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By the Parisi-Sourlas conjecture, the critical point of a theory with random field (RF) disorder is
described by a supersymmeric (SUSY) conformal field theory (CFT), related to a d− 2 dimensional
CFT without SUSY. Numerical studies indicate that this is true for the RF φ3 model but not
for RF φ4 model in d < 5 dimensions. Here we argue that the SUSY fixed point is not reached
because of new relevant SUSY-breaking interactions. We use perturbative renormalization group
in a judiciously chosen field basis, allowing systematic exploration of the space of interactions. Our
computations agree with the numerical results for both cubic and quartic potential.

Introduction — Emergent symmetries are a frequent
theme in modern theoretical physics. Such a symme-
try is present at long distances but is not visible in the
microscopic description of the system. A beautiful ex-
ample is furnished by the physics of disordered systems,
namely by the Random Field Ising Model (RFIM) and
its cousins. Parisi and Sourlas suggested long ago [1, 2]
that the critical points of these models obey emergent
supersymmetry. While supersymmetry plays a promi-
nent role in high-energy physics, its appearance in the
statistical physics context came as a major surprise. A
dramatic consequence of supersymmetry is dimensional
reduction [3]: the critical exponents of a disordered sys-
tem in d dimensions should be the same as those of the
pure (i.e. non-disordered) system in d− 2 dimensions.

Unfortunately, after 40 years of work, there is still no
complete understanding whether, when, and how Parisi-
Sourlas supersymmetry actually emerges. Most work fo-
cused on the random field φ4 and φ3 field theories, de-
scribing respectively the phase transition in RFIM and
the statistics of Branched Polymers (BP) in a solution [4–
6]. Numerical studies of microscopic models suggest that
supersymmetry and dimensional reduction are present in
any dimension for the φ3 case [7] but only in sufficiently
high d for the φ4 case [8–11]. Why does this happen?
One possibility is that some SUSY-breaking perturba-
tions are dangerously irrelevant, i.e. irrelevant for high d,
while become relevant at lower d and break supersymme-
try [12, 13] [14]. In this Letter we will report the first sys-
tematic exploration of this scenario. We will show that it
gives a satisfactory unified description of phenomenology
in agreement with all available numerical results [15].

The model and prior work — A random field (RF)
model describes a statistical field theory with quenched
disorder coupled to a local order parameter. We consider
RF models of the type

S[φ, h] =

∫
ddx
[1

2
(∂µφ)2 + V (φ) + h(x)φ(x)

]
, (1)

where h(x) is drawn from a Gaussian distribution with

zero mean and h(x)h(0) = Hδ(x) . Parisi-Sourlas (PS)
conjecture [1] about the critical points of these theories
can be naturally divided in two parts:

1. Emergence of SUSY: The critical point of an RF
theory is described by a special SUSY CFT (PS CFT).

2. Dimensional reduction: A large class of observables
of the PS CFT (e.g. its critical exponents) are described

by an ordinary CFT living in d̂ ≡ d− 2 dimensions.

While perturbatively valid for d infinitesimally close
to the upper critical dimension duc (see below), this re-
markable conjecture is known to sometimes fail for the
physically interesting cases of integer d < duc.

As mentioned, the two most studied RF models are
with φ4 (RFIM) and φ3 (BP) potentials. The RF φ4

model has a critical point in 3 ≤ d < duc = 6. PS

conjecture would relate it to the usual Ising model in d̂
dimensions. Numerical studies [8–11] show that while
both SUSY and dimensional reduction hold in d = 5, the
conjecture fails in d = 4. It also fails trivially for d = 3,

as the d̂ = 1 Ising model has no phase transition.
Similarly, the critical point of the RF φ3 model with

imaginary coupling should be described by the usual Lee-

Yang fixed point in d̂ dimensions [16]. BP critical expo-
nent simulations suggest that this instance of PS conjec-
ture works perfectly for any 2 ≤ d < duc = 8 [7] [17].

Let us come back to the central question of why PS
conjecture sometimes works and sometimes fails. Many
perturbative and non-perturbative arguments were given
for Part 2 of the conjecture [1, 18–22]. On the other hand
Part 1 appears to be on less solid grounds. Here we will
focus on the scenario [12, 13] that Part 1 may fail due to
dangerously invariant SUSY-breaking interactions.

From replicas to Cardy fields — We start by using the
usual replica method where we take n copies of the action
(1) and average out the disorder. This gives the replica
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action:

Sn =

∫
ddx
[ n∑
i=1

[
(∂µφi)

2 + V (φi)
]
− H

2

( n∑
i=1

φi
)2]

(2)

from which one can get quenched averaged correlations
functions 〈A(φ)〉 in n → 0 limit by simply computing
〈A(φ1)〉 having a single replica field.

We next apply Cardy’s linear field transform [23]:

ϕ =
1

2
(φ1 + ρ) , ω = φ1 − ρ , χi

i 6=1
= φi − ρ , (3)

with ρ = 1
n−1

∑n
i=2 φi and the condition

∑n
i=2 χi = 0.

Turning off interactions for now (V = 0), the transformed
Lagrangian takes the form

Lfree = ∂µϕ∂µω −
H

2
ω2 +

1

2

n∑
i=2

(∂µχi)
2 . (4)

Here and below, because of the replica limit n → 0, we
are dropping all terms proportional to powers of n.

From (4) we read off the classical scaling dimensions
of the Cardy fields: [ϕ] = d

2 − 2, [χi] = d
2 − 1, [ω] =

d
2 . In contrast, the original replica fields φi do not even
have a well-defined scaling dimension [24]. Although not
manifest in the Cardy field basis, the Sn symmetry is still
present and in particular not spontaneously broken [25].
It will play an important role below.

While RF criticality is often described in terms of
special “zero-temperature fixed points” [26, 27], Cardy
transform puts it on the same footing as the more fa-
miliar non-disordered criticality. Using Cardy fields, we
will be able perform the RG analysis for the RF models
borrowing the standard Wilsonian methodology [28, 29].

Leaders and followers — Let us now turn the interac-
tions back on, and see how the theory renormalizes. La-
grangian (2) contains the interaction

∑n
i=1 V (φi). This

can be written as a sum of basic Sn singlet interactions
σk ≡

∑n
i=1 φ

k
i . In an exhaustive analysis, we will have to

consider further interaction terms respecting the replica
permutation symmetry Sn, since they will be generated
by RG evolution [12]. Examples of such allowed interac-
tions are products of σk’s as well as interactions contain-
ing derivatives. We will classify Sn singlet interactions in
the original fields of (2), and then transform them to the
Cardy fields.

The simplest interaction is the mass term σ2 which in
Cardy fields reads 2ϕω + χ2

i and has classical dimension
d − 2. Continuing at the cubic level, the operator σ3

under Cardy transform becomes

σ3 = (3ϕ2ω + 3χ2
iϕ) + (χ3

i )−
(3

2
χ2
iω
)

+
(1

4
ω3
)
, (5)

where different terms have unequal classical dimensions:
3d
2 − 4 for the first term, while the successive ones sit 1,2

and 3 units higher. This new effect is generic: any singlet

operator O in Cardy fields can be written as

O = OL +OF1
+OF2

+ · · · , (6)

where [OFi ] = [OL] + i, i = 1, 2, . . .. We call the lowest
dimension part OL the ‘leader’, and OFi ‘followers’.

In the first part of a Wilsonian RG step, integrating out
a momentum shell and lowering the momentum cutoff
Λ → Λ/b (b > 1), a singlet operator O, if present in
the effective action, renormalizes as a whole, i.e. only
through the change of the overall coefficient: gO → g̃O
[30]. This is guaranteed by Sn symmetry. On the other
hand, in the second part of an RG step, bringing the
cutoff back up to its original value, which rescales the
fields ϕ, χi, ω according to their classical dimensions, the
followers rescale by different coefficients from the leader,
suppressing their relative effect in the IR (i.e. at large b):

OL +
∑

i
OFi → b−[OL]

(
OL +

∑
i
b−iOFi

)
. (7)

Hence, the RG flow in the IR is controlled by the leaders.
This drastically reduces the number of interactions to
consider: only operators in Cardy fields which can be
written as a leader of an Sn singlet interaction are of
interest. The RG relevance or irrelevance of the leader
determines the fate of the whole interaction [31].

Keeping the free massless Lagrangian (4), the mass
term, and the leader parts (σ2)L or (σ3)L of the φ3 or φ4

interactions, we get the two Lagrangians relevant for the
description of the RF φ3 and φ4 models:

Lφ
3

L = Lfree +m2(2ϕω + χ2
i ) +

g

2
(ϕ2ω + χ2

iϕ) , (8)

Lφ
4

L = Lfree +m2(2ϕω + χ2
i ) +

g

12
(2ϕ3ω + 3χ2

iϕ
2) .

The mass term m2 is strongly relevant and should be
tuned to reach the IR fixed point. The upper crit-
ical dimension in this approach is fixed simply from
the marginality of the leading non-quadratic interaction,
which gives the well-known values cited above: duc = 8
for the φ3 and 6 for the φ4 models.

Eqs. (8) give the correct effective theory for the two
models close to their upper critical dimension, i.e. for
d = duc − ε, ε � 1. Indeed, one can check that in this
case, no other Sn singlet interactions exist whose leaders
would be relevant (and, for the φ4 case, respecting the
extra Z2 symmetry). However, we should keep an open
mind about what may happen for ε = O(1), as some
irrelevant interactions may become relevant. This will
be investigated below.

Emergence of SUSY — It is easy to see that both La-
grangians (8) have emergent SUSY [23]. Note that the
n − 2 fields χi appear quadratically in the Lagrangians.
The associated partition function is given by a Gaus-
sian integral which at n → 0 is equal to that of 2 an-
ticommuting scalars ψ, ψ̄. So we are allowed to replace
χiχi → 2ψψ̄. Then both the above theories can be com-
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pactly written as

Ssusy =

∫
ddxdθdθ̄

[
− 1

2
Φ∂a∂aΦ + V (Φ)

]
, (9)

where V (φ) = m2φ2 + g
6φ

3 for the cubic theory and

V (φ) = m2φ2 + λ
4!φ

4 for the quartic. Here Φ(x, θ, θ̄) =

ϕ+θψ̄+θ̄ψ+θθ̄ω is a superfield depending on coordinates
x, θ, θ̄ parametrizing the superspace Rd|2 with OSp(d|2)
supergroup symmetry (PS supersymmetry), and ∂a∂a is
the super-Laplacian (index a takes values 1, . . . , d, θ, θ̄).
In the IR, we get a further enhancement to a PS super-
conformal symmetry OSp(d+1, 1|2) [32]. The fixed point
of this theory is therefore a PS CFT.

We now briefly describe basic properties of PS CFTs
and how they undergo dimensional reduction [33] Local
operators in such theories are classified according to their
superconformal dimension ∆ and their OSp(d|2) spin `.
They are grouped in superconformal multiplets contain-
ing a superprimary operator Oa

∆` (where a stands for
a1a2 . . . ), annihilated by the special superconformal gen-
erator Ka, and its superdescendants such as ∂aOa

∆` and
higher superderivatives. Oa

∆` can be expanded in com-
ponents which have different conformal dimensions:

Oa(y) = Oa
0 (x)︸ ︷︷ ︸
∆

+θOa
θ (x)︸ ︷︷ ︸

∆+1

+θ̄Oa
θ̄ (x)︸ ︷︷ ︸

∆+1

+θθ̄Oa
θθ̄(x)︸ ︷︷ ︸
∆+2

. (10)

Dimensional reduction restricts correlators of a PS
CFT to a (d − 2)-dimensional bosonic subspace Md̂ ≡
{y = (x̂α, 0, 0, 0, 0), x̂ ∈ Rd̂}. In addition, one only
considers PS CFT operators invariant under the sub-
group OSp(2|2) (super)rotating the directions orthogo-
nal to Md̂. In general, restricting to a subspace gives a
nonlocal theory. The nontrivial fact is that by restricting
the OSp(2|2)-singlet sector of the SUSY theory, we get

a local d̂-dimensional CFT living on Md̂ [22]. The local
conserved CFTd̂ stress tensor appears in this setup as the
T0 component of the PS CFT superstress tensor T .

The dimensionally reduced CFTd̂ has the global sym-

metry of the original PS CFT: trivial in the φ3 case and
Z2 for φ4. We will naturally assume that this CFTd̂ is

nothing but the d̂-dimensional critical point of the same
theory without disorder [34]: the Wilson-Fisher fixed
point for φ4 [35] and the Lee-Yang fixed point for φ3 [16].
Dimensions of many operators in these familiar theories
being well-known both perturbatively and, sometimes,
non-perturbatively, we can then use dimensional reduc-
tion to infer dimensions of operators in the PS CFT.

