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Enhanced CRC-Based Correction of Multiple Errors
with Candidate Validation

Vivien Boussard, Stéphane Coulombe, François-Xavier Coudoux, Patrick Corlay

Abstract—Cyclic redundancy checks (CRC) are widely used in
transmission protocols to detect whether errors have altered a
transmitted packet. It has been demonstrated in the literature
that CRC can also be used to correct transmission errors. In
this paper, we propose an improvement of the state-of-the-art
CRC-based error correction method. The proposed approach is
designed to significantly increase the error correction capabilities
of the previous method, by handling a greater part of error cases
through the management of candidate lists and using additional
validations. Simulations and results for wireless video commu-
nications over 802.11p and Bluetooth Low Energy illustrate
the Peak Signal-to-Noise Ratio (PSNR) and visual quality gains
achieved with the proposed approach versus the state-of-the-art
and traditional approaches. These gains range on average from
1.6 dB to 7.3 dB over Bluetooth Low Energy channels with Eb/No
ratio of 10 dB and 8 dB, respectively.

Index Terms—Cyclic Redundancy Check, Error Correction,
Wireless Communication, IEEE 802.11, Bluetooth Low Energy.

I. INTRODUCTION

The transmission of compressed video content over unreli-
able channels often results in quality reduction at the viewer
side. Even a slightly corrupted video sequence can suffer
severe visual artifacts after video reconstruction of discarded
regions, which decreases the viewing experience for end users.
In order to prevent quality deterioration, error concealment
tools have been proposed in the literature. However, as the
reconstructed area is often interpolated from spatially and/or
temporally neighboring visual content, the quality of results
depends on the video content and on the size of the lost re-
gions. Other solutions for recovering the originally transmitted
packets include retransmission and error correction.

When transmitting video sequences in wireless environ-
ments such as vehicular and low energy networks, retransmis-
sion is not recommended, and is often not available to handle
missing packets, due to delay constraints and/or network
congestion. Cyclic Redundancy Checks (CRC) [1] are used
in protocols commonly employed to detect errors in the entire
packet, and may therefore be useful in error correction as well.

The CRC is first computed at the transmitter as the remain-
der of the long division of the protected data left-shifted by n
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positions by the generator polynomial, expressed as follows:

dT (x)� n

g(x)
= q(x) +

rT (x)

g(x)
(1)

where rT (x) is the remainder of the division, dT (x) is the
protected data, g(x) is the generator polynomial of degree n,
and + is the addition corresponding to an exclusive or (XOR)
between two binary polynomials1. The remainder rT (x) is
then appended to the protected data to produce the transmitted
packet pT (x), such that pT (x) = (dT (x)� n) + rT (x). At
the receiver side, the integrity of the received packet pR(x) =
(dR(x)�n)+rR(x) is checked through another long division
of the protected data appended by the remainder computed at
the transmission by the same generator polynomial:

(dR(x)� n) + rR(x)

g(x)
= q(x) +

s(x)

g(x)
(2)

where s(x) is the new remainder of the division, also known
as the syndrome. If there is no error during transmission, the
syndrome s(x) is null. Otherwise, it has a non-null value
indicating that one or several errors altered the transmitted
packet. Usually, the non-null syndrome is handled by discard-
ing the corrupted packet (User Datagram Protocol (UDP)) or
by retransmitting the corrupted packet (Transmission Control
Protocol (TCP)).
The literature contains several methods proposed to handle
missing and corrupted packets. Some approaches are designed
to reconstruct the missing video content by taking advantage
of the correctly received video information. These can be
classified under two main categories:
• spatial error concealment methods [3]–[6], which use the

available information in the current frame to reconstruct
the missing video areas by interpolating and predicting
the corrupted video content, and

• temporal concealment methods [7]–[10], which propose a
concealment of the video chunks, and leverage temporally
neighboring frames to recover video content. As there is a
temporal correlation in natural video content, the motion
vector from the missing part of the frame can be predicted
from previous frames.

Error concealment algorithms can also combine both spatial
and temporal concealment to achieve more accurate results
[11], [12]. Traditional error concealment methods mainly use
interpolations from neighboring content to reconstruct the
video, while the most recent error concealment solutions

1Indeed, binary packets of length m belong to the Galois Field (GF)
GF(2m) where the addition is performed as the bitwise XOR [2].
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use machine learning to recover large missing areas [13]–
[15]. Such methods are able to handle missing packets as
they systematically discard corrupted packets when performing
error concealment. The drawback with such a process is the
associated loss of useful information. A corrupted received
packet may have only a few errors but still contain valuable
information that can help to reconstruct the missing video data,
but with this process, such packets are discarded.

The literature also contains other methods that propose error
correction on received corrupted packets based on available
information. Such approaches can search for the most probable
sent bit sequence as a function of the reliability information on
the packet and/or syntax knowledge of the transmitted packet
[16], [17]. Some state-of-the-art solutions also propose to use
error detection codes as error correction codes. Checksums
are investigated in these cases to identify bit error patterns
from an erroneous checksum value [18]. CRC-based error
correction has also been proposed, through the use of lookup
tables (LUT) [19]–[21] to identify the error position based on
the storage of the syndrome corresponding to a list of error
cases. In a previous work, we proposed a CRC-based error
correction method using arithmetic operations [22], [23], and
which generates the list of possible error patterns containing no
more than a predefined number of errors, given the computed
syndrome at the receiver and the generator polynomial used.
This paper is mainly based on the theory described and
discussed therein [23], with which the reader is expected to
be familiar.

The present work proposes a method to perform multiple
error correction based on the CRC syndrome, with candidate
validation on Advanced Video Coding (AVC) [24] and High
Efficiency Video Coding (HEVC) [25] encoded video content
applied to widely used wireless communication applications.
Its contributions are as follows:

• Enhanced multiple error correction: The proposed
method offers the possibility of error correction on a
corrupted packet when several valid candidates are con-
sidered as CRC-compliant (candidates with the same
syndrome), while state-of-the-art methods perform error
concealment in such cases.

• Processing speed gains: We propose reducing the pro-
cessing time of the CRC error correction method by
detecting unnecessary loops based on the syndrome and
generator polynomial parities.

• Storage gains: We propose memory management of
the error search, allowing a fixed low memory storage,
independent of the packet length.

• Demonstration of gains in wireless transmissions: We
prove the usefulness of a CRC-based error correction
method in practical applications by testing the method
using realistic video communication scenarios over wire-
less networks. We apply the proposed method to wireless
communication in 802.11p and Bluetooth Low Energy
environments. In the latter case, the proposed approach
offers significant gains of up to 10 dB in PSNR relative
to error concealment methods.

This article is structured as follows. In section II, we present

related works on CRC error correction found in the literature.
In section III, we propose a novel method to enhance the error
correction capabilities of CRC codes with additional validation
steps and optimization strategies. In section IV, we discuss
simulation results for two different environments, namely, Wi-
Fi 802.11p and Bluetooth Low Energy. Section V concludes
the work and future perspectives are discussed.

II. RELATED WORKS

A. CRC-based single error correction using tables

Error correction using the CRC syndrome has already been
proposed in [19]–[21]. Here, a lookup table is created prior to
communication, with each possible non-null error syndrome
listed, along with its associated error pattern. When receiving
a corrupted packet, the syndrome list is scanned to find a
match with the computed syndrome of the corrupted packet.
If a match is found, the bits at the associated positions are
flipped. If no match is found, the packet is discarded. Some
of the drawbacks of such a method include the fact that the
lookup table must be recomputed if the maximum packet
length changes, and that the method only works for a specific
generator polynomial, with the entire list always scanned.
However, as shown in [26], [27], this method is useful in the
error correction of polar codes.

B. CRC-based single error correction using arithmetic oper-
ations

More efficient methods have recently been introduced to
handle single error correction using the CRC syndrome. In
[22], we proposed a method consisting in using arithmetic
operations on the CRC syndrome to correct damaged packets
at the receiver. The method proposes correcting single error
packets through CRC error correction. For error correction,
the method uses the definition of CRC codes to identify all
possible single error positions given the computed syndrome
at the receiver. The method is based on the definition of the
CRC computation, as illustrated in (2). We can express the
syndrome s(x) at the receiver as:

s(x) = pR(x) mod g(x) (3)

where pR(x) is the received packet and is equal to the
transmitted packet pT (x) potentially corrupted by errors:
pR(x) = pT (x) + e(x), where e(x) corresponds to the error
pattern affecting the packet. If no error occurred, we verify
that pR(x) = pT (x) and, as pT (x) mod g(x) = 0 since
the transmitted data is designed to produce a null syndrome,
s(x) = 0. If an error occurred, we get s(x) = e(x) mod g(x),
which can also be expressed as:

e(x) = s(x) + q(x).g(x) (4)

At each step, the number of remaining non-null positions
in the error vector is checked and if is equal to 1, a single
error candidate is identified at that position. An example of
such a single error method is provided in Fig. 1, applied on
CRC-4-ITU, with generator polynomial g(x)=x4 +x+1 over
10 data bits. In this example, the computed syndrome at the
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Fig. 1: Example illustrating the single error correction method
as described in [22], using a CRC-4-ITU with generator
polynomial g(x) = x4 + x + 1 over 10 data bits, when the
computed syndrome at the receiver is s(x) = x2 + 1

receiver is s(x) = x2 + 1. We can observe that the first step
is to initialize the error vector e as zeros and set the LSBs
to the value of the computed syndrome. From this stage and
at each step, we count the number of non-null positions in
the error vector as they represent the error positions. At the
initialization step, we can observe that this value is equal to 2.
As we are searching for error patterns containing only a single
error, we do not consider such a pattern as a valid single error
pattern. Thus, our goal is to cancel the LSB non-zero value
by performing an XOR at that position. The resulting error
vector contains 3 non-null positions and is still not a valid
candidate for single error correction. As we proceed, we find
a valid candidate at step 4, where there is a single non-null
position in the error vector, at x8. We ensure that there is
no other candidate by scanning the whole packet length with
this method. At the end of the process, we observe the list
of candidates. In the case illustrated, the list contains a single
entry, which is a single error at position x8. This means that
if a single error occurred in the packet, it occurred at position
x8. To correct the packet here, the bit at the corresponding
position in the received packet must be flipped. Used alone,
this method has some limitations since it does not handle
packets subject to several errors and does not validate the
reconstructed packet. Thus, if a miscorrection occurs, which
can happen if the received packet is highly corrupted, the
packet can unfortunately be sent to the application, even if
it still contains errors. In compressed video transmissions,
a single erroneous bit can lead the decoder to crash when
receiving such a corrupted packet, due to desynchronization.

