Hicham Lakhlef
email: hlakhlef@utc.fr

Abdelmadjid Bouabdallah
email: madjid.bouabdallah@hds.utc.fr

Efficient and Lightweight Group Rekeying Protocol for Communicating Things

Keywords: Communicating Things, Message-passing, Rekeying, Energy-efficiency, Security, Group Communication, Memory complexity

Recent advances in emerging technologies have given birth to a new type of networks called Internet of Things (IoT). The emergence of IoT has led practitioners to envision networking a large number of sensors for event monitoring, data collection and filtering. Due to the use of wireless technologies, a secure communication is strongly needed to protect valuable information. Secure group communication is one of the most significant requirements for IoT applications. This employs a group rekeying mechanism for a secure and efficient delivery of data. In this paper, we present a new efficient and scalable rekeying protocol for wireless communicating things. This protocol uses O(log 2 3 √ n) memory complexity, improving significantly the literature works, where n is the network size. Simulation results show that our protocol has better performances than existing works in several criteria.

Introduction

The Internet of Things (IoT) can be composed of a variety of communicating objects.These communicating objects will be found in all areas, ranging from the public domain such as the objects of our homes, which are becoming more intelligent, to the smart city in general. Roughly speaking, IoT is making our daily life easier and smarter. However, one of the main challenges facing the IoT is how to secure the communication links between these communicating objects. Indeed, the design of protocols to control them in order to achieve a common goal is far from being a simple task. In fact, due to resources limitation, a solution for an application in IoT devices should take into account the restrained capabilities (limited battery power, processing power and memory storage) of these devices by using as little memory and energy as possible, whilst maximize the life time of the network members [START_REF] Zanella | Internet of Things for Smart Cities[END_REF].

To transmit data from a source node to several destinations, things can use multicast operation. The multicast operation in wireless networks allows to create efficient group communications. The broadcasting medium, however, makes the wireless network vulnerable to various security attacks since anyone can easily eavesdrop on messages transmitted in the air [START_REF] Lakhlef | Vertex Coloring with Communication Constraints in Synchronous Broadcast Networks[END_REF]. In order to implement the multicast, we need to an access control mechanism for the broadcast of messages.

To implement an access control mechanism for a secure group communication we should employ a symmetric key, known as a group key, shared only by nodes in the group. However, the questions that arise are how to manage this key in case of joining and leaving of nodes ? And how to prevent from attacks of colluding nodes ?

The Group Key Management (GKM for short) is the core of secure communication. Its main role is to establish secure communication links between the members of a same group. To achieve this, the GKM provides them with a secret cryptography key that is used to encrypt the data exchanged between nodes belonging to the same group. Nevertheless, when a member leaves the group, it must no longer be able to decipher the future communications (forward secrecy). Also, if a node joins the group, it must not be able to decipher the previous ones (backward secrecy). Backward and forward secrecy are usually guaranteed by re-keying protocols. Thus, when a node joins or leaves the group, the group is updated, the secret key is revoked and a new one is distributed to the remaining members [START_REF] Tiloca | GREP: A group rekeying protocol based on member join history[END_REF][START_REF] Lakhlef | Andreagiovanni: A Memory-efficient Group Key Managment for Communicating Things.Q2SWinet[END_REF].

Our contribution. The aim of our proposal is to present a new group key management that uses a good memory complexity. In addition, it must prevent multiple evicted nodes to cooperate to regain access to the current group key.

Such an attack is referred to as collusion attack. In this paper, we present a new lightweight and efficient re-keying protocol for wireless communicating things.

We propose a highly scalable GKM protocol for IoT devices that ensures the forward and backward secrecy, efficiently recovers from collusion attacks, and uses a good of memory complexity for each node. This protocol uses O(log

2 3 √ n)
memory complexity, where n is network size, improving significantly the literature works.

The rest of this paper is organized as follows: Section 2 discusses the related works. Section 3 presents the model and some definitions. Section 4 presents the proposed protocol. Section 5 presents the simulation results and comparison with the related works. Finally, Section 6 concludes our paper.

Related works

According to the encryption techniques used, the group key management schemes for disseminating group key can be classified into the following three categories: symmetric, asymmetric and hybrid.

Symmetric approaches

A symmetric approach involves the use of the same key for encryption and decryption. Symmetric approaches can, in turn, be classified into two categories: pairwise key schemes and group key schemes. Pairwise Key schemes consist of using a distinct key for each pair of nodes. This approach has the advantage of being resilient, since the compromise of a node will not jeopardize the communications of the other ones. However, a node has to store as many keys as the number of members in the network. It is also hard to add new nodes to the network because new keys need to be distributed to all the actual members. This approach is therefore not scalable. The pairwise key scheme was first introduced in [START_REF] Chan | Random key predistribution schemes for sensor networks[END_REF]. Other pairwise key approaches were then proposed.

They are usually based on polynomials [START_REF] Zhang | Key establishment scheme for wireless sensor networks based on polynomial and random key predistribution scheme[END_REF], matrices [START_REF] Tsai | Key Management in Internet of Things via Kronecker Product[END_REF], Hierarchy LKH [START_REF] Zhang | A hierarchical group key agreement protocol using orientable attributes for cloud computing[END_REF] ...etc. Generally, symmetric schemes require less computation time than the asymmetric ones and are then more suitable for limited resources devices like IoT. However, most of them suffer from high communication and memory overhead, which makes them not scalable. Moreover, these symmetric schemes are rarely dealing with collusion attacks. Recently, the authors in [START_REF] Tiloca | Axiom: DTLS-Based Secure IoT Group Communication[END_REF][START_REF] Kandi | A versatile Key Management protocol for secure Group and Device-to-Device Communication in the Internet of Things[END_REF] proposed efficient group rekeying protocols based on member join history. A group is divided into subgroups, one member belongs to only one subgroup and not moved to other subgroup. While joining a subgroup unique identifier is given.