The central question is whether any Sn singlet per-
turbation, while irrelevant for ε � 1, may become rel-
evant for ε = O(1) and destabilize the SUSY IR fixed
point. As discussed above, this may be answered by per-
turbing the Lagrangians LL in (8) by the leader terms
of Sn singlet interactions, and computing their scaling
dimensions (restricting to Z2 singlets for φ4 case). A
priori there are many leaders to consider, which more-

over may mix under RG. Below we will divide them into
three classes: susy-writable (SW), susy-null (SN), and
non-susy-writable (NSW), with a triangular mixing ma-
trix. Namely SN operators can generate only SN under
RG flow, SW can generate SW and SN, while NSW can
generate all three classes.

Susy-writable (SW) leaders — These are invariant un-
der O(n− 2) acting on the indices of the χi fields. These
operators can be transformed to the SUSY field bases
by the substitution χi → ψ (hence the name). With
abuse of language we will also refer as SW to the result-
ing Sp(2)-invariant operators. In addition, we require
that the operator does not vanish after the substitution
(if so it will be classified below as susy-null). Most low-
lying leaders turn out to be SW. E.g. the leader of any
Sn singlet

∑n
i=1A(φi) has the form A′(ϕ)ω + 1

2A
′′(ϕ)χ2

i

which is SW. This can be written as the highest com-
ponent Aθθ̄(Φ) of a scalar composite superfield A(Φ).
More generally, SW leaders are always in the highest
component of a superfield [36]. They do not have to
be scalars of OSp(d|2), but only singlets of the subgroup
SO(d)×Sp(2). These are obtained from a highest compo-
nent Oa

θθ̄
by contracting all its a indices with the Sp(2)-

metric i.e. by setting the indices to θ and θ̄ [33].

The OSp(d|2) tensor representations of Oa are as-
sociated to Young tableaux (YT) (`1, `2, · · · ) with `i
boxes in i-th row. Indices along the rows (columns) are
graded (anti)symmetrized and all supertraces removed.
Graded symmetry and antisymmetry respectively mean
Oab = (−1)[a][b]Oba and Oab = −(−1)[a][b]Oba where
[a] = 0(1) if a is bosonic (fermionic). These general facts
combined with the above procedure of setting the indices
to θ and θ̄ shows that SW leaders can only be obtained
from operators in representations labelled by YT of the
form (2, 2, . . . , 2). SW leaders are thus in correspondence

with the following superfields Sθθ̄,J θθ̄θθ̄ ,B
θθ̄,θθ̄

θθ̄
, . . . where

S is a scalar, J ab a spin-two, and Bab,cd a “box” opera-
tor in the YT (2, 2) representation where (a, b) and (c, d)
are the graded-symmetric pairs. Representations with
higher number of rows can also appear in generic d but
we do not consider them since they have large classical
dimensions.

The above formal considerations have a neat practi-
cal consequence: dimensions of SW leaders Oθθ̄ can be

obtained by studying the respective operators Ô in the
dimensionally reduced model using ∆Oθθ̄ = ∆O + 2 =
∆Ô + 2 from (10). From here we see immediately that
SW leaders originating from scalar and spin two PS CFT
operators cannot destabilize the SUSY fixed point. In-
deed in both dimensionally reduced models all scalars
(besides the mass term which we tune to reach the fixed
point) are irrelevant. Similarly all the spin two operators
should not cross the stress tensor and thus are expected
to remain irrelevant in any d [37].

Separate analysis is needed for operators in the box
representation. In the dimensionally reduced models, an
infinite family of such operators can be written in terms
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of d̂-dimensional scalar field φ̂ as

B̂
(k)
αβ,γδ ≡ φ̂k−3

(
φ̂,αβφ̂,γδφ̂− 2d̂

d̂−2
φ̂,αφ̂,βφ̂,γδ

)
Y
, (11)

with k ≥ 3. Greek letters denote Rd̂ indices, and Y
indicates the box YT symmetrization, the two symmetric
rows being αβ and γδ. These are the lowest dimensional
operators made of k fields in such representation.

We computed their perturbative one-loop dimensions
for the φ3 case [38], following the standard ε-expansion
methodology [28, 29], while the φ4 case was considered
previously in [39]. The results (classical dimension plus
one-loop correction) are:

∆B(k)

θθ̄

=

{(
2k + 6− k

2 ε
)

cl
+ 2k2−5k−2

6 ε (φ3) ,(
k + 2− k

2 ε
)

cl
+ (k−3)(3k+2)

18 ε (φ4) .
(12)

Importantly, all anomalous dimensions are positive (ex-
cluding the k = 3 φ4 case which, as all odd k for φ4, is
unimportant since it does not respect Z2 symmetry).

Susy-null (SN) leaders — These are singlets under
O(n−2) (like the SW operators) and satisfy the property
of vanishing under the χ → ψ map by the Grassmann
nature of ψ. A typical example is (χ2

i )
2 → (ψψ̄)2 = 0.

These operators have restrictive mixing properties and
can only generate operators of the same class under RG.
We identified an infinite class of Sn singlets [33]

Nk =
2

k − 3

(
σ2σk−2

k − 2
− 2σ1σk−1

k − 1

)
, (13)

for k = 4, 5, 6, . . . , which have SN leaders (Nk)L =
ϕk−4(χ2

i )
2. The k = 4 operator is the lowest dimensional

SN leader overall, while (Nk)L is the lowest dimensional
SN leader made of k fields.

Unlike for SW leaders, we cannot use SUSY theory
and dimensional reduction to infer the scaling dimensions
of SN operators (since they vanish identically in SUSY
fields). We compute them directly from action (8). Our
Cardy field approach makes these computations method-
ologically straightforward, being analogous to the stan-
dard ε-expansion [28, 29]. We thus computed the leading
anomalous dimension of operators (13). The resulting
scaling dimensions (classical plus one-loop) are given by:

∆(Nk)L
=

{(
2(k + 2)− ε

2k
)

cl
+ 6k2−7k−48

18 ε (φ3),(
k + 4− ε

2k
)

cl
+ (k−4)(k+3)

6 ε (φ4).

(14)
The one-loop correction is positive except for the k = 4,
φ4 case when it vanishes. Then, the first nonzero correc-
tion appears at two loops, and it is negative [31]:

∆(N4)L
= (8− 2ε)cl −

8

27
ε2 (φ4) . (15)

Non-susy-writable (NSW) leaders — These operators
are singlets under the Sn−1 that permutes the fields χi,

but not under O(n − 2), and therefore they cannot be
mapped to ψ, ψ̄ fields. A typical example would be any
leader involving

∑n
i=2 χ

3
i . In the RG flow, leader pertur-

bations belonging to this class can generate perturbations
from the other two classes, while the opposite mixing is
forbidden by SUSY.

We investigated two infinite families of Sn singlets hav-
ing NSW leaders [33]. The first family, first discussed by
Feldman [13] and in [31], is given by

Fk =

n∑
i,j=1

(φi − φj)k =

k−1∑
l=1

(−1)l
(
k

l

)
σlσk−l , (16)

with k = 6, 8, 10, . . . [40]. They give rise to NSW leaders
made only of χ fields, of the form

(Fk)L =

k−2∑
l=2

(−1)l
(
k

l

)
(χli)

(
χk−lj

)
, (17)

The first leader of this family, (F6)L, is the lowest dimen-
sional NSW leader overall.

The second family consists of Sn singlets given by

Gk ≡
σ3σk−3

3(k − 5)
+
σ1σk−1

k − 1
− (k − 4)σ2σk−2

(k − 5)(k − 2)
, (18)

for k = 6, 7, 8, . . . . These have NSW leaders

(Gk)L = (k−4)(k−3)
36 ϕk−6

[
2(χ3

i )
2 − 3(χ2

i )(χ
4
j )
]
, (19)

The two families start from the same operator (G6 ∝ F6),
but the higher operators are different. In fact (Gk)L is
the lowest NSW leader made of k fields, and in particular
sits lower than (Fk)L for k > 6.

Like for the SN class, we computed NSW scaling di-
mensions by the ε-expansion methodology adapted to ac-
tion (8). Starting with the Fk family, the scaling dimen-
sion (classical plus the leading correction) is given by

∆(Fk)L
=

{(
3k − k

2 ε
)

cl
+ 2k2−3k

18 ε (φ3),(
2k − k

2 ε
)

cl
− k(3k−4)

108 ε2 (φ4).
(20)

Notably, the leading anomalous dimension is one-loop
and positive in the φ3 case [38] while it is two-loop and
negative for φ4 [13, 31].

Considering next the Gk family, we obtained

∆(Gk)L
=

{(
2(k + 3)− k

2 ε
)

cl
+ 6k2−7k−120

18 ε (φ3)(
k + 6− k

2 ε
)

cl
+ (k−6)(k+5)

6 ε . (φ4)

(21)
The one-loop correction is therefore always positive, ex-
cept in the k = 6, φ4 case when it vanishes. In the latter
case, using G6 ∝ F6 and Eq. (20), we see that the leading,
negative, correction appears at two loops.

Does SUSY emerge at ε = O(1)? — The analysis lead-
ing to SUSY was based on the effective Lagrangians (8).
It would be invalidated if a new relevant leader inter-
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action is found in the IR. Allowed by symmetry, such a
growing perturbation will be generated by the RG, desta-
bilizing the flow and leading it away from the SUSY fixed
point. Let us see if this scenario is realized.

Above we discussed several infinite families of leader
interactions from three different classes (SW, SN, NSW).
We will now focus on the lowest dimensional operators
for each class. We expect them to be most important to
decide the stability of the SUSY fixed point. First of all,
ε-expansion computations of lowest-dimensional opera-
tors should be more reliable than for higher-dimensional
ones [41]. Second, we expect crossing of operator di-
mensions (within the same mixing class) to be avoided
nonperturbatively.

With this in mind we find that the SUSY IR fixed point
of the RF φ3 theory should always be stable, since the

lowest leader perturbations B(3)

θθ̄
, N4, F6 never become

relevant. To see this we take their one-loop dimensions
given in Eqs. (12),(14),(20) and use these expressions in
the full range of interest 2 ≤ d < 8 [42].

However, the same argument for the φ4 case reaches

a different conclusion [31]. While B(4)

θθ̄
remains irrel-

evant [43], both (N4)L and (F6)L become relevant at
some critical dimension dc between four and five, namely
∆(N4)L = d at d = dc ≈ 4.6 while ∆(F6)L = d when
dc ≈ 4.2. The precise value of dc, and which of the two
operators crosses marginality first, should be taken with
a grain of salt coming from a two-loop computation. We
may estimate the uncertainty replacing the expressions in
Eqs. (15),(20) by their Padé[1,1] rational approximants.
We then find that (N4)L crosses marginality at dc ≈ 4.7,
while (F6)L at dc ≈ 4.5.

NSW interaction (F6)L clearly breaks SUSY. Opera-
tor (N4)L is also potentially SUSY-breaking, by affecting
NSW coupling evolution (while being SN it does not di-
rectly affect SW sector). We thus conclude that SUSY
will be present in the RF φ4 model for dc < d < 6, while
it will be lost for d < dc [44].

Remarkably, our findings exactly match the expecta-
tions from numerical studies mentioned at the beginning,
for both universality classes. It is encouraging that al-
ready the leading order ε-expansion results lead to this
agreement. In the future, it would be interesting to de-
termine our dc more accurately. This can be done sys-
tematically, increasing the perturbative order and using
Borel resummation techniques, as is standard for the
usual Wilson-Fisher fixed point [29, 45–47].

Finally, we wish to compare our results to functional
renormalization group studies of the RF φ4 model, which
also predict the loss of SUSY for d < dFRGc ≈ 5.1 [48].
While their dc is similar, their mechanism is quite differ-
ent from ours, being attributed to fixed point annihila-
tion [49], so that below dc the SUSY fixed point does not
exist. On the contrary, our SUSY fixed point exists for
any d, being simply RG unstable for d < dc. If so, one
should be able to detect SUSY in lattice simulations for
d = 4, by performing additional tuning [50]. This would
be a decisive confirmation for our scenario.
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Appendix A: PS SUSY and dimensional reduction

In the main text we had introduced the Parisi-Sourlas (PS) CFT as the IR fixed point of the supersymmetric theory
in (9). At the IR fixed point supersymmetry is enhanced to a superconformal symmetry. This enhancement is a super-
symmetric counterpart to the familiar emergence of conformal symmetry at the fixed points of non-supersymmetric
models (see [61] for a review). In the main text we also discussed that there is a dimensional reduction from the
PS SUSY CFT to a CFTd̂. In this appendix we clarify how the PS CFT is a simple generalisation of a usual CFT,
which allows a straightforward extension of the usual CFT axioms to the SUSY case. Based on that, we provide some

details on how a restricted sector of the theory defines a local CFT in d̂ dimension. The purpose of this appendix,
based on [22], is to familiarize the reader with the concept of PS CFT.

