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Abstract: Pure and Mg-doped manganese oxide thin films were synthesized on heated glass sub-
strates using the spray pyrolysis technique. The surface chemical composition was investigated by
the use of X-ray photoelectron spectroscopy (XPS). Structural and morphological properties were
studied by using X-ray diffraction (XRD), scanning electron microscope (SEM) and atomic force
microscopy (AFM). Optical properties were characterized by UV-visible spectroscopy. XPS spectra
showed typical Mn (2p3/2), (2p1/2) and O (1s) peaks of Mn3O4 with a slight shift attributed to the
formation of different chemical states of manganese. XRD analysis revealed the tetragonal phase of
Mn3O4 with a preferred (211) growth orientation that improved with Mg-doping; likewise, grain
size is observed to increase with the Mg doping. SEM images of Mn3O4 films showed rough surfaces
composed of uniformly distributed nanograins whose size decreases with the Mg-doping. The
manganese oxide films surface observed in AFM show a textured, rough and porous surface. The
combination of transmittance and absorption data in the UV-visible range allowed determining the
energy values of the Eg band gap (1.5–2.5 eV). The decrease of the band gap with the Mg-doping
increase is attributed to the influence of the greater size of the Mg2+ ion in the manganese oxide lattice.

Keywords: MnO; XPS; AFM; nanograins; spray pyrolysis

1. Introduction

Oxides in nanometric films have received increasing interest to the potential appli-
cations that derive from their interesting electrical, magnetic and catalytic properties.
Manganese oxides in nanometric films are intriguing compounds possessing excellent
electrochemical activity allowing it to be used in electrochemistry applications. Due to the
three Mn2+, Mn3+ and Mn4+ different oxidative states of manganese, the manganese oxide
compound exists in four structures (MnO, Mn2O3, MnO2 and Mn3O4) [1], which all present
interesting physical and chemical properties as important as those of the metal oxides
materials (ZnO, SnO2, NiO, CuO, . . . ) belonging to the transparent conducting oxides
(TCO) family. Manganese oxide thin films are well suited for various applications such as
in optoelectronic applications for their use in solar energy conversion [2,3], electrochemical
capacitors [4,5], batteries, sensors [6], chemical sensors [7,8], magnetoelectronic devices,
electrochemical energy storage devices and catalytic activity [9–11]. Quality manganese
oxide thin films are relatively easy to prepare, with many physical and chemical techniques
such as atomic layer deposition [12], co-precipitation [13], sputtering [14], Molecular Beam
Epitaxy [15], chemical vapor deposition [16] and spray pyrolysis [17,18]. It has been shown
earlier [19,20] that, amongst these techniques, spray pyrolysis presents many advantages:
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it is cheaper and easier to implement, while allowing for obtainment of homogeneous
coatings on large areas. Furthermore, it is easy to obtain metals-doped films by simply
adding some other solution(s) to the primary one. In this work, we synthesize and charac-
terize pure and Mg-doped manganese oxide thin films using spray pyrolysis but in order
to obtain oxide thin films of good quality, it is necessary to control efficiency the phase
formation, the grain size, the shape and morphologies of nanometric films. It is well known
that these parameters have great influence on the physical properties and applications of
oxides in nanometric films. This paper allowed us to review the synthesis of manganese
oxides films with various Mg-doping for photocatalytical properties study which will be
applied in industrial waste from textile factories.

2. Materials and Methods

Pure and doped manganese oxide thin films were deposited onto heated glass sub-
strates using the spray pyrolysis technique. The primary solution permitting to obtain pure
manganese oxide was prepared with 0.1 M manganese chloride (MnCl2, 6H2O) in 100 mL
deionized water. A secondary solution prepared from magnesium chloride hexahydrate
(MgCl2, 6H2O) was added for the Mg-doping to the primary solution at various concentra-
tions ((Mg/Mn) ratio: 3%, 5%, 7% and 9%). These solutions were sprayed onto heated glass
substrates maintained at 350 ◦C during the deposit time. Figure 1 schematically illustrates
the principle of the pyrolysis method used in this study.
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Figure 1. Schematic diagram of the used spray pyrolysis technique.