Asymmetric approaches

Asymmetric protocols, also called public-key systems, use two different keys:

a public key which may be disseminated widely. This key is used for encryption. And a private key which is known only to the owner. The private key is used for decryption. Asymmetric protocols are more secure and scalable. However, they usually require intensive computing, which makes them impractical on constrained devices as IoT devices. Despite this, some asymmetric schemes was proposed even for wireless sensor networks. Most of them implemented an Elliptic Curve Cryptography (ECC) [START_REF] Singh | A New Key Management Scheme for Wireless Sensor Networks using an Elliptic Curve[END_REF], a CertificateLess Public Key Cryptography (CL-PKC) [START_REF] Mall | ECL-EKM: An enhanced Certificateless Effective Key Management protocol for dynamic WSN[END_REF], an ID-Based Encryption (IBE) [START_REF] Chatterjee | An improved ID-Based key management scheme in wireless sensor network[END_REF]...etc.

Most of the asymmetric schemes use a certificate to certify the ownership of a public key. A user must then check the certificate of another user before using its public key, which requires an intense amount of computation. For more efficiency, IBE was proposed in [START_REF] Shamir | Identity-based cryptosystems and signature schemes[END_REF]. The main idea was to take as public key the user's identity (name, e-mail, IP address,... etc.). It is no longer necessary to certify public keys. However, the secret key must be computed by a key generator (KGC). Indeed, if a user can calculate his private key from his public key, he could also calculate those of the other users.

Hybrid approaches

Hybrid approaches combine symmetric and asymmetric techniques to take advantages of each and overcome its disadvantages like the work in [START_REF] Azarderakhsh | A key management scheme for cluster based wireless sensor networks[END_REF]. A hybrid scalable group key management approach for large dynamic multicast networks is proposed in [START_REF] Srinivasan | jayender : A Hybrid Scalable Group Key Management Approach for Large Dynamic Multicast Networks[END_REF], which tries to generate and distribute keys to the group members during leave or join of members by using key graph based Boolean minimization technique in order to improve scalability. Previous researches for hybrid key management [START_REF] Zhou | A Hybrid Key Management Scheme for Heterogeneous Wireless Sensor Networks Based on ECC and Trivariate Symmetric Polynomial[END_REF][START_REF] Xu | Hybrid key management scheme for preventing man-in-middle attack in heterogeneous sensor networks[END_REF][START_REF] Thevar | Energy efficient geographical key management scheme for authentication in mobile wireless sensor networks[END_REF] suggested using heterogeneous network with high end sensor nodes (HSNs) having high power for high computations of certificates verification and low end nodes, where HSNs are used to perform high power calculations such as certificate verification, exponentiation, elliptic curve scalar multiplications and additions and modular multiplications.

Discussion

Our literature review shows that none of the existing solutions meets all criteria. The more secure a protocol is, the less efficient it is, and conversely.

Symmetric schemes usually require less computation time than the asymmetric ones, which makes them more suitable for IoT devices. On the one hand, the Pairwise Key approaches are secure but not scalable. On the other hand, the key group schemes are efficient but do not deal with collusion attacks. Since the asymmetric techniques are impractical on the constrained devices, the best possible solution is the complementary use of both Pairwise Key and Group Key methods. In Table 1, we present a classification and discussion of the recent related solutions.

System model

Things, initial knowledge, and the communication

The network consists of n communicating things denoted s 1 , ..., s n . Each node has an identity id i , which is known only by itself and its neighbors. When computing bit complexities, we will assume that any node identity is encoded in log 2 n bits. When considering a node s i , the integer i is called its index. Indexes are not known by the nodes. They are only a notation convenience used as a subscript to distinguish nodes and their local variables. The network group is controlled by a Group Controller GC, which is trusted and powerful.

Key category

Papers Discussion pairwise, symmetric [START_REF] Ahlawat | A cost-effective attack matrix based key management scheme with dominance key set for wireless sensor network security[END_REF] [+] efficient in static networks. post distribution

[-] neither consider the group and multigroup communication. pairwise, symmetric [START_REF] Aissani | KMS: micro key management system for WSNs[END_REF] [+] efficient in dynamic networks. hybrid distribution

[-] lack scalabilty in limited-resource devices. symmetric, group [START_REF] Tiloca | GREP: A group rekeying protocol based on member join history[END_REF][START_REF] Tiloca | Axiom: DTLS-Based Secure IoT Group Communication[END_REF] [+] efficient groups of dynamic networks. post distribution

[-] lack scalabilty limited-resource devices. symmetric [START_REF] Hamsha | Threshold Cryptography Based Light Weight Key Management Technique for Hierarchical WSNs : in Ubiquitous Communications and Network Computing[END_REF] [+] efficient group and multi-group in dynamic networks. group, hyb distribution

[-] lack scalabilty limited-resource devices. post distribution [START_REF] Lei | Sun : secure A key management scheme for heterogeneous secure vehicular communication systems[END_REF] [+] efficient and scalable in dynamic networks. symmetric key [-] do not consider the device-to-device communication. post distribution [START_REF] Messai | A new hierarchical key management scheme for secure clustering in wireless sensor networks[END_REF][START_REF] Thevar | Energy efficient geographical key management scheme for authentication in mobile wireless sensor networks[END_REF] [+] scalable in dynamic networks. asymmetric pairwise

[-] not suitable for the IoT constrained devices.

G x G y (resp. G x ≺G y) if • r i=1 u i > t i=1 v i (resp. r i=1 u i < t i=1 v i) or • u r > v t (resp. u r < v t), if r i=1 u i = t i=1 v i Definition 2. rekeying tool.
It is an information (may be a number) used as parameter to calculate a key. Nodes that use the same function with the same rekeying tool obtain the same key.