C. Validation of CRC-based error correction

The work in [28] illustrates that some bits in a compressed
video stream will cause desynchronization if an error occurs.
Exp-Golomb codes are a simple example of such so-called

Fig. 2: System proposed in [28] allowing a validation of the
reconstructed bitstream based on a two-step validation process

desynchronization bits. In such codes, a prefix (i.e., several
bits set to 0, followed by a single bit set to 1) indicates the
length of the codeword to be read. Clearly, if an error occurs in
this prefix, the bit length of the next codeword will be wrong,
and will propagate as the packet is decoded. This behavior
is known as the desynchronization of the bitstream, and
makes the bit sequence undecodable in most cases. Arithmetic
coding used in modern video compression standards AVC [24],
HEVC [25] and Versatile Video Coding (VVC) [29] is highly
vulnerable to desynchronization.

As miscorrection can lead to desynchronized streams in the
video decoder, the authors of [28] proposed the validation
of the reconstruction through a two-step process for AVC
encoded video sequences, as illustrated in Fig. 2. The two
compliance validation operations are:

1) Check the number of macroblocks (MBs) in the packet
(the authors configure the encoding of the video se-
quence to have a constant number of MBs in each
packet).

2) Check the decodability of the reconstructed video
stream. Each candidate is thus tested and if it crashes
the video decoder, the next candidate is tested.

After the entire set of candidates is tested, if none met the
two validation conditions, the error correction is aborted and
an error concealment method is applied on the missing area.
This method ensures that the decoding process is completed
even where errors still exist in the decoded video packet,
but it does not guarantee that the reconstructed packet is the
transmitted one.

D. CRC-based multiple error correction

Multiple error correction can be performed by simply
extending LUT-based methods, as proposed in [19]. This
extension consists in storing, in a lookup table, the whole list
of error patterns for the considered number of errors, denoted
N , and their associated error syndrome. This approach would
lead to a listing of all the error patterns containing N errors or
less. However, when the value of N increases, the size of such
tables rapidly becomes intractable. Depending on the number
of errors N to consider, m the payload length and length(s)
the byte length of each syndrome, the size in bytes of this
table is expressed as follows:

TableSize =

(
m

N

)
× [length(s) + (2×N)]. (5)
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Here, we consider that the error positions are stored as 2-byte
numbers for each pattern. This approach would thus require
2.6 TB of storage when using the CRC-24 used in BLE and a
packet length of 1500 bytes for 3-error correction.

A more practical extension of the CRC error correction
method to handle multiple error patterns was proposed in [23],
where the approach was designed to output an exhaustive list
of CRC-compliant candidates containing a defined number of
errors N or less. In this approach, bit positions are forced
throughout the process. Because the single error correction
method cancels the LSB non-null value at each step, it is
clear that it cannot consider error patterns having multiple
errors widely distributed throughout the whole bit sequence
(i.e., multiple error patterns where all the errors are not within
the error range). By forcing bit positions in increasing order,
the algorithm can handle such error cases by selecting the
positions of bits that will remain non-null during the process,
by passing through or XORing g at these positions, depending
on the initial value of the forced position. Hence, the algorithm
aims at forcing (N − 1) bit positions and performing a single
error search on the remaining length of the packet. This
method can be illustrated as shown in Fig. 3, where the set of
forced positions is denoted F and contains the index of the
(N−1) values to force to 1. At each step, the current position
is checked and an XOR is performed when the position has
to be forced but is currently set to 0 or when the position
must be canceled, and is currently set to 1. The current bit
position is then increased by 1. At each loop, the number
of non-zero values remaining in the error vector is counted,
and if this number is equal to or less than N , a candidate is
appended to the list, with error positions identified at the non-
null positions of error vector e. Once the entire packet length
has been processed with the current set of forced positions, F
is updated, until all forced positions are tested.

Thus, all the bit error patterns can be considered and
the complexity remains lower than in a brute force scheme,
which tests every possible error patterns and conduct up to∑N

i=1

(
m+n

i

)
operations, where m + n is the total length of

the packet.
This method significantly increases the error correction ca-

pability, as compared to the single error approach, by handling
more error cases, and does not require a lot of memory.
However, by increasing the number of errors to consider,
the average candidate list size increases as well. In [23], the
Single Candidate Ratio (SCR) was defined as the percentage
of candidate lists containing a single entry as a function of the
length of the packet and the number of errors to consider, as
expressed in (6):

SCR(m,N) =
SinglePatterns(m,N)

TotalPatterns(m,N)
(6)

TABLE I: Cycle lengths for widely used CRCs: CRC-8-
CCITT with g(x) = x8 + x2 + x + 1, CRC-16-CCITT with
g(x) = x16 + x12 + x5 + 1, CRC-24-BLE and CRC-32

CRC-8 CRC-16 CRC-24 CRC-32

Cycle length 28 − 1 215 − 1 223 − 1 232 − 1

Fig. 3: Illustration of management of each bit position for
multiple bit error correction using the CRC syndrome. The
error vector e is initialized to zero and its LSB are set as the
syndrome s. For each position, the current value is checked
and the procedure depends on the elements in the set of forced
position F . Current position is flipped if it has to be forced
and is currently 0 or has to be canceled and is currently 1

where SinglePatterns(m,N) is the number of error cases
producing a single candidate as output, considering all
N -error pattern cases for a message length of m, and
TotalPatterns(m,N) is the total number of individual N -
error patterns for a message length of m bits.

When considering single error correction, it has been shown
that the SCR remained at 100% for packets with lengths
less than the cycle of the generator polynomial used. As the
cycle length for CRC-24 and CRC-32 is greater than the
maximum packet size tolerated in the communication protocol,
it guarantees single error candidates as the output of the single
error method. Some examples of cycle lengths for common
generator polynomials are illustrated in Table I.

The authors observed that for commonly used 3- or 4-byte
generator polynomials, with the CRC-24 used in Bluetooth
Low Energy (BLE) or the CRC-32 used in the Ethernet proto-
col, the ratio remains at 100% up to a reasonable packet length
when considering single and double error cases. However, even
strong CRCs will output candidate lists with many entries,
considering that a high number of errors may have occurred
in the packet. The choice of the maximum number of errors
(i.e., parameter N ) in the error patterns of the candidate list
should thus be determined according to the expected channel
conditions.

Nevertheless, these methods still suffer from certain serious
problems. Even if we set the number of errors to be considered
to a small value (e.g., equal to or less than 3), there will be
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a huge number of error cases that the previously proposed
methods would not be able to handle. Whenever several
candidates are present in the list, these methods will fail in
performing error correction since they cannot determine the
correct (originally transmitted) candidate. Validation steps are
proposed in the literature to help choose between candidates
for checksum-generated error pattern lists [18].

By definition, all the candidates in the list in the proposed
approach pass the CRC check, which means that we can no
longer use it to differentiate the candidates and/or select the
best candidate. If we consider a random uniform error distri-
bution, we might favor candidates with fewer errors as they are
more likely to occur, but this exposes us to miscorrections. In
what follows, we propose an enhanced approach that allows
handling the candidate list and removing bad candidates, in
order to increase the error correction capability as compared
to previous methods, while also ensuring the validity of the
candidate.

III. PROPOSED METHOD

State-of-the-art multiple bit error correction methods exhibit
respectable error correction capabilities, but suffer from sev-
eral issues. First, increasing the number of errors considered N
greatly increases the computational complexity of the method,
which can lead to very long processing times. Having solutions
to reduce this complexity would allow the method to handle
multiple errors in practical scenarios. Moreover, considering a
high number of errors yields a higher number of candidates
in the list. Since the CRC is used to produce the candidate
list, it can obviously not be used as well to identify bad
candidates in the list as these are all CRC compliant (i.e.,
all the error patterns in the candidate list correspond to the
received computed syndrome). In the proposed approach, we
address this issue with additional validation steps applied to
the candidates.