The obtained pure and Mg-doped samples were characterized by techniques adapted
to thin films analysis. X-ray photoelectron spectroscopy (XPS-K-alpha apparatus from
Thermo Scientific Instruments, Waltham, MA, USA) and X-ray diffraction (XRD-X’Pert
PRO from PANalytical (Malvern, UK) utilizing copper line of wavelength λ = 1.54 Å)
were used for chemical compositional analysis, and structural study, respectively. Mi-
crostructural and morphological characterizations were obtained by scanning electron
microscopy (SEM JEOL 7500-F Instrument, Tokyo, Japan) and atomic force microscopy
(AFM-Dimension Edge from Bruker, Bruker, MA, USA), respectively. The materials band
gap energy (Eg) is calculated using the Tauc’s plot, combining absorption and transmittance
data extracted from UV-visible (Specord 50 plus spectrophotometer, Analytik Jena, Jena,
Germany) analysis.

3. Results
3.1. XPS Compositional Analysis

XPS survey spectra are used to investigate the chemical composition and the valence
states of manganese and oxygen for the pure and Mg-doped manganese oxide films
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(Figure 2). Carbon is the sole contaminant with some traces of nickel detected on the films’
surface; the other peaks that appear in the spectra are attributed to the core levels of the
O and Mn elements; traces of the magnesium dopant were detected from their Mg (1s)
core level. The principal Mn (2p3/2), (2p1/2) and O (1s) core levels are shown in Figure 3.
Binding energy shifts of the Mn (2p) and O (1s) peaks are listed in Table 1; they present
an average half-eV oscillation, probably due to the formation of different chemical states
of the Mn and resulting into the formation of mixed oxides (MnO, Mn3O4). Indeed, as
reported by Li et al. [21], the Mn (2p3/2) peak that appears around 640.0 eV is attributed to
Mn2+cations, whereas peaks detected in the energy range 641.0–642.0 eV are assigned to
Mn3+ and Mn4+, respectively. In the present work, the binding energies are recorded at
640.4 eV for the pure films and vary from 641.0 to 641.5 eV for the Mg-doped films. This is
consistent with the pure films corresponding to the growth of the MnO compound, while
the Mg-doped films show the formation of Mn3O4.
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Table 1. XPS determined binding energies of the most intense O and Mn elemental peaks.

Samples O (1s) Binding Energy (eV) Mn (2p3/2) Binding Energy
(eV)

Mn (2p1/2) Binding Energy
(eV)

Pure MnO film 529 640.4 652.4
3% Mg-doped film 529.9 641.5 653.5

5–7% Mg-doped film 529.5 641.0 653.0
9% Mg-doped film 529.7 641.5 653.6

The oxygen peak is decomposed into two distinct components (Figure 3a): the first one
appears at 529 eV and is due to Mn–O bonds. The other less intense oxygen peak positioned
at 530.6 eV is related to contaminant molecules loosely bound the surface. The curve-fitted
XPS spectra (Figure 4) of the Mn (2p) core levels suggest in fact that the 2p3/2 peak is
composed of a doublet, with one component at 639.5 eV and the other one at 641.5 eV. This
confirms the presence of two different valences, Mn2+ and Mn3+, highlighting the growth
of two MnO and Mn3O4 compounds. A larger and less intense component appears at
644.4 eV; it is due to the presence of the Mn4+ state of manganese.
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The transitions of XPS spectra of MnO compound are strongly dependent on the
valence of the manganese (Mn2+, Mn3+, Mn4+). They are discussed and reported by
Ilton [22,23] and Cerato [24,25].

