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Abstract. We study the interplay between few-electron excitations generated by voltage
pulses and interactions in a quantum Hall system at integer filling factor ν = 2. Electron-
electron interactions strongly affect the dynamics of the generated pulses, leading to their
fractionalization. In particular, on the innermost edge channel two oppositely charged
excitations emerge, which we analyze through their Wigner function. Moreover, we show that
interactions provide a signature in the noise generated when these excitations are partitioned
by a quantum point contact connecting opposite edges. We compare different shapes of the
external drive and we discuss the most convenient in order to extract information about the
so-called mixing angle, encoding the strength of interactions between edge channels.

1. Introduction
Coherent ballistic propagation of few-electron wavepackets has been the subject of an intense
research activity over the past twenty years, reaching the new paradigm of electron quantum
optics (EQO) [1–4]. All systems hosting topologically protected ballistic channels [5–7] are, in
principle, suitable for EQO. Among them the quantum Hall (QH) state [8, 9] has been widely
studied in the context of EQO, both in the integer [10–16] and fractional [17–21] regimes.
The exciting physics of quantum optic-like setups in condensed matter can be enriched by the
presence of interactions, often very relevant in one-dimensional systems [22–24] and responsible
for exotic phenomena, such as fractionalization [25–28]. Several studies indicated that the role
of interactions can be important even in integer QH systems. It is an interesting question to
investigate how interactions affect typical observables addressed in EQO experiments.

In this paper we will investigate the interplay between voltage driven excitations and
screened Coulomb interactions in an integer QH system at filling factor ν = 2. We consider
a Hanbury-Brown Twiss [29] geometry, where pulses injected from one terminal are partitioned
in the presence of a tunable quantum point contact (QPC) acting as a beamsplitter. Due
to interactions, wavepackets arriving at the beamsplitter are fractionalized excitations, whose
charge depend both on the amplitude of the drive and the strength of interactions. By focusing on
the inner channel, we first analyze the particle-hole (p-h) content of fractional pulses by means
of the Wigner function [30], which gives information on both the time evolution and energy
content of a wavepacket. As a second step, we evaluate the photoassisted shot noise due to a
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periodic drive and construct a measurable quantity from which the mixing angle characterizing
interactions can be recovered, thanks to the particular symmetry of inner channel excitations.
We compare different drives and find that a rectangular wave with small width-to-period ratio
is a good tool to determine the mixing angle characterizing the interaction strength.

2. Model
We consider the edge states of a QH system at filling factors ν = 2. In this regime, two
copropagating chiral ballistic channels are present at each edge of the system. The low
energy properties of the system are well described by a chiral Luttinger theory [22, 23, 31] with
Hamiltonian (~ = 1)

H0 =
∑
r=R,L

∑
α=1,2

vα

∫
dxΨ†rα(x)(−iϑr∂x)Ψrα(x) + 2πu

∑
r=R,L

∫
dxnr1(x)nr2(x) . (1)

Here, index α = 1, 2 labels outer and inner channels, respectively, while r = R,L labels the
upper (right-moving) and lower (left-moving) edge, with ϑR/L = ±1. Fermionic operators Ψrα

satisfy {Ψrα(x),Ψ†r′α′(x
′)} = δrr′δαα′δ(x− x′) and nrα(x) = Ψ†rα(x)Ψrα(x) are particle density

operators. The first term in the Hamiltonian (1) is the free kinetic part, vα being the propagation
velocity along the edges; the second one describes short distance repulsive electron-electron (e-e)
interactions, with coupling strength u > 0. The system is driven by a time-dependent voltage
V (t) which is spatially uniform and applied in the region x < −d, with d > 0, in order to
simulate a contact in the left part of the edge. This coupling is described by the Hamiltonian

Hg = −e
∫
dxΘ(−x− d)V (t)nR1(x) , (2)

with Θ(x) the Heaviside step function and −e the electron charge. Notice that the drive only
couples to the outer channel charge density, so that excitations are initially created only on the
outer edge channel. Yet, interactions lead to the fractionalization of the generated pulse, so that
excitations will also be present on the inner channel. A possible implementation of the coupling
(2) could be to drive both channels and then to use a gate [32] or a properly polarized QPC [33]
immediately after the driven contact as a filter to transmit only outer channel excitations.

