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Abstract: We present a novel cortically-inspired image completion algorithm. It uses five-dimensional
sub-Riemannian cortical geometry, modeling the orientation, spatial frequency and phase-selective
behavior of the cells in the visual cortex. The algorithm extracts the orientation, frequency and phase
information existing in a given two-dimensional corrupted input image via a Gabor transform and
represents those values in terms of cortical cell output responses in the model geometry. Then, it
performs completion via a diffusion concentrated in a neighborhood along the neural connections
within the model geometry. The diffusion models the activity propagation integrating orientation,
frequency and phase features along the neural connections. Finally, the algorithm transforms the
diffused and completed output responses back to the two-dimensional image plane.

Keywords: image completion; visual cortex; sub-Riemannian geometry; neurogeometry; differential
geometry; Gabor function

1. Introduction

Visual perception has drawn the attention of experts from fields of philosophy, psychol-
ogy and neuroscience, as well as the attention of mathematicians and physicists working on
perceptual modeling. The question of how we perceive was studied by Edmund Husserl in
their pioneering philosophical texts in phenomenology [1–3]. With regard to psychology,
we can think of the well-known Berlin school of experimental psychology, Gestalt psychology
school, which formulated what is known today as Gestalt psychology of perception [4–6].

Gestalt psychology is a theory which attempts to provide the principles giving rise
to a meaningful global perception of a visual scene by starting from the local properties
of the objects within the scene. The main idea of Gestalt psychology is that the mind
constructs the global whole by grouping similar fragments rather than purely summing
the fragments as if they were indifferent. In terms of visual perception, those similar
fragments can be thought of as point stimuli with the same (or closely) valued features
of the same type. In the present paper, we consider orientation, spatial frequency and
phase as features. We extract these features from a given two-dimensional grayscale input
image which is partially occluded and reveal those occluded parts via an integration of the
extracted features. By doing so, we follow the Gestalt principle, which is called the law of
good continuity, to provide a feature integration mechanism reconstructing the occluded
parts in the image.

The law of good continuity states that we group aligned pieces rather than those
with sharp abrupt directional changes when we perceive an object as a whole which is
formed by fragments; see Figure 1. This law was studied by Field, Hayes and Hess [7]
from a psychophysical point of view. They studied how the visual system captures aligned
fragments constituting lines or cocircular curves on a background of randomly oriented
fragments; see Figure 2. They noticed that the aligned patterns captured by the visual
system were locally overlapping with what they called association fields, which are shown
in Figure 3. Those fields provide a geometric characterization of the law of good continuity,
and they can be interpreted as the psychophysical representations of the neural connections
which are biologically implemented in the visual cortex.
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Figure 1. An example of the law of good continuity. We capture the curve on the bottom left as the
curve underlying the aligned fragments on the top left; we do not capture any curve underlying the
fragments on the top right due to the abruptly changing orientation angles of the fragments.

Figure 2. Two experimental settings from Field, Hayes and Hess [7]. A stimuli with aligned patches
which we capture (left) and a stimuli plus the background with randomly oriented patches (right)
are shown. Abrupt changes in the fragment orientations make it difficult to detect the aligned pattern
in the bottom row.

The visual system is capable of perceiving a lacunar curve as complete by capturing
the whole curve pattern underlying the lacunar curve; see Figure 1. This is due to a general
phenomena which is called perceptual completion. This phenomena provides the perception
of contours and figures which are actually not present in the visual stimulus. We call such
contours subjective contours.

Kanizsa [8,9] explains two categories of completion: modal completion and amodal
completion. The first one refers to completion following the modality of vision. There is no
direct stimulus corresponding to the object, yet the perceived object is indistinguishable
from the real stimuli and we perceive it as a whole. In the second category, the completion
does not make use of the modality of vision. In other words, the stimulus corresponding
to the object is partial, but we still perceive the object as complete. In this case, the object
is recognized as a whole, although only some specific fragments of the object evoke our
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sensory receptors. Examples of those two categories of completion resulting in subjective
contours are the Kanizsa triangle and Ehrenstein’s illusion, which are illustrated in Figure 4.
We focus on amodal completion in the present work, and provide an approach which
reconstructs the occluded parts in a compatible way with the law of good continuity and
association fields, where those two notions are considered in an extended way based on
position, orientation, frequency and phase alignment.