3.2. XRD Characterization

Figure 5 shows the XRD patterns of the deposited pure and Mg-doped thin films.
Fourteen peaks of different intensities are resolved with the principal (112), (103) and (211)
indexed planes, corresponding to 2θ diffraction angles around 28◦, 32.5◦ and 36.5◦. These
peaks are the mostly shown and discussed in [26–28], and, with reference to the JCPDS
cards No. 80–0382 and 00-024-0734, they do confirm the presence of the tetragonal Mn3O4
phase. The intensity of the indexed plane (211) increases with the increase of Mg doping
and is particularly pronounced for 7% and 9% doping. It results also in diffraction peak
shift. This indicates that the films grow preferentially along the (211) direction and confirms
the crystallization improvement of the films under the Mg-doping effect. Figure 4b shows
increased diffraction peak at around 43◦, which does not appear on the other spectra; it is
probably due to a faulty placement of the sample. On the other hand, the position of this
peak is unstable and shifts to the left and to the right, as observed on XPS spectra (Table 1,
Figure 6). These oscillations are attributed to the presence of two (Mn2+, Mn3+) valence
types confirming the formation of a mixed oxide (MnO/Mn3O4). Similar behaviors were
observed on the XRD spectra of Sr doped-ZnO [29] and were attributed to a size effect
between Zn2+ and Sr2+ ions. If we compare the ionic radii of the Mn2+(1.17Å), Mn3+(0.66 Å)
and Mn4+(0.60 Å) ions and of Mg2+(0.66), it is only the Mn2+ ion that can explain the shift of
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the XPS and DRX peaks. The void resulting from the ratio rMn2+ /rMg2+ = 1.77 is expected to
destabilize the crystallographic structure of the Mn-O film, which would cause the observed
perturbations of the peak intensities (positions) in the XRD (and XPS) measurements.
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The a, b and c tetragonal lattice parameters were determined from the XRD spectra.
The tetragonal structure is defined by a = b 6= c and the interplanar spacing d is a function
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that is dependent on a, b and c and on the indexed diffraction peaks (hkl) as shown in the
following relation:

1
d2 =

(
h2 + k2)

a2 +
l2

c2 , (1)

The interplanar spacing d can also be determined from Bragg’s law below:

2dsinθ = nλ, (2)

where d is the interplanar spacing, θ is the Bragg diffraction angle, n is the order of
diffraction (usually n = 1) and λ is the X-ray wavelength.

By combining Equations (1) and (2) and applying them to the (211) and (103) most
intense peaks, one easily calculates the a and c lattice parameters that are listed in the
following Table 2.

Table 2. Determination of the a and c lattice parameters for the five different deposited films.

Sample 2θ (◦) (hkl) d (Å)
a = b
(Å) c (Å) a = b (Å) in Literature c (Å) in Literature

Pure MnO 32.29
36.08

103
211

2.770
2.488

5.7643 9.4757
8.135 [30] 9.28 [30]
5.752 [31] 9.47 [31]

MnO (3% Mg) 32.36
36.13

103
211

2.763
2.484 5.7565 9.4517

–
MnO (5% Mg) 32.29

36.07
103
211

2.770
2.487 5.7647 9.4766

MnO (7% Mg) 32.65
36.39

103
211

2.740
2.466 5.7166 9.3677

MnO (9% Mg) 32.53
36.31

103
211

2.751
2.472 5.7302 9.4041

By using the Debye–Scherrer Equation (3) that is extensively used with more details
by Borchert et al. [32], the average Mn-O crystallite size may be estimated according to:

D =
0.9λ

β(2θ)cos θ
, (3)

where λ is the X-ray wavelength, θ is the Bragg diffraction angle and β is the broadening
of the diffraction peak measured at half of its maximum intensity.

The defects density in the synthesized Mn-O films defined as the length of dislocation
lines per unit volume of the crystal can be estimated by the use of the following Equation (4):

δ =
1

D2 (4)

where D is the average Mn-O crystallite size determined from Equation (3).
By application of Equations (3) and (4) to the intense diffraction peak (211) for the

pure and Mg-doped Mn-O, the determined values of D and δ are shown in Table 3.

Table 3. Determination of the average crystallite size D and defects density δ for the five different thin films.

Sample 2θ (◦) θ (◦) d(211) (Å) β (◦) D (nm) δ (10−3)

Pure MnO 36.08 18.04 2.488 0.3354 24.9075 1.6119
MnO (3% Mg) 36.13 18.06 2.484 0.3088 27.0534 1.3663
MnO (5% Mg) 36.07 18.03 2.487 0.2844 29.3722 1.1591
MnO (7% Mg) 36.39 18.19 2.466 0.3624 23.0756 1.8779
MnO (9% Mg) 36.31 18.15 2.472 0.3095 27.0081 1.3709
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3.3. SEM and AFM Analysis

The morphologies of the different Mn-O films recorded by SEM are shown in Figure 7
(magnification ×40,000). Morphological changes in MnO are clearly linked to variations
in the Mg-doping from 3% to 9%: the Mg-doping appears to have an effect on the surface
roughness with the pure MnO surface composed of larger grains, appearing rougher than
other Mg-doped surfaces.
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Figure 7. SEM images of pure and Mg-doped Mn-O oxide recorded at a magnification ×40,000 (1 and 0.5 scales are shown).