1. PS CFT

Recall that to write the SUSY theory (9) in a compact way we had introduced the superspace coordinate ya ≡
(xµ, θ, θ̄). Here xµ ∈ Rd are usual bosonic coordinates while θ, θ̄ are Grassmann-valued (anticommuting) coordinates.
The superspace index a takes values 1, . . . d, θ, θ̄ while µ = 1, . . . , d. The OSp(d|2) symmetry preserves the superspace
distance yayb(gd|2)ab. Here the superspace metric is a natural extension of usual flat space metric, given by

(gd|2)ab ≡
(
gd 0
0 2

H gSp(2)

)
, gd ≡ diag(

d︷ ︸︸ ︷
1, 1, . . . , 1) . gSp(2) ≡

(
0 −1
1 0

)
. (A1)

The trace of the metric is computed as tr gd|2 ≡ (gd|2) a
a = d−2 (notice that tr g2|2 = 0). Derivatives in superspace are

defined as ∂a ≡ {∂µ, ∂θ, ∂θ̄} and therefore the super-Laplacian of equation (9) takes the form ∂a∂a = ∂µ∂µ −H∂θ∂θ̄.
The generators of the supersymmetry are simple extensions of usual Poincaré symmetry and they generate super-

translations (P a) and superrotations (Mab). Here Pµ and Mµν are the usual ones, while P θ, P θ̄, Mµθ, Mµθ̄, Mθθ̄

are new generators. P θ, P θ̄ are supertranslaton generators while Mµθ, Mµθ̄ rotate bosonic into fermionic coordinates
and are naturally called superotations.

At the fixed point the theory has the superconformal symmetry of OSp(d+1, 1|2). This is again a simple extension of
the usual conformal group SO(d+1, 1), where we get the extra generators: superdilationsD and special superconformal
transformations Ka, given by:

D = −ya∂a, Ka = 2yayb∂b − ybyb∂a . (A2)

These expressions are thus very similar to the familiar expressions of the usual bosonic conformal symmetry, although
note that superconformal Kµ does not reduce to the bosonic Kµ

bos = 2yµyν∂ν − yνyν∂µ.
The algebra of generators is also similar to that of the conformal algebra SO(d+ 1, 1) but given in terms of graded-

commutator [X,Y } - which is an anticommutator {X,Y } if the two generators X and Y involve only the fermionic
part of the group, otherwise a commutator [X,Y ]. E.g. one has [D,P a} = P a. The explicit forms of all these
generators and their algebra are given in section 3.1 of [22].

In the main text we mentioned that local operators in PS CFT are classified by two labels ∆ and `. We already
discussed on p. 3 of the main text how OSp tensors with spin ` are defined and associated to a Young tableaux. An
exhaustive discussion on the structure of OSp tensors can be found in section 3.1 of [22]. It is also clear that one
can associate to local operators a superconformal dimension ∆ according to how they transform under superdilations,
quite analogous a usual CFT.

In the SUSY CFT one naturally extends the notion of primaries and descendants. A SUSY operator O is su-
perprimary if it satisfies [Ka,O(0)} = 0, or a superdescendant if it is related to a primary by the action of P a. A
superprimary and its superdescendants are grouped into a superconformal multiplet. Note that this multiplet may
contain more than one operators that are usual primaries, but only one of them is a superprimary and rest are
superdescendants.

Superconformal symmetry strongly restricts correlation functions. Their functional form matches the one of
usual CFTd, provided that points in Rd are uplifted to superspace Rd|2. E.g. scalar 2-point functions are fixed
as 〈Oi(y)Oj(0)〉 = δij(y

2)−∆. Similarly the scalar 3-point functions are fixed up to OPE coefficients λijk as

〈O1(y1)O2(y2)O3(y3)〉 = λ123|y12|−∆1−∆2+∆3 |y13|−∆1−∆3+∆2 |y23|−∆2−∆3+∆1 , (A3)

where yij ≡ yi − yj . The Operator Product Expansion (OPE) is also akin to the usual one e.g. for scalar operators
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Oi it schematically reads

O1(y)O2(0) ∼ λ12O
ya1 · · · ya`Oa1...a`

∆` (0)

|y|∆1+∆2−∆+`
+ superdescendants , (A4)

where we focused on the contribution of a single superprimary and its superdescendants. Using the OPE, a 4-point
function can be expanded in superconformal blocks Gd∆` which correspond to the exchange of the supermultiplets of
O∆` in the OPE above. A more general discussion on 2- and 3-point functions of SUSY operators and superconformal
blocks can be found in section 3.2 of [22]. Our discussion above should hopefully convince the reader that PS CFTs
satisfy very similar rules compared to the usual CFTs.

There is however one frequently used rule–unitarity–which does not hold. PS CFTs are necessarily nonunitary,
since they violate spin-statistics relation, having anticommuting fields transforming in scalar rather than spinor
representations of SO(d). One should not be surprised that the PS CFT is non-unitary, as we have obtained it be
taking the zero degree of freedom limit n → 0. Of course unitarity is not a crucial relation from the point of view
of statistical physis, and many statistical physics models are known to be non-unitary, PS CFT being just one more
example. Being non-unitary, PS CFT is allowed to contain operators with dimensions below unitarity bounds, ϕ
being prime example, of classical scaling dimension d/2− 2.

2. Dimensional reduction

Below Eq. (10) of the main text we discussed that a PS SUSY CFT can be dimensionally reduced to a local CFTd̂.
Here we will explain this procedure in more detail. Dimensional reduction proceeds as follows. We take any correlator
of SUSY operators Oi(yi) and restrict yi to the (d− 2)-dimensional bosonic subspaceMd̂ (see the main text). When

we do this, the restricted correlator can be interpreted as a correlator of operators Ôi(x̂i) of a d̂-dimensional CFT

with x̂i ∈ Rd̂:

〈Ô1(x̂1) · · · Ôn(x̂n)〉 = 〈O1(y1) · · · On(yn)〉
∣∣
M

d̂

. (A5)

In the usual CFT context, the procedure of restricting correlators to a subspace is sometimes referred to as ‘trvial
defect’, where the word trivial is referred to the fact that we are not introducing any new degrees of freedom living
on the defect, unlike for more nontrivial situations such as interfaces, nor are we introducing any nontrivial boundary
conditions nor monodromies around the defect. We are just restricting correlators to the subspace. This procedure
breaks the symmetry to SO(d − 1, 1) × OSp(2|2). The SO(d − 1, 1) in the product is recognized as the conformal
symmetry of the restricted CFTd̂, while OSp(2|2) plays the role of a global symmetry.

We will next get rid of the additional OSp(2|2) symmetry. We want to do this for two reasons. First of all we don’t

expect a generic d̂-dimensional CFT to have such a symmetry. Second, as we will see below, getting rid of this extra

symmetry is crucial to ensure that the dimensionally reduced theory is a local d̂-dimensional theory. This latter point
is nontrivial as trivial defects normally give rise to nonlocal theories, i.e. theories without a local conserved stress
tensor.

A natural way to accomplish this is to impose the additional requirement that operators Oi of the PS CFT in the

above procedure should be singlets under OSp(2|2). The restricted operators Ôi are then also singlets. We thus got
rid of OSp(2|2) symmetry, as it now acts trivially on all kept operators.

To understand this construction consider the example of a rank 2 tensor superprimary Oab. Before restricting it to

Md̂, we should convert it to an OSp(2|2) singlet. This can be done contracting it with the d̂ dimensional metric gab
d̂

,

as follows:

Oab → gca
d̂
gdb
d̂
Oab . (A6)

This amounts to setting the a, b indices to d̂-dimensional indices inside Md̂.
There are other ways to get OSp(2|2) singlet from Oab, which involve contracting Oab or its derivatives with the

metric gab2|2, e.g.

gab2|2Oab , ∂a⊥∂b⊥Oab , gcad̂ ∂
b
⊥Oab , gcad̂ g

db
d̂
∂2
⊥Oab , gcad̂ ∂

b
⊥(∂2

⊥)2Oab , . . . . (A7)

Here ∂⊥ denotes derivatives along directions orthogonal to Md̂: ∂
a
⊥ = gab2|2∂b.

Now, a crucial fact is that any OSp(2|2) singlet correlator involving one or more operators of the type (A7) vanishes
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when restricted to Md̂. This happens because the restriction involves objects like the gab2|2 metric contracted with x̂µ

(coordinates onMd̂) or gab2|2 contracted with another gab2|2. All of such contractions are however zero (in particular the

supertrace of g2|2 is zero). In [22] the singlets of the type shown in (A6) were called S0 operators while the second
type i.e. (A7) as S1. What we are saying is that if we focus on restricted correlators of S0, all S1 operators decouple.

To summarize, in dimensional reduction nontrivial operators Ô of the reduced theory are S0 singlets obtained from

SUSY operators O. The precise form of the map O → Ô for a general tensor operator is discussed in section 4.1 of
[22].

The decoupling of S1 operators allows us to define a stress tensor T̂αβ of the CFTd̂ from the super-stress tensor

T ab of the PS CFT. One can write T̂αβ(x̂) = T {αβ}0 (x̂) where {} opportunely removes SO(d̂)-traces, which are S1

operators. The super-stress tensor has the superconformal dimension d− 2 which follows from its superconservation

equation (these properties of T are discussed in detail in section 3.2 and App. C of [22]). As a consequence T̂ also has

dimension d̂. Note that it also has SO(d̂)-spin two. This already indicates that it is a conserved stress stensor in CFTd̂.

To motivate this further, one can easily see that it is conserved up to S1 operators, namely 0 = ∂aT aβ0 = ∂αT̂
αβ +S1.

Thus if the PS CFT is local, the reduced theory is also local. For a detailed proof of this conservation equation and
a discussion of Ward identities see section 4.3 of [22].

It should be clear by now how a reduced local CFT is defined from the PS SUSY CFT. To give a more complete
picture of the CFTd̂, we will now show the operator product expansion (OPE) of reduced theory operators. We will
see below that this leaves us with some nice consequences. Let us take the superfield OPE (A4). We focus on S0 type
singlets and restrict the OPE to Md̂. Then it takes a very simple form:

Ô1(x̂)Ô2(0) ∼ λ12O
x̂α1
· · · x̂α`Ôα1...α`

∆` (0)

|x̂|∆1+∆2−∆+`
+ descendants + S1 , (A8)

where, for each superprimary O∆` exchanged in (A4), there is in (A8) a unique operator Ô∆` of S0 type with the
same ∆, ` and λ12O as in (A4). The other infinitely many primaries are S1 and thus decouple when the OPE is
used in OSp(2|2)-invariant corrrelators. This leads to a remarkable fact: OSp(d + 1, 1|2) superconformal blocks are

equal to SO(d− 1, 1) conformal blocks i.e. Gd∆` = gd−2
∆` . This equality has another beautiful consequence. Note that

since a superconformal multiplet packages a finite number of SO(d + 1, 1) primaries, a superconformal block can be
decomposed into a finite number of usual CFTd blocks. We can thus write a CFTd−2 block as a finite combination
of CFTd blocks. This recursion relation is elaborately discussed in section 4.4 of [22].

Appendix B: Susy-writable (SW) leaders

Here we will explain statements about the SW leaders made in the main text and provide some examples. The goal
is to make the reader comfortable with this concept.

As defined on p. 3 in the main text, SW leaders are those leader operators which 1) can be mapped to ψ, ψ̄ fields
and 2) do not vanish after such a map. The first of these conditions means that the operator can only involve χi fields
or their derivatives with indices contracted in O(n − 2) invariant fashion. E.g. χiχi or ∂µχi∂µχi can be mapped to
ψ, ψ̄, becoming, respectively, 2ψψ̄ and 2∂µψ∂µψ̄. An exhaustive discussion of such mapppings, including the origin
of the factor 2, is in Appendix C of [31]. On the other hand there is no way to map an operator

∑n
i=2 χ

3
i to ψ, ψ̄

fields. Such a combination is only invariant under Sn−1 permuting the χi’s but not under the O(n−2) rotating them.
Leaders containing such combinations of χ’s do exist, and they are classified as non-susy-writable (NSW).

Certain operators can be mapped to ψ, ψ̄ but vanishes under such a mapping due to the Grassmann nature of the
fields. A typical example is (χiχi)

2 which maps to zero because ψ2 = ψ̄2 = 0. Leaders having this property are
classified not as SW but as susy-null (SN). SN operators have zero correlators among themselves and with any SW
operator, but in general not with NSW operators. Hence we cannot just forget about SN leader perturbations, as they
might backreact on NSW perturbations and thus, indirectly, destabilize the theory. Indeed, we dedicated a separate
section in the main text to the SN leaders (more on this below).

The above definition of SW operators only defines them up to SN contributions. SW leaders with good scaling
dimensions (at some order in perturbation theory) will usually be linear combinations of several monomials, some of
which can be SN. This subtlety does not play a big role in classifying SW operators and in computing their anomalous
dimensions. Under RG flow, SN and SW operators mix triangularly, as SW operators can RG-generate both SW and
SN operators, while SN can only generate SN. Thus we can always set the SN part of SW operator to zero in all
computations of SW anomalous dimensions.
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Modulo SN operators, the map ψ ↔ χ is a bijection in the space of SW operators written in Cardy and in SUSY
fields. So we will call SW also the operators in SUSY fields obtained after applying this map.

