
HAL Id: hal-03509576
https://hal.science/hal-03509576v1

Submitted on 10 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Efficient and lightweight group rekeying protocol for
communicating things

Hicham Lakhlef, Abdelmadjid Bouabdallah

To cite this version:
Hicham Lakhlef, Abdelmadjid Bouabdallah. Efficient and lightweight group rekeying proto-
col for communicating things. Computers and Electrical Engineering, 2021, 91, pp.107021.
�10.1016/j.compeleceng.2021.107021�. �hal-03509576�

https://hal.science/hal-03509576v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Efficient and Lightweight Group Rekeying Protocol for
Communicating Things

Hicham Lakhlef, Abdelmadjid Bouabdallah
Sorbonne Universités, Université de Technologie de Compiègne, CNRS,

CS 60319, 60203 Compiègne, France
E-mails: hlakhlef@utc.fr, madjid.bouabdallah@hds.utc.fr

Abstract

Recent advances in emerging technologies have given birth to a new type of

networks called Internet of Things (IoT). The emergence of IoT has led practi-

tioners to envision networking a large number of sensors for event monitoring,

data collection and filtering. Due to the use of wireless technologies, a secure

communication is strongly needed to protect valuable information. Secure group

communication is one of the most significant requirements for IoT applications.

This employs a group rekeying mechanism for a secure and efficient delivery

of data. In this paper, we present a new efficient and scalable rekeying proto-

col for wireless communicating things. This protocol uses O(log2
3
√
n) memory

complexity, improving significantly the literature works, where n is the network

size. Simulation results show that our protocol has better performances than

existing works in several criteria.

Keywords: Communicating Things; Message-passing; Rekeying;

Energy-efficiency; Security; Group Communication; Memory complexity

1. Introduction

The Internet of Things (IoT) can be composed of a variety of communicating

objects.These communicating objects will be found in all areas, ranging from

the public domain such as the objects of our homes, which are becoming more

intelligent, to the smart city in general. Roughly speaking, IoT is making our

Preprint submitted to Elsevier January 28, 2021

© 2021 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0045790621000458
Manuscript_4d13070d7bdb4b057c0fcaf0bb5d7eff

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0045790621000458
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0045790621000458

daily life easier and smarter. However, one of the main challenges facing the IoT

is how to secure the communication links between these communicating objects.

Indeed, the design of protocols to control them in order to achieve a common

goal is far from being a simple task. In fact, due to resources limitation, a

solution for an application in IoT devices should take into account the restrained

capabilities (limited battery power, processing power and memory storage) of

these devices by using as little memory and energy as possible, whilst maximize

the life time of the network members [1].

To transmit data from a source node to several destinations, things can use

multicast operation. The multicast operation in wireless networks allows to cre-

ate efficient group communications. The broadcasting medium, however, makes

the wireless network vulnerable to various security attacks since anyone can eas-

ily eavesdrop on messages transmitted in the air [2]. In order to implement the

multicast, we need to an access control mechanism for the broadcast of messages.

To implement an access control mechanism for a secure group communication

we should employ a symmetric key, known as a group key, shared only by nodes

in the group. However, the questions that arise are how to manage this key

in case of joining and leaving of nodes ? And how to prevent from attacks of

colluding nodes ?

The Group Key Management (GKM for short) is the core of secure com-

munication. Its main role is to establish secure communication links between

the members of a same group. To achieve this, the GKM provides them with

a secret cryptography key that is used to encrypt the data exchanged between

nodes belonging to the same group. Nevertheless, when a member leaves the

group, it must no longer be able to decipher the future communications (forward

secrecy). Also, if a node joins the group, it must not be able to decipher the

previous ones (backward secrecy). Backward and forward secrecy are usually

guaranteed by re-keying protocols. Thus, when a node joins or leaves the group,

the group is updated, the secret key is revoked and a new one is distributed to

the remaining members [4, 5].

2

Our contribution. The aim of our proposal is to present a new group key man-

agement that uses a good memory complexity. In addition, it must prevent

multiple evicted nodes to cooperate to regain access to the current group key.

Such an attack is referred to as collusion attack. In this paper, we present a new

lightweight and efficient re-keying protocol for wireless communicating things.

We propose a highly scalable GKM protocol for IoT devices that ensures the

forward and backward secrecy, efficiently recovers from collusion attacks, and

uses a good of memory complexity for each node. This protocol uses O(log2
3
√
n)

memory complexity, where n is network size, improving significantly the litera-

ture works.

The rest of this paper is organized as follows: Section 2 discusses the related

works. Section 3 presents the model and some definitions. Section 4 presents

the proposed protocol. Section 5 presents the simulation results and comparison

with the related works. Finally, Section 6 concludes our paper.

2. Related works

According to the encryption techniques used, the group key management

schemes for disseminating group key can be classified into the following three

categories: symmetric, asymmetric and hybrid.

2.1. Symmetric approaches

A symmetric approach involves the use of the same key for encryption and

decryption. Symmetric approaches can, in turn, be classified into two cate-

gories: pairwise key schemes and group key schemes. Pairwise Key schemes

consist of using a distinct key for each pair of nodes. This approach has the

advantage of being resilient, since the compromise of a node will not jeopardize

the communications of the other ones. However, a node has to store as many

keys as the number of members in the network. It is also hard to add new

nodes to the network because new keys need to be distributed to all the actual

members. This approach is therefore not scalable. The pairwise key scheme

was first introduced in [3]. Other pairwise key approaches were then proposed.

3

They are usually based on polynomials [6], matrices [7], Hierarchy LKH [8]

...etc. Generally, symmetric schemes require less computation time than the

asymmetric ones and are then more suitable for limited resources devices like

IoT. However, most of them suffer from high communication and memory over-

head, which makes them not scalable. Moreover, these symmetric schemes are

rarely dealing with collusion attacks. Recently, the authors in [9, 15] proposed

efficient group rekeying protocols based on member join history. A group is di-

vided into subgroups, one member belongs to only one subgroup and not moved

to other subgroup. While joining a subgroup unique identifier is given.

2.2. Asymmetric approaches

Asymmetric protocols, also called public-key systems, use two different keys:

a public key which may be disseminated widely. This key is used for encryp-

tion. And a private key which is known only to the owner. The private key is

used for decryption. Asymmetric protocols are more secure and scalable. How-

ever, they usually require intensive computing, which makes them impractical

on constrained devices as IoT devices. Despite this, some asymmetric schemes

was proposed even for wireless sensor networks. Most of them implemented an

Elliptic Curve Cryptography (ECC) [10], a CertificateLess Public Key Cryp-

tography (CL-PKC) [11], an ID-Based Encryption (IBE) [12]...etc.

Most of the asymmetric schemes use a certificate to certify the ownership

of a public key. A user must then check the certificate of another user before

using its public key, which requires an intense amount of computation. For more

efficiency, IBE was proposed in [13]. The main idea was to take as public key

the user’s identity (name, e-mail, IP address,... etc.). It is no longer necessary

to certify public keys. However, the secret key must be computed by a key

generator (KGC). Indeed, if a user can calculate his private key from his public

key, he could also calculate those of the other users.