A. List handling: validation of candidates

To identify the actual error pattern among a list of candi-
dates, we need to spot and remove bad candidates from the
list, given that at this point, CRC can no longer be used to
sort or invalidate candidates.

However, a cross-layer approach using the UDP/TCP check-
sum [30] can be used to drastically reduce the number of
candidates in the list. By computing the checksum over all
the candidate error patterns resulting from the CRC error
correction method, we can identify the candidates that pass
both the CRC and checksum tests in order to filter the
candidate list, as illustrated in Fig. 4. Upon reception of
a corrupted packet, the multiple error correction method is
performed and outputs the complete list of CRC-compliant
error patterns (i.e., the error positions) up to N errors. If this
list is empty, error concealment is applied. If not, we test each
candidate by computing the checksum on the reconstructed
bit sequence for each error pattern from the candidate list.
Candidates that are both CRC- and checksum-compliant are
kept in the list. If a candidate fails the checksum validation,
it is removed from the list as there are still errors in the

Fig. 4: Flowchart illustrating the correction process using both
CRC and checksum to reduce the number of candidates in the
output list

packet. At the end of the process, if there is just one candidate
remaining in the list, it is considered as the winning candidate,
and error correction is performed.

Computing the checksum does not require any additional
resource and should not produce a large candidate list when
combined with the proposed method, contrary to what is
obtained in [18]. To illustrate the performance of the proposed
cross-checking method, we take the example of a CRC-24
protecting a 250-byte payload. In this case, when searching for
error patterns up to N = 3 errors, we can observe candidate
lists containing at most between 150 and 200 candidates.
These lists can contain multiple error patterns as well as
single error patterns. In the proposed approach, we apply the
same selection process on multiple- and single-error patterns
to ensure the validity of the reconstruction.

By simply computing the checksum on the candidate bit
sequences, we observed that most of the lists were reduced
to a single element, which removed the ambiguity of having
several candidate error patterns. Although not all the triple
error patterns resulted in a single candidate list after the cross-
check, we observed that the resulting number of candidates
was significantly reduced, as shown in Table II. Here, we
compare the average candidate list size before and after
checksum validation in a Bluetooth Low Energy environment,
considering packets of at most 250 bytes and N = 3. In
this case, the average number of valid candidates goes from
approximately 100 to less than 2 after the validation step. We
observed a maximum of 5 candidates in the final candidate list.
For simplicity, in this paper, we only consider the checksum
to demonstrate the benefits of adding validation steps in order
to reduce the number of candidates. However, we can further
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validate the values of various application-dependent fixed or
predictable fields in the packet, such as the version in the IP
protocol, source and destination ports, as well as sequence
numbers in the RTP protocol.

We recommend, as in [28], performing an additional step
in the error correction process, irrespective of whether there
is a single or multiple candidates in the output list. This is
the video decoding validation step. To ensure the validity
of the reconstructed video stream, the strategy is to try to
decode the resulting candidate patterns. If the decoder crashes,
it means that the resulting sequence is still erroneous, and
furthermore, that the erroneous bits are causing syntax errors
and/or a desynchronization of the bit stream. In that case,
the next candidate is tested, and the first candidate to pass
the video decoding test is considered the winning candidate.
Note that at this point, there is a probability that the packet
still contains errors since errors cannot be detected in the
video stream. However, because the errors will not cause any
desynchronization, they can be overlooked as some studies
have shown that such errors produce fewer visual artifacts than
is the case when concealing the whole lost packet [31]. Even
when the list contains only one candidate, a video validity
check is still performed because there is the possibility that
the packet could have been corrupted by many errors. The
check thus ensures that the correction is valid and reduces
miscorrections. Such cross-layer designed takes advantage
from the error correction of the CRC at the link layer, the
error detection capabilities of the checksum at the transport
layer and finally the syntax check of the video decoder at the
application layer.

B. Optimizing the method

Increasing the number of errors considered also significantly
increases the time required to perform error correction. It
has been shown that the computational complexity of the
arithmetic method grows exponentially with N , which is why
it is crucial to seek out for methods and strategies to reduce
the time needed to perform the proposed method. Knowing
the number of errors in advance should help cut down on the
iterations and reduce the computational complexity.

1) Exploiting syndrome parity: The parity of both the
generator polynomial and the syndrome can provide valuable

TABLE II: Average number of candidates before and after
checksum validation for different Bluetooth Low Energy chan-
nel qualities with N = 3

Eb/No value

10 dB 9 dB 8 dB

CRC → CRC+CV 130.3→1.62 98.04→1.22 84.01→1.07

TABLE III: Addition and multiplication truth tables for finite
field GF(2)

+ 0 1 . 0 1
0 0 1 0 0 0
1 1 0 1 0 1

information on the number of errors in the video packet.
Additional knowledge on the parity of the number of errors
should help skip most of the iterations that would not have
produced any candidate.

The parity of widely used generator polynomials such
as CRC16-CCITT and CRC24-BLE is even, which allows
deducing information on the number of errors that occurred
in the packet. To illustrate this, we can express the operation
for updating the error polynomial as:

e′(x) = g(x) + e(x)

=

n∑
i=0

gi.x
i +

n−1∑
i=0

ei.x
i = gn.x

n +

n−1∑
i=0

(gi.ei).x
i

⇒ e′n = gn and e′i = (gi.ei),∀ (n− 1) ≥ i ≥ 0

(7)

From this equation, it can be seen that the updated value of
e(x), denoted e′(x), will be affected by g(x). In GF(2), the
element 0 is neutral and will not affect the former value, ei.
However, when using addition +, the element 1 will always
flip the former value, as shown in the addition truth table for
GF(2) in Table III. From this definition, it is clear that k
non-null coefficients in g(x) will flip k values in the error
polynomial. As such, when k is odd, the parity changes from
e(x) to e′(x) at every XOR performed, and when k is even,
the parity of e(x) and e′(x) remains the same for the whole
process.

Let NbErr(p) and Syn(p) be the number of errors in a
packet p of length m + n and its computed syndrome of
length n produced by g(x), respectively. Considering the set of
possible syndromes S and the subsets SO and SE containing
the syndromes produced by an odd and an even number of
errors in a packet, respectively, we can define:

S ∆
= {s ∈ N | 0 ≤ s ≤ (2n − 1)}

SO
∆
= {Syn(p) | 0 ≤ p ≤ 2m+n and NbErr(p) is odd}

SE
∆
= {Syn(p) | 0 ≤ p ≤ 2m+n and NbErr(p) is even}

(8)

Clearly, SO ⊂ S, SE ⊂ S, SO ∪ SE = S and

SO ∩ SE =

{
∅, ∀ g(x) with even parity
S, ∀ g(x) with odd parity

(9)

By itself, this knowledge does not allow determining the
exact number of errors in the packet, but it helps reduce
the computational complexity by avoiding unnecessary com-
putation. When applied to triple error correction, the error
correction method must test single and triple error candidates
or only double error candidates, depending on the parity of
the syndrome. The latter case saves a lot of computation pro-
cessing since triple error correction is computationally more
intensive. We compared the processing time gains provided
by considering the syndrome’s parity applied to Bluetooth
Low Energy channels [38] in Table IV. It can be seen that
the gains increase as the channel conditions decrease. Indeed,
high quality channels produce many error patterns containing
a single error, where considering the parity has little effect on
the total processing time. When the average number of double
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TABLE IV: Average processing time with (P) and without
(NP), considering the syndrome’s parity for different BLE
channel qualities with N = 3

Eb/No value

10 dB 9 dB 8 dB

NP → P 1.18 s→ 1.08 s 1.15 s→ 0.77 s 1.15 s→ 0.61 s

error patterns increases for channel Eb/No ratios of 8 dB
and 9 dB, the average processing time significantly decreases,
going down to half of the original processing time at Eb/No
of 8 dB.

2) Reducing memory requirements: Another aspect that
can be optimized is the memory required to store the error
vector throughout the whole process. In [23], we used an error
vector with a size equal to the packet length to successively
perform XORs and check the number of non-null coefficients
at each step. We saw from (3) that the definition of the error
polynomial is:

e(x) = s(x) + q(x).g(x) (10)

which can be further expressed as:

e(x) =

n−1∑
i=0

si.x
i +

m∑
j=0

qj .x
j .

n∑
i=0

gi.x
i

=

n−1∑
i=0

si.x
i +

m∑
j=0

n∑
i=0

(qj .gi).x
(i+j)

(11)

where m and n represent the lengths of the payload and
syndrome, respectively. It should be recalled that the proposed
method for searching for error patterns is based on the building
of q(x), by adding g(x), of degree n, to cancel LSB values of
e(x). From this definition, it is clear that for a given position j,
(11) operates on the range from j to j +n. Moreover, as each
operation cancels the bit at position j, the non-null values of
the error polynomial e(x) will range from position j + 1 to
j + n. Outside this particular range, the values of e(x) are
either 0 due to initialization (for positions greater than j +n),
or already canceled (for positions equal to or lower than j),
apart from the forced positions (which are known at each step).
In [23], we introduced the error range to explain the need to
force bit positions throughout the process. It can be seen as a
sliding window canceling every LSB non-null value. Without
forcing bit positions, it was demonstrated that only patterns
with multiple errors occurring within the error range can be
identified, hence the need to force positions in order to be able
to identify every error case.