To each node is associated two rekeying tools and to each group is associated two rekeying tools. It is important to note that each node and does not know its rekeying tools and rekeying tools of a group are not known by its nodes. The nodes of the group G are logically1 partitioned as follows :

Proposed Protocol

1. Create 3 √ n subgroups in G. Namely, the created subgroups are G 1 , . . . , G 3 √ n .
We call these groups Level-2 groups

2. Create in each subgroup G j , 1 ≤ j ≤ 3 √ n, 3 √ n subgroups. Namely, for each G j there are the subgroups G (j-1) 3 √ n+1 j , . . . , G j 3 √ n j
. We call these subgroups Level-1 groups

Put in each subgroup

G p j , 1 ≤ j ≤ 3 √ n, (j -1) 3 √ n + 1 ≤ p ≤ j 3 √ n, ρ nodes with ρ ≤ 3 √ n nodes 4. For each node s i , 1 ≤ i ≤ n, create two rekeying tools SRT i > , SRT i < 5. For each subgroup G j , 1 ≤ j ≤ 3 √ n, create two rekeying tools GRT Gj > , GRT Gj < 6. For each subgroup G p j , 1 ≤ j ≤ 3 √ n, (j -1) 3 √ n + 1 ≤ p ≤ j 3 √ n, create two rekeying tools G 2 RT G p j > , G 2 RT G p j < 7. Each node s i , 1 ≤ i ≤ n, belonging to G p j
, stores in its local memory :

• in a set S i > all SRT f > , with id i > id f and f ∈ G p j , where SRT f > is a rekeying tool of s f • in a set S i < all SRT k < , with id i < id k and k ∈ G p j , where SRT f > is a rekeying tool of s k • in a set S i > all GRT G m j > , with G p j G m j and G G m j j ∈ G j , where GRT G m j > is a rekeying tool of group G m i • in a set S i < all GRT G p j < , with G p j ≺ G l j and G k l ∈ G j , where GRT G p j > is a rekeying tool of group G l i • in a set S i > all G 2 RT Gw < , with G j ≺ G w and G w ∈ G, where G 2 RT Gw < is a rekeying tool of group G w • in a set S i < all G 2 RT Gx > , with G j G x and G x ∈ G, where G 2 RT Gx > is a rekeying tool of group G x
Let RT i be the set of all rekeying tools of s i (e.g.

RT i = S i < ∪ S i < ∪ S i < ∪ S i > ∪ S i > ∪ S i >).
The figure 1 presents a grouping example of a group of 26 nodes.

To present our solution, we use the notations shown in Table 2.

Rekeying upon joining

In case of joining, rekeying procedures must ensure that the new node to be added into the group G is unable to decrypt all information created prior its addition. To achieve this goal we must change the group key at the joining event. When a new node joins the group, the protocol in Algorithm 1 is executed. The input of this algorithm is the joining event and the output is the new group key calculated by each node in the new group.

G1 G2 G3 G 1 1 1 2 G 1 3 G 1 2 G 2 2 G 3 2 G 3 1 G 3 2 G 3 3 G 27 6 2
Let NwNd be the ID of this new node. This node sends Joining Request(NwNd) message destined to GC. Upon the reception of this message (line 01) from NwNd , GC runs the instructions 1 to 14.

In instruction 02, GC computes M inG, the level-1 group that has the smallest size (if there are several level-1 groups that have the smallest size, i.e G p1 i1 = ... = G pm im then GC chooses G px ix with i x < i y , ∀y ∈ [1, m] to break the tie.) After it puts in M inG the ID of the new node. Then, GC generates a new security parameter λ (line 3). Let G x be the level-2 group containing M inG and let G y x be this group (G y x = M inG). In line 4, GC calculates a new group key CGK = (ECGK , DCGK) and a new level-1 group key K G y x using the FDK function and λ. To rekey nodes in M inG, GC constructs a message called rekeying MinG(). This message contains the ID of the new node, the security parameter λ and the new group key encrypted by means of EK M inG . This message will be broadcasted to nodes in M inG (line 05). Further, to rekey nodes in G -M inG, GC constructs a message called rekeying GExMinG() containing the new group key CGK encrypted by means of ECGK. This message will be broadcasted to nodes in G except nodes in M inG (line 06). After, GC puts in a set called S NwNd > , the set of rekeying tools of nodes in M inG that Instructions for GC : (01) when Joining Request(NwNd) is received do). These rekeying tools will be used when a node leaves (next section).

(02) M inG ← min(G p i : 1 ≤ i ≤ 3 √ n, (i -1) 3 √ n + 1 ≤ p ≤ i 3 √ n) ; (03) M inG ← M inG ∪ NwNd; λ ← GenSecuP ar(); (04) CGK ← FDK (λ CGK); K G y x ← FDK (λ K G y x); (05) broadcast rekeying MinG(M inG -{NwNd}, {NwNd, λ, CGK } K M inG); (06) broadcast rekeying GExMinG(G -M inG, {NwNd, λ, CGK } CGK); (07) S NwNd > ← all SRT f > : NwNd > id f , f ∈ MinG; (08) S NwNd < ← all SRT f < : NwNd < id f , f ∈ MinG; (09) S NwNd > ← all GRT f > : MinG G f i , MinG ∈ G i ∧ G f i ∈ G i ; (10) S NwNd < ← all GRT f < : MinG ≺ G f i , MinG ∈ G i ∧ G f i ∈ G i ; (11) S NwNd > ← all G 2 RT f > : M inG G f i , M inG ∈ G i ∧ G f i ∈ G i ; (12) S NwNd < ← all G 2 RT f < : M inG ≺ G f i , M inG ∈ G i ∧ G f i ∈ G i ; (13) m ← CGK , K G y x , S>, S<, S NwNd > , S NwNd < , S NwNd < , S NwNd > CGK K NwNd (

Rekeying upon leaving

In case of leaving, rekeying procedures must ensure that the evicted node is unable to decrypt all pieces of information created after its leaving. In case of leaving, Algorithm 2 is executed to change the group key.The input of this algorithm is the leaving event and the output is the new group key.

When a node of LvNd leaves the group, the current group key CGK has to be changed in order to prevent LvNd from decrypting new ciphertexts. Let

G y

x and G x be the level-1 group and the level-2 group of LvNd , respectively.