2.3. Hybrid approaches

Hybrid approaches combine symmetric and asymmetric techniques to take

advantages of each and overcome its disadvantages like the work in [14]. A

4

hybrid scalable group key management approach for large dynamic multicast

networks is proposed in [16], which tries to generate and distribute keys to

the group members during leave or join of members by using key graph based

Boolean minimization technique in order to improve scalability. Previous re-

searches for hybrid key management [17, 18, 25] suggested using heterogeneous

network with high end sensor nodes (HSNs) having high power for high compu-

tations of certificates verification and low end nodes, where HSNs are used to

perform high power calculations such as certificate verification, exponentiation,

elliptic curve scalar multiplications and additions and modular multiplications.

2.4. Discussion

Our literature review shows that none of the existing solutions meets all

criteria. The more secure a protocol is, the less efficient it is, and conversely.

Symmetric schemes usually require less computation time than the asymmetric

ones, which makes them more suitable for IoT devices. On the one hand, the

Pairwise Key approaches are secure but not scalable. On the other hand, the

key group schemes are efficient but do not deal with collusion attacks. Since

the asymmetric techniques are impractical on the constrained devices, the best

possible solution is the complementary use of both Pairwise Key and Group

Key methods. In Table 1, we present a classification and discussion of the

recent related solutions.

3. System model

3.1. Things, initial knowledge, and the communication

The network consists of n communicating things denoted s1, ..., sn. Each

node has an identity idi, which is known only by itself and its neighbors. When

computing bit complexities, we will assume that any node identity is encoded in

log2 n bits. When considering a node si, the integer i is called its index. Indexes

are not known by the nodes. They are only a notation convenience used as a

subscript to distinguish nodes and their local variables. The network group is

controlled by a Group Controller GC, which is trusted and powerful.

5

Key category Papers Discussion
pairwise, symmetric [19] [+] efficient in static networks.
post distribution [-] neither consider the group and multigroup communication.
pairwise, symmetric [20] [+] efficient in dynamic networks.
hybrid distribution [-] lack scalabilty in limited-resource devices.
symmetric, group [4, 9] [+] efficient groups of dynamic networks.
post distribution [-] lack scalabilty limited-resource devices.
symmetric [21] [+] efficient group and multi-group in dynamic networks.
group, hyb distribution [-] lack scalabilty limited-resource devices.
post distribution [22] [+] efficient and scalable in dynamic networks.
symmetric key [-] do not consider the device-to-device communication.
post distribution [24, 25] [+] scalable in dynamic networks.
asymmetric pairwise [-] not suitable for the IoT constrained devices.

Table 1: Classification and discussion of some recent related solutions

3.2. Timing model

We assume that processing durations are equal to 0. This is justified by the

following observations: (a) the duration of the local computations of a node

is negligible with respect to message transfer delays, and (b) the processing

duration of a message may be considered as a part of its transfer delay. Com-

munication is synchronous in the sense that there is an upper bound D on

message transfer delays (each message is received within the bound D), and

this bound is known by all the nodes (global knowledge). From an algorithm

design point of view, we consider that there is a global clock, denoted CLOCK,

which is increased by 1, after each period of D physical time units. Each value

of CLOCK defines what is usually called a time slot or a round.

3.3. Communication operations

The nodes are provided with operations denoted broadcast(), send() and

receive(). A node si invokes broadcast tag(m) to send the message m, whose

type is tag, to all its neighbors. It is assumed that a node invokes broadcast()

only at a beginning of a time slot. When a message tag(m) arrives at a thing

si, this node is immediately warned about it, which triggers the execution of

operation receive() to obtain the message.

6

3.4. Definitions

Definition 1. Let u1, u2, ..., ur be a set of r ordered positive integers that present
the identities of nodes in a group Gx. And let v1, v2, ..., vt be a set of t ordered
positive integers presenting the identities of other nodes in group Gy. We say
Gx is greater (resp. smaller) than Gy and we write Gx�Gy (resp. Gx≺Gy) if

•
∑r
i=1 ui >

∑t
i=1 vi (resp.

∑r
i=1 ui <

∑t
i=1 vi) or

• ur > vt (resp. ur < vt), if
∑r
i=1 ui =

∑t
i=1 vi

Definition 2. rekeying tool. It is an information (may be a number) used as
parameter to calculate a key. Nodes that use the same function with the same
rekeying tool obtain the same key.

To each node is associated two rekeying tools and to each group is associated
two rekeying tools. It is important to note that each node and does not know its
rekeying tools and rekeying tools of a group are not known by its nodes.

4. Proposed Protocol

Notation Description

CGK = (ECGK ,DCGK) The current group key. Encrypt with ECGK and decrypt with DCGK

Ksi A key shared between node si and GC

KG
y
x

A key shared between nodes in the group Gy
x

GenSecuPar() A function that generates a security parameter

FDK () A function that generates keys using a security parameter

H() A hash function

Table 2: Table of notations

The nodes of the group G are logically1 partitioned as follows :

1. Create 3
√
n subgroups in G. Namely, the created subgroups are G1, . . .

, G 3
√
n. We call these groups Level-2 groups

2. Create in each subgroup Gj , 1 ≤ j ≤ 3
√
n, 3
√
n subgroups. Namely, for

each Gj there are the subgroups G
(j−1) 3

√
n+1

j , . . . , G
j 3
√
n

j . We call these

subgroups Level-1 groups

1Note that these grouping is logical and transparent to the application layer.

7

3. Put in each subgroup Gpj , 1 ≤ j ≤ 3
√
n, (j−1) 3

√
n+ 1 ≤ p ≤ j 3

√
n, ρ nodes

with ρ ≤ 3
√
n nodes

4. For each node si, 1 ≤ i ≤ n, create two rekeying tools SRT i>, SRT
i
<

5. For each subgroupGj , 1 ≤ j ≤ 3
√
n, create two rekeying toolsGRT

Gj
> , GRT

Gj
<

6. For each subgroup Gpj , 1 ≤ j ≤ 3
√
n, (j− 1) 3

√
n+ 1 ≤ p ≤ j 3

√
n, create two

rekeying tools G2RT
Gpj
> , G2RT

Gpj
<

7. Each node si, 1 ≤ i ≤ n, belonging to Gpj , stores in its local memory :

• in a set Si> all SRT f>, with idi > idf and f ∈ Gpj , where SRT f> is a

rekeying tool of sf

• in a set Si< all SRT k<, with idi < idk and k ∈ Gpj , where SRT f> is a

rekeying tool of sk

• in a set S
′i
> all GRT

Gmj
> , with Gpj � Gmj and G

Gmj
j ∈ Gj , where

GRT
Gmj
> is a rekeying tool of group Gmi

• in a set S
′i
< all GRT

Gpj
< , with Gpj ≺ Glj and Gkl ∈ Gj , where GRT

Gpj
>

is a rekeying tool of group Gli

• in a set S
′′i
> all G2RTGw< , with Gj ≺ Gw and Gw ∈ G, where G2RTGw<

is a rekeying tool of group Gw

• in a set S
′′i
< all G2RTGx> , with Gj � Gx and Gx ∈ G, where G2RTGx>

is a rekeying tool of group Gx

Let RTi be the set of all rekeying tools of si (e.g. RTi = Si< ∪ S
′i
< ∪ S

′′i
< ∪

Si> ∪ S
′i
> ∪ S

′′i
>).