Investigating the error range further, we can see that it can
be leveraged to reduce the memory required in implementing
the method. By storing only the vector corresponding to the
error range, we are performing XORs on n-bit vectors instead
of (n + m)-bits, where m is the length of the protected data,
generally far greater than n, the bit length of the generator
polynomial. In order to avoid the problem raised by the error
range, the forced bit positions must be known at any time,
which was already the case since the forced bit positions
were stored in the originally proposed multiple error correction

algorithm. Instead of storing the entire vector with non-null
LSBs only at forced bit positions, handling a vector with
a bit length equal to the error range and storing the forced
bit positions is more efficient for memory management. This
optimization is illustrated in Fig. 5, where it can be seen that
the memory required to store the error vector is independent of
the packet length and always corresponds to the length of the
syndrome. The storage in bits needed for the state-of-the-art
table approach, MLUT, is:

MLUT =

(
m

N

)
× [length(s) + 2N ] (12)

while the memory needed to perform arithmetic error correc-
tion, MArith, and for the proposed optimized method, MOpti,
can be expressed as:

MArith = 2(m + length(s)) + 2(N − 1)

MOpti = 2(length(s)) + 2(N − 1)
(13)

In (12) and (13), we consider that the position of each error
is stored as a 2-byte integer, justifying the appearance of 2N
in the equation, which actually represents the N -error pattern
associated with the syndrome stored for the table approach.
Table approaches must store every error pattern syndrome
of length n bits in the table along with the error pattern
consisting of N integers. For its part, the arithmetic approach
needs to store two vectors of size (m+n) bits, corresponding
to the two versions of the error vector used to process the
algorithm. Such method also stores (N − 1) integers as the
forced bit positions. The optimized method also stores such
forced positions, but only needs to store the two versions of
the error of size n bits (e′ and e). For a double error pattern
search in a packet of length 1500 bytes, the storage needed
for a lookup table approach is 432 MB, whereas only 6 bytes
are needed for the proposed optimized approach. Moreover,
when the number of errors increases, the memory storage
needed for the table approach rapidly becomes intractable,
with table sizes in Petabytes needed to handle 4 errors with
CRC-16. The proposed approach also needs even less memory
than the state-of-the-art arithmetic method, which requires
3 kB to perform error correction. The memory required by the
proposed approach is fixed for a given polynomial and does
not depend on the packet length.

Fig. 5: Illustration of the memory reduction induced by
considering only the error range of the error vector. The set
of forced positions must be stored in order to identify error
positions if a candidate is found
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C. Proposed approach implementation

Algorithm 1 SingleErrorCorrection(s,g,n,m)

Inputs:
s: the syndrome vector
g: the vector associated with the generator polynomial

used to compute the CRC
n: the length of the syndrome vector
m: the length of the payload vector

Output:
E1: the list of valid error patterns for a single-bit error

1: E1 ← {}
2: Let e be a vector of length n
3: e← s
4: if sum(e) = 1 then
5: Add NZ(e) to E1

6: end if
7: for j = 0 to m− 1 do
8: if e0 = 1 then
9: e← (e⊕ g)� 1

10: if sum(e) = 1 then
11: Add NZ(e) + j to E1

12: end if
13: else
14: e← e� 1
15: end if
16: end for
17: Return E1

To illustrate the implementation differences between by
the literature and the proposed approach, in this section, we
describe the updated algorithms used to conduct multiple error
correction. We encourage the reader to compare them with the
original algorithms presented in [23]. The main changes are
shown in blue font in the proposed algorithms. Algorithm 1
illustrates the single error handling process, which takes as
input the syndrome vector s, the generator polynomial g and
the lengths of both the syndrome n and the payload m,
expressed in bits. In this updated algorithm, the main changes
relate to memory optimization:
Step 2: The error vector is of length n bits, the length of the
syndrome, and is now independent of the payload length.
Step 3: The error vector is initialized as the syndrome.
Step 4: Sum(e) provides the number of bits set to 1 in vector
e. This sum is 1 when there is a single error.
Step 5: Instead of adding the whole error vector, we now
only add the non-zero positions of e to the list of single error
candidates E1. The function NZ simply returns the degrees of
the non-zero values in the input binary vector.
Step 8: At each stage of the loop, we now only check the
value of e0, i.e., the LSB value of the error vector e. If this
value is 1, the LSB must be canceled.
Step 9: The cancellation process is performed through an XOR
of the generator polynomial g with the error vector e. The
result is then right-shifted by one position to remain at bits of

Algorithm 2 N -ErrorPatternGeneration(s,g,n,m,N ,pR)

Inputs:
s: the syndrome binary vector
g: the generator polynomial binary vector
n,m: lengths of the syndrome and payload vectors
N : the maximum number of bit errors considered
pR: the received corrupted packet

Output:
EN : the list of valid error patterns up to N bit errors

1: Let e be a vector of length n
2: EN ← {} and e← s
3: if sum(e) ≤ N then
4: Add NZ(e) to EN

5: end if
6: k ← N
7: while k ≥ 1 do
8: if mod(g, 2) = 1 || (mod(s, 2) = mod(k, 2)) then
9: if k = 1 then

10: Add SingleErrorCorrection(s,g,n,m) to EN

11: else
12: Let F ← (0, . . . , k − 2)
13: while F 6= (m− (k − 1), . . . ,m− 1) do
14: start ← max(F1−1, 0)
15: nbForced← 0
16: for j = start to m− 1 do
17: if j ∈ F then
18: nbForced = nbForced + 1
19: end if
20: if (e0 = 0 & j ∈ F) || (e0 = 1 & j /∈ F) then
21: e← (e⊕ g)� 1
22: if sum(e) + nbForced ≤ N then
23: Add (NZ(e) + j) and Fi to EN

24: end if
25: else
26: e← e� 1
27: end if
28: if j = F1 then
29: e′ ← e
30: end if
31: end for
32: F ← UpdateForcedPositions(F ,m)
33: e← e′
34: end while
35: end if
36: e← s and k ← k − 1
37: end if
38: end while
39: for i = 1 to size(EN ) do
40: pC ← pT with flipped bit values at positions in EN (i)
41: if checksum(pC) 6= OK || decode(pC) 6= OK then
42: Remove candidate EN (i) from List
43: end if
44: end for
45: Return EN
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Algorithm 3 UpdateForcedPositions(F ,m)

Inputs:
F : sorted list (F1, . . . , Fk−1) of (k − 1) bit positions

forced to 1, such that Fi < Fi+1, ∀i
m: the length of the payload vector

Note that k = len(F) + 1, with len(F) being the number
of elements in the list F

Output:
F ′: the updated sorted list of forced positions

1: if Fk−1 < (m− 1) then
2: Fk−1 ← Fk−1 + 1
3: Return F ′ ← (F1, . . . , Fk−1)
4: else
5: for i = k − 2 to 1 do
6: if Fi < Fi+1 − 1 then
7: Fi ← Fi + 1
8: j ← i
9: while j < k − 1 do

10: Fj+1 ← Fj + 1
11: j ← j + 1
12: end while
13: Return F ′ ← (F1, . . . , Fk−1)
14: end if
15: end for
16: end if

length n.
Step 11: If there is only one non-null value in the error vector,
its position is added to the candidate list E1. As the position
returned by NZ(e) is relative, the number of shifted positions
since the beginning of the process (i.e., j) must be added to
that value.
Step 14: When the LSB value of the error vector is 0, no
cancellation is needed, and the error vector is updated through
a right shift by one position.

Algorithm 2 represents the multiple error handling process
for a given syndrome s, generator polynomial g and number
of errors considered N , including the parity check, memory
optimization and checksum validation. The changes are shown
in blue font in the algorithm. Note that in the algorithms,
we denote the logical operations AND and OR as & and
||, respectively. The input differs slightly from the original
algorithm in [23] as it includes the received corrupted packet
pR, which we will use in the checksum validation step. The
following are the main changes:
Steps 1 and 2: The binary error vector e is of length n and
is initialized to the value of the computed syndrome.
Step 4: We check if the syndrome itself is a solution. If the
number of non-null bits in e is equal to or less than the max-
imum number of errors considered, we add the corresponding
error positions to the candidate list EN . The function NZ(e)
returns the degrees of the non-null positions in e.
Step 8: In order to avoid unnecessary computation, at the
beginning of the main loop, we check whether the current case
can lead to new candidates. We demonstrated that the search
is unnecessary if the parity of the generator polynomial g is
even and if both the syndrome s and the current numbers of
errors searched k have different parities.