In the discussion of SW leaders in the main text, a key role was played by the fact that the χ → ψ map maps
them to the highest component of a superfield. This fact was conjectured and extensively checked in [31]. A rigorous
proof will be presented, for the first time, in App. B 1 below. Here we will provide some introductory comments,
which should make the reader comfortable with this important property. As a first example, consider the Sn singlet
operator of the form

∑n
i=1A(φi) which is mapped to Cardy fields as follows

n∑
i=1

A(φi) = A
(
ϕ+

ω

2

)
+

n∑
i=2

A
(
ϕ− ω

2
+ χi

)
=

{
A′(ϕ)ω +

1

2
A′′(ϕ)

n∑
i=2

χ2
i

}
+ . . . . (B1)

To obtain the r.h.s of this equation we Taylor-expanded the central expression around ϕ = 0. We then gathered terms
of the lowest dimension in the curly brackets—this is the leader of the considered Sn singlet. One can easily check
that all the terms . . . have a higher dimension—they are followers.

Applying the map χ → ψ to the leader, we obtain A′(ϕ)ω + A′′(ϕ)ψψ̄. Note that this particular combination of
fields is invariant under supertranslations transformations:

δϕ = ε̄ψ + εψ̄, δψ = −εω, δψ̄ = ε̄ω, δω = 0 . (B2)

These are called supertranslations because they follow from considering how components of the superfield

Φ(x, θ, θ̄) = ϕ(x) + θψ̄ + θ̄ψ + θθ̄ω (B3)

transform when applying translations in the fermionic coordinates θ, θ̄ → θ + ε, θ̄ + ε̄.

Invariance under supertranslations is a general property of the highest component Oa
θθ̄

of any superfield Oa (see

Eq. (10)). Since we found that the leader A′(ϕ)ω +A′′(ϕ)ψψ̄ is supertranslation invariant, it is natural to inquire of
which superfield it is the highest component. It is easy to check that the answer is the composite superfield A(Φ), as
stated in the main text.

The following additional reasoning may further convince the reader in the plausibility of the discussed property.
According to the logic of our approach, leader operators under RG flow generate only leaders. When we specialize to
SW leaders, this RG property of the leaders must be encoded in some special selection rule of the SUSY theory. Our
claim is that this selection rule is precisely one based on supertranslation invariance.

An additional interesting twist of the story is as follows. The SW leader perturbations we are interested in are
scalars under rotation, and they also preserve Sp(2) symmetry rotating ψ and ψ̄ (this Sp(2) symmetry descends
from the O(n − 2) symmetry in the χi formulation, after the n → 0 limit). In other words, they are SO(d)×Sp(2)
invariant fields (although they do not need to respect full OSp(d|2) invariance). As mentioned any such leader lives
in the highest component Oa

θθ̄
of a superfield Oa. Note that this superfield does not have to be a scalar. If it is a

scalar (no a indices), the leader is just Oθθ̄. This was the case for the above example. If, on the other hand, the
superfield is a tensor, the leader is obtained from Oa

θθ̄
by contracting a indices with the Sp(2) metric, which produces

an SO(d)×Sp(2) invariant field as the leader should be. Effectively, to produce a leader we have to set a indices
in the directions labelled by θ, θ̄. Hopefully this explains better statements made in this respect in the main text.
Notice that in principle the indices a could be contracted also with the SO(d) metric, however this procedure does

not generate new operators since O are supertraceless, which implies Oµµ = 4
HOθθ̄.

Let us consider some examples how this works for tensor superfields. One such superfield, of rank 2, is the
superstresstensor T ab which was defined in App. C of [22]. Computing its highest component T ab

θθ̄
and setting

a = θ, b = θ̄ we obtain

T θθ̄θθ̄ ∝ ∂µϕ∂µω + ∂µψ∂µψ̄ +
H

2
(2− d)ω2 (B4)

This is clearly a SW leader, since it’s a linear combination of terms appearing in the quadratic part of the Parisi-Sourlas
SUSY Lagrangian. In fact it is a linear combination of leaders of Sn singlets σ2

1 and ∂µφi∂µφi.

For a less trivial example, consider the superfield Φ2T ab. In this case the highest component contracted with Sp(2),

(Φ2T θθ̄)θθ̄ is a lengthy expression given in Eq. (8.13) of [31]. It can be shown to be a linear combination of two
dimension 8 leaders associated with σ1σ3 and

∑
i φ

2
i ∂µφi∂µφi.

Our final example is the Sp(2)-invariant part Bθθ̄,θθ̄
θθ̄

of the highest component Bab,cd
θθ̄

of the superfield Bab,cd in

the box (2, 2) representation. An infinite family of such composite superfields can be built from the fundamental
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superfield Φ by an immediate counterpart of the d̂-dimensional Eq. (11) in the main text:

(B(k))ab,cd ≡ Φk−3
(

Φ,abΦ,cdΦ− 2d̂

d̂−2
Φ,aΦ,bΦ,cd

)
Y
. (B5)

From this equation, one can work out (B(k))θθ̄,θθ̄
θθ̄

explicitly in terms of ϕ, ψ, ψ̄ and ω. For example, the full expression

for k = 4 is given in Eq. (H.5) of [31] and we do not copy it here. It is then possible to check that this expression is
(up to total derivatives) a linear combination of SW leaders of the following Sn singlet operators: σ2

1σ2, ∂µσ1∂µσ3,
σ1

∑
i φi∂µφi∂µφi, σ2

∑
i ∂µφi∂µφi,

∑
i φi∂µφi∂νφi∂µ∂νφi,

∑
i φ

2
i ∂µ∂νφi∂µ∂νφi. Leader tables from App. D of [31] are

helpful when performing this check.

To summarize, in this appendix we explained in more detail how SW leaders are captured by the highest components
of superfields (see App. B 1 for a rigorous proof). Since the superfield scaling dimensions can be found from the
dimensionally reduced theory, this property drastically simplifies the task of computing SW leaders scaling dimensions.
This is how it was used in the main text.

1. Correspondence between SW leaders and supertranslation invariant SUSY fields

For a SW leader O, written in terms of Cardy fields, denote by O′ the corresponding operator mapped to SUSY
fields by the χ→ ψ map. The operation O → O′ has two properties: 1) the resulting operator O′ is a supertranslation-
invariant (st-invariant, for short) SUSY field; 2) any st-invariant and Sp(2) invariant field of the SUSY theory can be
written as O′ for some SW leader O. These facts were first noticed in [31] based on many examples, and conjectured
to be always true. Here we will provide a rigorous proof that this is indeed the case.

a. Any SW leader maps to an st-invariant operator

The most general singlet interaction, in terms of replicated fields φi, can be written as a linear combination of
products of elementary singlet interactions, of the form

n∑
i=1

A[φi], (B6)

where A[φ] is a function of φ and its first, second,. . . derivatives, evaluated at point x. Some of the derivative indices
may be contracted with each other, others when products of elementary interactions are taken. E.g. we may have
A[φ] = φ∂µφ.

Let us translate (B6) to the Cardy fields. Generalizing Eq. (5.14) in [31] to the case when A[φ] may also depend
on the derivatives, the lowest dimension part of the above singlet is given by∫

δA[ϕ](x)

δϕ(x1)
ω(x1)dx1 +

1

2

∫
δ2A[ϕ](x)

δϕ(x1)δϕ(x2)
χi(x1)χi(x2)dx1dx2 . (B7)

The χ→ ψ map maps this to (use App. C of [31], first Eq. (C.3), simplifying as δ2A(x)
δϕ(x1)δϕ(x2) is symmetric in x1, x2):

O′ =

∫
δA(x)

δϕ(x1)
ω(x1)dx1 +

∫
δ2A(x)

δϕ(x1)δϕ(x2)
ψ(x1)ψ̄(x2)dx1dx2 . (B8)

Let us check that this is invariant under the supertranslations

δstϕ = ε̄ψ + εψ, δstψ̄ = ε̄ω, δstψ = −εω, δstω = 0 . (B9)

Using δst
δA(x)
δϕ(x1) =

∫ δ2A(x)
δϕ(x1)δϕ(x2)δstϕ(x2)dx2 we get that δst of the first term in O′ cancels with∫

δ2A(x)

δϕ(x1)δϕ(x2)
δst[ψ(x1)ψ̄(x2)]dx1dx2. (B10)
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Let us show that the remaining part of δst of the second term in O′,∫
δst

δ2A(x)

δϕ(x1)δϕ(x2)
ψ(x1)ψ̄(x2)dx1dx2 =

∫
δ3A(x)

δϕ(x1)δϕ(x2)δϕ(x3)
ψ(x1)ψ̄(x2)[ε̄ψ(x3) + εψ̄(x3)], (B11)

vanishes. If A is a function of only ϕ and not of derivatives, then δ3A(x)
δϕ(x1)δϕ(x2)δϕ(x3) is proportional to delta functions,

and (B11) vanishes because of ψ2 = 0, ψ̄2 = 0. When A also depends on derivatives, δ3A(x)
δϕ(x1)δϕ(x2)δϕ(x3) will involve

derivative of deltas. The important thing is that it is always symmetric in the interchanges of xi. The first fermionic
product in (B11) is antisymmetric in x1, x3 and the second in x2, x3. So the integral will vanish.

The above argument shows that O′ is st-invariant. Products of O′’s will also be st-invariant. This proves st-
invariance of all SW leaders of general singlets, since those can be obtained by taking linear combinations of products
of different elementary singlet interactions of the form (B6).

It may sometimes happen that two different singlet interactions give rise, through the above construction, to leaders
which are either 1) exactly the same when written in the χ fields, or 2) becomes the same after χ→ ψ. Then, taking
their difference, we obtain an interaction whose leader is either susy-null (case 2), or non-susy-writable (case 1). E.g.
in case 1 the leader will involve contributions of terms

∑
χki , k > 3, or their generalizations with derivatives, see [31],

last line of (5.14). These terms cannot cancel because operators
∑
χki are all algebraically independent. This shows

that the leader will be NSW. So we need not be worried about such cancelations for the purposes of proving the result
of this section.

b. Any Sp(2) and st-invariant operator comes from a SW leader

To prove this result, we take an arbitrary Sp(2) and st-invariant SUSY operator. We can write it as (X)θθ̄, the
θθ̄ component of a Sp(2) invariant superfield X. Being Sp(2) invariant, X can be written as a linear combination of
products of the fundamental superfield Φ and of its superderivatives, contracted with either SO(d) metric gµν or with
the Sp(2) metric gab. In what follows a, b are Sp(2) indices: a, b ∈ {θ, θ̄}.

Consider first the simplest case when X only involves normal derivatives, contracted with gµν . We can simplify this
even further by considering a product of K superfields at different points. We will call such special X’s by a letter Y :

Y = Φ(x1) . . .Φ(xK) . (B12)

We will prove that Yθθ̄ arises from an SW leader of a singlet. Differentiating with respect to xk, and setting all xk
equal, we can then obtain the statement for X’s involving derivatives in the µ directions.

Let us compute Yθθ̄ for (B12). We have

Yθθ̄ =
∑
k

Φθθ̄(xk)
∏
l 6=k

Φ0(xl) +
∑
k1 6=k2

Φθ(xk1
)Φθ̄(xk2

)
∏

l 6=k1k2

Φ0(xl)

=
∑
k

ω(xk)
∏
l 6=k

ϕ(xl) +
∑
k1 6=k2

ψ(xk1
)ψ̄(xk2

)
∏

l 6=k1k2

ϕ(xl) . (B13)

Consider the following Sn singlet: ∑
i

φi(x1) . . . φi(xK) . (B14)

Mapping it to Cardy fields, we obtain the leader∑
k

ω(xk)
∏
l 6=k

ϕ(xl) +
∑
k1 6=k2

∑
i

1

2
χi(xk1)χi(xk2)

∏
l 6=k1k2

ϕ(xl) , (B15)

plus followers involving terms higher order in χ. According to the dictionary of App. C of [31], the χ→ ψ map maps

χi(xk1
)χi(xk2

)→ ψ(xk1
)ψ̄(xk2

) + ψ(xk2
)ψ̄(xk1

) . (B16)

Thus we see that (B15) maps precisely on (B13). This proves that any Yθθ̄ arises from an SW leader of a singlet. As
mentioned above, using differentiation w.r.t. xk we can then prove this statement for Xθθ̄ arising from any X of the
form D(1)Φ(x) . . . D(K)Φ(x) where D(k) are arbitrary differential operators in the x direction.
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Let us now consider X involving some derivatives in the Sp(2) directions. We will use the same trick as above,
eliminating all x derivatives by considering superfields at K separated points. Thus we are reduced to considering

X = R(1)Φ(x1) . . . R(K)Φ(xK) , (B17)

where R(k) are arbitrary differential operators in the θ, θ̄ directions, with indices contracted in an Sp(2) invariant way.