The figure 1 presents a grouping example of a group of 26 nodes.

To present our solution, we use the notations shown in Table 2.

4.1. Rekeying upon joining

In case of joining, rekeying procedures must ensure that the new node to be

added into the group G is unable to decrypt all information created prior its

addition. To achieve this goal we must change the group key at the joining event.

8

4

5

11

17

3

12

10

13

7

1

14

16

8

9

26

15

18

19

25

24

23

20

21

22

27

G1 G2
G3

G
1

1

1

2 G
1
3

G
1

2
G

2

2
G

3

2

G
3

1
G
3

2 G
3

3

G

27

6

2

Figure 1: Example of grouping with 26 nodes

When a new node joins the group, the protocol in Algorithm 1 is executed. The

input of this algorithm is the joining event and the output is the new group key

calculated by each node in the new group.

Let NwNd be the ID of this new node. This node sends Joining Request(NwNd)

message destined to GC. Upon the reception of this message (line 01) from

NwNd , GC runs the instructions 1 to 14.

In instruction 02, GC computes MinG, the level-1 group that has the

smallest size (if there are several level-1 groups that have the smallest size, i.e∣∣Gp1i1 ∣∣ = ... =
∣∣Gpmim ∣∣ then GC chooses Gpxix with ix < iy,∀y ∈ [1,m] to break

the tie.) After it puts in MinG the ID of the new node. Then, GC generates

a new security parameter λ (line 3). Let Gx be the level-2 group containing

MinG and let Gyx be this group (Gyx = MinG). In line 4, GC calculates a new

group key CGK ′ = (ECGK ′,DCGK ′) and a new level-1 group key K ′
Gy

x
using

the FDK function and λ. To rekey nodes in MinG, GC constructs a message

called rekeying MinG(). This message contains the ID of the new node, the

security parameter λ and the new group key encrypted by means of EKMinG.

This message will be broadcasted to nodes in MinG (line 05). Further, to rekey

nodes in G −MinG, GC constructs a message called rekeying GExMinG()

containing the new group key CGK ′ encrypted by means of ECGK. This mes-

sage will be broadcasted to nodes in G except nodes in MinG (line 06). After,

GC puts in a set called SNwNd
> , the set of rekeying tools of nodes in MinG that

9

Instructions for GC :
(01) when Joining Request(NwNd) is received do
(02) MinG← min(Gp

i : 1 ≤ i ≤ 3
√
n, (i− 1) 3

√
n+ 1 ≤ p ≤ i 3

√
n) ;

(03) MinG←MinG ∪NwNd ; λ← GenSecuPar();
(04) CGK ′ ← FDK (λ‖CGK); K ′

G
y
x
← FDK (λ‖KG

y
x

);

(05) broadcast rekeying MinG(MinG− {NwNd}, {NwNd , λ,CGK ′}KMinG);

(06) broadcast rekeying GExMinG(G−MinG, {NwNd , λ,CGK ′}CGK);

(07) SNwNd
> ← all SRT f

> : NwNd > idf , f ∈ MinG;

(08) SNwNd
< ← all SRT f

< : NwNd < idf , f ∈ MinG;

(09) S
′NwNd
> ← all GRT f

> : MinG � Gf
i ,MinG ∈ Gi ∧Gf

i ∈ Gi ;

(10) S
′NwNd
< ← all GRT f

< : MinG ≺ Gf
i ,MinG ∈ Gi ∧Gf

i ∈ Gi ;

(11) S
′′NwNd
> ← all G2RT f

> : MinG � Gf
i ,MinG ∈ Gi ∧Gf

i ∈ Gi;

(12) S
′′NwNd
< ← all G2RT f

< : MinG ≺ Gf
i ,MinG ∈ Gi ∧Gf

i ∈ Gi;

(13) m←
{

CGK ′,K ′
G

y
x
,
{
S>, S<, S

′NwNd
> , S

′NwNd
< , S

′′NwNd
< , S

′′NwNd
>

}
CGK ′

}
KNwNd

(14) send rekeying Tools (NwNd ,m);

Instructions for node si :
(15) when rekeying MinG(dest ,m = {NwNd , λ,CGK ′}KMinG) is received do

(16) if (dest 6= idi) then discard the message ; end if
(17) dm← DKMinG(m);
(18) Gy

x ← Gy
x ∪ {dm.NwNd} ;

(19) K
′

G
y
x
← H(dm.λ||KG

y
x

); CGK ′ ← dm.CGK ′;

(20) if (idi > dm.NwNd)
(21) then SRT dm.NwNd

> ← H (dm.λ)
(22) else SRT dm.NwNd

< ← H (dm.λ)
(23) end if
(24) when rekeying GExMinG(dest ,m = {NwNd , λ,CGK ′}CGK) is received do
(25) if (dest 6= idi) then discard the message end if;
(26) dm← DCGK (m);
(27) CGK ′ ← dm.CGK ′;
(28) G← G ∪ {dm.NwNd}
(29) when rekeying Tools(NwNd ,m) received do

(30) if (dest 6= NwNd) then discard the message end if;
(31) dm← (DCGK ′,DKNwNd)(m);
(32) CGK′ ← m.CGK ′; K′

G
y
x
← m.K ′

G
y
x

(33) SNwNd
> ← dm.SNwNd

> ; SNwNd
< ← dm.SNwNd

< ;

(34) S
′NwNd
> ← dm.S

′NwNd
> ; S

′NwNd
> ← dm.S

′NwNd
> ;

(35) S
′′NwNd
> ← dm.S

′′NwNd
> ; S

′′NwNd
> ← dm.S

′′NwNd
> ;

Algorithm 1: Protocol executed when a node joins the group

have IDs superior than NwNd (line 07) and in a set called SNwNd
< , the rekeying

tools of nodes in MinG that have IDs inferior than NwNd (line 08). It puts in

S
′NwNd
> the set of rekeying tools of level-1 group that are inferior (with respect

to definition 1) than MinG (line 9) and in the set S
′NwNd
< the rekeying tools of

level-1 groups that are superior than MinG (line 10). It puts in S
′′NwNd
> the

set of rekeying tools of level-2 groups that are inferior than Gyx (line 11) and

10

in the set S
′′NwNd
< the rekeying tools of level 2 groups that are superior than

Gyx (line 12). In line 14, GC sends to NwNd the message rekeying tools ()

containing these rekeying tools, the level-1 group key K ′
Gyx

and the new group

key. This message is encrypted by means of EKNwNd and ECGK ′ (line 13).

Upon the reception of the message rekeying MinG(), each node si in

MinG runs the instructions 16 to 23. Firstly, si decrypts the message using

the level-1 group key DKMinG (line 17) and adds the ID of the new node into

Gyx (line 18). It calculates the new level-1 group key K
′

Gy
x

using the hash func-

tion and the security parameter λ sent by GC. After, it gets and installs the

new group key CGK ′ as the current group key (line 19). Then, si calculates the

rekeying tool of NwNd using the hash function and λ (lines 20-23). If the ID

of NwNd is superior than idi, si records in its local memory the rekeying tool

SRT idNwNd
> else its records SRT idNwNd

< .