Step 15: We introduce a new variable, nbForced, which
corresponds to the number of forced positions already set at
the current time.
Step 17: The variable nbForced is increased by one each time
the current position j corresponds to a position to be forced
(i.e., is included in the set F).
Step 20: To determine whether or not the LSB value of the
error vector e0 should be canceled, we must consider the value
of the current position j. If j corresponds to a position to force
and e0 = 0 or if e0 = 1 and the position must not be forced,
we perform an XOR of the generator polynomial with the error
vector, and then right-shift the result by one position to keep
a constant length of e. If these conditions are not met, e is
simply right-shifted by one position, as illustrated in step 26.
Step 23: To consider a candidate as valid, the sum of the non-
zero values in the error vector NZ(e) added to the number of
already forced bits must be equal to or less than the number of
considered errors N . If so, the candidate added to the list EN

comprises the non-zero values of the error vector added by
the current position j, and the values of the currently forced
positions: Fi, ∀i ≤ nbForced. For example, if F comprises
a total of 3 forced positions and only 2 positions have been
already forced at this stage of the process, only positions F1

and F2 will be the forced positions to be added to the error
pattern.
Step 36: At each main loop iteration, the error vector is
reinitialized to its original value s.
Step 39: While the state-of-the-art method stops the process
at the end of the main loop, we propose adding a validation
step to reduce the size of the candidate list. We test every
candidate from the list.
Step 40: For each candidate from the list we reconstruct a can-
didate packet, denoted pC , which corresponds to the received
packet pR where the bits corresponding to the positions of the
error pattern have been flipped.
Step 41: We test the checksum value and the decodability of
the candidate packet pC . If one of these tests fails, the current
candidate is removed from the candidate list at step 42. At the
end of the process, the resulting list is returned.

IV. SIMULATION AND RESULTS

To illustrate the gains provided by the proposed method
versus the state-of-the-art ones in terms of error correction
capability, we simulated the transmission of compressed video
over unreliable channels. Two compression standard profiles
were selected to encode the video sequences in our simula-
tions: AVC Baseline 4.0 and HEVC Main. For both, we used
an IntraPeriod of 30 frames. Two scenarios were considered:
the first one addresses video communications in a vehicular
environment, while the second is dedicated to IoT applications.
For both scenarios, we conducted simulations to compare the
reconstructed video quality from the following methods for
AVC video content:
• JM-FC: Standard AVC Joint Model frame copy recon-

struction [32].
• STBMA: Spatio-temporal boundary matching algorithm

error concealment method [12] similar to the approaches
used for comparison in a recent study [37].
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• CRC-ECA1: CRC-based single-bit error correction with-
out any candidate validation [22], and

• CRC-ECCV: the proposed CRC-based N -error correc-
tion with checksum and video validation to ensure the
compliance of the reconstructed frame, with N = 3.
When the proposed method is not able to perform error
correction, we conceal the missing area using STBMA.
As we discussed in Section III-A, the CRC-based error
correction for N = 3 without checksum validation
would systematically produce several candidates in the
output list. As no correction can be performed in such
case, the performance would be the same as STBMA
error concealment. Thus, we do not consider it in our
forthcoming comparisons.

For HEVC, we compared CRC-ECA1, CRC-ECCV and the
following techniques:
• Deblock+MVS: deblocking filter and iterative motion

vector search error concealment techniques, available in
the FFmpeg decoder [33].

However, in CRC-ECCV for HEVC, we use Deblock+MVS
when we cannot correct the packet. The Intact sequences
correspond to error free decoded sequences, using JM and
HM software for AVC and HEVC encoded video sequences,
respectively.

The Ice, Crew, City, Mobcal, Ducks and ParkRun video se-
quences were used to conduct the simulations. We chose these
sequences because they have different visual characteristics:
• Ice sequence (4CIF 704×576) represents ice skaters

moving laterally over a fixed ice rink background.
• Crew sequence (4CIF 704×576) represents crew mem-

bers walking towards the camera, with no camera move-
ment.

• City sequence (4CIF 704×576) represents a city filmed
from an helicopter, with horizontal travelling movements.

• Mobcal sequence (HD 1280×720) represents a toy train
moving from the right to the left side of the frame, along
with a camera down tilt movement.

• Ducks sequence (HD 1280×720) represents ducks taking
off from a water pond, with no camera movement.

• ParkRun sequence (HD 1280×720) represents a person
running. Horizontal travelling follows the runner’s move-
ments.

As we will show, it is crucial to take the characteristics
of the transmission channel into account when deciding to
apply CRC-based error correction. Moreover, the proposed
method performs logically better on channels with a relatively
small average number of errors per packet (packets are mildly
corrupted). It does not perform well on channels where packets
are mostly severely corrupted when not correctly received.
Note that never before has the performance of the CRC-based
multiple error correction method on realistic network scenarios
been demonstrated.

A. Wi-Fi 802.11p

The Wi-Fi 802.11p standard [34] was designed to operate
and transmit data over vehicular networks, for vehicle-to-
vehicle (V2V), vehicle-to-infrastructure (V2I) and vehicle-

to-anything (V2X) scenarios. In [35], the authors show that
video transmission from a vehicle to another can be useful
in overtaking situations. They propose transmitting the video
from the windshield camera of a vehicle to the vehicle right
behind it. As such, the second car can have access to the point
of view of the car it wants to overtake, and can thus verify
that the overtaking can be done safely. Video transmission can
also ensure transport safety, for example in the form of in-
vehicle surveillance in public transport, where video content
can be shared live to authorities if a threat of vandalism is
detected. V2I video transmission can also be used to monitor
traffic conditions, by sending video from vehicles equipped
with external cameras to a roadside unit (RSU), thus providing
information on the traffic conditions.

V2V channels have been implemented in Matlab from real-
world data collected by [42] for different scenarios, such
as urban and rural scenarios, considering that the vehicles
are either in line-of-sight (LOS) or non-line-of-sight (NLOS)
situations. The 802.11p transmission and vehicular channel
models used in our simulations are available in the Matlab
WLAN toolbox [36]. We tested our method over several
channel conditions, which are described in each example.
Fig. 6 presents the comparison, in terms of reconstructed
video quality, at the receiver, between state-of-the-art methods
and the proposed approach, for different channel SNRs, in
a rural LOS scenario. We selected the stated channel SNR
values as they range from near-optimal conditions to severely
degraded reconstructions. The PSNR of the error-free (intact)
reconstructed sequence is equal to 38.60 dB. The PSNR of
the reconstructed sequence using 1) JM-FC, 2) STBMA, 3)
CRC-ECA1, and finally, 4) the proposed CRC-ECCV, are also
given. We verified that the video quality was an increasing
function of the channel SNR. The gains are expressed with
the sequence PSNR, as recent works in [37] conclude that
achieving better quality assessment requires considering the
whole video sequence due to errors propagating, they also
demonstrate that in such cases the sequence PSNR offers better
results than more recent metrics. By performing a CRC error
correction on 3-error patterns with a checksum validation,

Fig. 6: Comparison of sequence PSNRs for AVC encoded Ice
sequence (4CIF 704x576) at QP32 and different channel SNRs
(vehicular Rural LOS scenario)
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TABLE V: Average number of errors per corrupted packet
for different channel SNR values in Rural LOS 802.11p
environment

SNR value

32 dB 28 dB 24 dB 20 dB

1 error 1.9 % 2.5 % 1.4 % 0.9 %

2 errors 5.1 % 1.8 % 1.9 % 1.4 %

3 errors 11.1 % 7.8 % 5.5 % 2.8 %

> 3 errors 81.9 % 87.9 % 91.2 % 94.9 %

the proposed approach is able to correct an average of 10%
of the corrupted packets. This leads to PSNR gains ranging
from +0.2 dB at high channel SNRs (38 dB) to +0.6 dB for
lower channel SNRs (24 dB) as compared to the STBMA error
concealment method. The simulations conducted also show
that increasing the number of errors to consider would not be
worth the accompanying increased computational complexity,
as most of the packets contain a very large number of errors.
As an example, in the simulation run for a high channel
SNR of 34 dB, we observed that almost 70% of the corrupted
packets contained more than 10 erroneous bits.

Table V shows the experimental error distribution we ob-
tained over the Rural LOS 802.11p channel, for different
channel qualities. It can be seen that the average percentage
of packets containing more than 3 errors tends to decrease
as the channel quality increases, but still remains at less
than 20% of the total corrupted packets. When the channel
conditions are degraded, the ratio of corrupted packets the
method can handle tends to decrease. We observe a maximum
of 18.1% of corrupted packets containing less than 3 errors
at a channel SNR of 32 dB and of 5.1% at a channel SNR
of 20 dB. Correcting 10 to 20% of corrupted packets can
help increase the PSNR by up to 0.6 dB in this test case,
but the visual impact is not that significant when the packet
contains many errors. Of course, the average number of errors
in the packet decreases when the channel quality increases,
but still remains very high in most cases. The proposed
method is still able to correct most of the error patterns up
to 3 errors, but because most of the corrupted packets are
highly so, the gains are greatly affected by the high ratio
of erroneous packets associated with the LOS rural scenario.

Fig. 7: Percentage of error patterns containing less than a
determined number of error in Wifi 802.11p Urban NLOS
environment for different channel SNR values

Fig. 8: Percentage of error patterns containing less than a deter-
mined number of error in Bluetooth Low Energy environment
for different Eb/No values

Consequently, applying the proposed method to correct up to 3
errors in the 802.11p environment does not provide significant
improvements. Indeed, it is clear that the CRC-based error
correction is mainly efficient in communication environments
where the corrupted packets are generally mildly corrupted.