Figure 3. Top: association fields aligned with a horizontal patch as shown by Field, Hayes and
Hess [7]. Bottom: solid curves represent the association fields between strongly associated fragments,
and the dashed ones imply no fields between weakly associated fragments.

Figure 4. Left: Kanizsa triangle. There is no direct stimulus, yet we perceive a white triangle on top
of the rest (modal completion). We perceive another triangular whose border is marked by the black
lines on the bottom layer (amodal completion). Right: Ehrenstein illusion. We perceive a white disk
around the center despite the absence of a direct stimulus (modal completion). We recognize that
each vertical, horizontal or diagonal line fragment comprises a whole line which is occluded by the
white disk (amodal completion).

The primary visual cortex (V1) is the main area of the cerebral cortex which is re-
sponsible for the first step processing of visual input so that a proper visual perception is
achieved at a higher perceptual level. V1 contains a particular family of neurons, simple cells.
These neurons are locally sensitive to visual features, such as orientation [10–14], spatial
frequency [15–22], phase [23–26], scale [27] and ocular dominance [17,28,29]. The simple
cells are organized in a hypercolumnar architecture, which was first discovered by Hubel
and Wiesel [13]. In this architecture, a hypercolumn is assigned to each point (x, y) of
the retinal plane M ' R2, and the hypercolumn contains all the simple cells sensitive to
a particular value of the same feature type. The simple cells are able to locally exctract
the feature values of the visual stimulus, and the activity propagation along the neural
connections between the simple cells integrates those values to a coherent global unity.
Those two mechanisms, the feature detection and the neural connectivity, comprise the
functional geometry of V1.

A simple cell is identified by its receptive field, which is defined as the domain of the
retina to which the cell is sensitive and connected through the retino-geniculo-cortical paths.
Once a receptive field is stimulated, it evokes a spike transmitted to the corresponding
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simple cells. Each one of those simple cells produces a response to the spike. This response
is what is known as receptive profile.

Hoffman proposed modeling the hypercolumnar architecture of V1 in terms of a
contact bundle structure [30,31]. This framework was followed by Petitot and Tondut,
where they improved the contact bundle structure and proposed a boundary completion
method within the corresponding contact geometry [32]. Moreover, they geometrically
interpreted the association fields as the integration along the vector fields generating the
contact geometry. This setting was developed further by Citti and Sarti [33] to a framework
in which they introduced a group-based approach to study the geometric modeling of V1
hypercolumnar architecture and the functional connectivity. They used the Gabor function
as the receptive profile model and proposed the sub-Riemannian geometry of the group of
rotations and translations (SE(2)) as the V1 model geometry. This framework was extended
to higher dimensional geometries where scale [34] and velocity [35,36] were taken into
account. Various biologically inspired models for optical illusions [37–41] and orientation
preference maps [42], as well as frameworks for image processing [43–50], for pattern
recognition [51] and for medical applications [52,53], were proposed in the sub-Riemannian
geometry of SE(2).

The model presented in [33] is an abstract geometric description of the orientation-
sensitive V1 hypercolumnar architecture reported by Hubel and Wiesel [10–12] . This
description provides a good phenomenological approximation of the biologically imple-
mented V1 neural connections, which were reported by Bosking et al. [54]. In this model
framework, the projections of a particular family of curves onto the two-dimensional
image plane provide good approximations of the association fields. In other words, these
curves model the V1 neural connections; see Figure 5. They are called horizontal integral
curves and they are obtained by integration along the vector fields generating the SE(2)
sub-Riemannian geometry. For this reason, the approach considered by Citti, Petitot and
Sarti and used in our present paper is referred to as biologically inspired.

Figure 5. Left: real association fields. Right: projections of SE(2) horizontal integral curves. Figures
are adapted from [7,33].