Upon the reception of the message rekeying GExMinG(), each node si in

G−MinG runs the instructions 25 to 28. Node si decrypts the message using

group key DCK (line 26) and installs CGK ′ as the current group key (line 27).

After, si adds the new node into G (line 28).

At the reception of the message rekeying tools(), the new node decrypts

the message using the keys DCGK and DKNwNd . It gets the new level-1 group

key K
′

Gyx
, the new key group CGK ′ (line 32) and stores in its local memory

the rekeying tools SNwNd
> , SNwNd

< , S
′NwNd
> , S

′NwNd
< , S

′′NwNd
> and S

′′NwNd
< (lines

31-35). These rekeying tools will be used when a node leaves (next section).

4.2. Rekeying upon leaving

In case of leaving, rekeying procedures must ensure that the evicted node

is unable to decrypt all pieces of information created after its leaving. In case

of leaving, Algorithm 2 is executed to change the group key.The input of this

algorithm is the leaving event and the output is the new group key.

When a node of LvNd leaves the group, the current group key CGK has

to be changed in order to prevent LvNd from decrypting new ciphertexts. Let

Gyx and Gx be the level-1 group and the level-2 group of LvNd , respectively.

11

(01) when Leaving Event(NwNd) is detected do
(02) G← G− LvNd ; λ← GenSecuPar();
(03) CGK ′ ← FDK(λ‖CGK); K ′

G
y
x
← FDK (λ‖KG

y
x

);

(04) A = (EA,DA) = FDK (SRTLvNd
>); B = (EB,DB) = FDK (SRTLvNd

<) ;

(05) C = (EC,DC) = FDK (GRT
Gyx
>) ; D = (ED,DD) = FDK (GRT

Gyx
<) ;

(06) E = (EE,DE) = FDK (G2RT >Gx) ; F = (EF,DF) = FDK (GRT2 <Gx);
(07) broadcast rekeying Gy

x(Gy
x, {LvNd , λ,CGK ′}A , {LvNd , λ,CGK ′}B);

(08) broadcastrekeying GxExG
y
x(Gx −G

y
x,
{
LvNd, λ,CGK ′

}
C
,
{
LvNd, λ,CGK ′

}
D
);

(09) broadcast rekeying GExGx (G−Gx, {LvNd , λ,CGK ′}E , {LvNd , λ,CGK ′}F);

Instructions for node si :
(10) when rekeying Gy

x(dest,m1,m2) is received do
(11) if (dest 6= idi) then discard the message end if;
(12) if (idi > LvNd) then A← (EA,DA) = FDK (SRTLvNd

>);
(13) dm← DA(m1);
(14) else B ← (EB,DB) = FDK (SRTLvNd

<);
(15) dm← DB(m2);
(16) end if;

(17) CGK′ ← dm.CGK ′; K
′

G
y
x
← H(dm.λ||KG

y
x

);

(18) Gx(i)← Gx(i)− {dm.LvNd}; forall k ∈ RTi, k ← H(dm.λ||k);
(19) when rekeying GxExG

y
x(dest,m1,m2) is received do

(20) if (dest 6= idi) then discard the message end if;

(21) if (Gy
x(i) � Gy

x) then C ← (EC,DC) = FDK (GRT
Gyx
<);

(22) dm← DC(m1);

(23) else D ← (EC,DD) = FDK (GRT
Gyx
>);

(24) dm← DD(m2);
(25) end if;
(26) CGK′ ← dm.CGK ′;
(27) Gy

x(i)← Gy
x(i)− {dm.LvNd}; forall k ∈ RTi, k ← H(dm.y||k);

(28) when rekeying GExGx(dest,m1,m2) is received do
(29) if (dest 6= idi) then discard the message end if;

(30) if (Gx(i) � Gx) then E ← (EE,DE) = FDK (G2RT
Gx
>);

(31) dm← DE(m1);

(32) else F ← (EF,DF) = FDK (G2RT
Gx
<);

(33) dm← DF (m2);
(34) end if;
(35) CGK′ ← dm.CGK ′; Gx(i)← Gx(i)− {dm.LvNd}; forall k ∈ RTi, k ← H(dm.λ||k);

Algorithm 2: Protocol executed when a node leaves the group

Let Gyx(i) and Gx(i) be the level-1 group and the level-2 group of node si that

receives the message in Algorithm 2.

Upon the detection of leaving event, GC runs the instructions 2 to 9. GC

deletes the ID of the leaving node from the group G and generates a new se-

curity parameter λ (line 2). Then, it calculates a new group key CGK ′ =

(ECGK ′,DCGK ′) and a new level-1 group key, using the FDK function and λ

(line 03). In addition, it calculates the keys A = (EA,DA) = FDK (SRTLvNd
>),

12

B = (EB,DB) = FDK (SRTLvNd
<), C = (EC,DC) = FDK (GRT

Gyx
>), D =

FDK (GRT
Gyx
<), E = FDK (G2RTGx>), F = FDK (GRT 2

<
Gx) (lines 04-06).

GC constructs the message rekeying Gyx(), containing the new key of the

group, the ID of the leaving node and the security parameter λ encrypted by

means of keys A and B. Then, GC broadcasts this message to nodes in Gyx.

This message will be used to rekey nodes in Gyx (line 07).

After it constructs the message rekeying GxExG
y
x(), containing the new

key of the group, the ID of the leaving node and the security parameter λ

encrypted by means of keys C and D. GC broadcasts this message to nodes in

Gx−Gyx. Using this message nodes in Gx−Gyx will be able to get the new group

key (line 08). Finally, GC constructs the message rekeying GExGx(). This

message contains the new group key, the ID of the leaving node and the security

parameter λ encrypted by means of E and F . GC broadcasts this message to

nodes in G−Gx. This message will be used to rekey nodes in G−Gx (line 09).

Upon the reception of the message rekeying Gyx(), each node si in Gyx runs

the instructions 11 to 18. If idi is superior than LvNd then si can compute

the key A locally using SRTLvNd
> and the FDK function. If idi is inferior than

LvNd then si can compute the key B locally using SRTLvNd
< and the FDK

function. It decrypts the message using DA or DB and installs CGK ′ as the

current group key. Further, it computes a new level-1 group key K ′Gx
y

using the

hash function and the security parameter λ sent from GC (lines 12-17). In line

18, si deletes LvNd from the group. Finally, si changes all its rekeying tools

using the hash function and λ.

Upon the reception of the message rekeying GxExG
y
x() sent by GC, each

node si in Gx − Gyx runs the instructions 20 to 27. If Gyx(i) is superior (with

respect to definition 1) than Gyx, si can compute the key C locally using GRT
Gyx
>

and FDK function. Then, it decrypts the message using DC. If Gyx(i) is inferior

than Gyx, si can compute the key D locally using GRT
Gyx
< and FDK . It decrypts

the message using DD (lines 21-25). In line 26, si installs the new key CGK ′ as

the current group key. In line 27, it deletes LvNd from the group and changes

13

all its rekeying tools using the hash function and λ.