In Fig. 7, we show the percentage of error patterns contain-
ing less than a target number of errors in 802.11p environment
for the Urban NLOS scenario, for channel SNRs varying
from 22 dB to 40 dB. We observe that as the targeted number
of errors increases, the percentage gains increase less and
less, going from 1.5% for 1 error to 15% for 3 errors,
then increasing to 22% for 5 errors and 25% for 7 errors.
Even when considering up to 7 errors, 75% of the corrupted
packets cannot be handled. With such error distributions, the
visual gains of the proposed method applied to H.264 encoded
sequences cannot be significant, as for each corrected packet
there is still 2 erroneous packets that will affect the visual
quality. For example, we performed transmission simulations
of H.264 encoded video sequences over an 802.11p channel.
The different methods’ PSNRs for the Ice 4CIF sequence at
QP=32, having a PSNR of 38.75 dB when intact, are 29.56 dB
for the frame copy concealed video and 30.05 dB for the CRC
error correction searching for 5 errors or fewer. The CRC error
correction thus provides only a small improvement over frame
copy, yielding a PSNR loss of 8.7 dB compared to the intact
compressed sequence.

The error distribution of 802.11p channels is thus not the
most adapted to our method. In fact, our error correction
is based on the assumption that received corrupted packets
are mildly corrupted. Thus, more significant gains can be
achieved for applications that show a low number of errors
per corrupted packet. In Fig. 8, we show the percentage
of error patterns containing fewer than a target number of
errors in BLE environment, for channel Eb/No varying from
5.5 dB to 10 dB. We can observe that such channel is more
suitable for the proposed method, as the error distributions
show that the vast majority of corrupted packets contain a
very low number of errors, especially when the channel quality
is high. For example, at Eb/No of 9 dB, 52.6% of corrupted
packets contain a single error, 93.3% contain 3 errors or
fewer, 98.8% contain 5 errors or fewer and 99.2% contain
7 errors or fewer. In the next section, we focus on the BLE
application, which provides better results and a higher quality
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of reconstructed video sequences. Since the application of the
proposed method on 802.11p environments does not provide
significant improvements, we will not present any further
results for this case.

B. Bluetooth Low Energy

The Bluetooth Low Energy (BLE) [38] standard is widely
used in IoT [39] applications to transmit sensor data in an
energy-efficient way. In particular, BLE is used in video
surveillance over Internet of Things (VS-IoT) devices to
monitor security cameras when a movement is detected [40].

To conduct transmission simulations over BLE channels,
we use the Bluetooth Low Energy simulation with radio fre-
quency impairments proposed in the Matlab Communication
toolbox [41]. We simulate different channel conditions by
varying the Eb/No parameter. The Eb/No corresponds to the
SNR per bit of the communication. In examples, the Eb/No
typically ranges from 7 dB to 10.5 dB, corresponding to Bit
Error Rates (BER) of 10−4 to 10−7. The BLE standard
imposes a maximum packet length of 250 bytes. In what
follows, videos were encoded with this packet size limit in
order to ensure that transmission was energy efficient and to
maintain a constant and low header overhead. This encoding
management will have an impact on error distribution within
the video sequence, since an intra-coded frame requires many
more packets to be delivered than an inter-predicted frame
when the payload of each packet is constant, since it is less
efficiently compressed in the former case.

Unlike Wi-Fi 802.11p, the error distribution over BLE chan-
nels is favorable to the CRC-based error correction design,
as illustrated in Fig. 9. The heatmap shows the value of N
needed to handle 75% of the error cases. The two axes of
the map are the Eb/No ratio and the packet length considered,
in bytes. In other words, 75% of the error cases for the given
packet length and channel quality contain the number of errors
in the block or less. For example, for the highest quality
channels considered in this example, it means that 75% of

Fig. 9: Heatmap representing the value of the number of errors
to consider, N , to handle 75% of the error cases for a given
channel quality and packet length over a BLE channel. If N is
set to the value in the corresponding box for such parameters,
then it can successfully correct 75% of the corrupted packets

the corrupted packets contain 3 or fewer errors. We can also
observe here that the number of errors to consider increases
rapidly as the channel quality decreases. Since the proposed
method yields better results in high quality channels, it is able
to maintain a near-optimal video quality in them, subject to
mild corruption; however, the gains it provides are not as
significant when the channel conditions decrease drastically.
In Fig. 9, we can consider that the channel and packet length
conditions in which the method is able to operate efficiently
correspond to values of N equal to or less than 3, represented
in dark blue in the heatmap, i.e., Eb/No of 8dB or higher (up to
the maximum packet length in the BLE standard, 250 bytes).

Table VI shows the average percentage of error cases
encountered in corrupted packets for different channel con-
ditions. We note that for high quality channels, considering
3 errors instead of 1 can help increase the correction rate
from 76.5% to 94.8%. In this case, the video sequence can
be reconstructed with near-optimal visual quality. The gains
for more severe channel conditions are even greater, since
for an Eb/No value of 8 dB, the correction rate jumps from
31.3% to 87.6%. However, such gains are less visible on
the reconstructed video, as its content is basically of poor
visual quality in such channel conditions. It is interesting
to note that for all channels considered, the percentage of
packets with more than 3 errors increases as the channel
conditions decrease. However, this percentage remains low.
In all tested cases, more than 85% of the corrupted packets
contained 3 errors or less. Our method is therefore well-suited
to transmissions, and can achieve a significant correction rate
versus state-of-the-art methods.

In Fig. 10, we present the PSNR of two reconstructed video
sequences after transmission using the BLE protocol as a
function of the Eb/No parameter value. In these simulations,
we compare, in Fig. 10a, the JM-FC and STBMA error
concealment methods to CRC-ECA1 and CRC-ECCV on the
AVC encoded 4CIF Ice sequence, for a QP of 37. Fig. 10b
compares the deblocking filter with motion vector search error
correction to the same CRC-based error corrections, on the
HEVC encoded 4CIF Crew sequence for a QP of 27. From
these figures, it is clear that the proposed approach offers
significant gains over traditional methods when the channel
conditions start to decrease. We can see that the proposed
method maintains a high reconstruction quality whereas in the
other methods, the quality starts to rapidly decrease. It can also
be seen that when the channel conditions are too severe, the
performance of the proposed approach also decreases.

TABLE VI: Average number of errors per corrupted packet
for different channel conditions

Eb/No value

10 dB 9 dB 8 dB 7 dB

1 error 76.5 % 53.3 % 31.3 % 17.3 %

2 errors 13.5 % 27.4 % 35.9 % 27.5 %

3 errors 4.8 % 13.0 % 20.4 % 20.9 %

> 3 errors 5.2 % 6.3 % 12.4 % 34.3 %
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(a) AVC Ice Sequence at QP 37 (b) HEVC Crew sequence at QP 27

Fig. 10: Comparison of sequence PSNRs for AVC encoded Ice and HEVC encoded Crew sequences (4CIF 704×576) at
different channel conditions in a Bluetooth Low Energy environment.

In order to illustrate the performance of the proposed
method, in Fig. 11, we present the evolution of the PSNR
through time for a sequence transmitted through a Bluetooth
Low Energy channel with Eb/No=9d dB. The tested sequence
here is Ice, a 4CIF sequence of length 240 frames, encoded
at QP32. We compare the proposed CRC-ECCV approach
to JM-FC, represented by a red dashed line, and STBMA,
presented in plain yellow. The proposed approach is shown
by the green curve, and we present the error-free version
in blue. In this example, 47 packets have been corrupted
throughout the transmission. It can be seen that JM-FC and
STBMA suffer greatly from these corrupted packets as their
PSNR is significantly lower through the sequence. It can also
be seen that each Intra frame, which are located every 30
frames, helps all methods recover a high PSNR until a new
packet is hit by one or several errors. The proposed method
achieves a significantly better video quality during most of the
video. However, it can be seen that even if the method is able
to handle most of the corrupted packets, the PSNR greatly
decreases at frames 97 and 159. It was verified that these
packets were hit by more than 3 errors, and as a result, the
proposed approach was not able to perform error correction on

Fig. 11: PSNR evolution through time for AVC sequence Ice
(4CIF) at QP32. The channel used has a Eb/No of 9 dB

them. Nevertheless, when considering the whole sequence, it
can be seen that the global PSNR variability of the proposed
approach is significantly lower than with other approaches.
Indeed, this is a crucial factor to consider when it comes to the
quality perceived by end users. It has been shown that human
viewers are more affected by quality drops than by average
quality decrease [43]. Fig. 11 shows that the error concealment
method yields great variability, which would greatly affect the
viewer’s quality of experience.