The sub-Riemannian model geometry proposed in [33] was extended in a recent work
to multi-frequency and multi-phase setting [55]. The extended model corresponds to a
natural geometry which is derived [55,56] from one of the very first perceptual mechanisms
of vision: receptive profile. It is different from the classical approach, in which a suitable
geometry is assigned to the neural responses represented in terms of receptive profiles.
This extended model takes advantage of orientations, spatial frequencies and phases in
a given 2D input image to encode the visual information. This is not the case in the
sub-Riemannian model proposed in [33], which uses the SE(2) geometry, and in which
only orientation can be represented as a visual feature. The extended model geometry
was applied to enhancement on images in which several spatial frequencies were equally
present [55], such as texture images. In the present work, we employ the same extended
multi-frequency sub-Riemannian setting presented in [55] and propose an image comple-
tion algorithm within, which is aimed for use with grayscale texture images containing
multiple spatial frequencies.

In Section 2, we explain the model framework which was introduced in [55] and its
relation to our completion algorithm. In Section 3, we present a specific family of integral
curves defined in the model geometry, which are the models of the neural connections
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in V1. Then, in Section 5, we introduce our completion algorithm, its discrete scheme
and the corresponding pseudocode. Finally, we provide our simulation results and their
comparison to some results obtained previously in [48,50]. At the end, we give the main
conclusions and some perspectives for related future research.

2. Model Framework

In this section, we explain the cortical model geometry in which our completion
algorithm is defined. This model framework is composed of two mechanisms: feature
value extraction and neural connectivity [55].

2.1. Feature Value Extraction

Each simple cell is sensitive to a specific part of the retina, which is called the receptive
field. Once the receptive field is stimulated by visual stimulus, the retinal cells in the
receptive field produce spikes which are transmitted through retino-geniculo-cortical
pathways to the related simple cells in V1. Each simple cell generates a response to those
spikes, which is the receptive profile corresponding to the simple cell. In other words,
the receptive profile is the impulse response function of the simple cell. The simple cell
receptive profile which is sensitive to the stimulus located at q ∈ M on the image plane
M and selective to the set of feature values z ∈ S1 ×R+ × S1 is denoted by Ψ(q,z), where
q = (q1, q2) and z = (θ, f , φ) together denote a fixed point (q, z) in Q'R2 × S1 ×R+ × S1.
Here, Q represents the five-dimensional sub-Riemannian V1 model geometry.

Simple cell receptive profiles can be modeled in terms of Gabor functions [33,41,55,57].
In the orientation, frequency and phase selective model framework, the receptive profile of
a simple cell is a Gabor function of the following type:

Ψ(q,z)(x, y, s) :=
1

2 σ2 e−i
(

r·(x−q1, y−q2)−(s−φ)
)

e−
|x−q1 |

2+|y−q2 |2

2 σ2 , (1)

where f > 0 represents the spatial frequency (spatial frequency is found via f = 1
λ , where

λ > 0 denotes the wavelength), r = (r1, r2) = (− f sin θ, f cos θ) and σ > 0 is the scale
of the localizing Gaussian. The complex exponential is the wave content, and it is the
main component capturing the orientation, frequency and phase information of the objects
in a given two-dimensional image. The second exponential is Gaussian, which spatially
localizes the receptive profile around the point (q1, q2). Frequency f determines how many
wave peaks are found within the localizing Gaussian window; see Figure 6. As the number
of wave peaks increases, the Gabor function can detect higher frequencies. Orientation θ is
the orientation angle to which the simple cell receptive profile is sensitive. Parameter φ
is the reference phase and it creates a phase shift in the waves of the Gabor function as it
changes.Here, s− φ represents the phase centered at φ and parameter φ is the reference
phase; it creates a phase shift in the waves of the Gabor function as it changes. In other
words, the even and odd symmetricity of the receptive profile is modulated with phase
shift value to take into account all possible receptive profile patterns which can occur at
a given time instant. Note that q = (q1, q2) and (x, y) denote the spatial parameters and
spatial variables, respectively. Therefore, the vector fields in the cortical space Q are written
in terms of derivatives with respect to the variables x and y, as is explained further.