At the reception of rekeying GExGx(), each node si in G − Gx runs the

instructions 30 to 35. If Gx(i) is superior than Gx then si can compute the key

E using G2RTGx> and decrypt the message using that key (line31). If Gx(i) is

inferior (with respect to definition 1) than Gx, then si can compute the key F

locally using GRT2 <
Gx (with respect to definition 1). si decrypts the received

message using the computed key (line 33). Then, it deletes LvNd from the

group G and installs CGK ′ as the current group key. Finally, si changes all its

rekeying tools using the hash function and λ (lines 35).

4.3. Preventing from collusion attacks

A collusion attack occurs when multiple compromised nodes from G cooper-

ate to regain access to the secret group key. When a collusion attack is detected

Algorithm 3 is executed.

Let G be the set of compromised level-2 groups (a group is compromised if it

contains at least one compromised node). And let Q = G−G be the set of non

compromised level-2 groups in G. Let minG and maxG be the greater level-2

group and the smaller level-2 group in G , respectively (w.r.t. definition 1). Let

us remark that the rekeying tools G2RTminG
< and G2RTmaxG

> are not stored

by compromised nodes in G . Let Q be the set of level-2 groups that stores

G2RTminG
> or G2RTmaxG

> . All rekeying tools in the Q−Q are compromised.

Let S = S1,S2, ...,St be the set of t level-1 compromised groups in the

groups of level 2: G1, G2, ..., Gt respectively. And let Pt = Gt −St be the set

of non compromised groups in level-2 group Gt. Let minSt and maxSt be the

greater level-1 group and the smaller level-1 group in St, respectively. Let us

remark that the rekeying tools GRTminSt
< and GRTmaxSt

> are not stored by

compromised nodes in St. Let Pt be the set of groups of nodes that stores

GRTminG
> or GRTmaxG

> in St. All rekeying tools hold by nodes in Pt−Pt are

compromised and therefore can not by used to rekey nodes in non compromised

level-1 groups of St. Let C = C1,C2, ..,Cr be the list of t sets of compromised

nodes in the same group of level 1. And let GyxCr be the level-1 group of nodes

14

Instructions for GC :
(01) when collusion Event() is detected do
(02) G← G− C ; λ← GenSecuPar(); CGK ′ ← FDK(λ‖CGK);
(03) forall (Cr in C) do

(04) Ar = FDK (SRTminCr
<);Br = FDK (SRTmaxCr

>);
(05) broadcast rekeying Coll nodes 1(Or,

{
C , λ,CGK ′

}
Ar

,
{

C , λ,CGK ′
}
Br

);

(06) endforall;
(07) forall si in Or − Or do broadcast rekeying Coll nodes 2(idi,

{
C ,CGK ′

}
ki

); endforall;

(08) forall (St in S) do

(09) Ct = FDK (GRT
minSt
<);Dt = FDK (GRT

maxSt
>);

(10) broadcast rekeying Coll Level1groupss 1 (Pt,
{

C ,CGK ′
}
Ct
,
{

C ,CGK ′
}
Dt

);

(11) endforall;
(12) forall si in Pt −Pt do broadcast rekeying Coll L1G 2(idi,

{
C,CGK ′

}
ki

); endforall;

(13) E = FDK (G2RTminG
>);F = FDK (G2RTmaxG

>);
(14) broadcast rekeying Coll L1G 1(G ,

{
C ,CGK ′

}
E
,
{

C ,CGK ′
}
F
) ;

(15) forall si in O − O do broadcast rekeying Coll L2G 2 (idi,
{

C,CGK ′
}
ki

); endforall;

Instructions for node si :
(16) when rekeying Coll nodes 1(dest,m1 =

{
C, λ,CGK ′

}
Ar

,m2 =
{

C, λ,CGK ′
}
Br

) is received do

(17) if (dest 6= idi) then discard the message end if;
(18) if idi < idminCr

(19) then A← FDK (SRTminC
<);

(20) dm← DA(m1);

(21) else B ← FDK (SRTmaxC
<);

(22) dm← DB(m2);
(23) end if;

(24) CGK ← dm.CGK ′; G← G− {dm.C}; K
′
G
y
x
(i)← H(dm.λ||KG

y
x
);

(25) when rekeying Coll nodes 2(dest,m =
{

C ,CGK ′
}
Ki

) is received do

(26) if (dest 6= idi) then discard the message end if;

(27) dm← DKi(m); K
′
G
y
x
(i)← H(dm.λ||KG

y
x
);

(28) CGK ← dm.CGK ′; G← G− {dm.C};
(29) when rekeying Coll L1G 1(dest,m1 =

{
C,CGK ′

}
Ct

,m2 =
{

C,CGK ′
}
Dt

) is received do

(30) if (dest 6= idi then discard the message end if;
(31) if idv < idminSt

(32) then C ← FDK (GRT
minSt
<);

(33) dm← DC(m1);

(34) else D ← FDK (GRT
maxSt
<);

(35) dm← DD(m2);
(36) end if;
(37) CGK ← dm.CGK ′; G← G− {dm.C};
(38) when rekeying Coll L1G 2(dest,m =

{
C ,CGK ′

}
Ki

) is received do

(39) if (dest 6= idi) then discard the message end if;
(40) dm← DKi(m);
(41) CGK ← dm.CGK ′; G← G− {dm.C};
(42) when rekeying Coll L1G 1(dest,m1 =

{
C,CGK ′

}
E
,m2 =

{
C,CGK ′

}
F

) is received do

(43) if (dest 6= idi) then discard the message end if;
(44) if idv < idminS

(45) then E ← FDK (G2RTminG
>);

(46) dm← DE(m1);

(47) else F ← FDK (G2RTmaxG
<);

(48) dm← DF (m2);
(49) end if;
(50) CGK ← dm.CGK ′; G← G− {dm.C};
(51) when rekeying Coll L2G 2(dest,m =

{
C ,CGK ′

}
ks

) is received do

(52) if (dest 6= idi) then discard the message end if;
(53) dm← DKi(m); CGK ← dm.CGK ′; G← G− {dm.C};

Algorithm 3: Protocol executed when collusion attack is detected

15

in Cr. And let Or = GyxCr − Cr be the set of non compromised nodes in GyxCr .

Let minCr and maxCr be the nodes with the lowest ID and the highest

ID in Cr, respectively. Let us remark that SRTminCr
< and SRTmaxCr

> are not

stored by compromised nodes. Let Or be the set of nodes that stores SRTminCr
<

or SRTmaxCr
> . All rekeying tools hold by nodes in Or − Or are compromised

and therefore can not be used by GC to rekey the nodes in the group Or.

When a collusion attack is detected GC does the following actions:

1. GC deletes the colluding nodes from the group G and generates a new

parameter λ, and calculates a new group key (line 01).

2. GC uses SRTminCr
< and SRTmaxCr

> to rekey nodes in compromised level

groups: For every Cr ∈ C , using these rekeying tools and FDK function

GC calculates the keysAr = FDK (SRTminCr
<) andBr = FDK (SRTmaxCr

>).