We will show the following lemma: Any Xθθ̄ with X of the form (B17) can be written as a linear combination of
products:

(Y1)θθ̄ . . . (YL)θθ̄ , (B18)

where Yl are as in (B12) i.e. they do not contain any derivatives in the θ, θ̄ direction (nor in x direction since we are
considering separated points). This statement about the SUSY theory is interesting in its own right, as it means that
any Sp(2) and st-invariant field can be written as a linear combination of products of elementary such fields, at most
bilinear in ψ and ψ̄. It also allows us to finish the proof. Indeed, above we have shown that any such (Yl)θθ̄ can be
written as a SW leader of an Sn singlet interactions. Taking the linear combination of products of these interactions,
we then represent Xθθ̄ as a SW leader.

So it remains to show the lemma. Note that all derivatives of the order higher than second are zero. Consider next
an X containing some second derivatives. We have

∂a∂bΦ(x) = g
Sp(2)
ab ω(x), a, b ∈ {θ, θ̄} . (B19)

Using this fact, any X with second derivatives can be written as a product of a bunch of ω(xk) ≡ Φ(xk)θθ̄ times X ′

which only involves up to first derivatives contracted in Sp(2) invariant fashion. We now have

Xθθ̄ = (X ′
∏

Φ(xk)θθ̄)θθ̄ = (X ′)θθ̄
∏

Φ(xk)θθ̄ . (B20)

The previous equation reduced the lemma to the case of X’s having only up to first derivatives. Let X be such field.
For a recursive step we factor out one product gab∂aΦ(xk1

)∂bΦ(xk2
) from X. We renumber points so that k1 = 1,

k2 = 2 and write

X = g
Sp(2)
ab ∂aΦ1∂

bΦ2 ×X ′ , (B21)

where X ′ contains two derivatives less than X, and we denoted Φk ≡ Φ(xk). We have

X = (∂θΦ1∂θ̄Φ2 + ∂θΦ2∂θ̄Φ1)X ′ . (B22)

From this expression we see that X is symmetric in x1, x2. Let us now express (X)θθ̄ as follows

Xθθ̄ = (∂aΦ1∂aΦ2X
′)θθ̄ = (∂a[Φ1∂aΦ2X

′])θθ̄ − (Φ1∂
a∂aΦ2X

′)θθ̄ + (Φ1∂aΦ2∂
aX ′)θθ̄ . (B23)

The first term vanishes since ()θθ̄ = ∂θ̄∂θ(). We also have (Φ1∂
a∂aΦ2X

′)θθ̄ = (Φ2)θθ̄(Φ1X
′)θθ̄. Symmetrizing in x1, x2

which is allowed since we know it’s symmetric, we have

2Xθθ̄ = −(Φ2)θθ̄(Φ1X
′)θθ̄ − (Φ1)θθ̄(Φ2X

′)θθ̄ + (Φ1∂aΦ2∂
aX ′)θθ̄ + (Φ2∂aΦ1∂

aX ′)θθ̄
= −(Φ2)θθ̄(Φ1X

′)θθ̄ − (Φ1)θθ̄(Φ2X
′)θθ̄ − (Φ1Φ2∂a∂

aX ′)θθ̄ + (∂a[Φ1Φ2∂
aX ′])θθ̄

= −(Φ2)θθ̄(Φ1X
′)θθ̄ − (Φ1)θθ̄(Φ2X

′)θθ̄ + (Φ1Φ2)θθ̄(X
′)θθ̄ , (B24)

where we took into account that (∂a[Φ1Φ2∂
aX ′])θθ̄ = 0.

Eq. (B24) accomplishes a recursive step, since every field in the r.h.s. contains fewer derivatives than X. Applying
this formula recursively, we can eliminate all first derivatives. This proves the lemma, and with this the fact in the
title of the section.

In conclusion we would like to indicate that there is an alternative way to find an Sn singlet interaction of which Xθθ̄

is the leader, not relying on the above lemma. For this we take X and write it in Cardy fields. The resulting expression
is SO(n− 1) invariant but not, in general, Sn invariant since it does not in general respect φ1 ↔ φi permutations Pi,
i = 2 . . . n. These permutations in Cardy fields are given in Eq. (C1) (for i = 2). The idea then is to consider the



14

symmetrized linear combination:

X̃ = X +

n∑
i=2

PiX, (B25)

which is fully Sn invariant by construction. It can be shown the leader of X̃ coincides with Xθθ̄. We omit the details.

Appendix C: Susy-null (SN) and non-susy-writable (NSW) leaders

We will now focus our attention on SN and NSW leaders. We will highlight some aspects of the SN leaders that
may not have been clear from the main text. We will also clarify why we focused on some specific families of SN and
NSW leaders in the main text. An exhaustive version of our discussion below can be found in the appendices of [31]
and in a subsequent paper [38].

Let us first consider general operators that are SN. We have said on p. 4 that, similar to SW operators, SN operators
involve contractions of χi fields in an O(n− 2) invariant way which allows us to use the map χ→ ψ to SUSY fields.
However SN operators vanish under this map. The simplest example of an SN operator is (χiχi)

2 that maps to
(2ψψ̄)2 which is zero as ψ and ψ̄ are anticommuting. SN operators may also contain derivatives, e.g. the operator
(∂µχi∂

µχi)
2 is SN as it maps to (∂µψ∂

µψ̄)2 which is zero.
Previously in appendix B we commented that SW operators are defined only up to SN operators. To see what this

means consider two different quartic operators: (χi∂µχi)(χj∂
µχj) and (χiχi)(∂µχj∂

µχj), summation over i, j from 2
to n being understood (note that these operators are not leaders, but this is unimportant for the point we are trying
to make). These are clearly SW as χi∂µχi (= 1

2∂µ(χiχi)) and ∂µχj∂
µχj are SW. Under the χ→ ψ map it is easy to

see that both quartic operators become ∝ ψψ̄∂µψ∂
µψ̄. Since they were distinct operators in χ fields their difference

must be SN. This SN operator is in fact ∂2(χiχi)
2. This happens to be a leader of the singlet operator ∂2N4 (we

defined Nk in (13)). As it is a total derivative we can ignore it as a perturbation in the RG flow.
As for SN leaders, in the main text we focused primarily on the family (Nk)L = (χ2

i )
2ϕk−4. This was because

they are the lowest dimensional SN leaders made of k fields. This is easy to see since they are built as a product of
the lowest dimensional SN operator (χ2

i )
2 times powers of the lowest dimensional field, thus any lower dimensional

operator cannot be SN.
However it is possible to have other SN leaders with a higher classical dimension than (Nk)L for the same number of

fields. E.g. at the level of k = 5 fields one can have ω(χiχi)
2 which is a leader of the Z2 odd singlet 4σ3σ

2
1−3σ2

2σ1 . Also
with k = 6 fields one can have ϕω(χiχi)

2, (χiχi)
3 and (∂µϕ)2(χiχi)

2. They all have the same classical dimension and
hence mix perturbatively. Their singlets are shown explicitly in App. D of [31]. We have coumputed the anomalous
dimensions of many such operators and checked that they are all positive - so they do not affect our conclusion in the
main text.

Passing now to the NSW leaders, one of the families we focused on was (Gk)L ∝ ϕk−6(F6)L. Let us explain the
claim from the main text that these are the lowest dimensional NSW leaders made of k fields. This is not immediately
obvious since there exist lower dimensional NSW operators made of k fields. However it turns out that these operators
(e.g. χ3

iϕ
k−3) are not leaders. This can be proven using Sn symmetry. We consider the action of Sn replica symmetry

in Cardy fields. Permutations φi ↔ φj for i, j > 1 act as χi ↔ χj which mean that we always need χi to appeared in
a permutation-symmetric way. The permutations φ1 ↔ φj acts as (we focus on j = 2 for convenience), see Eq. (5.3)
in [31],

ϕ→ ϕ+ (χ2 − ω) , ω → ω , χ2 → 2ω − χ2 , χi → χi − χ2 + ω , (C1)

where i = 3 . . . n and where we set n = 0. This is less transparent in Cardy fields, nevertheless all Sn singlets at
n = 0 must be invariant under (C1). By keeping only the lowest dimensional term of (C1) we obtain a simpler
transformation

ϕ→ ϕ, ω → ω, χ2 → −χ2, χi → χi − χ2 . (C2)

A necessary condition for an operator to be a leader is that it must be invariant under (C2). This map acts trivially
on all SW (and thus also SN) operators: indeed ϕ, ω and χ2

i are left invariant by (C2). However it can be used to rule
out some NSW leader candidates: operators of the form Oϕaωb(χ2

i )
c cannot be leaders if operator O is not invariant

under (C2). We thus find that χ3
iϕ

k−3 are not leader operators because χ3
i is not invariant under (C2). Similarly we

can rule out all possible NSW combinations of less than six χi fields since they are not invariant under (C2). One
thus easily recovers that (Gk)L are the lowest dimensional NSW leaders made of k fields.
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The other NSW leader family considered in the main text was (Fk)L. This one also has an important role: these
operators are built out of special linear combinations of χi which very non-trivially are invariant under (C2). Indeed

we checked up to k = 20 that (Fk)L are the only operators of the form
∑k
l=0 cl(χ

k−l
i )(χlj) which are invariant under

(C2), and thus they are the only leaders of this form. Of course any operator built by taking powers of ϕ, ω, χ2
i

multiplied with any (Fk)L to any power will respect the invariance under (C2). The resulting operators are thus
possible leaders of the theory. It is however important to stress that the invariance under (C2) is only a necessary
condition and that in order to get a good leader operator, one must be able to write it in an Sn invariant way which
is thus invariant under the full transformation (C1). E.g. while ϕω and χ2

i are both invariant under (C2), only the
combination 2ϕω + χ2

i is a good Sn singlet invariant under (C1).

Appendix D: RG computations

On p. 4 of the main text we presented a number of results on one- or two-loop corrections to the dimensions of SN
and NSW operators. All those results were obtained from perturbative RG computations using standard Feynman
diagrammatic approach in dimensional regularization. In this appendix we give a flavor of these computations by
discussing some fundamental tools and a few examples. The goal is to show that our results are indeed quite
straightforward to obtain.

We start with Lagrangian (8), including only leader interactions which are relevant in d = duc − ε with ε� 1:

LV (φ)
L = ∂ϕ∂ω − H

2
ω2 +

1

2

n∑
i=2

(∂χi)
2 + (ωV ′(ϕ) + χ2

iV
′′(ϕ)) . (D1)

We will work in the minimal subtraction (MS) scheme, so we dropped the mass term as usual. We may first set V = 0
and write down the free theory propagators of different fields in momentum space. For what we discuss below we only
need the following propagators explicitly:

Gϕϕ(p) =
H

p4
, Gχiχj (p) =

Kij

p2
where Kij = δij −

Πij

n− 1
. (D2)

Here Πij = 1 for all i, j = 2, · · · , n. The factor Kij imposes the condition
∑n
i=2 χi = 0 from (3). In a Feynman

diagram the propagators will be denoted as shown in Fig. 1.

FIG. 1: Propagators Gϕϕ(p) (left) and Gχχ(p) (right).

The propagator Gϕω is also present in the theory. It has the the same 1/p2 momentum dependence as Gχiχj but
we will not need it in the examples below.

We may now turn on interaction V (φ) = λ
4!φ

4 or g
6φ

3 for which duc = 6 or 8 respectively. Then we introduce bare
and renormalized quantities (fields and coupling), and relate them by renormalization constants. These contants are
obtained by requiring that correlators of renormalized quantities are finite as ε→ 0.

We are interested in the n→ 0 limit of the theory. Note that the n→ 0 limit theory contains infinitely many fields
χ2, χ3, χ4, . . . which can appear on the external legs. To take the n → 0 limit of any Feynman diagram we have to
simplify the product of matrices Kij from the χ propagators, using ΠijΠjk = (n− 1)Πik → −Πik.

Consider first the φ4 case in d = 6−ε. The one-loop beta function βλ is computed from the coupling renormalization
constant that can be obtained from a 4-point correlator e.g. 〈χi(p1)χj(p2)ϕ(p3)ϕ(p4)〉. Setting it to zero we get a

fixed point at λ? = 64π3ε
3 . We do not show the computations as the steps are very similar to the d = 4 − ε usual φ4

(Wilson-Fisher) theory (see e.g. [29]).