A visual example of the gains provided by the proposed
method versus state-of-the-art methods is shown in Fig. 12,
considering the worst BLE channel (Eb/No=8 dB). Each of the
visual examples shows the reconstructed video for the different
methods compared. It can be seen that the video frame after

(a) JM-FC (b) STBMA

(c) CRC-ECA1 (d) CRC-ECCV

Fig. 12: Visual comparison of the literature methods to the
proposed approach on AVC encoded Ice sequence (4CIF) at
QP32 for an Eb/No value of 8 dB
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TABLE VII: Average PSNR comparison for different sequences and QPs over different BLE channel conditions for AVC
encoded sequences. The following are the tested decoding methods: 1©: intact sequence, 2©: JM-FC concealed sequence,
3©: STBMA concealed sequence, 4©: CRC-ECA1 and 5©: proposed CRC-ECCV

Sequence QP Eb/No = 10 dB Eb/No = 9 dB Eb/No = 8 dB
1© 2© 3© 4© 5© 1© 2© 3© 4© 5© 1© 2© 3© 4© 5©

Ice 22 43.53 35.14 38.05 42.84 43.50 43.53 27.72 31.65 35.37 41.95 43.53 18.37 20.84 22.70 31.80
27 41.16 36.78 38.26 41.06 41.12 41.16 29.21 32.36 36.59 39.73 41.16 18.77 20.91 23.29 31.60
32 38.60 35.68 36.53 37.88 38.15 38.60 31.66 33.33 35.94 37.55 38.60 21.52 23.37 24.99 29.83
37 36.01 34.87 35.12 35.78 35.88 36.01 31.03 31.93 33.92 35.45 36.01 21.05 22.42 24.14 27.49

Crew 22 41.87 39.61 39.95 40.68 41.86 41.87 37.17 37.97 40.23 41.66 41.87 29.88 30.99 32.76 38.57
27 38.80 38.03 38.20 38.78 38.79 38.80 34.45 34.99 36.37 38.03 38.80 27.09 28.05 29.65 36.18
32 36.25 35.70 35.76 35.92 36.23 36.25 33.80 34.09 35.08 35.76 36.25 26.67 27.12 28.07 33.19
37 33.74 33.33 33.36 33.49 33.70 33.74 31.53 31.57 32.37 33.67 33.74 26.53 26.71 28.42 31.92

City 22 40.90 35.36 37.72 39.93 40.57 40.90 29.52 33.18 36.09 39.28 40.90 17.24 19.80 21.56 33.35
27 36.64 34.17 35.43 36.57 36.63 36.64 29.27 32.19 33.74 35.79 36.64 19.62 22.41 23.96 30.02
32 33.01 32.24 32.72 32.90 33.00 33.01 29.14 31.11 31.92 32.75 33.01 20.82 23.06 24.56 29.85
37 29.93 29.16 29.42 29.91 29.92 29.93 27.49 28.07 29.07 29.56 29.93 20.79 22.34 23.77 27.78

Mobcal 22 40.76 37.47 38.87 39.71 40.11 40.76 34.28 35.33 38.33 39.97 40.76 26.74 28.89 30.85 35.22
27 37.90 33.85 35.20 37.57 37.70 37.90 30.43 32.73 34.68 36.17 37.90 23.46 24.95 27.18 33.02
32 34.77 33.72 34.27 34.56 34.70 34.77 27.98 29.71 30.92 34.07 34.77 20.14 21.59 23.72 29.11
37 31.81 30.55 30.93 31.18 31.79 31.81 27.54 28.51 30.05 31.75 31.81 19.44 20.71 22.34 27.49

Ducks 22 40.42 36.56 36.79 39.78 40.35 40.42 33.00 33.58 35.87 37.85 40.42 25.07 26.79 31.02 36.50
27 36.58 34.14 34.46 35.97 36.52 36.58 31.07 31.43 33.52 35.97 36.58 24.21 25.13 30.67 33.34
32 33.07 31.90 31.94 32.86 33.06 33.07 30.21 30.47 31.64 33.02 33.07 22.28 23.02 25.32 28.73
37 29.40 29.13 29.16 29.38 29.39 29.40 27.38 27.47 28.32 29.33 29.40 21.73 22.17 23.59 26.88

ParkRun 22 40.40 33.30 35.69 39.49 40.38 40.40 31.11 33.88 36.34 38.86 40.40 23.91 25.42 30.83 34.98
27 35.33 31.35 32.08 34.96 35.26 35.33 28.39 29.61 32.30 34.24 35.33 23.11 24.37 27.22 30.31
32 31.02 28.67 29.98 30.77 31.01 31.02 24.57 27.81 29.36 30.72 31.02 19.38 21.79 24.12 28.11
37 27.42 26.51 27.05 27.25 27.41 27.42 23.98 26.01 26.71 27.31 27.42 17.78 21.28 21.97 25.49

∆PSNR
22 - 0 1.60 4.16 4.89 - 0 2.13 4.91 7.79 - 0 1.92 4.75 11.54
27 - 0 0.89 2.77 2.95 - 0 1.75 3.90 6.19 - 0 1.59 4.29 9.70
32 - 0 0.55 1.16 1.37 - 0 1.53 2.92 4.42 - 0 1.52 3.33 8.00
37 - 0 0.26 0.58 0.77 - 0 0.76 1.80 3.02 - 0 1.39 2.82 6.62

error concealment still exhibits severe visual artifacts, while
single error correction removed only a few of them. The
proposed approach was able to correct most of the corrupted
packets in this frame, resulting in a visually better video
quality. However, we can also note that not all the corrupted
packets were corrected during the process, and a packet
containing more than 3 errors was concealed near the center
of the frame. As we encoded the video sequences under the
packet length constraints of BLE, we could see that losing a
packet has only a mild impact on visual quality because it
carries less visual information.

In Table VII, we compare the reconstructed sequence
PSNRs of several error concealment and error correction
methods in a BLE environment, applied to several H264
encoded sequences. In this table, ∆PSNR corresponds to the
average PSNR difference between each concealed or corrected
sequence compared to the JM-FC concealed video, for each
QP and each Eb/No value. The results show that as the channel
quality decreases, the gains provided by the proposed approach
increases, as compared to the literature. For example, for a
high Eb/No of 10 dB, the proposed approach increases the
sequence PSNR by 1.6 dB as compared to STBMA and by
0.3 dB as compared to CRC single error correction. We can
also observe that the gains increase significantly as the Eb/No
ratio decreases, and that at 8 dB, the average gains of the

proposed method are 7.3 dB over STBMA and 5.1 dB over
CRC single error correction. Since these gains see greater
jumps as the channel conditions become less favorable, we
must note the PSNR loss as compared to the intact sequence.
While gains of up to 5 dB are observed as compared to other
methods at Eb/No of 8 dB, on average, there is also a 4.9 dB
loss as compared to the error-free video sequence. In the latter
case, there are smaller gains for good channel conditions,
and these help reconstruct a near-intact sequence, with an
average PSNR difference of 0.10 dB for Eb/No=10 dB. As the
channel conditions decrease, more packets containing a high
number of errors are received. However, the method can still
correct up to 80% of the corrupted packets. The proposed
approach is thus designed to maintain a near-optimal visual
quality in slightly disturbed channels, where the methods in
the literature suffer from visual artifacts; further, it is still able
to correct most packets as the channel quality decreases, but
cannot ensure significant visual quality improvement in severe
channel conditions.

V. CONCLUSION

In this paper, we propose several improvements to the CRC-
based error correction method to increase its error correction
capability by handling the list of candidates and reducing its
computational complexity.
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This method achieves better results than the state-of-the-art
CRC error correction method as it can handle most of the
double and triple error cases that the original method would
not have been able to. The validation of the reconstructed bit
sequence is an essential additional step to ensure the validity
of the corrected sequence and to reduce the risk of wrong
corrections.

Simulations over different wireless environments, namely,
Wi-Fi 802.11p and Bluetooth Low Energy, were conducted.
We demonstrated that the gains achieved by the proposed
method depend strongly on the targeted application. The
proposed method offers an average correction rate of 10 to
20% of the corrupted packet in a Wi-Fi 802.11p environment
for channel SNRs ranging from 24 to 36 dB in a Rural LOS
scenario. The gains are significantly greater for Bluetooth Low
Energy, where the proposed method is able to correct 70% of
the corrupted packets for severe channel conditions, at Eb/No
of 8 dB. The proposed approach offers, on average, PSNR
gains of 1.6 dB to 7.3 dB versus state-of-the-art error conceal-
ment methods, at Eb/No of 10 dB and 8 dB, respectively.

Further works include conceiving a highly reliable method
to select the best candidate when several candidates pass
both the CRC and checksum validation processes and are
decodable. Although exploiting fixed and predictable field
values in protocols is expected to bring further gains, we would
also like to investigate pixel-domain approaches, using deep
learning, to identify the most probable intact video among
the remaining reconstructed candidates. The application of the
proposed method can also be extended to the most recent video
codecs such as VVC, along with codec-specific validation
steps based on syntax.

REFERENCES

[1] J. Sobolewski, ”Cyclic Redundancy Check,” in Encyclopedia of Com-
puter Science, John Wiley and Sons Ltd, 2003.

[2] J. Luo, K. D. Bowers, A. Oprea, and L. Xu, ”Efficient software imple-
mentations of large finite fields GF(2n) for secure storage applications”.
in ACM Transactions on Storage vol. 8, no. 1, 27 pages, Feb. 2012.

[3] H. Sun and W. Kwok, “Concealment of damaged block transform coded
images using projections onto convex sets” IEEE Transactions on Image
Processing, vol. 4, No. 4, pp. 470–477, Apr. 1995.

[4] J. Koloda, J. Østergaard, S. H. Jensen, V. Sánchez, and A. M. Peinado,
“Sequential error concealment for video/images by sparse linear predic-
tion” IEEE Transactions on Multimedia, vol. 15, no. 4, pp. 957–969,
Jun. 2013.

[5] J. Liu, G. Zhai, X. Yang, and B. Yang and L. Chen “Spatial error
concealment with an adaptive linear predictor” in IEEE Transactions on
Circuits and Systems for Video Technology, Vol. 25, No. 3, pp. 353-366,
Mar. 2015.