Then, GC constructs a message rekeying Coll nodes 1() containing the

new group key, the new λ and the compromised nodes. This message is

encrypted using the keys Ar and Br. Next, GC broadcasts it to nodes in

Or (lines 3-6). And for every node i in Or −Or GC constructs a message

rekeying Coll nodes 2() encrypted using Ki and sends it to si (line 7).

3. GC uses GRTminSt
< and GRTmaxSt

> to rekey non compromised level-1

groups in compromised level-2 groups : GC calculates the keys Ct =

FDK (GRTminSt
<) and Dt = FDK (GRTmaxSt

>) and constructs a message

rekeying Coll L1G 1() encrypted by means of Ct and Dt and broadcasts

it to nodes in P (lines 8-11). For every node i in Pt−Pt, GC constructs

rekeying Coll L1G 2() encrypted with Ki and sends its to si (line 12).

4. GC uses G2RTminG
< and G2RTmaxG

> to rekey the group G − C (i.e. to

rekey non compromised groups of level 2): it calculates the keys E =

FDK (G2RTminG
<) and F = FDK (G2RTmaxG

>). GC constructs the mes-

sage rekeying Coll L1G 1() and encrypts it with E and F and broadcasts

it to G (lines 13-14). For every node si in Q−Q, GC constructs a message

rekeying Coll L2G 2() encrypts it with Ki and sends it to si (lines 15).

16

Upon the reception of rekeying Coll nodes 1(), each node si in Or does the

following actions :

• calculates the key Ar if idi < idminCr

(Ar = FDK (SRTminCr
<)), or calculate the key Br if idi > idmaxCr (Br =

FDK (SRTmaxCr
>)) (lines 17-23).

• decrypts the message using the computed key, gets the new group key

CGK ′, deletes the compromised nodes from the group and calculates its

new level-1 group key using λ (line 24).

Upon the reception of rekeying Coll nodes 2(), each node i in Or − Or

decrypts the message using Ki, calculates its new level-1 group key using λ

(line 26) and gets the new key CGK ′ (line 28).

Upon the reception of rekeying Coll L1G 1(), each node si in P does the

following actions:

• calculate the key C if idv < idminC (C = FDK (SRTminC
<)), or calculate

the key D if idv > idmaxC (D = FDK (SRTmaxC
<)) lines (30-36).

• decrypt the message using the computed key, gets the new key CGK ′ and

deletes the compromised nodes from the group (line 37).

Upon the reception of rekeying Coll L1G 2(), each node i in P−P decrypts

the message using Kv and gets the new key CGK ′.

Upon the reception of rekeying Coll L1G 1(), each node si in P calculates

the key E if idv < idminC (E = FDK (SRTminC
<)), or calculate the key F

if idi > idmaxC (F = FDK (SRTmaxC
<)) (lines 44-49). Then, it decrypts the

message, gets the new key CGK ′ and deletes the compromised nodes from G

(line 50). Finally, at the reception of rekeying Coll L2G 2(), each node si in

Q−Q gets the new key CGK ′ and deletes the compromised nodes (line 53).

4.4. Analysis and cost of the algorithm

Lemma 1. In case of joining backward secrecy is guaranteed by Algorithm 1
and all nodes in the new group G agree on the same new group key.

17

Proof

Let us suppose a new node NwNd wants to join G at time t. It is obvious

that NwNd cannot decipher the messages sent from nodes in G before the time

t. Because it does not have the group key CGK. At time t, NwNd sends the

request message encrypted by means of the key KNwNwd to GC. Without loss

of generality, let us assume that NwNd will be added into the level-1 group Gyx.

Following this request, GC generates a new group key for G, and a new level-1

group key for Gyx using a new security parameter λ. GC broadcasts theses keys

and λ using the current keys CGK and KGy
x
. Therefore, only nodes in G can

decipher this messages and get the new keys. GC broadcasts to KNwNwd the

new keys and the rekeying tools that allow it to compute a new key when a node

leaves the network. Only GC and NwNd can decipher the message because the

key KNwNwd is shared only between GC and NwNd .

2Lemma 1

Lemma 2. In case of leaving forward secrecy is guaranteed by Algorithm 2 and
all nodes in the new group G agree on the same new group key.

Proof

Let us suppose a new node has LvNd as ID is quitting the group at time

t. Let us assume that LvNd was in level-1 group Gyx. The objective is to

proof that LvNd cannot decipher messages sent by nodes in G after the time

t. And at t + 1 all nodes in the new group (G − {LvNd}) have the same new

group key. Upon the leaving event detection, GC generates a new key using a

new security parameter λ (line 2). It also generates the keys A,B,C,D,E, F

using the rekeying tools SRTLvNd
> , SRTLvNd

> , GRT
Gyx
> ,GRT

Gyx
< , G2RT

Gyx
> and

G2RT
Gyx
< respectively. As NvNd does not know all these rekeying tools, it

cannot calculate the keys A,B,C,D,E and F . Therefore it can not decrypt any

message containing the new group key and the new λ. All nodes in G−NvNd

can decrypt one of these messages. Indeed, each node i in Gyx can decrypt the

message using key A if idi > LvNd or key B if idi < LvNd . Each node i in Gx

can decrypt th messages using C if idi > LvNd or D if idi > LvNd . And all

18

nodes in Gx −Gx decrypt the messages using E or F . Therefore all nodes get

the new group key except NvNd. These completes the proof.

2Lemma 2

Lemma 3. In case of collusion detection, the colluding nodes are evicted and
nodes in the new group G agree on same new group key.

Proof

When a collusion event is detected GC deletes all colluding nodes from the

group G. GC generates a new security parameter and a new group key. Firstly,

let us observe that in each group Cr there are the nodes minCr and maxCr.

Let us recall that, to each node si in Cr is associated two rekeying tools SRT si<

and SRT si> (unknown for si). Node sj in Cr stores in its local memory the

rekeying tool SRT si< if idj < idi or SRT si< if idj > idi. Therefore, SRTminCr
<

of node minCr is not stored by any node in Cr. Similarly, SRTmaxCr
> is not

stored by any node Cr. Let us observe that each node z in GyxCr − Cr with

minCr < idz < maxCr does not store in its local memory minCr nor maxCr.

Each node x in GyxCr − Cr with idx < minCx or idx > idz < maxCr stores

in its local memory minCr or maxCr. Therefore, each node x can decrypt the

message in line 07 using Ar or Br and get the new group key. However, each

node z can not decrypt the message because it can not computes Ar and Br.

For that reason GC sends for z the key encrypted the key kz. Consequently, all

non-colluding nodes in compromised level-1 groups get the new group key.

Let us observe that for each set of compromised level-1 groups in the same

group of level 2 (i.e. for each Sr in Gr) there are the two level-1 groups minSt

and maxSt (with respect to definition 1). Let us recall that, to each level-1

group Z in Sr is associated two rekeying tools GRTZ< and GRTZ> . Node j in

Gr and not in Z stores in its local memory GRTZ< if Gyx(j) ≺ Z or GRTZ> if

Gyx(j) � Z. Therefore, GRTminSr
< of group minSr is not stored by any node

in Sr. Similarly, GRTmaxSr
> is not stored by any node Sr. Let us observe that

each node z inGr−Sr withminSr < Gyx(z) < maxSr does not store in its local

memory minCr nor maxCr. Each node t in GyxSr −Sr with Gyx(t) < minCr or

19

Gyx(t) > Gyx(t) < maxSr stores in its local memory GRTminSr
< or GRTmaxSr

> .

