Statistical Learning of Second-Order Transitional Probabilities in Humans
Laura Lazartigues, Fabien Mathy, Frédéric Lavigne

To cite this version:
Laura Lazartigues, Fabien Mathy, Frédéric Lavigne. Statistical Learning of Second-Order Transitional Probabilities in Humans. 62nd Virtual annual meeting of the Psychonomic Society, Nov 2021, Virtuel, United States. hal-03509457

HAL Id: hal-03509457
https://hal.science/hal-03509457
Submitted on 4 Jan 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
The ability to learn serial order and transitional probabilities between items processed in sequences is central to language acquisition and processing (acquisition of phonological forms, Moese & Jarrold, 2008; vocabulary, Majerus, Poncelet, Greffe, & Van der Linden, 2006; extraction of words, Saffran, Newport, & Aslin, 1996; syntax, Kidd, 2012; reading, Perez, Majerus & Poncelet, 2012). The effects of first-order TPs are reported in sequence processing (probability of an Item B given a single preceding Item A; see Akin, Saffran, & Newport, 1998; Endress, Blaxill & Langus, 2017). However, processing of language as well as sequences of various types of stimuli involve second-order TPs that correspond to the probability of an Item C given a combination of two preceding Items A and B (see Fig. 1). Second-order TPs are known to be difficult to learn (see Gomez, 1997) but their effects remain poorly understood, particularly by taking into account the sequential order of the stimuli in the sequence.

The present study investigated the effects of the order of presentation of the stimuli in the statistical learning of second-order TPs. The exclusive OR (XOR) logic allowed to create a set of sequences in which first and second-order TPs were dissociated. Indeed, in the XOR logic all first-order TPs are equal to .5 and only the combination of the two first stimuli in a specific order allows to predict the last one (see Fig. 2). To test the learning of the order of presentation, a given stimulus could be fully predicted (p=1) if preceded by a combination of two specific stimuli and if they were presented in a specific order. For instance, the ABC and BAF sequences used the same A and B stimuli, but different orders led to different predictions (C or F). Objectives

The present study aimed at better understanding the role of order of presentation in the learning and processing of second-order TP.

Our hypothesis was that participants can learn second-order TP depending on the combination of two stimuli and take into account the order of presentation.

The present experiment aimed at studying the statistical learning of second-order TPs as a function of serial order in a prediction task. The results indicated that participants could predict the last stimulus in a sequence based on the two previous stimuli (for instance A and B) and on the order in which these stimuli were presented (AB or BA), but it appeared to remain difficult. Indeed, only a few participants learned at least a pair of sequences manipulating the order of presentation (for instance ABC and BAF). This study provides an understanding of the difficulties that can emerge during the statistical learning of elementary sequences governed by complex statistical structures, in particular when the transitional probabilities involve second-order information. Perhaps efficient learning of this type of sequences would require additional learning trials.

To conclude, transitional probabilities, and in particular first-order transitional probabilities, are known to be involved in language acquisition, however our findings highlight the importance of also considering the effect of second-order transitional probabilities to better understand the mechanisms underlying language acquisition and processing.

Analyses showed that TT1 increased during the learning phase with no specific effect of the switch phase. This finding confirms that in the sequences used here the first stimulus alone cannot allow to predict the second stimulus. Conversely, results showed a significant decrease in RTs between the two last stimuli in the sequences (TT2) during the learning phase, and an increase in TT2 during the switch phase. The drop in performance in the switch phase suggested that the decrease in TT2 during the learning phase was not solely due to the training and that participants actually combine the first two stimuli and their order of presentation to predict the last one. These results suggest that participants can learn second-order TPs by taking into account their order of presentation. However, alternative analyses focusing on each participant indicated that they learned 2.9 sequences among the eight in average (a sequence was considered as learned when TT2 significantly increased between the last block of the learning phase and the switch phase). Moreover, when we focused on which sequences were learned, analyses indicated that only 15 participants had learned at least one pair of ordered sequences (for instance ABC and BAF). This result suggests that learning of second-order TP as a function of the specific order of presentation of the stimuli remains difficult.

4 - Conclusion

References


Peters, T. M., Majerus, A., & Langus, A. (2017). Our results confirm previous findings that letter sequence can be used as a function of specific order of presentation in the stimuli remains difficult.