The field renormalizations are obtained from 2-point functions, e.g. from the 2-loop correction to 〈χi(p)χj(−p)〉
one obtains the leading correction γχ to the dimension of χi. We point out that due to the equivalence of (D1) as

n→ 0 with the SUSY theory the anomalous dimensions of all fundamental fields are equal, i.e. γϕ = γω = γχ = ε2

108 .
Note that this is the same field anomalous dimension as the usual Wilson-Fisher value, as expected from dimensional
reduction. These computations are also very similar to d = 4− ε so we do not show them.
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l2
<latexit sha1_base64="YTO6seXZu7zHYbj3se5C6PKcvho=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRj0YvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz3IQW1QrrhVdyGyDl4OFcjVHJS/+sOYpRFXyCQ1pue5CfoZ1SiY5LNSPzU8oWxCR7xnUdGIGz9brDojF9YZkjDW9ikkC/f3REYjY6ZRYDsjimOzWpub/9V6KYbXfiZUkiJXbPlRmEqCMZnfTYZCc4ZyaoEyLeyuhI2ppgxtOiUbgrd68jq0a1XP8v1VpXGTx1GEMziHS/CgDg24gya0gMEInuEV3hzpvDjvzseyteDkM6fwR87nD/rfjZU=</latexit><latexit sha1_base64="YTO6seXZu7zHYbj3se5C6PKcvho=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRj0YvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz3IQW1QrrhVdyGyDl4OFcjVHJS/+sOYpRFXyCQ1pue5CfoZ1SiY5LNSPzU8oWxCR7xnUdGIGz9brDojF9YZkjDW9ikkC/f3REYjY6ZRYDsjimOzWpub/9V6KYbXfiZUkiJXbPlRmEqCMZnfTYZCc4ZyaoEyLeyuhI2ppgxtOiUbgrd68jq0a1XP8v1VpXGTx1GEMziHS/CgDg24gya0gMEInuEV3hzpvDjvzseyteDkM6fwR87nD/rfjZU=</latexit><latexit sha1_base64="YTO6seXZu7zHYbj3se5C6PKcvho=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRj0YvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz3IQW1QrrhVdyGyDl4OFcjVHJS/+sOYpRFXyCQ1pue5CfoZ1SiY5LNSPzU8oWxCR7xnUdGIGz9brDojF9YZkjDW9ikkC/f3REYjY6ZRYDsjimOzWpub/9V6KYbXfiZUkiJXbPlRmEqCMZnfTYZCc4ZyaoEyLeyuhI2ppgxtOiUbgrd68jq0a1XP8v1VpXGTx1GEMziHS/CgDg24gya0gMEInuEV3hzpvDjvzseyteDkM6fwR87nD/rfjZU=</latexit><latexit sha1_base64="YTO6seXZu7zHYbj3se5C6PKcvho=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRj0YvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz3IQW1QrrhVdyGyDl4OFcjVHJS/+sOYpRFXyCQ1pue5CfoZ1SiY5LNSPzU8oWxCR7xnUdGIGz9brDojF9YZkjDW9ikkC/f3REYjY6ZRYDsjimOzWpub/9V6KYbXfiZUkiJXbPlRmEqCMZnfTYZCc4ZyaoEyLeyuhI2ppgxtOiUbgrd68jq0a1XP8v1VpXGTx1GEMziHS/CgDg24gya0gMEInuEV3hzpvDjvzseyteDkM6fwR87nD/rfjZU=</latexit>

l1
<latexit sha1_base64="berNMFBEL75BVbf5uEM+UZJp20k=">AAAB6nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxov2ANpTNdtIu3WzC7kYooT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5gKro3nfTultfWNza3ydmVnd2//wD08aukkUwybLBGJ6oRUo+ASm4YbgZ1UIY1Dge1wfDurt59QaZ7IRzNJMYjpUPKIM2qs9SD6ft+tejVvLrIKfgFVKNTou1+9QcKyGKVhgmrd9b3UBDlVhjOB00ov05hSNqZD7FqUNEYd5PNVp+TMOgMSJco+acjc/T2R01jrSRzazpiakV6uzcz/at3MRNdBzmWaGZRs8VGUCWISMrubDLhCZsTEAmWK210JG1FFmbHpVGwI/vLJq9C6qPmW7y+r9ZsijjKcwCmcgw9XUIc7aEATGAzhGV7hzRHOi/PufCxaS04xcwx/5Hz+APlbjZQ=</latexit><latexit sha1_base64="berNMFBEL75BVbf5uEM+UZJp20k=">AAAB6nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxov2ANpTNdtIu3WzC7kYooT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5gKro3nfTultfWNza3ydmVnd2//wD08aukkUwybLBGJ6oRUo+ASm4YbgZ1UIY1Dge1wfDurt59QaZ7IRzNJMYjpUPKIM2qs9SD6ft+tejVvLrIKfgFVKNTou1+9QcKyGKVhgmrd9b3UBDlVhjOB00ov05hSNqZD7FqUNEYd5PNVp+TMOgMSJco+acjc/T2R01jrSRzazpiakV6uzcz/at3MRNdBzmWaGZRs8VGUCWISMrubDLhCZsTEAmWK210JG1FFmbHpVGwI/vLJq9C6qPmW7y+r9ZsijjKcwCmcgw9XUIc7aEATGAzhGV7hzRHOi/PufCxaS04xcwx/5Hz+APlbjZQ=</latexit><latexit sha1_base64="berNMFBEL75BVbf5uEM+UZJp20k=">AAAB6nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxov2ANpTNdtIu3WzC7kYooT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5gKro3nfTultfWNza3ydmVnd2//wD08aukkUwybLBGJ6oRUo+ASm4YbgZ1UIY1Dge1wfDurt59QaZ7IRzNJMYjpUPKIM2qs9SD6ft+tejVvLrIKfgFVKNTou1+9QcKyGKVhgmrd9b3UBDlVhjOB00ov05hSNqZD7FqUNEYd5PNVp+TMOgMSJco+acjc/T2R01jrSRzazpiakV6uzcz/at3MRNdBzmWaGZRs8VGUCWISMrubDLhCZsTEAmWK210JG1FFmbHpVGwI/vLJq9C6qPmW7y+r9ZsijjKcwCmcgw9XUIc7aEATGAzhGV7hzRHOi/PufCxaS04xcwx/5Hz+APlbjZQ=</latexit><latexit sha1_base64="berNMFBEL75BVbf5uEM+UZJp20k=">AAAB6nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxov2ANpTNdtIu3WzC7kYooT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5gKro3nfTultfWNza3ydmVnd2//wD08aukkUwybLBGJ6oRUo+ASm4YbgZ1UIY1Dge1wfDurt59QaZ7IRzNJMYjpUPKIM2qs9SD6ft+tejVvLrIKfgFVKNTou1+9QcKyGKVhgmrd9b3UBDlVhjOB00ov05hSNqZD7FqUNEYd5PNVp+TMOgMSJco+acjc/T2R01jrSRzazpiakV6uzcz/at3MRNdBzmWaGZRs8VGUCWISMrubDLhCZsTEAmWK210JG1FFmbHpVGwI/vLJq9C6qPmW7y+r9ZsijjKcwCmcgw9XUIc7aEATGAzhGV7hzRHOi/PufCxaS04xcwx/5Hz+APlbjZQ=</latexit>

�p3
� p4

� l1

<latexit sha1_base64="sgpTBjHYkjJ1azsvbNX5p0U6zx4=">AAAB83icbZDLSgMxFIbP1Futt6pLN8EiuGmZsQVdFt24rGAv0A5DJs20oZlMSDJCGfoablwo4taXcefbmLaz0NYfDnz85xxy8oeSM21c99spbGxube8Ud0t7+weHR+Xjk45OUkVomyQ8Ub0Qa8qZoG3DDKc9qSiOQ0674eRu3u8+UaVZIh7NVFI/xiPBIkawsdagKoO6rUaVB15Qrrg1dyG0Dl4OFcjVCspfg2FC0pgKQzjWuu+50vgZVoYRTmelQaqpxGSCR7RvUeCYaj9b3DxDF9YZoihRtoRBC/f3RoZjradxaCdjbMZ6tTc3/+v1UxPd+BkTMjVUkOVDUcqRSdA8ADRkihLDpxYwUczeisgYK0yMjalkQ/BWv7wOnauaZ/mhUWne5nEU4QzO4RI8uIYm3EML2kBAwjO8wpuTOi/Ou/OxHC04+c4p/JHz+QM0oJB6</latexit><latexit sha1_base64="sgpTBjHYkjJ1azsvbNX5p0U6zx4=">AAAB83icbZDLSgMxFIbP1Futt6pLN8EiuGmZsQVdFt24rGAv0A5DJs20oZlMSDJCGfoablwo4taXcefbmLaz0NYfDnz85xxy8oeSM21c99spbGxube8Ud0t7+weHR+Xjk45OUkVomyQ8Ub0Qa8qZoG3DDKc9qSiOQ0674eRu3u8+UaVZIh7NVFI/xiPBIkawsdagKoO6rUaVB15Qrrg1dyG0Dl4OFcjVCspfg2FC0pgKQzjWuu+50vgZVoYRTmelQaqpxGSCR7RvUeCYaj9b3DxDF9YZoihRtoRBC/f3RoZjradxaCdjbMZ6tTc3/+v1UxPd+BkTMjVUkOVDUcqRSdA8ADRkihLDpxYwUczeisgYK0yMjalkQ/BWv7wOnauaZ/mhUWne5nEU4QzO4RI8uIYm3EML2kBAwjO8wpuTOi/Ou/OxHC04+c4p/JHz+QM0oJB6</latexit><latexit sha1_base64="sgpTBjHYkjJ1azsvbNX5p0U6zx4=">AAAB83icbZDLSgMxFIbP1Futt6pLN8EiuGmZsQVdFt24rGAv0A5DJs20oZlMSDJCGfoablwo4taXcefbmLaz0NYfDnz85xxy8oeSM21c99spbGxube8Ud0t7+weHR+Xjk45OUkVomyQ8Ub0Qa8qZoG3DDKc9qSiOQ0674eRu3u8+UaVZIh7NVFI/xiPBIkawsdagKoO6rUaVB15Qrrg1dyG0Dl4OFcjVCspfg2FC0pgKQzjWuu+50vgZVoYRTmelQaqpxGSCR7RvUeCYaj9b3DxDF9YZoihRtoRBC/f3RoZjradxaCdjbMZ6tTc3/+v1UxPd+BkTMjVUkOVDUcqRSdA8ADRkihLDpxYwUczeisgYK0yMjalkQ/BWv7wOnauaZ/mhUWne5nEU4QzO4RI8uIYm3EML2kBAwjO8wpuTOi/Ou/OxHC04+c4p/JHz+QM0oJB6</latexit><latexit sha1_base64="sgpTBjHYkjJ1azsvbNX5p0U6zx4=">AAAB83icbZDLSgMxFIbP1Futt6pLN8EiuGmZsQVdFt24rGAv0A5DJs20oZlMSDJCGfoablwo4taXcefbmLaz0NYfDnz85xxy8oeSM21c99spbGxube8Ud0t7+weHR+Xjk45OUkVomyQ8Ub0Qa8qZoG3DDKc9qSiOQ0674eRu3u8+UaVZIh7NVFI/xiPBIkawsdagKoO6rUaVB15Qrrg1dyG0Dl4OFcjVCspfg2FC0pgKQzjWuu+50vgZVoYRTmelQaqpxGSCR7RvUeCYaj9b3DxDF9YZoihRtoRBC/f3RoZjradxaCdjbMZ6tTc3/+v1UxPd+BkTMjVUkOVDUcqRSdA8ADRkihLDpxYwUczeisgYK0yMjalkQ/BWv7wOnauaZ/mhUWne5nEU4QzO4RI8uIYm3EML2kBAwjO8wpuTOi/Ou/OxHC04+c4p/JHz+QM0oJB6</latexit>