Therefore, each node t can decrypt the message using key Cr or Dr and get

the new key of the group. However, each node z can not decrypt the message

because it can not computes the keys Cr or Dr. For that reason GC sends for z

the key encrypted the key kz. Consequently, all non-colluding in compromised

level 2 groups get the new group key.

It remain to proof that all nodes in non-compromised level-2 groups get the

new group key. Let us observe that for the set of compromised groups of level

2, Q (i.e. Q = G− G) there are the groups minGt and maxGt (with respect to

definition 1). To each level-2 group in G is associated two rekeying tools G2RTE<

and G2RTE> . Nodes in each level-1 group T (T 6= E) stores in its local memory

G2RTE> if T < E or G2RTE> if T > E. Therefore G2RTminG
< of group minG is

not stored by any node in G . Likewise, G2RTmaxG
> is not stored by any node in

G . Let us observe that each node z in G−G with minG ≺ Gx(z) ≺ minG does

not store in its local memory G2RTminG
< nor G2RTmaxG

> . Each node t in G−G

with Gx(t) < minG or Gx(t) > maxG stores in its local memory G2RTminG
< or

G2RTmaxG
> . Therefore, each node t can decrypt the message in line 20 using key

E or F and get the new key. However, each node z can not decrypt the message

because it can not computes the keys E and F . For that reason, GC sends for

t the new group key encrypted by means of kz. Consequently, all non-colluding

nodes get the new group key. These complete the proof.

2Lemma 3

Lemma 4. Each node si needs O(log2
3
√
n) of memory.

Proof

Firstly let us observe that each node si stores in its local memory the group

key CGK, the level-1 group key and the key Ki shared with GC. Let Gx and

Gyw be the level-1 group and the level-1 group respectively for node si. And let

a = {t1, t2, ..., tm} be the set of nodes where idi > ids with ids in Gyx. And

let b = {h1, h2, ..., hk} be the set of nodes where idi < ids with ids in Gyx.

Therefore, si stores in its local memory |Ss>| = |a| and |Ss<| = |b| rekeying

20

tools. Given that the size of the group Gyw is at most 3
√
n, so |a| + |b| = 3

√
n.

Consequently, |Ss>|+ |Ss<| = 3
√
n.

Let c =
{
G1
w, G

2
w, ..., G

q
w

}
be the set of groups in Gx with Gix < Gyx and

d =
{
G1
x, G

2
x, ..., G

r
x

}
be the set of groups in Gx with Gix > Gyx. Therefore,

s stores also in its local memory
∣∣∣S′s> ∣∣∣ = |c| and

∣∣∣S′s< ∣∣∣ = |d| rekeying tools.

Given that the size of the group at most 3
√
n, so |c| + |d| = 3

√
n. Therefore,∣∣∣S′s> ∣∣∣ +

∣∣∣S′s< ∣∣∣ = 3
√
n. Let e = {G1, G2, ..., Gm} be the number of groups in G

with Gi < Gx and f = {G1, G2,...,Gz} be the number of groups with Gi > Gx.

Therefore, s stores also in its local memory
∣∣∣S′′s> ∣∣∣ = |e| and

∣∣∣S′′s< ∣∣∣ = |f | rekeying

tools. The size of the group is 3
√
n and |e|+|f | = 3

√
n. Therefore,

∣∣∣S′′s> ∣∣∣+∣∣∣S′′s< ∣∣∣ =

3
√
n. It follows that s stores 2 keys and 3 3

√
n, i.e. it grows as O(log2

3
√
n).

2Lemma 4

5. Experimental Evaluation

In this section, we evaluate experimentally our protocol. We compare its per-

formance with two recent protocols: the protocol GREP in [4], a new group key

management that uses
√
n of memory and the protocol in [15]. Both protocols

deals with collusion attacks as we do.

5.1. Target networks

We exercise both algorithms on randomly generated networks of different

sizes. Within both algorithms, we simulate a collusion attack by choosing ran-

domly a set of nodes that perform the collusion attacks. Then, we evaluate the

consequences of these attacks on each algorithm and we compare the results.

5.2. Metrics

We evaluate our protocol and GREP in terms of the following metrics:

• The number of compromised keys in G when a collusion attack is

performed.

• The number of compromised re-keying tools is the number of com-

promised re-keying in the group G when a collusion attack is performed.

21

100 200 300 400 500
0

50

100

150

Network size

N
b
.
o
f
co
m
p
ro
m
is
ed

k
ey
s [15] Our [4]

Figure 2: Figure compares
the number of compromised
keys between our protocol
and the protocol GREP

100 200 300 400 500
0

50

100

150

200

Network size

N
b
.
o
f
o
f
co
m
p
ro
m
is
ed

re
k
ey
in
g
to
o
ls

[15] Our [4]

Figure 3: Figure compares
the number of compromised
rekeying tools between our
protocol and the protocol
GREP

• The number of messages required to rekey the whole group.

5.3. Results

Figure 2 (The number of compromised keys), and figure 3 (The number

of compromised re-keying tools) show the results we obtain for network sizes

varying from 50 to 500 nodes. In Figures 2 and 3 each point is averaged over 10

experiments. Errors bars show 95%-level confidence intervals computed using

Student’s test statistics. We remark that on all metrics, our proposed protocol

outperforms the protocols in [4] and [15]. These protocols are hampered by

their memory complexity, which slows it down (Figure 2), and causes them to

use far more messages to re-key and change compromised re-keying tools.

Compared to the protocol in [4] we see that our protocol has less com-

promised keys and re-keying tools to change for random experiments. That is

explained by the fact that within the protocol in [4] there is more victim groups

(between colluding malicious nodes) in the level 1 groups that must be re-keyed.

This is also the case for the protocol in [15], that uses one level of grouping and

creates more level 1 groups for heterogeneous nodes (in terms of memory space).

22

100 200 300 400 500
0

50

100

Network size

N
b
.
o
f
m
es
sa
g
es

[15] Our [4]

Figure 4: Figure compares the number of messages required for rekeying with protocol in [9]

Furthermore, in both protocols each compromised group has several (more than

two) compromised re-keying tools. And in our protocol there are few victim

groups compared to the two protocols and a victim group between the collud-

ing nodes has only one key and two re-keying tools that must be changed. In

addiction, using our protocol we can rekey more nodes using a single message

compared to GREP, which explain the result in Figure 4.

6. Conclusion

There is a major difficulty in designing of efficient and secure group com-

munication protocols when these protocols concern networks with limited re-

sources and colluding malicious nodes. In this paper, we proposed a highly

scalable Group Key Management protocol for communicating things networks

which is both secure and efficient. Our new group key management protocol

deals efficiently with collusion attacks and improves the existing methods in

term of memory usage complexity and efficiency. Our protocol is the first to

uses O(log2
3
√
n) memory complexity for each node.