The Hamiltonian H0 is diagonalized as follows. First of all, fermionic operators can be
expressed in terms of bosonic ones through the bosonization identity [34]

Ψrα(x) =
Frα√
2πa

e−i
√

2πΦrα(x) , (3)

where Frα are Klein factors and a is a short-distance cutoff. The commutation relations of
bosonic fields read [Φrα(x), ∂x′Φr′α′(x

′)] = −iϑrδrr′δαα′δ(x− x′). By using the identity (3) and
the relation

√
2πnrα(x) = −ϑr∂xΦrα(x), together with the rotation(

Φr1

Φr2

)
=

(
cos θ − sin θ
sin θ cos θ

)(
Φr+

Φr−

)
, tan 2θ =

2u

v1 − v2
, (4)

H0 is recast in diagonal form

H0 =
∑
r=R,L

∑
η=±

vη
2

∫
dx [∂xΦrη(x)]2 , (5)

with v± = (v1 + v2)/2± u/ sin 2θ [31, 35]. The parameter θ ∈ [0, π/2] is generally referred to as
the mixing angle and quantifies how much the two channels on a given edge are “mixed” due
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to interactions. It is then possible to write down the equations of motion for fields Φrη, in the
presence of the external drive (2). It is easy to show that for x > −d they are solved by [36, 37]

Φr±(x, t) = φr±(x− v±t, 0) +
ξr±√

2π

∫ t− x
v±
− d
v±

−∞
dt′ V (t′) , (6)

where φr±(x, t) is the field without any applied voltage and ξR+ = −e cos θ, ξR− = e sin θ and
ξL± = 0. As expected, the only fields acquiring a non-trivial evolution are those of the upper
edge (r = R), since the lower one is not coupled to the external voltage.

The last ingredient is a term responsible for tunneling of electrons between the two edges:

Hλ = λΨ†L2(0)ΨR2(0) + H.c. (7)

This describes a QPC at x = 0, polarized in such a way that tunneling only occurs between
inner channels on opposite edges, while outer channels are fully transmitted and their dynamics
is therefore unaffected by the presence of the QPC.

3. Charge fractionalization and Wigner function
We start our analysis by considering the time evolution of the charge density due to the presence
of the time dependent drive V (t), in the case when the tunneling is not yet activated (λ = 0).
Only the upper edge (r = R) will be then considered in this section.

It is well known that interactions in one-dimensional systems lead to fractionalization [22,
23, 26, 38]. This behaviour is also present in our system: the combined effect of external drive
and interactions generates four different wavepackets. On both the outer and the inner channel,
two excitations are present: a fast one, propagating at velocity v+, and a slow one, propagating
at velocity v−. The charge of these excitations can be conveniently expressed in terms of the
parameter

q = − e

2π

∫ +∞

−∞
V (t) dt , (8)

representing the charge (in units of −e) transferred to the system by the voltage drive. By
denoting with −eqαη the charge of the fast (η = +) and slow (η = −) wavepacket on channel
α, then q1+ = q cos2 θ, q1− = q sin2 θ and q2± = ±q sin θ cos θ ≡ ±Q. Notice that outer channel
excitations have a different charge, but with the same sign, while those on the inner channel are
identical but oppositely charged. In the following, we will only focus on inner channel excitations,
which turn out to be extremely useful to extract information about the mixing angle.