The Mg-doping effect on the topography of the films’ surfaces is confirmed by Atomic
Force Microscope (AFM) (Figure 8) using the tapping mode in 2 µm × 2 µm areas. It is
observed that the MnO deposit is not homogeneous but formed by grains aggregated in
“egg” shaped forms. The black areas represent the glass substrate showing the formation
of MnO porous nanoflakes. As shown by the profiles taken on a horizontal line on each
image, the aggregation of the grains increases with the increase of the Mg-doping. The
calculated average rms roughness on this line is 50 nm for the pure MnO, 80 nm for 3% Mg
doped-MnO and 130 nm for the 5%–7% Mg doped-MnO.
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Figure 8. AFM images of pure and Mg-doped Mn-O oxide: (a,c,e) Surface morphology for pure, 3% and 5% Mg-doped
Mn-O oxide. (b,d,f) surface profiles measured along the horizontal lines shown on the corresponding AFM images.

These AFM observations diverge a little from those obtained in SEM. We suggest this
may be due to the fact that the SEM technique takes into account the contribution of the
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microstructures of the subsurface layers, whereas AFM is probing exclusively the extreme
surface of the films.

3.4. Optical Measurements

The transmittance (T) or absorbance (α) optical properties of the MnO samples were
determined by using UV-visible spectrometry in a double beam spectrophotometer. T and
α spectra were recorded in the 200–900 nm range as shown in Figure 9. It appears that
the transmittance is less than 50% for all samples; as a result, the synthesized films are
clearly not so transparent: this is attributed to the inhomogeneity of the deposit as shown
by the AFM analysis. The transmittance is varying from 30% to 15% for pure manganese
oxide and to 9% for the Mg-doped Mn-O films; thus, the Mg doping reduces greatly the
samples transparency.
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By combining the transmittance and absorption data, the value of the MnO energy
gap is calculated from the Tauc’s plot [32], using the equation:

(αhν)2 = A(hν − Eg) (5)

where α is the absorption yield, hν is the photon energy, A is a constant and Eg is the band
gap energy.

A typical plot of (αhν)2 versus (hν) is shown in Figure 10. According to Equation (5),
the extrapolation on Figure 10 of the linear portion of the curve to (αhν)2 = 0 gives the Eg
band gap values listed in Table 4. They are found to be in between 1.4–2.5 eV, with the
band gap decreasing with the increase of Mg-doping. As interpreted in earlier paragraphs,
this may be due to the greater ionic radius of Mg2+ ions compared to the Mn2+ ones. The
insertion of Mg2+ in the Mn2+ sites creates defects resulting from the distortion in the MnO
lattice. The decrease in band gap with doping can be also linked to the presence of voids
formed by the magnesium ions substituting the manganese ones in the host lattice. Similar
results have been observed in Mg and Ga co-doped ZnO and in molybdenum-doped
indium oxide thin films [33,34]. In general, the band gap values obtained in this study for
pure and Mg-doped samples are in the range of those reported in the literature [35–38].
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Table 4. Effect of Mg-doping on Eg values.

Sample Eg (eV)

Pure MnO 2.5
3% Mg-doped MnO 1:9
5% Mg-doped MnO 2.3
7% Mg-doped MnO 1.5

4. Conclusions

This report studied the chemical composition, the structural, morphological and
optical properties of Mn3O4 films deposited on glass substrate heated at 350 ◦C by spray
pyrolysis. XPS characterization highlighted the chemical composition of Mn3O4 films.
XRD analysis evidenced the Mn3O4 polycrystalline phase in a tetragonal structure with an
intense diffraction plane (211), the preferred growth orientation along this direction. SEM
images showed a rough surface for Mn3O4 films with is improved with the Mg-doping
increase. AFM showed textured surface formed by nanograins shaped like an “egg”. UV-
visible spectroscopy revealed a transmittance yield ranging between 15–30%. This low
yield is probably due to the porosity of the surface. The Eg band gap energy determined
from Tauc plots (2.0–3.3 eV) are in accordance with those of the literature. The results of
this study are going to be used for further characterization of photocatalytical properties
for application in industrial waste treatment.
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