(01) when Leaving Event(NwNd) is detected do

(02) G ← G -LvNd; λ ← GenSecuP ar(); (03) CGK ← F DK(λ CGK); K G y x ← FDK (λ K G y x); (04) A = (EA, DA) = FDK (SRT LvNd >); B = (EB, DB) = FDK (SRT LvNd <) ; (05) C = (EC, DC) = FDK (GRT G y x >) ; D = (ED, DD) = FDK (GRT G y x <) ; (06) E = (EE, DE) = FDK (G 2 RT > Gx) ; F = (EF, DF) = FDK (GRT 2 < Gx); (07) broadcast rekeying G y x (G y x , {LvNd, λ, CGK } A , {LvNd, λ, CGK } B); (08) broadcastrekeying GxExG y x (Gx -G y x , LvNd, λ, CGK C , LvNd, λ, CGK D); (09
(21) if (G y x (i) G y x) then C ← (EC, DC) = FDK (GRT G y x <); (22)
dm ← DC(m1);

(23) else D ← (EC, DD) = FDK (GRT G y x >); (24) dm ← DD(m2); (25
CGK ← dm.CGK ; Gx(i) ← Gx(i) -{dm.LvNd}; forall k ∈ RTi, k ← H(dm.λ||k);
Algorithm 2: Protocol executed when a node leaves the group Let G y x (i) and G x (i) be the level-1 group and the level-2 group of node s i that receives the message in Algorithm 2.

Upon the detection of leaving event, GC runs the instructions 2 to 9. GC

), C = (EC, DC) = FDK (GRT G y x >), D = FDK (GRT G y x <), E = FDK (G 2 RT Gx >), F = FDK (GRT 2 < Gx) (lines 04-06).
GC constructs the message rekeying G y x (), containing the new key of the group, the ID of the leaving node and the security parameter λ encrypted by means of keys A and B. Then, GC broadcasts this message to nodes in G y

x . This message will be used to rekey nodes in G y

x (line 07). After it constructs the message rekeying G x ExG y

x (), containing the new key of the group, the ID of the leaving node and the security parameter λ encrypted by means of keys C and D. GC broadcasts this message to nodes in

G x -G y
x . Using this message nodes in G x -G y x will be able to get the new group key (line 08). Finally, GC constructs the message rekeying GExG x (). This message contains the new group key, the ID of the leaving node and the security parameter λ encrypted by means of E and F . GC broadcasts this message to nodes in G -G x . This message will be used to rekey nodes in G -G x (line 09).

Upon the reception of the message rekeying G y x (), each node s i in G y x runs the instructions 11 to 18. If id i is superior than LvNd then s i can compute the key A locally using SRT LvNd > and the FDK function. If id i is inferior than LvNd then s i can compute the key B locally using SRT LvNd < and the FDK function. It decrypts the message using DA or DB and installs CGK as the current group key. Further, it computes a new level-1 group key K G x y using the hash function and the security parameter λ sent from GC (lines 12-17). In line 18, s i deletes LvNd from the group. Finally, s i changes all its rekeying tools using the hash function and λ.

Upon the reception of the message rekeying G x ExG y x () sent by GC, each node s i in G x -G y

x runs the instructions 20 to 27. If G y x (i) is superior (with respect to definition 1) than G y

x , s i can compute the key C locally using GRT

G y x >
and FDK function. Then, it decrypts the message using DC. If G y x (i) is inferior than G y

x , s i can compute the key D locally using GRT G y

x < and FDK . It decrypts the message using DD (lines 21-25). In line 26, s i installs the new key CGK as the current group key. In line 27, it deletes LvNd from the group and changes all its rekeying tools using the hash function and λ.

At the reception of rekeying GExG x (), each node s i in G -G x runs the instructions 30 to 35. If G x (i) is superior than G x then s i can compute the key E using G 2 RT Gx > and decrypt the message using that key (line31). If G x (i) is inferior (with respect to definition 1) than G x , then s i can compute the key F locally using GRT 2 < Gx (with respect to definition 1). s i decrypts the received message using the computed key (line 33). Then, it deletes LvNd from the group G and installs CGK as the current group key. Finally, s i changes all its rekeying tools using the hash function and λ (lines 35).

Preventing from collusion attacks

A collusion attack occurs when multiple compromised nodes from G cooperate to regain access to the secret group key. When a collusion attack is detected Algorithm 3 is executed.

Let G be the set of compromised level-2 groups (a group is compromised if it contains at least one compromised node). And let Q = G -G be the set of non compromised level-2 groups in G. Let minG and maxG be the greater level-2 group and the smaller level-2 group in G , respectively (w.r. Then, GC constructs a message rekeying Coll nodes 1() containing the new group key, the new λ and the compromised nodes. This message is encrypted using the keys A r and B r . Next, GC broadcasts it to nodes in O r (lines 3-6). And for every node i in O r -O r GC constructs a message rekeying Coll nodes 2() encrypted using K i and sends it to s i (line 7).) and constructs a message rekeying Coll L1G 1() encrypted by means of C t and D t and broadcasts it to nodes in P (lines 8-11). For every node i in P t -P t , GC constructs rekeying Coll L1G 2() encrypted with K i and sends its to s i (line 12).). GC constructs the message rekeying Coll L1G 1() and encrypts it with E and F and broadcasts it to G (lines 13-14). For every node s i in Q-Q, GC constructs a message rekeying Coll L2G 2() encrypts it with K i and sends it to s i (lines 15). Upon the reception of rekeying Coll nodes 1(), each node s i in O r does the following actions :

(13) E = FDK (G 2 RT minG >); F = FDK (G 2 RT maxG >); (14) broadcast rekeying Coll L1G 1(G , C , CGK E , C , CGK F) ; (15) forall s i in O -O do broadcast rekeying Coll L2G

GC uses GRT minSt

• calculates the key A r if id i < id minCr (A r = FDK (SRT minCr <
)), or calculate the key B r if id i > id maxCr (Br = FDK (SRT maxCr >)) (lines 17-23).

• decrypts the message using the computed key, gets the new group key CGK , deletes the compromised nodes from the group and calculates its new level-1 group key using λ (line 24).

Upon the reception of rekeying Coll nodes 2(), each node i in O r -O r decrypts the message using K i , calculates its new level-1 group key using λ (line 26) and gets the new key CGK (line 28).

Upon the reception of rekeying Coll L1G 1(), each node s i in P does the following actions:

• calculate the key C if id v < id minC (C = FDK (SRT minC <)), or calculate the key D if id v > id maxC (D = FDK (SRT maxC <
)) lines (30-36).

• decrypt the message using the computed key, gets the new key CGK and deletes the compromised nodes from the group (line 37).