Among all possible drives, a Lorentzian shaped voltage with quantized area has the property
of generating minimal excitations, known as Levitons [39–41]. The are purely electron-like or
hole-like and do not contain any additional p-h pair cloud. Let us then consider a Lorentzian
drive with typical temporal extension τ

V (t) = −q
e

2τ

τ2 + t2
. (9)

In a noninteracting system, the condition for a Lorentzian pulse to be a Leviton is that q ∈ Z:
for positive values a q-electron excitation is generated, while negative values correspond to q-hole
excitations. In our system, it is the number of charges carried by the fractionalized excitations
that has to be integer. This, of course, depends on the parameter q, as well as on the mixing
angle θ. The situation in which all fractionalized wavepackets have integer charge is only possible
for particular values q and θ [33]. However, when we restrict our attention to the inner channel
excitations, the only condition to be fulfilled is that Q = q sin θ cos θ be an integer number. This
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Figure 1. Zero-temperature excess Wigner functions ∆W2± of fractional excitations on the
inner channel, as a function of energy ω and distance ∆x from the center of the wavepacket.
Panels (a) and (b) represent, respectively, the excess Wigner functions for fast and slow
excitations in the case when Q = 1, i.e. when they both carry an integer charge. Panels
(c) and (d) are the same as the previous ones, but for the case Q = 1/2.

gives a condition on q which can be satisfied for every value of θ. In this situation, a purely
electron-like and a purely hole-like excitations are generated in the channel.

An interesting way to visualize these excitations is through their Wigner function [30].
In particular, we are interested in the variation of the Wigner function with respect to the
equilibrium situation when no drive is applied to the system. This quantity is called the excess
Wigner function and is defined as [42]

∆Wα(x, t;ω) =

∫ +∞

−∞
dt′

eiωt
′

2π

〈
Ψ†α

(
x, t− t′

2

)
Ψα

(
x, t+

t′

2

)
− ψ†α

(
x, t− t′

2

)
ψα

(
x, t+

t′

2

)〉
(10)

where ψα(x, t) is the fermionic field with no drive applied. The Wigner function gives a mixed
space/time-energy representation, which is useful to have information about both the time
evolution and the energy content of excitations. When the two fractionalized excitations are
well separated spatially, it is possible to write the Wigner function as a sum of the contributions
of each excitation individually: W2(x, t;ω) = W2+(x−v+t;ω)+W2−(x−v−t;ω). The condition of
spatial separation (i.e. negligible overlap between wavepackets) is achieved at times t� τ v++v−

v+−v− ,

since the fast/slow pulse is centered around x± = x− v±t and has spatial extension v±τ .
In Fig. 1 we present the excess Wigner functions ∆W2± in this limit, for a Lorentzian pulse

and for two different values of Q, as a function of energy ω and the displacement ∆x from the
center of the pulse. Panels (a) and (b) refer to the situation when Q = 1; then, the fast (slow)
wavepacket is purely a single electron (hole) excitation. This is reflected in the fact that the
Wigner function vanishes for negative (positive) energies. On the other hand, panels (c) and (d)
are again excess Wigner functions ∆W2+ and ∆W2−, but for Q = 1/2. In this situation, since Q
is not an integer, the two excitations are not purely electron- or hole-like, but are dressed with
a cloud of p-h pairs. Indeed panel (c) shows a non vanishing signal at ω < 0; likewise a non
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zero contribution is present in panel (d) at ω > 0. A complementary analysis can be carried out
by computing nonequilibrium momentum distributions [42–44] that also give direct information
about the p-h content of wavepackets.

4. Photoassisted shot noise
An experimentally relevant tool to access p-h content of a given excitation is to consider the
low frequency noise [33, 45, 46] generated when the wavepacket is partitioned on a QPC, thus
inducing fluctuations in the current. Here, we argue that a measurable quantity built from the
noise can be used in order to extract the mixing angle θ characterizing interactions. This is
possible because the charges of inner channel excitations are equal, up to a sign.

In order to be closer to a more experimentally relevant setup, we will consider a periodic
voltage, with period T = 2πΩ−1. In this context, the parameter q in (8) represents the number
of charges per period carried by the pulse generated by the drive. For a periodic voltage, it is a
standard procedure to adopt the following decomposition [45]

eie
∫ t
−∞ dt′ V (t′) = e−iqΩt

+∞∑
l=−∞

pl(q)e
−ilΩt , (11)

where coefficients pl are a key quantity in the framework of photoassisted transport and represent
the probability amplitude that |l| photons are emitted (l < 0) or absorbed (l > 0) by an electron.