From an algorithmic point of view, the proposed algorithm is versatile, mak-

ing it an attractive starting point to address other related problems. For in-

stance, in an heterogeneous network, the protocol could be modified to take into

23

account additional constraints arising from the capacities of individual nodes,

such as their ability to use different memory capacities, different computing ca-

pabilities and only certain communication frequencies. Solving the problem of

multi-group key management using efficient protocols remain a major challenge.

The new difficulty is then to take into account the fact that node may be a part

of several groups (for example in real case it proposes several services).

7. Acknowledgments

This work is supported by the Labex MS2T, which was funded by the French

Government, the program ”Investments for the future managed by the National

Agency for Research (Reference ANR-11-IDEX-0004-02)”.

References

[1] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi : Internet of Things for
Smart Cities. In IEEE Internet of Things Journal, V. 1, No. 1, 2014

[2] H. Lakhlef, M. Raynal, F. Täıani : Vertex Coloring with Communication Constraints in
Synchronous Broadcast Networks. In IEEE Trans. Parallel Distrib. Syst. 30(7), 2019

[3] H. Chan, A. Perrig and D. Song : Random key predistribution schemes for sensor
networks. In Symposium on Security and Privacy, pp. 197–213, 2003

[4] M. Tiloca, G. Dini: GREP: A group rekeying protocol based on member join history. In
IEEE Symposium on Computers and Communication, ISBN 978-1-5090-0679-3, 2016

[5] H. Lakhlef, A. Bouabdallah, F. D’Andreagiovanni: A Memory-efficient Group Key Man-
agment for Communicating Things.Q2SWinet, The 16th ACM Symposium on QoS and
Security for Wireless and Mobile Networks, 29-35, 2020

[6] J. Zhang, H. Li and L. Jian : Key establishment scheme for wireless sensor networks
based on polynomial and random key predistribution scheme. In Ad Hoc Networks,71,
68–77, 2018

[7] I. Tsai, C. Yu, H. Yokota and S. Kuo. : Key Management in Internet of Things via
Kronecker Product. In Dependable Computing, IEEE 22nd Pacific Rim International
Symposium on. pp. 118–124, 2017

[8] Q. Zhang, X. Wang, J. Yuan, L. Liu, R. Wang, H. Huang, Y. Li : A hierarchical group
key agreement protocol using orientable attributes for cloud computing. In Information
Sciences, 480, 55-69, 2019

[9] M. Tiloca, K. Nikitin, S. Raza: Axiom: DTLS-Based Secure IoT Group Communication.
In ACM Trans. Embedded Comput. Syst. 16(3): 66:1-66:29, 2017

[10] S.R. Singh, A.K. Khan, and T.S. Singh. : A New Key Management Scheme for Wireless
Sensor Networks using an Elliptic Curve. In Indian J. of Science and Technology 10.13,
2017

24

[11] D. Mall, K. Konate and A.K. Pathan : ECL-EKM: An enhanced Certificateless Effective
Key Management protocol for dynamic WSN. In Networking, Systems and Security
(NSysS), 2017 International Conference on. IEEE, pp. 150–155, 2017

[12] K. Chatterjee, A. De and D. Gupta : An improved ID-Based key management scheme
in wireless sensor network. In: Int. Conf. in Swarm Intelligence.pp. 351–359, 2012

[13] A. Shamir : Identity-based cryptosystems and signature schemes. Workshop on the
theory and application of cryptographic techniques.Springer, pp. 47–53, 1984

[14] R. Azarderakhsh, A. Reyhani-Masoleh and Z. Abid : A key management scheme for
cluster based wireless sensor networks. In In: Embedded and Ubiquitous Computing,
IEEE/IFIP International Conference on. V. 2, 2008

[15] M. Kandi, H. Lakhlef, A. Bouabdallah, Y. Challal : A versatile Key Management pro-
tocol for secure Group and Device-to-Device Communication in the Internet of Things.
In J. Netw. Comput. Appl. 150, 2020

[16] T. Srinivasan, S.Sath ish, R.Vi,jay Kumar, M.V.B.Vi,jayender : A Hybrid Scalable
Group Key Management Approach for Large Dynamic Multicast Networks. in The Sixth
IEEE International Conference on Computer and Information Technology, 2006

[17] R. Zhou and H. Yang : A Hybrid Key Management Scheme for Heterogeneous Wireless
Sensor Networks Based on ECC and Trivariate Symmetric Polynomial. In International
Conference on Uncertainty Reasoning and Knowledge Engineering, pp. 251-255, 2011

[18] Y. Xu, F. Liu : Hybrid key management scheme for preventing man-in-middle attack in
heterogeneous sensor networks. In Computer and Communications (ICCC) 3rd IEEE
International Conference on, pp. 1421-1425, 2017

[19] P. Ahlawat and M. Dave : A cost-effective attack matrix based key management scheme
with dominance key set for wireless sensor network security. In International Journal of
Communication Systems 31.12, 2018

[20] S. Aissani, M. Omar, A. Tari, and F. Bouakkaz : KMS: micro key management system
for WSNs. In IET Wirel. Sens. Syst. 8(2): 87-97, 2018

[21] K. Hamsha K, G. S. Nagaraja : Threshold Cryptography Based Light Weight Key Man-
agement Technique for Hierarchical WSNs : in Ubiquitous Communications and Network
Computing. UBICNET 2019. Lecture Notes of the Institute for Computer Sciences, So-
cial Informatics and Telecommunications Engineering, vol 276. Springer, 2019

[22] A. Lei, C. Ogah, P. Asuquo, H. Cruickshank, and Z. Sun : secure A key management
scheme for heterogeneous secure vehicular communication systems. In ZTE Communi-
cations 21 (2016), p. 1.

[23] Z. Liu, X. Huang, Z. Hu, M.K. Khan, H. Seo and L. Zhou : emerging family of ellip-
tic curves to secure internet of things: ECC comes of age. In IEEE Transactions on
Dependable and Secure Computing 14.3 (2017), pp. 237-248.

[24] M. Messai, H. Seba, and M. Aliouat : A new hierarchical key management scheme for se-
cure clustering in wireless sensor networks. In International conference on wired/wireless
internet communication. Springer. 2015, pp. 411-424.

[25] G. Thevar and G. Rohini : Energy efficient geographical key management scheme for
authentication in mobile wireless sensor networks. In Wireless Networks 23.5 (2017),
pp. 1479-1489.

25

Hicham Lakhlef is associate professor at the University of Technology

of Compiegne (UMR CNRS 7253). He coauthored more than 50 international

publications. His research interests are in parallel and distributed algorithms,

WSNs, clustering, self-reconfiguration, optimization, routing, and internet of

things.

Abdelmadjid Bouabdallah is professor at University of Technology of

Compiegne (UMR CNRS 7253), where he is leading the Networking and Secu-

rity research group and the Interaction and Cooperation research of the Excel-

lence Research Center LABEX MS2T. His research Interest includes Internet of

things, QoS, security, unicast/multicast communication, Wireless Sensor Net-

works, and fault tolerance in wired/wireless networks.

26