Upon the reception of rekeying Coll L1G 2(), each node i in P -P decrypts the message using K v and gets the new key CGK .

Upon the reception of rekeying Coll L1G 1(), each node s i in P calculates the key

E if id v < id minC (E = FDK (SRT minC <)), or calculate the key F if id i > id maxC (F = FDK (SRT maxC <
)) (lines 44-49). Then, it decrypts the message, gets the new key CGK and deletes the compromised nodes from G (line 50). Finally, at the reception of rekeying Coll L2G 2(), each node s i in Q -Q gets the new key CGK and deletes the compromised nodes (line 53).

Analysis and cost of the algorithm

, SRT LvNd > , GRT G y x > ,GRT G y x < , G 2 RT G y x > and G 2 RT G y x <
respectively. As N vN d does not know all these rekeying tools, it cannot calculate the keys A, B, C, D, E and F . Therefore it can not decrypt any message containing the new group key and the new λ. All nodes in G -N vN d can decrypt one of these messages. Indeed, each node i in G y

x can decrypt the message using key A if id i > LvNd or key B if id i < LvNd . Each node i in G x can decrypt th messages using C if id i > LvNd or D if id i > LvNd . And all nodes in G x -G x decrypt the messages using E or F . Therefore all nodes get the new group key except N vN d. These completes the proof.

2 Lemma 2 Lemma 3. In case of collusion detection, the colluding nodes are evicted and nodes in the new group G agree on same new group key.

Proof

When a collusion event is detected GC deletes all colluding nodes from the group G. GC generates a new security parameter and a new group key. Firstly, let us observe that in each group C r there are the nodes minC r and maxC r .

Let us recall that, to each node s i in C r is associated two rekeying tools SRT si < and SRT si > (unknown for s i). Node s j in C r stores in its local memory the rekeying tool SRT si < if id j < id i or SRT si < if id j > id i . Therefore, SRT minCr < of node minC r is not stored by any node in C r . Similarly, SRT maxCr > is not stored by any node C r . Let us observe that each node z in G y xCr -C r with minC r < id z < maxC r does not store in its local memory minC r nor maxC r .

Each node x in G y

xCr -C r with id x < minC x or id x > id z < maxC r stores in its local memory minC r or maxC r . Therefore, each node x can decrypt the message in line 07 using A r or B r and get the new group key. However, each node z can not decrypt the message because it can not computes A r and B r .

For that reason GC sends for z the key encrypted the key k z . Consequently, all non-colluding nodes in compromised level-1 groups get the new group key.

Let us observe that for each set of compromised level-1 groups in the same group of level 2 (i.e. for each S r in G r) there are the two level-1 groups minS t and maxS t (with respect to definition 1). Let us recall that, to each level-1 group Z in S r is associated two rekeying tools GRT Z < and GRT Z > . Node j in G r and not in Z stores in its local memory

GRT Z < if G y x (j) ≺ Z or GRT Z > if G y x (j) Z.

Proof

Firstly let us observe that each node s i stores in its local memory the group key CGK, the level-1 group key and the key K i shared with GC. Let G x and G y w be the level-1 group and the level-1 group respectively for node s i . And let a = {t1, t2, ..., tm} be the set of nodes where id i > id s with id s in G y

x . And let b = {h1, h2, ..., hk} be the set of nodes where id i < id s with id s in G y x . Therefore, s i stores in its local memory |S s tools. Given that the size of the group G y w is at most

3 √ n, so |a| + |b| = 3 √ n. Consequently, |S s > | + |S s < | = 3 √ n. Let c = G 1 w , G 2 w , ..., G q w be the set of groups in G x with G i x < G y x and d = G 1 x , G

Experimental Evaluation

In this section, we evaluate experimentally our protocol. We compare its performance with two recent protocols: the protocol GREP in [START_REF] Tiloca | GREP: A group rekeying protocol based on member join history[END_REF], a new group key management that uses √ n of memory and the protocol in [START_REF] Kandi | A versatile Key Management protocol for secure Group and Device-to-Device Communication in the Internet of Things[END_REF]. Both protocols deals with collusion attacks as we do.

Target networks

We exercise both algorithms on randomly generated networks of different sizes. Within both algorithms, we simulate a collusion attack by choosing randomly a set of nodes that perform the collusion attacks. Then, we evaluate the consequences of these attacks on each algorithm and we compare the results.

Metrics

We evaluate our protocol and GREP in terms of the following metrics:

• The number of compromised keys in G when a collusion attack is performed.

• The number of compromised re-keying tools is the number of compromised re-keying in the group G when a collusion attack is performed. • The number of messages required to rekey the whole group. Student's test statistics. We remark that on all metrics, our proposed protocol outperforms the protocols in [START_REF] Tiloca | GREP: A group rekeying protocol based on member join history[END_REF] and [START_REF] Kandi | A versatile Key Management protocol for secure Group and Device-to-Device Communication in the Internet of Things[END_REF]. These protocols are hampered by their memory complexity, which slows it down (Figure 2), and causes them to use far more messages to re-key and change compromised re-keying tools.

Results

Compared to the protocol in [START_REF] Tiloca | GREP: A group rekeying protocol based on member join history[END_REF] we see that our protocol has less compromised keys and re-keying tools to change for random experiments. That is explained by the fact that within the protocol in [START_REF] Tiloca | GREP: A group rekeying protocol based on member join history[END_REF] there is more victim groups (between colluding malicious nodes) in the level 1 groups that must be re-keyed. This is also the case for the protocol in [START_REF] Kandi | A versatile Key Management protocol for secure Group and Device-to-Device Communication in the Internet of Things[END_REF], that uses one level of grouping and creates more level 1 groups for heterogeneous nodes (in terms of memory space). Furthermore, in both protocols each compromised group has several (more than two) compromised re-keying tools. And in our protocol there are few victim groups compared to the two protocols and a victim group between the colluding nodes has only one key and two re-keying tools that must be changed. In addiction, using our protocol we can rekey more nodes using a single message compared to GREP, which explain the result in Figure 4.