The zero frequency noise is defined as

S = 2

∫ T
0

dt

T

∫ +∞

−∞
dt′
[〈
IL2(−d, t+ t′)IL2(−d, t)

〉
−
〈
IL2(−d, t+ t′)

〉
〈IL2(−d, t)〉

]
, (12)

with IL2(x, t) = e(2π)−1/2[v+ sin θ ∂xΦL+(x, t)+v− cos θ ∂xΦL−(x, t)] the current operator on the
lower edge, inner channel. The above quantity can be calculated perturbatively in the tunneling
amplitude λ appearing in (7). Up to second order, the result reads (kB = 1)

S =
S0Ω

2π

+∞∑
l=−∞

|p̃l(Q, td)|2 l coth

(
lΩ

2T

)
, p̃l(Q, td) =

+∞∑
m=−∞

pl+m(Q)p∗m(Q)e2πimtd/T , (13)

where T is the temperature, td = d(v−1
+ − v−1

− ) and S0 = 2e2|λ|2/v2
−. As discussed in [44], for

non-overlapping Lorentzian pulses such that Q ∈ N, S(Q) = S0Ω
π Q. This is because S can be

linked to the number of electron and hole excitations and when Q ∈ N (and the fractionalized
wavepacket do not overlap significantly), then just Q electrons and Q holes are generated. This
leads to the conclusion that the quantity

X(Q) = 2π
2S(Q)− S(2Q)

S0Ω
(14)

should be zero for non-overlapping Lorentzian packets whenQ is integer and this can be exploited
so as to extract the angle θ, by recalling Q = q sin θ cos θ.

In Fig. 2 we analyze the behavior of X(Q) at zero temperature for different types of periodic
drives. In particular, we consider a Lorentzian train, a sine, a rectangular and a triangular
wave. All these drives, except for the sine, are characterized by a width-to-period ratio η. For
the rectangular wave, this is nothing but the duty cycle of the signal, for the triangular wave η is
taken as the full width of the triangle with respect to the period, for Lorentzian pulses η = τ/T ,
where τ is the width of a single pulse, as in (9). Panels (a) and (b) show different values of η,
as specified in the caption. We immediately observe that in order to obtain X(Q) = 0 at Q ∈ N
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Figure 2. The quantity X(Q) defined in (14) for different drives. In (a) we set η = 0.1, in (b)
we set η = 0.05 (and η = 0.01 for the Lorentzian drive only). In all plots td/T = 0.5

with a Lorentzian drive, one has to go to very small values of η, which are not experimentally
feasible. This rules out the Lorentzian as the natural candidate to extract the mixing angle
from the quantity (14). However, any other drive exhibiting clear features in X(Q) at particular
values of Q is suitable for this purpose. By looking at Fig. 2, we see that the sine drive does not
show any peculiarity, while the rectangular wave has very prominent maxima in correspondance
of half-integer values of Q and secondary maxima for integer values. Therefore, by plotting (14)
as a function of the experimentally tunable parameter q and looking for the values at which X(q)
has principal maxima, the mixing angle can be extracted from the relation Q = q cos θ sin θ, with
Q half integer. The triangular wave shares the same qualitative behavior as the rectangular one
and becomes more and more similar to it when reducing η. This is reasonable, since both signals
approximate a Dirac comb in the limit η → 0 [47]. In general, the effect of reducing η is to
increase the visibility of the maxima and to improve their localization. A comparison between
rectangular and triangular wave shows that maxima are better localized at half integers values
of Q in the former case. The rectangular wave is then a better drive to extract information
about the mixing angle.

5. Conclusions
We have analyzed the interplay of an external drive and e-e interactions in an integer QH system
at ν = 2, focusing on the inner channel. Due to interactions, the excitation generated by the
drive fractionalizes into oppositely charged wavepackets, whose p-h content was analyzed by
means of their Wigner function. Their charge being the same (up to a sign), it is possible from
noise measurement to recover the mixing angle θ encoding the strength of interactions between
edge channels. For this purpose, the rectangular drive appears to be the best candidate.
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Jin Y and Fève G 2012 Phys. Rev. Lett. 108 196803

[3] Bocquillon E et al. 2014 Annalen der Physik 526 1–30
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