(a) V (φ) = λ
4!
φ4,

p1
<latexit sha1_base64="YgAuzWg+wuyQict0QiuK5Kx+fug=">AAAB6nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxov2ANpTNdtIu3WzC7kYooT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5gKro3nfTultfWNza3ydmVnd2//wD08aukkUwybLBGJ6oRUo+ASm4YbgZ1UIY1Dge1wfDurt59QaZ7IRzNJMYjpUPKIM2qs9ZD2/b5b9WreXGQV/AKqUKjRd796g4RlMUrDBNW663upCXKqDGcCp5VepjGlbEyH2LUoaYw6yOerTsmZdQYkSpR90pC5+3sip7HWkzi0nTE1I71cm5n/1bqZia6DnMs0MyjZ4qMoE8QkZHY3GXCFzIiJBcoUt7sSNqKKMmPTqdgQ/OWTV6F1UfMt319W6zdFHGU4gVM4Bx+uoA530IAmMBjCM7zCmyOcF+fd+Vi0lpxi5hj+yPn8Af9zjZg=</latexit><latexit sha1_base64="YgAuzWg+wuyQict0QiuK5Kx+fug=">AAAB6nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxov2ANpTNdtIu3WzC7kYooT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5gKro3nfTultfWNza3ydmVnd2//wD08aukkUwybLBGJ6oRUo+ASm4YbgZ1UIY1Dge1wfDurt59QaZ7IRzNJMYjpUPKIM2qs9ZD2/b5b9WreXGQV/AKqUKjRd796g4RlMUrDBNW663upCXKqDGcCp5VepjGlbEyH2LUoaYw6yOerTsmZdQYkSpR90pC5+3sip7HWkzi0nTE1I71cm5n/1bqZia6DnMs0MyjZ4qMoE8QkZHY3GXCFzIiJBcoUt7sSNqKKMmPTqdgQ/OWTV6F1UfMt319W6zdFHGU4gVM4Bx+uoA530IAmMBjCM7zCmyOcF+fd+Vi0lpxi5hj+yPn8Af9zjZg=</latexit><latexit sha1_base64="YgAuzWg+wuyQict0QiuK5Kx+fug=">AAAB6nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxov2ANpTNdtIu3WzC7kYooT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5gKro3nfTultfWNza3ydmVnd2//wD08aukkUwybLBGJ6oRUo+ASm4YbgZ1UIY1Dge1wfDurt59QaZ7IRzNJMYjpUPKIM2qs9ZD2/b5b9WreXGQV/AKqUKjRd796g4RlMUrDBNW663upCXKqDGcCp5VepjGlbEyH2LUoaYw6yOerTsmZdQYkSpR90pC5+3sip7HWkzi0nTE1I71cm5n/1bqZia6DnMs0MyjZ4qMoE8QkZHY3GXCFzIiJBcoUt7sSNqKKMmPTqdgQ/OWTV6F1UfMt319W6zdFHGU4gVM4Bx+uoA530IAmMBjCM7zCmyOcF+fd+Vi0lpxi5hj+yPn8Af9zjZg=</latexit><latexit sha1_base64="YgAuzWg+wuyQict0QiuK5Kx+fug=">AAAB6nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxov2ANpTNdtIu3WzC7kYooT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5gKro3nfTultfWNza3ydmVnd2//wD08aukkUwybLBGJ6oRUo+ASm4YbgZ1UIY1Dge1wfDurt59QaZ7IRzNJMYjpUPKIM2qs9ZD2/b5b9WreXGQV/AKqUKjRd796g4RlMUrDBNW663upCXKqDGcCp5VepjGlbEyH2LUoaYw6yOerTsmZdQYkSpR90pC5+3sip7HWkzi0nTE1I71cm5n/1bqZia6DnMs0MyjZ4qMoE8QkZHY3GXCFzIiJBcoUt7sSNqKKMmPTqdgQ/OWTV6F1UfMt319W6zdFHGU4gVM4Bx+uoA530IAmMBjCM7zCmyOcF+fd+Vi0lpxi5hj+yPn8Af9zjZg=</latexit>

p2
<latexit sha1_base64="v0/vP4Il+nxU5vg1a4XbDiBSmjE=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRj0YvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz0kg9qgXHGr7kJkHbwcKpCrOSh/9YcxSyOukElqTM9zE/QzqlEwyWelfmp4QtmEjnjPoqIRN362WHVGLqwzJGGs7VNIFu7viYxGxkyjwHZGFMdmtTY3/6v1Ugyv/UyoJEWu2PKjMJUEYzK/mwyF5gzl1AJlWthdCRtTTRnadEo2BG/15HVo16qe5furSuMmj6MIZ3AOl+BBHRpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hj5zPHwEGjZk=</latexit><latexit sha1_base64="v0/vP4Il+nxU5vg1a4XbDiBSmjE=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRj0YvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz0kg9qgXHGr7kJkHbwcKpCrOSh/9YcxSyOukElqTM9zE/QzqlEwyWelfmp4QtmEjnjPoqIRN362WHVGLqwzJGGs7VNIFu7viYxGxkyjwHZGFMdmtTY3/6v1Ugyv/UyoJEWu2PKjMJUEYzK/mwyF5gzl1AJlWthdCRtTTRnadEo2BG/15HVo16qe5furSuMmj6MIZ3AOl+BBHRpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hj5zPHwEGjZk=</latexit><latexit sha1_base64="v0/vP4Il+nxU5vg1a4XbDiBSmjE=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRj0YvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz0kg9qgXHGr7kJkHbwcKpCrOSh/9YcxSyOukElqTM9zE/QzqlEwyWelfmp4QtmEjnjPoqIRN362WHVGLqwzJGGs7VNIFu7viYxGxkyjwHZGFMdmtTY3/6v1Ugyv/UyoJEWu2PKjMJUEYzK/mwyF5gzl1AJlWthdCRtTTRnadEo2BG/15HVo16qe5furSuMmj6MIZ3AOl+BBHRpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hj5zPHwEGjZk=</latexit><latexit sha1_base64="v0/vP4Il+nxU5vg1a4XbDiBSmjE=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRj0YvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz0kg9qgXHGr7kJkHbwcKpCrOSh/9YcxSyOukElqTM9zE/QzqlEwyWelfmp4QtmEjnjPoqIRN362WHVGLqwzJGGs7VNIFu7viYxGxkyjwHZGFMdmtTY3/6v1Ugyv/UyoJEWu2PKjMJUEYzK/mwyF5gzl1AJlWthdCRtTTRnadEo2BG/15HVo16qe5furSuMmj6MIZ3AOl+BBHRpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hj5zPHwEGjZk=</latexit>

l + p1 + p2

<latexit sha1_base64="RHk4ZDbIqLzjaLep82iWlLhFClE=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRZBEMpuEfRY9OKxgv2QdinZNNuGJtmQZIWy9Fd48aCIV3+ON/+NabsHbX0w8Hhvhpl5keLMWN//9gpr6xubW8Xt0s7u3v5B+fCoZZJUE9okCU90J8KGciZp0zLLaUdpikXEaTsa38789hPVhiXywU4UDQUeShYzgq2THvmF6geuav1yxa/6c6BVEuSkAjka/fJXb5CQVFBpCcfGdANf2TDD2jLC6bTUSw1VmIzxkHYdlVhQE2bzg6fozCkDFCfalbRorv6eyLAwZiIi1ymwHZllbyb+53VTG1+HGZMqtVSSxaI45cgmaPY9GjBNieUTRzDRzN2KyAhrTKzLqORCCJZfXiWtWjVw/P6yUr/J4yjCCZzCOQRwBXW4gwY0gYCAZ3iFN097L96797FoLXj5zDH8gff5A5MWj5c=</latexit><latexit sha1_base64="RHk4ZDbIqLzjaLep82iWlLhFClE=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRZBEMpuEfRY9OKxgv2QdinZNNuGJtmQZIWy9Fd48aCIV3+ON/+NabsHbX0w8Hhvhpl5keLMWN//9gpr6xubW8Xt0s7u3v5B+fCoZZJUE9okCU90J8KGciZp0zLLaUdpikXEaTsa38789hPVhiXywU4UDQUeShYzgq2THvmF6geuav1yxa/6c6BVEuSkAjka/fJXb5CQVFBpCcfGdANf2TDD2jLC6bTUSw1VmIzxkHYdlVhQE2bzg6fozCkDFCfalbRorv6eyLAwZiIi1ymwHZllbyb+53VTG1+HGZMqtVSSxaI45cgmaPY9GjBNieUTRzDRzN2KyAhrTKzLqORCCJZfXiWtWjVw/P6yUr/J4yjCCZzCOQRwBXW4gwY0gYCAZ3iFN097L96797FoLXj5zDH8gff5A5MWj5c=</latexit><latexit sha1_base64="RHk4ZDbIqLzjaLep82iWlLhFClE=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRZBEMpuEfRY9OKxgv2QdinZNNuGJtmQZIWy9Fd48aCIV3+ON/+NabsHbX0w8Hhvhpl5keLMWN//9gpr6xubW8Xt0s7u3v5B+fCoZZJUE9okCU90J8KGciZp0zLLaUdpikXEaTsa38789hPVhiXywU4UDQUeShYzgq2THvmF6geuav1yxa/6c6BVEuSkAjka/fJXb5CQVFBpCcfGdANf2TDD2jLC6bTUSw1VmIzxkHYdlVhQE2bzg6fozCkDFCfalbRorv6eyLAwZiIi1ymwHZllbyb+53VTG1+HGZMqtVSSxaI45cgmaPY9GjBNieUTRzDRzN2KyAhrTKzLqORCCJZfXiWtWjVw/P6yUr/J4yjCCZzCOQRwBXW4gwY0gYCAZ3iFN097L96797FoLXj5zDH8gff5A5MWj5c=</latexit><latexit sha1_base64="RHk4ZDbIqLzjaLep82iWlLhFClE=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRZBEMpuEfRY9OKxgv2QdinZNNuGJtmQZIWy9Fd48aCIV3+ON/+NabsHbX0w8Hhvhpl5keLMWN//9gpr6xubW8Xt0s7u3v5B+fCoZZJUE9okCU90J8KGciZp0zLLaUdpikXEaTsa38789hPVhiXywU4UDQUeShYzgq2THvmF6geuav1yxa/6c6BVEuSkAjka/fJXb5CQVFBpCcfGdANf2TDD2jLC6bTUSw1VmIzxkHYdlVhQE2bzg6fozCkDFCfalbRorv6eyLAwZiIi1ymwHZllbyb+53VTG1+HGZMqtVSSxaI45cgmaPY9GjBNieUTRzDRzN2KyAhrTKzLqORCCJZfXiWtWjVw/P6yUr/J4yjCCZzCOQRwBXW4gwY0gYCAZ3iFN097L96797FoLXj5zDH8gff5A5MWj5c=</latexit>

l + p2
<latexit sha1_base64="/OQV7X9dF+cY7Tpf7RydkIMgzc4=">AAAB7HicbZBNS8NAEIYnftb6VfXoZbEIglCSIuix6MVjBdMW2lA22027dLMJuxOhhP4GLx4U8eoP8ua/cdvmoK0vLDy8M8POvGEqhUHX/XbW1jc2t7ZLO+Xdvf2Dw8rRccskmWbcZ4lMdCekhkuhuI8CJe+kmtM4lLwdju9m9fYT10Yk6hEnKQ9iOlQiEoyitXx5mfbr/UrVrblzkVXwCqhCoWa/8tUbJCyLuUImqTFdz00xyKlGwSSflnuZ4SllYzrkXYuKxtwE+XzZKTm3zoBEibZPIZm7vydyGhsziUPbGVMcmeXazPyv1s0wuglyodIMuWKLj6JMEkzI7HIyEJozlBMLlGlhdyVsRDVlaPMp2xC85ZNXoVWveZYfrqqN2yKOEpzCGVyAB9fQgHtogg8MBDzDK7w5ynlx3p2PReuaU8ycwB85nz8x9I5E</latexit><latexit sha1_base64="/OQV7X9dF+cY7Tpf7RydkIMgzc4=">AAAB7HicbZBNS8NAEIYnftb6VfXoZbEIglCSIuix6MVjBdMW2lA22027dLMJuxOhhP4GLx4U8eoP8ua/cdvmoK0vLDy8M8POvGEqhUHX/XbW1jc2t7ZLO+Xdvf2Dw8rRccskmWbcZ4lMdCekhkuhuI8CJe+kmtM4lLwdju9m9fYT10Yk6hEnKQ9iOlQiEoyitXx5mfbr/UrVrblzkVXwCqhCoWa/8tUbJCyLuUImqTFdz00xyKlGwSSflnuZ4SllYzrkXYuKxtwE+XzZKTm3zoBEibZPIZm7vydyGhsziUPbGVMcmeXazPyv1s0wuglyodIMuWKLj6JMEkzI7HIyEJozlBMLlGlhdyVsRDVlaPMp2xC85ZNXoVWveZYfrqqN2yKOEpzCGVyAB9fQgHtogg8MBDzDK7w5ynlx3p2PReuaU8ycwB85nz8x9I5E</latexit><latexit sha1_base64="/OQV7X9dF+cY7Tpf7RydkIMgzc4=">AAAB7HicbZBNS8NAEIYnftb6VfXoZbEIglCSIuix6MVjBdMW2lA22027dLMJuxOhhP4GLx4U8eoP8ua/cdvmoK0vLDy8M8POvGEqhUHX/XbW1jc2t7ZLO+Xdvf2Dw8rRccskmWbcZ4lMdCekhkuhuI8CJe+kmtM4lLwdju9m9fYT10Yk6hEnKQ9iOlQiEoyitXx5mfbr/UrVrblzkVXwCqhCoWa/8tUbJCyLuUImqTFdz00xyKlGwSSflnuZ4SllYzrkXYuKxtwE+XzZKTm3zoBEibZPIZm7vydyGhsziUPbGVMcmeXazPyv1s0wuglyodIMuWKLj6JMEkzI7HIyEJozlBMLlGlhdyVsRDVlaPMp2xC85ZNXoVWveZYfrqqN2yKOEpzCGVyAB9fQgHtogg8MBDzDK7w5ynlx3p2PReuaU8ycwB85nz8x9I5E</latexit><latexit sha1_base64="/OQV7X9dF+cY7Tpf7RydkIMgzc4=">AAAB7HicbZBNS8NAEIYnftb6VfXoZbEIglCSIuix6MVjBdMW2lA22027dLMJuxOhhP4GLx4U8eoP8ua/cdvmoK0vLDy8M8POvGEqhUHX/XbW1jc2t7ZLO+Xdvf2Dw8rRccskmWbcZ4lMdCekhkuhuI8CJe+kmtM4lLwdju9m9fYT10Yk6hEnKQ9iOlQiEoyitXx5mfbr/UrVrblzkVXwCqhCoWa/8tUbJCyLuUImqTFdz00xyKlGwSSflnuZ4SllYzrkXYuKxtwE+XzZKTm3zoBEibZPIZm7vydyGhsziUPbGVMcmeXazPyv1s0wuglyodIMuWKLj6JMEkzI7HIyEJozlBMLlGlhdyVsRDVlaPMp2xC85ZNXoVWveZYfrqqN2yKOEpzCGVyAB9fQgHtogg8MBDzDK7w5ynlx3p2PReuaU8ycwB85nz8x9I5E</latexit>