Conclusion

There is a major difficulty in designing of efficient and secure group communication protocols when these protocols concern networks with limited resources and colluding malicious nodes. In this paper, we proposed a highly scalable Group Key Management protocol for communicating things networks which is both secure and efficient. Our new group key management protocol deals efficiently with collusion attacks and improves the existing methods in term of memory usage complexity and efficiency. Our protocol is the first to uses O(log 2 3 √ n) memory complexity for each node.

From an algorithmic point of view, the proposed algorithm is versatile, making it an attractive starting point to address other related problems. For instance, in an heterogeneous network, the protocol could be modified to take into account additional constraints arising from the capacities of individual nodes, such as their ability to use different memory capacities, different computing capabilities and only certain communication frequencies. Solving the problem of multi-group key management using efficient protocols remain a major challenge.

The new difficulty is then to take into account the fact that node may be a part of several groups (for example in real case it proposes several services).

 ECGK , DCGK) The current group key. Encrypt with ECGK and decrypt with DCGK Ks iA key shared between node si and GCK G y xA key shared between nodes in the group G yx GenSecuP ar() A function that generates a security parameter FDK () A function that generates keys using a security parameter H() A hash function

Figure 1 :

 1 Figure 1: Example of grouping with 26 nodes

>

 else its records SRT id NwNd < .Upon the reception of the message rekeying GExMinG(), each node s i in G -M inG runs the instructions 25 to 28. Node s i decrypts the message using group key DCK (line 26) and installs CGK as the current group key (line 27).After, s i adds the new node into G (line 28).At the reception of the message rekeying tools(), the new node decrypts the message using the keys DCGK and DK NwNd . It gets the new level-1 group key K G y x , the new key group CGK (line 32) and stores in its local memory the rekeying tools S NwNd >

 deletes the ID of the leaving node from the group G and generates a new security parameter λ (line 2). Then, it calculates a new group key CGK = (ECGK , DCGK) and a new level-1 group key, using the FDK function and λ (line 03). In addition, it calculates the keys A = (EA, DA) = FDK (SRT LvNd >), B = (EB, DB) = FDK (SRT LvNd <

Algorithm 3 :

 3 Protocol executed when collusion attack is detected in C r . And let O r = G y xCr -C r be the set of non compromised nodes in G y xCr . Let minC r and maxC r be the nodes with the lowest ID and the highest ID in C r , respectively. Let us remark that SRT minCr < and SRT maxCr > are not stored by compromised nodes. Let O r be the set of nodes that stores SRT minCr < or SRT maxCr > . All rekeying tools hold by nodes in O r -O r are compromised and therefore can not be used by GC to rekey the nodes in the group O r . When a collusion attack is detected GC does the following actions: 1. GC deletes the colluding nodes from the group G and generates a new parameter λ, and calculates a new group key (line 01). 2. GC uses SRT minCr < and SRT maxCr > to rekey nodes in compromised level groups: For every C r ∈ C , using these rekeying tools and FDK function GC calculates the keys A r = FDK (SRT minCr <) and B r = FDK (SRT maxCr >).

<

 and GRT maxSt > to rekey non compromised level-1 groups in compromised level-2 groups : GC calculates the keys C t = FDK (GRT minSt <) and D t = FDK (GRT maxSt >

4 .

 4 GC uses G 2 RT minG < and G 2 RT maxG > to rekey the group G -C (i.e. to rekey non compromised groups of level 2): it calculates the keys E = FDK (G 2 RT minG <) and F = FDK (G 2 RT maxG >

Figure 2

 2 Figure 2: Figure compares the number of compromised keys between our protocol and the protocol GREP

Figure 3 :

 3 Figure 3: Figure compares the number of compromised rekeying tools between our protocol and the protocol GREP

Figure 2 (

 2 Figure 2 (The number of compromised keys), and figure 3 (The number of compromised re-keying tools) show the results we obtain for network sizes varying from 50 to 500 nodes. In Figures 2 and 3 each point is averaged over 10 experiments. Errors bars show 95%-level confidence intervals computed using

Figure 4 :

 4 Figure 4: Figure compares the number of messages required for rekeying with protocol in[START_REF] Tiloca | Axiom: DTLS-Based Secure IoT Group Communication[END_REF]

Table 1 :

 1 Classification and discussion of some recent related solutions Let u 1 , u 2 , ..., u r be a set of r ordered positive integers that present the identities of nodes in a group G x . And let v 1 , v 2 , ..., v t be a set of t ordered positive integers presenting the identities of other nodes in group G y . We say G x is greater (resp. smaller) than G y and we write

	3.2. Timing model
	We assume that processing durations are equal to 0. This is justified by the
	following observations: (a) the duration of the local computations of a node
	is negligible with respect to message transfer delays, and (b) the processing
	duration of a message may be considered as a part of its transfer delay. Com-
	munication is synchronous in the sense that there is an upper bound D on
	message transfer delays (each message is received within the bound D), and
	this bound is known by all the nodes (global knowledge). From an algorithm
	design point of view, we consider that there is a global clock, denoted CLOCK,
	which is increased by 1, after each period of D physical time units. Each value
	of CLOCK defines what is usually called a time slot or a round.
	3.3. Communication operations
	The nodes are provided with operations denoted broadcast(), send() and
	receive(). A node s i invokes broadcast tag(m) to send the message m, whose
	type is tag, to all its neighbors. It is assumed that a node invokes broadcast()
	only at a beginning of a time slot. When a message tag(m) arrives at a thing
	s i , this node is immediately warned about it, which triggers the execution of
	operation receive() to obtain the message.

