20], Chinese [21-26], Croatian [27], Finnish [28,29], French [30,31], German
[32-34], Hebrew [35], Italian [36-38], Japanese [39,40], Korean [41,42], Norwegian [43], Portuguese [44],
Spanish [45-48], Swedish [49], and Turkish [28]. Overall, we believe that the trend observed in previous
years is continuing. We expect it will develop further in the future. 

3.2 COVID-19 

A lot of work has been done on the COVID-19 issue. In order to help such work, several papers present
COVID-19 resources, such as the COVID-19 Open Research Dataset (CORD-19) produced by Wang et al.
[50]  and available  through the  Kaggle6 platform.  Besides,  several  works  are anchored  in  hospitals  and
propose to predict conditions and events related to COVID, such as prediction of admission of patients with
COVID in an intensive care unit [51], detection of COVID cases from radiological text reports [46], prognosis
prediction for patients with chronic obstructive pulmonary disease [45] or for patients with hypertension [31]. 

In addition to clinical and hospital information, researchers investigate scientific literature looking for instance
for drug repurposing recommendations [52], and for temporal evolution of research work on COVID-19 [53].
Besides, the first systematic reviews related to COVID are proposed [54], including the focus on research
needs [55]. 

The researches also investigate social networks, focusing on analyzing public opinion and emotions on the
COVID pandemics  in  Twitter  posts  [56,57],  monitoring illicit  sales of  COVID medication  on Twitter  and
Instagram [58], and observing COVID symptoms and disease histories collected from a large population in
Reddit, which may provide more reliable insights [59]. Another important issue is that, in the current situation,
the surveillance of emerging epidemiological events becomes again very important, as around 60% of all
outbreaks are detected using informal sources, which motivated online epidemiological surveillance [32].

3.3 Neurological and Psychiatric Disorders 

We observed an interest for neurological and psychiatric disorders, which are mainly issued from clinical
context: detection of duration of untreated psychosis [38], analysis of language in patients with aphasia [60],
Alzheimer’s disease [61], and autism spectrum disorder [62], generation of artificial mental health records
and their evaluation [63], detection and prediction of suicide in mental illness [64-66], automatic detection of
agitation and related symptoms among hospitalized patients [67], analysis of COVID impact on people with
epilepsy [36], prediction of care cost in mental health setting [68], and, more generally, the use of artificial
intelligence in mental health and its biases [69]. 

3.4 Place of Patients 

The place of patients in the healthcare context is increasing and several publications place patients at the
center of their investigations. Hence, in addition to the patient-centered healthcare process, we can also
mention work focusing on patient outcome [70], studying public opinion on use of free-text data in electronic
medical records for research [71], studying patient feedback on the quality of care [72], analyzing the ways
the patients describe their pain [73], measuring the quality of patient-doctor communication [74], analyzing
the developmental  crisis episodes that  occur during early adulthood in social  media [75],  and analyzing
patient experience in order to define some guidelines [76]. 

3.5 Social Networks 

As noticed above, the social networks continue to provide important information on several issues: public
opinion and emotions on the COVID pandemics in Twitter posts [56,57], surveillance of illicit sales of COVID
medication on Twitter and Instagram [58], observation of COVID symptoms and disease histories collected
from a large population in Reddit [59], surveillance of emerging epidemiological events [32], analysis of HIV-
related tweets and of their relation to the HIV incidence [77], analysis of drug use on Twitter [78], analysis of
developmental crisis episodes during early adulthood in social media [75].

6 https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge



We assume that the investigation of social networks will go further in the future, as these networks provide
independent and massive information on various events. 

4 Conclusion 

The NLP publications in 2020 have been heavily  marked by the sanitary  situation,  which motivated an
increasing number of works related to the COVID-19 pandemic. The authors addressed all types of content
(clinical texts, clinical trials, scientific papers, social media, etc.) so as to mine information related to this
major  issue  (adverse  drug  reactions,  usefulness  of  existing  treatments,  psychological  impact  of  the
pandemic, …etc.). 