l
<latexit sha1_base64="BM8fe6iHHCoJyPx8AuUhP7leDek=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeqx6MVjC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk7t5vfOESvNYPphpgn5ER5KHnFFjraYYlCtu1V2IrIOXQwVyNQblr/4wZmmE0jBBte55bmL8jCrDmcBZqZ9qTCib0BH2LEoaofazxaIzcmGdIQljZZ80ZOH+nshopPU0CmxnRM1Yr9bm5n+1XmrCGz/jMkkNSrb8KEwFMTGZX02GXCEzYmqBMsXtroSNqaLM2GxKNgRv9eR1aF9VPcvN60r9No+jCGdwDpfgQQ3qcA8NaAEDhGd4hTfn0Xlx3p2PZWvByWdO4Y+czx/UC4zw</latexit><latexit sha1_base64="BM8fe6iHHCoJyPx8AuUhP7leDek=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeqx6MVjC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk7t5vfOESvNYPphpgn5ER5KHnFFjraYYlCtu1V2IrIOXQwVyNQblr/4wZmmE0jBBte55bmL8jCrDmcBZqZ9qTCib0BH2LEoaofazxaIzcmGdIQljZZ80ZOH+nshopPU0CmxnRM1Yr9bm5n+1XmrCGz/jMkkNSrb8KEwFMTGZX02GXCEzYmqBMsXtroSNqaLM2GxKNgRv9eR1aF9VPcvN60r9No+jCGdwDpfgQQ3qcA8NaAEDhGd4hTfn0Xlx3p2PZWvByWdO4Y+czx/UC4zw</latexit><latexit sha1_base64="BM8fe6iHHCoJyPx8AuUhP7leDek=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeqx6MVjC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk7t5vfOESvNYPphpgn5ER5KHnFFjraYYlCtu1V2IrIOXQwVyNQblr/4wZmmE0jBBte55bmL8jCrDmcBZqZ9qTCib0BH2LEoaofazxaIzcmGdIQljZZ80ZOH+nshopPU0CmxnRM1Yr9bm5n+1XmrCGz/jMkkNSrb8KEwFMTGZX02GXCEzYmqBMsXtroSNqaLM2GxKNgRv9eR1aF9VPcvN60r9No+jCGdwDpfgQQ3qcA8NaAEDhGd4hTfn0Xlx3p2PZWvByWdO4Y+czx/UC4zw</latexit><latexit sha1_base64="BM8fe6iHHCoJyPx8AuUhP7leDek=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeqx6MVjC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk7t5vfOESvNYPphpgn5ER5KHnFFjraYYlCtu1V2IrIOXQwVyNQblr/4wZmmE0jBBte55bmL8jCrDmcBZqZ9qTCib0BH2LEoaofazxaIzcmGdIQljZZ80ZOH+nshopPU0CmxnRM1Yr9bm5n+1XmrCGz/jMkkNSrb8KEwFMTGZX02GXCEzYmqBMsXtroSNqaLM2GxKNgRv9eR1aF9VPcvN60r9No+jCGdwDpfgQQ3qcA8NaAEDhGd4hTfn0Xlx3p2PZWvByWdO4Y+czx/UC4zw</latexit>

p3
<latexit sha1_base64="uxN1TeCtw/JouRtuqyBIwjhbrqs=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FQSLeix6MVjRfsBbSib7aRdutmE3Y1QQn+CFw+KePUXefPfuG1z0NYXFh7emWFn3iARXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKXjVDFssljEqhNQjYJLbBpuBHYShTQKBLaD8e2s3n5CpXksH80kQT+iQ8lDzqix1kPSv+yXK27VnYusgpdDBXI1+uWv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtShqh9rP5qlNyZp0BCWNlnzRk7v6eyGik9SQKbGdEzUgv12bmf7VuasJrP+MySQ1KtvgoTAUxMZndTQZcITNiYoEyxe2uhI2ooszYdEo2BG/55FVoXVQ9y/e1Sv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzmfPwKKjZo=</latexit><latexit sha1_base64="uxN1TeCtw/JouRtuqyBIwjhbrqs=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FQSLeix6MVjRfsBbSib7aRdutmE3Y1QQn+CFw+KePUXefPfuG1z0NYXFh7emWFn3iARXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKXjVDFssljEqhNQjYJLbBpuBHYShTQKBLaD8e2s3n5CpXksH80kQT+iQ8lDzqix1kPSv+yXK27VnYusgpdDBXI1+uWv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtShqh9rP5qlNyZp0BCWNlnzRk7v6eyGik9SQKbGdEzUgv12bmf7VuasJrP+MySQ1KtvgoTAUxMZndTQZcITNiYoEyxe2uhI2ooszYdEo2BG/55FVoXVQ9y/e1Sv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzmfPwKKjZo=</latexit><latexit sha1_base64="uxN1TeCtw/JouRtuqyBIwjhbrqs=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FQSLeix6MVjRfsBbSib7aRdutmE3Y1QQn+CFw+KePUXefPfuG1z0NYXFh7emWFn3iARXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKXjVDFssljEqhNQjYJLbBpuBHYShTQKBLaD8e2s3n5CpXksH80kQT+iQ8lDzqix1kPSv+yXK27VnYusgpdDBXI1+uWv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtShqh9rP5qlNyZp0BCWNlnzRk7v6eyGik9SQKbGdEzUgv12bmf7VuasJrP+MySQ1KtvgoTAUxMZndTQZcITNiYoEyxe2uhI2ooszYdEo2BG/55FVoXVQ9y/e1Sv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzmfPwKKjZo=</latexit><latexit sha1_base64="uxN1TeCtw/JouRtuqyBIwjhbrqs=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FQSLeix6MVjRfsBbSib7aRdutmE3Y1QQn+CFw+KePUXefPfuG1z0NYXFh7emWFn3iARXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKXjVDFssljEqhNQjYJLbBpuBHYShTQKBLaD8e2s3n5CpXksH80kQT+iQ8lDzqix1kPSv+yXK27VnYusgpdDBXI1+uWv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtShqh9rP5qlNyZp0BCWNlnzRk7v6eyGik9SQKbGdEzUgv12bmf7VuasJrP+MySQ1KtvgoTAUxMZndTQZcITNiYoEyxe2uhI2ooszYdEo2BG/55FVoXVQ9y/e1Sv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzmfPwKKjZo=</latexit>

p4
<latexit sha1_base64="XjExIuN720nXN9wFn/WS9ivKs8o=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FQSKdRj0YvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz0kg9qgXHGr7kJkHbwcKpCrOSh/9YcxSyOukElqTM9zE/QzqlEwyWelfmp4QtmEjnjPoqIRN362WHVGLqwzJGGs7VNIFu7viYxGxkyjwHZGFMdmtTY3/6v1Ugyv/UyoJEWu2PKjMJUEYzK/mwyF5gzl1AJlWthdCRtTTRnadEo2BG/15HVoX1U9y/e1SuMmj6MIZ3AOl+BBHRpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hj5zPHwQOjZs=</latexit><latexit sha1_base64="XjExIuN720nXN9wFn/WS9ivKs8o=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FQSKdRj0YvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz0kg9qgXHGr7kJkHbwcKpCrOSh/9YcxSyOukElqTM9zE/QzqlEwyWelfmp4QtmEjnjPoqIRN362WHVGLqwzJGGs7VNIFu7viYxGxkyjwHZGFMdmtTY3/6v1Ugyv/UyoJEWu2PKjMJUEYzK/mwyF5gzl1AJlWthdCRtTTRnadEo2BG/15HVoX1U9y/e1SuMmj6MIZ3AOl+BBHRpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hj5zPHwQOjZs=</latexit><latexit sha1_base64="XjExIuN720nXN9wFn/WS9ivKs8o=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FQSKdRj0YvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz0kg9qgXHGr7kJkHbwcKpCrOSh/9YcxSyOukElqTM9zE/QzqlEwyWelfmp4QtmEjnjPoqIRN362WHVGLqwzJGGs7VNIFu7viYxGxkyjwHZGFMdmtTY3/6v1Ugyv/UyoJEWu2PKjMJUEYzK/mwyF5gzl1AJlWthdCRtTTRnadEo2BG/15HVoX1U9y/e1SuMmj6MIZ3AOl+BBHRpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hj5zPHwQOjZs=</latexit><latexit sha1_base64="XjExIuN720nXN9wFn/WS9ivKs8o=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FQSKdRj0YvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz0kg9qgXHGr7kJkHbwcKpCrOSh/9YcxSyOukElqTM9zE/QzqlEwyWelfmp4QtmEjnjPoqIRN362WHVGLqwzJGGs7VNIFu7viYxGxkyjwHZGFMdmtTY3/6v1Ugyv/UyoJEWu2PKjMJUEYzK/mwyF5gzl1AJlWthdCRtTTRnadEo2BG/15HVoX1U9y/e1SuMmj6MIZ3AOl+BBHRpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hj5zPHwQOjZs=</latexit>

(b) V (φ) = g
6
φ3.

FIG. 2: Computing the anomalous dimension of (N4)L in the two theories.

Once we unerstand the RG flow of the basic Lagrangian (D1) we start perturbing it by other leader interactions.
The couplings of those interactions are kept infinitesimal, as we are just interested to know their scaling dimension.
In other words, we are computing anomalous dimensions of various local operators of the theory, We do it in the
standard way by defining the renormalization constant ZO via (O)B = ZOO where (O)B is a bare operator and O a
renormalized operator. Then we have the anomalous dimension γO =

[
∂

∂(log µ)ZO
]
λ=λ?

.

Let us demonstrate the computation with the example of (N4)L = (χ2
i )

2 which is the SN leader with the lowest
classical dimension. We use the correlation function 〈(N4)L(p = 0)χi(p1)χj(p2)χk(p3)χl(p4)〉 and remove its ε → 0
singularities to compute Z(N4)L . We choose this operator since its leading correction comes from a nontrivial 2-loop
diagram shown in Fig. 2a.

The evaluation of this 2-loop integral is not uncommon in the φ4 literature [29]. The result is:

H2λ2

(2π)2d

∫
ddl1d

dl2
l21(l22)2(l1 + p3 + p4)2((l1 + l2 − p1)2)2

=
H2λ2

2(4π)6ε
+O

(
ε0
)
. (D3)

Requiring that the ε−1 divergence cancels (and taking into account the fundamental field renormalizations) we get:

Z−1
(N4)L

= 1− 4

3

H2λ2

(4π)6ε
=⇒ γ(N4)L = − 8

27
ε2. (D4)

All other operators presented in the main text that have a 2-loop leading anomalous dimension involve the same loop
integral. For the ones with a 1-loop leading correction the computation is similar to that of the beta function. The
computations of beta function, field renormalization and anomalous dimensions of all operators considered in our
work are shown in detail in App. H of [31].

For the V (φ) = g
6φ

3 potential in d = 8− ε we define the bare quantities and renormalization constants in a similar
way. The beta function and field renormalization constants are obtained from e.g. the correlators 〈χi(p1)χj(p2)ϕ(p3)〉
and 〈χi(p1)χj(p2)〉 respectively. We get a fixed point at g2

? = − 2
3

(4π)4ε
H . The field anomalous dimensions are

γϕ = γω = γχ = − ε
18 . As expected these are same as the usual φ3 theory in d = 6− ε and the computations are also

exactly similar (see e.g. [62] for the usual φ3 theory literature).
We may once again focus on the operator (N4)L and compute its anomalous dimension. In this case the leading

correction comes from the diagram as shown in Fig. 2b. The loop integral is similar to that of the beta function and
computed using standard techniques of the usual φ3 theory. It gives

γ(N4)L =
10

9
ε . (D5)

All other operators presented in the main text involve the same 1-loop integral. Details of all these computations will
be given in a dedicated paper [38].
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