Table 2 :

 2 Table of notations

 GC sends to NwNd the message rekeying tools () containing these rekeying tools, the level-1 group key K G yx and the new group key. This message is encrypted by means of EK NwNd and ECGK (line 13).Upon the reception of the message rekeying MinG(), each node s i in M inG runs the instructions 16 to 23. Firstly, s i decrypts the message using the level-1 group key DK M inG (line 17) and adds the ID of the new node into G yx (line 18). It calculates the new level-1 group key K G y x using the hash function and the security parameter λ sent by GC. After, it gets and installs the new group key CGK as the current group key (line 19). Then, s i calculates the rekeying tool of NwNd using the hash function and λ (lines 20-23). If the ID of NwNd is superior than id i , s i records in its local memory the rekeying toolSRT id NwNd

	in the set S NwNd <	the rekeying tools of level 2 groups that are superior than
	G y x (line 12). In line 14,		
	(18)	G y x ← G y x ∪ {dm.NwNd} ;
	(19)	K G y				
	(21) (22)	then SRT dm.NwNd > else SRT dm.NwNd <	← H (dm.λ) ← H (dm.λ)
	(23)	end if				
	(24) when rekeying GExMinG(dest, m = {NwNd, λ, CGK } CGK) is received do
	(25)	if (dest = id i) then discard the message end if;
	(26)	dm ← DCGK (m);		
	(27)	CGK ← dm.CGK ;		
	(28)	G ← G ∪ {dm.NwNd}		
	(29) when rekeying Tools(NwNd ,m) received do
	(30)	if (dest = NwNd) then discard the message end if;
	(31)	dm ← (DCGK , DK NwNd)(m);
	(32) (33)	CGK ← m.CGK ; K G y x S NwNd > ← dm.S NwNd > ; S NwNd ← m.K G y x < ← dm.S NwNd <	;
	(34)	S NwNd >	← dm.S NwNd >	; S NwNd >	← dm.S NwNd >	;
	(35)	S NwNd >		← dm.S NwNd >	; S NwNd
	S NwNd >	the set of rekeying tools of level-1 group that are inferior (with respect
	to definition 1) than M inG (line 9) and in the set S NwNd <	the rekeying tools of
	level-1 groups that are superior than M inG (line 10). It puts in S NwNd >	the
	set of rekeying tools of level-2 groups that are inferior than G y x (line 11) and

14) send rekeying Tools (NwNd, m); Instructions for node s i : (15) when rekeying MinG(dest, m = {NwNd, λ, CGK } K M inG) is received do (16) if (dest = id i) then discard the message ; end if (17) dm ← DK M inG (m); x ← H(dm.λ||K G y x); CGK ← dm.CGK ; (20) if (id i > dm.NwNd) > ← dm.S NwNd > ; Algorithm 1: Protocol executed when a node joins the group have IDs superior than NwNd (line 07) and in a set called S NwNd < , the rekeying tools of nodes in M inG that have IDs inferior than NwNd (line 08). It puts in

) broadcast rekeying GExGx (G -Gx, {LvNd, λ, CGK } E , {LvNd, λ, CGK } F); id i) then discard the message end if; (12) if (id i > LvNd) then A ← (EA, DA) = FDK (SRT LvNd

	Instructions for node s i : (10) when rekeying G y x (dest, m1, m2) is received do
	(11)	if (dest = >);
	(13)	dm ← DA(m1);
	(14)	else B ← (EB, DB) = FDK (SRT LvNd <);
	(15)	dm ← DB(m2);
	(16)	end if;	
	(17)	CGK ← dm.CGK ; K G y x	← H(dm.λ||K G y x);
	(18)		

Gx(i) ← Gx(i) -{dm.LvNd}; forall k ∈ RT i , k ← H(dm.λ||k); (19) when rekeying GxExG y x (dest, m1, m2) is received do (20)

if (dest = id i) then discard the message end if;

 Let S = S 1 , S 2 , ..., S t be the set of t level-1 compromised groups in the groups of level 2: G 1 , G 2 , ..., G t respectively. And let P t = G t -S t be the set of non compromised groups in level-2 group G t . Let minS t and maxS t be the greater level-1 group and the smaller level-1 group in S t , respectively. Let us remark that the rekeying tools GRT minSt . Let P t be the set of groups of nodes that stores in S t . All rekeying tools hold by nodes in P t -P t are compromised and therefore can not by used to rekey nodes in non compromised level-1 groups of S t . Let C = C 1 , C 2 , .., C r be the list of t sets of compromised nodes in the same group of level 1. And let G y xCr be the level-1 group of nodes forall s i in P t -P t do broadcast rekeying Coll L1G 2(id i , C , CGK

	Instructions for GC :			
	(01) when collusion Event() is detected do	
	(02) G ← G -C ; λ ← GenSecuP ar(); CGK ← F DK(λ CGK);
	(03) forall (Cr in C) do		
	(04)	Ar = FDK (SRT minCr <); Br = FDK (SRT maxCr >);
	(05)	broadcast rekeying Coll nodes 1(Or, C , λ, CGK Ar , C , λ, CGK Br);
	(06) endforall;			
	(07) forall si in Or -Or do broadcast rekeying Coll nodes 2(idi, C , CGK k i (08) forall (St in S) do); endforall;
	(09)	Ct = FDK (GRT	minS t <); Dt = FDK (GRT	maxS t >);
	(10) (11) endforall; broadcast rekeying Coll Level1groupss 1 (Pt, C , CGK C t	, C , CGK D t);
	(12) k i); endforall;
							t. definition 1). Let
	us remark that the rekeying tools G 2 RT minG <	and G 2 RT maxG >	are not stored
	by compromised nodes in G . Let Q be the set of level-2 groups that stores
	G 2 RT minG >	or G 2 RT maxG		
					<	and GRT maxSt >	are not stored by
	compromised nodes in S GRT minG > or GRT maxG >		