From  a  scientific  perspective,  we  observe  an  increasing  use  of  transformer  models  based  on  word
embeddings. In continuation of the trend already observed in previous years, we notice that the variety of
languages  processed  is  also  increasing.  This  observation  is  also  related  to  the  use  of  multilingual
transformer models, among them BERT is the most used since it allows to process more than one hundred
languages. In addition, several authors adapted those multilingual models to their data (specific domain for a
given language), which also increases the number of publications related to new languages. An opposite
way also appeared with papers focusing on green research, especially to propose methods for processing
new domains  or  new data,  using existing transformer  models  without  any  new training steps for  these
complex models. 

In the coming years, we hope that environmentally friendly solutions will be preferred to the production of
new transformer models which still need more and more computing resources. In addition, we also urge the
NLP community to go back to a qualitative analysis of their outputs, rather than a basic and harmful race to
present numerical gains over other similar studies. The positive impact of NLP research on clinical issues
should be highlighted rather than the search for better results computed by evaluation metrics. 
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Qiao Jin, Chuanqi Tan, Mosha Chen, Xiaozhong Liu, Songfang Huang (2020). Predicting Clinical Trial
Results  by  Implicit  Evidence  Integration.  In:  Proc  of  Empirical  Methods  in  NLP.  doi:
10.18653/v1/2020.emnlp-main.114 

The clinical  trial  result  prediction (CTRP)  task is  based on medical  literature containing PICO (how the
Intervention group compares with the Comparison group in terms of the measured Outcomes in the studied
Population). The authors proposed an EBM-Net model which is a transformer model that uses unstructured
sentences as implicit evidences and a fine-tuning approach. They compared their fine-tuned model w.r.t. the
BioBERT model and other approaches (MeSH ontology, bag-of-words, …etc.) and achieved better results on
the COVID-19 clinical trials’ dataset (22 clinical trials from the CORD-19 dataset). 

Nina Poerner, Ulli Waltinger, Hinrich Schütze (2020). Inexpensive Domain Adaptation of Pre- trained
Language Models: Case Studies on Biomedical NER and Covid-19 QA. In: Proc of Empirical Methods
in NLP. doi: 10.18653/v1/2020.findings-emnlp.134 

The authors highlight the expensive cost of domain adaptation while training a model on target-domain text.
This cost is expressed in terms of hardware requirement, high running time and negative impact on the CO2

footprint.  The authors investigated a solution they called GreenBioBERT that  relies first  on a Word2vec
training stage on target-domain texts (PubMed, PMC, CORD-19), and second on the alignment of word
vectors with the vectors from BioBERT. They applied their model on two issues: 8 biomedical NER tasks in
English, and question-answering (QA) on COVID-19 issue. The authors achieved competitive results using
BioBERT and a better precision on a few tasks; on the COVID-19 QA task, their model achieved better
results than the SQuADBERT model (designed for QA). In this paper, the authors proposed a useful method
to  use  existing  pretrained  language  models  in  order  to  adapt  them to  new  datasets,  new tasks,  new
languages, …etc. 

Julia Ive,  Natalia Viani,  Joyce Kam, Lucia Yin, Somain Verma, Stephen Puntis, Rudolf Car- dinal,
Angus Roberts,  Robert  Stewart,  Sumithra Velupillai  (2020).  Generation and evaluation of  artificial
mental  health  records  for  Natural  Language  Processing.  In:  NPJ  Digital  Medicine.  doi:
10.1038/s41746-020-0267-x 

The  main  problem  for  biomedical  NLP  is  the  difficult  access  to  clinical  documents  and  the  inherent
complexity to completely de-identify documents. The solution proposed by the authors consists in generating
artificial  discharge summaries.  In this paper, the authors produced artificial  summaries in mental health,
based on the MIMIC-III data. Then, they used their artificial texts in order to train models using the Keras
toolkit for classification tasks. The authors observed that models trained on their synthetic data perform as
well as models trained on real data. Since the synthetic discharge summaries have been produced taking as
input the MIMIC-III data, the authors cannot share their resources. Nevertheless, the method is reproducible.