[6] A. Akbari, M. Trocan, and B. Granado, “Sparse recovery-based error
concealment” IEEE Transactions on Multimedia, vol. 19, no. 6, pp.
1339–1350, Jun. 2017.

[7] J. Wu, X. Liu and K. Y. Yoo, ”A Temporal Error Concealment Method
for H.264/AVC Using Motion Vector Recovery IEEE Transactions on
Consumer Electronics, Vol 54, No 4, pp. 1880-1885, Nov. 2008.

[8] W. M. Lam, A. R. Reibman and B. Liu ”Recovery of lost or erroneously
received motion vectors” in Proceedings of the IEEE International
Conference on Acoustics, Speech ans Signal Processing ICASSP1993,
vol. 5, pp. 417-420, Apr. 1993.

[9] T. Chen, X. Zhang and Y. Q. Shi, ”Error Concealment Using Refined
Boundary Matching Algorithm” in IEEE Transactions on Circuits and
Systems for Video Technology, vol. 13, pp.560-576, Jul. 2003.

[10] B. Chung, C. Yim, ”Bi-Sequential Video Error Concealment Method
Using Adaptive Homography-Based Registration” IEEE Transactions on
Circuits and Systems for Video Technology, Vol. 30, No. 6, pp. 1535-
1549, Jun. 2020.

[11] L. Atzori, F. G. B. De Natale, and C. Perra, “A spatio-temporal
concealment technique using boundary matching algorithm and mesh-
based warping (BMA-MBW)” IEEE Transactions on Multimedia, vol.
3, No. 3, pp. 326–338, Sep. 2001.

[12] Y. Chen, Y. Hu, O. C. Au, H. Li, and C. W. Chen ”Video Error
Concealment using Spatio-Temporal Boundary Matching and Partial
Differential Equation” in IEEE Transactions on Multimedia, vol. 10,
No. 1, pp. 2-15, Jan. 2008.

[13] A. Sankisa, A. Punjabi and A. K. Katsaggelos, ”Video Error Con-
cealment Using Deep Neural Networks,” 2018 25th IEEE International
Conference on Image Processing (ICIP), Athens, 2018, pp. 380-384.

[14] Dahun Kim, Sanghyun Woo, Joon-Young Lee and In So Kweon ”Deep
Video Inpainting” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2019, pp. 5792-5801.

[15] Wang, C., Huang, H., Han, X. and Wang, J. ”Video Inpainting by Jointly
Learning Temporal Structure and Spatial Details”, Proceedings of the
AAAI Conference on Artificial Intelligence, 2019, vol. 33, no. 1, pp.
5232-5239.

[16] M. Park and D. J. Miller ”Joint Source-Channel Decoding for Variable-
Length Encoded Data by Exact and Approximative MAP Sequence
Estimation” in IEEE Transactions on Communications, vol. 48, no.
1, pp. 1-6, Jan. 2000.

[17] F. Caron and S. Coulombe, “Video error correction using soft-output
and hard-output maximum likelihood decoding applied to an H.264
baseline profile,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 25, no. 7, pp. 1161–1174, 2015.

[18] F. Golaghazadeh, S. Coulombe, F.-X. Coudoux, P. Corlay, ”Checksum
Filtered List Decoding Applied to H.264 and H.265 Video Error
Correction,” in IEEE Transactions on Circuits and Systems for Video
Technology, vol. 28, no. 8, pp. 1993-2006, Aug. 2018.

[19] S. Shukla, N. W. Bergmann, ”Single Bit Error Correction Implementa-
tion in CRC-16 on FPGA,” in IEEE International Conference on Field-
Programmable Technology, Brisbane, Australia, pp. 319-322, 6-8 Dec.
2004.

[20] S. Babaie, A. K. Zadeh, S. H. Es-Hagi and N. j. Navimpour, ”Double
Bits Error Correction using CRC Method,” in Fifth International Con-
ference on Semantics, Knowledge and Grid, pp. 254-257, 12-14 Oct.
2009.

[21] A. S. Aiswarya and G. Anu, ”Fixed Latency Serial Transceiver with
Single Bit Error Correction on FPGA,” 2017 International Conference
on trends in Electronics and Informatics (ICEI), 11-12 May 2017.

[22] V. Boussard, F. Golaghazadeh, S. Coulombe, F.-X. Coudoux and P.
Corlay, ”Robust H.264 Video Decoding Using CRC-Based Single Error
Correction And Non-Desynchronizing Bits Validation,” 2020 IEEE In-
ternational Conference on Image Processing (ICIP), Abu Dhabi, United
Arab Emirates, 2020, pp. 1098-1102.

[23] V. Boussard, S. Coulombe, F.-X. Coudoux and P. Corlay, ”Table-Free
Multiple Bit-Error Correction Using the CRC Syndrome,” in IEEE
Access, vol. 8, pp. 102357-102372, 2020.

[24] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, “Overview of
the H.264/AVC video coding standard,” IEEE Transactions on Circuits
and systems for Video Technology, vol. 13, no. 7, pp. 560–576, Jul.
2003.

[25] G. J. Sullivan, J-R. Ohm, W-J. Han, and T. Wiegand, “Overview of
the high efficiency video coding (HEVC) standard,” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 22, no. 12, pp.
1648–1667, Dec. 2012.

[26] K. Niu, K. Chen, ”CRC-Aided Decoding of Polar Codes,” in IEEE
Communications Letters, vol. 16, no. 10, pp. 1668-1671, Oct. 2012.

[27] X. Liu, S. Wu, X. Xu, J. Jiao and Q. Zhang, ”Improved Polar SCL
Decoding by Exploiting the Error Correction Capability of CRC,” in
IEEE Access, vol. 7, pp. 7032–7040, Dec. 2018.

[28] F. Golaghazadeh, S. Coulombe, F.-X. Coudoux and P. Corlay, ”The
Impact of H.264 Non-Desynchronizing Bits on Visual Quality and its
Application to Robust Video Decoding,” 2018 12th International Con-
ference on Signal Processing and Communication Systems (ICSPCS),
Cairns, Australia, 2018, pp. 1-7.

[29] B. Bross, J. Chen, J. -R. Ohm, G. J. Sullivan and Y. -K. Wang, ”De-
velopments in International Video Coding Standardization After AVC,
With an Overview of Versatile Video Coding (VVC),” in Proceedings
of the IEEE, pp. 1-31, 2021.

[30] R. T. Braden, D. A. Borman, and C. Partridge, “Computing the in-
ternet checksum,” IETF, RFC 1071, Sep. 1988. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc1071.txt.

[31] L. Trudeau, S. Coulombe and S. Pigeon, ”Pixel domain referenceless
visual degradation detection and error concealment for mobile video,”



16

2011 18th IEEE International Conference on Image Processing (ICIP),
Brussels, 2011, pp. 2229-2232.

[32] “H.264/AVC JM reference software,” [Online]. Available:
http://iphome.hhi.de/suehring/tml/, version 18.5.

[33] FFmpeg codec documention. [Online] Available:
https://ffmpeg.org/ffmpeg-codecs.html#Video-Decoders.

[34] IEEE 802.11: Part 11: ”Wireless LAN medium access control (MAC)
and physical layer (PHY) specifications”, Dec. 2016.

[35] F. Rameau, H. Ha, K. Joo, J. Choi, K. Park and I. S. Kweon, ”A
Real-Time Augmented Reality System to See-Through Cars,” in IEEE
Transactions on Visualization and Computer Graphics, vol. 22, no. 11,
pp. 2395-2404, Nov. 2016.

[36] 802.11p Packet Error Rate Simulation for a Vehicular Chan-
nel, [https://fr.mathworks.com/help/wlan/ug/802-11p-packet-error-rate-
simulation-for-a-vehicular-channel.html], Accessed on Dec. 2020.

[37] M. Kazemi, M. Ghanbari and S. Shirmohammadi, ”The Performance of
Quality Metrics in Assessing Error Concealed Video Quality”, in IEEE
Transactions on Image Processing, vol. 29, pp. 5937-5952, 2020.

[38] Specification of the Bluetooth system. Core Version 4.1, Bluetooth SIG,
2013. [Online]. Available: http://www.bluetooth.com.

[39] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari and M.
Ayyash, ”Internet of Things: A Survey on Enabling Technologies,
Protocols, and Applications,” in IEEE Communication Surveys and
Tutorials, vol. 17, no. 4, Jun. 2015.

[40] S. N. Jyothi and K. V. Vardhan, ”Design and implementation of real time
security surveillance system using IoT,” in 2016 International Confer-
ence on Communication and Electronics Systems (ICCES), Coimbatore,
2016, pp. 1-5.

[41] End-to-End Bluetooth Low Energy PHY Simulation with RF Impair-
ments and Corrections [https://fr.mathworks.com/help/comm/ug/end-
to-end-bluetooth-low-energy-phy-simulation-with-rf-impairments-and-
corrections.html], Accessed on Dec. 2020.

[42] P. Alexander, D. Haley and A. Grant, ”Cooperative Intelligent Transport
Systems: 5.9-GHz Field Trials,” in Proceedings of the IEEE, vol. 99,
no. 7, pp. 1213-1235, July 2011.

[43] C. Yim and A. C. Bovik. ”Evaluation of temporal variation of video
quality in packet loss networks” in Signal Processing: Image Commu-
nication, Volume 26, Issue 1, pp. 24-38, 2011.