>

. All rekeying tools in the Q -Q are compromised. t

 2 (id i , C , CGK

	Instructions for node si :				k i); endforall;
	(16) when rekeying Coll nodes 1(dest, m1 = C , λ, CGK	Ar	, m2 = C , λ, CGK	Br) is received do
	(17)	if (dest = idi) then discard the message end if;
	(18)	if idi < id minCr			
	(19)	then A ← FDK (SRT minC <);
	(20)	dm ← DA(m1);	
	(21)	else B ← FDK (SRT maxC <);
	(22)	dm ← DB(m2);		
	(23)	end if;			
	(24)				
	(27)	dm ← DKi(m); K G y x	(i) ← H(dm.λ||K G y x);
	(28)	CGK ← dm.CGK ; G ← G -{dm.C };
	(29) when rekeying Coll L1G 1(dest, m1 = C , CGK (30) if (dest = idi then discard the message end if; C t , m2 = C , CGK	D t) is received do
	(31) (32)	if idv < id minS t then C ← FDK (GRT	minS t <);
	(33)	dm ← DC(m1);	
	(34)	else D ← FDK (GRT	maxS t <);
	(35)	dm ← DD(m2);		
	(36)	end if;			
	(37)	CGK ← dm.CGK ; G ← G -{dm.C };
	(38) when rekeying Coll L1G 2(dest, m = C , CGK K i (39) if (dest = idi) then discard the message end if;) is received do
	(40)	dm ← DKi(m);			
	(41)	CGK ← dm.CGK ; G ← G -{dm.C };
	(42) when rekeying Coll L1G 1(dest, m1 = C , CGK (43) if (dest = idi) then discard the message end if; E , m2 = C , CGK	F) is received do
	(44)	if idv < id minS			
	(45)	then E ← FDK (G 2 RT minG >);
	(46)	dm ← DE(m1);	
	(47)	else F ← FDK (G 2 RT maxG <);
	(48)	dm ← DF (m2);		
	(49)	end if;			
	(50)	CGK ← dm.CGK ; G ← G -{dm.C };
	(51) when rekeying Coll L2G 2(dest, m = C , CGK ks) is received do
	(52)	if (dest = idi) then discard the message end if;
	(53)	dm ← DKi(m); CGK ← dm.CGK ; G ← G -{dm.C };

CGK ← dm.CGK ; G ← G -{dm.C }; K G y x (i) ← H(dm.λ||K G y x); (25) when rekeying Coll nodes 2(dest, m = C , CGK K i) is received do (26)

if (dest = idi) then discard the message end if;

 Lemma 1. In case of joining backward secrecy is guaranteed by Algorithm 1 and all nodes in the new group G agree on the same new group key. Proof Let us suppose a new node NwNd wants to join G at time t. It is obvious that NwNd cannot decipher the messages sent from nodes in G before the time t. Because it does not have the group key CGK. At time t, NwNd sends the request message encrypted by means of the key K NwNwd to GC. Without loss of generality, let us assume that NwNd will be added into the level-1 group G y x . Following this request, GC generates a new group key for G, and a new level-1 group key for G y x using a new security parameter λ. GC broadcasts theses keys and λ using the current keys CGK and K G y x . Therefore, only nodes in G can decipher this messages and get the new keys. GC broadcasts to K NwNwd the new keys and the rekeying tools that allow it to compute a new key when a node leaves the network. Only GC and NwNd can decipher the message because the key K NwNwd is shared only between GC and NwNd . Lemma 2. In case of leaving forward secrecy is guaranteed by Algorithm 2 and all nodes in the new group G agree on the same new group key. Let us suppose a new node has LvN d as ID is quitting the group at time t. Let us assume that LvNd was in level-1 group G y x . The objective is to proof that LvN d cannot decipher messages sent by nodes in G after the time t. And at t + 1 all nodes in the new group (G -{LvN d}) have the same new group key. Upon the leaving event detection, GC generates a new key using a new security parameter λ (line 2). It also generates the keys A, B, C, D, E, F using the rekeying tools SRT LvNd

	2 Lemma 1
	Proof
	>

 Therefore, GRT minSr < of group minS r is not stored by any node in S r . Similarly, GRT maxSr > is not stored by any node S r . Let us observe that each node z in G r -S r with minS r < G y x (z) < maxS r does not store in its local memory minC r nor maxC r . Each node t in G y xSr -S r with G y x (t) < minC r or can decrypt the message using key C r or D r and get the new key of the group. However, each node z can not decrypt the message because it can not computes the keys C r or D r . For that reason GC sends for z the key encrypted the key k z . Consequently, all non-colluding in compromised level 2 groups get the new group key. It remain to proof that all nodes in non-compromised level-2 groups get the new group key. Let us observe that for the set of compromised groups of level 2, Q (i.e. Q = G -G) there are the groups minG t and maxG t (with respect to definition 1). To each level-2 group in G is associated two rekeying tools G 2 RT E < and G 2 RT E > . Nodes in each level-1 group T (T = E) stores in its local memory G 2 RT E > if T < E or G 2 RT E > if T > E. Therefore G 2 RT minG Lemma 4. Each node s i needs O(log 2

	G y x (t) > G y x (t) < maxS r stores in its local memory GRT minSr <	or GRT maxSr >	.
	Therefore, each node t 2 Lemma 3

<

of group minG is not stored by any node in G . Likewise, G 2 RT maxG > is not stored by any node in

G . Let us observe that each node z in G -G with minG ≺ G x (z) ≺ minG does not store in its local memory G 2 RT minG < nor G 2 RT maxG > . Each node t in G -G with G x (t) < minG or G x (t) > maxG stores in its local memory G 2 RT minG < or G 2 RT maxG >

. Therefore, each node t can decrypt the message in line 20 using key E or F and get the new key. However, each node z can not decrypt the message because it can not computes the keys E and F . For that reason, GC sends for t the new group key encrypted by means of k z . Consequently, all non-colluding nodes get the new group key. These complete the proof. 3 √ n) of memory.

 Let e = {G 1 , G 2 , ..., G m } be the number of groups in G with G i < G x and f = {G 1 , G 2,...,Gz } be the number of groups with G i > G x .

		2 x , ..., G r x	be the set of groups in G x with G i x > G y x . Therefore,
	s stores also in its local memory S s > = |c| and S s < = |d| rekeying tools.
	Given that the size of the group at most 3 √	n, so |c| + |d| = 3 √	n. Therefore,
	S s > + S s < = 3 √ n. Therefore, s stores also in its local memory S s > = |e| and S s < = |f | rekeying
	tools. The size of the group is 3 √	n and |e|+|f | = 3 √	n. Therefore, S s > + S s < =
	3 √	n. It follows that s stores 2 keys and 3 3 √	n, i.e. it grows as O(log 2	3 √	n).
						2 Lemma 4

Note that these grouping is logical and transparent to the application layer.

Acknowledgments

This work is supported by the Labex MS2T, which was funded by the French Government, the program "Investments for the future managed by the National Agency for Research (Reference ANR-11-IDEX-0004-02)".