We always consider a two-dimensional grayscale static image as a visual input. Each
pixel on the image is thought of as a point stimulus. Normally, once the subject is exposed
to the image, each pixel is projected onto the retinal surface, from which it is mapped to
the cortical surface via retino-cortical maps. For the sake of simplicity, we disregard the
coordinate map between the image plane and the retinal surface, as well as the retino-
cortical map between the retinal surface and the V1 surface. We assume that the image
plane is identically mapped to the retinal and cortical surfaces. We assume the responses of
the simple cells to be linear and we compute the output response of a simple cell located at
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(q, z) ∈ Q to a given two-dimensional grayscale image I : M→ [0, 1] via the convolution
with the Gabor filter:

OI(q, z) =
∫

M
Ψ(q,z)(x, y, 0)I(x, y) dx dy. (2)

We apply the convolution for every feature value z and for every point q. Consequently,
we obtain the output responses of all receptive profiles corresponding to the V1 simple
cells. We sometimes call this set of output responses lifted image and the Gabor transform,
lifting. It is equivalent to the result of a multi-frequency Gabor transform applied to the
given two-dimensional input image. Those output responses are representations of the
feature values in the five-dimensional V1 model geometry Q.

Figure 6. Two Gabor functions with low (left column) and high (right column) spatial frequencies.
Top row: even (real) component of the Gabor functions. Bottom row: odd (imaginary) components.

In general, static receptive profile models based on linear filter banks and static
nonlinearities [33,55,58–61] provide good responses to simple stimuli. However, their
responses to complicated stimuli, such as natural images, are approximate up to a certain
level. Several mechanisms such as response normalization, gain controls, cross-orientation
suppression and intra-cortical modulation can result in radical changes in the receptive
profile shape. Therefore, the aforementioned Gabor filter bank model for the receptive
profiles should be considered as a first approximation of highly complex real dynamic
receptive profile.

We employ all frequency components of the Gabor transform during the lifting.
Therefore, exact inverse Gabor transform is valid, and we use it to obtain the corresponding
two-dimensional image to the output responses:

I(q1, q2) =

√
f

‖Ψ‖L2

∫
Q

OI(x, y, z)Ψ̄(x,y,z)(q1, q2, 0) dx dy dz, (3)

with Ψ̄ denoting the complex conjugate of the corresponding Gabor function Ψ.

2.2. Horizontal Connectivity

Lifting provides the output responses, which are complex valued functions in the
five-dimensional model geometry Q. Each output response encodes the feature values
corresponding to the orientation, frequency and phase of a pixel defined on the two-
dimensional image plane. The output responses, the simple cells, are isolated from each
other once lifting from the image plane M to the model geometry Q takes place. Therefore,
the model geometry Q should be endowed with an integration mechanism which provides
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activity propagation, and therefore interactivity, between simple cells. The activity propa-
gation provides an integrated form of the local feature vectors associated with the lifted
image. This propagation is concentrated along a specific family of integral curves, horizontal
integral curves, corresponding to the model geometry Q. The horizontal integral curves can
be thought of as the models of the long range lateral connections, which connect the simple
cells residing in different hypercolumns but selective to the same (or close) feature values.

We may associate the following differential one-form to each receptive profile de-
scribed by (1):

Θ(θ, f ) = − f sin(θ) dx + f cos(θ) dy− ds. (4)

The one-form naturally induces the horizontal vector fields corresponding to the model
geometry Q. The horizontal vector fields are formally defined as the elements of

ker(Θ) := {X ∈ TQ : Θ(X) = 0}, (5)

where TQ denotes the tangent bundle of Q. The horizontal vector fields corresponding to
Q are found from (5) as

X1 = cos(θ) ∂x + sin(θ) ∂y, X2 = ∂θ ,

X3 =− sin(θ) ∂x + cos(θ) ∂y + f ∂s, X4 = ∂ f .
(6)

Those horizontal vector fields endow Q with a sub-Riemannian structure, as explained
in [55]. The sub-Riemannian structure is composed of the manifold Q, the horizontal
tangent bundle HQ, which is a subbundle of the tangent bundle TQ, and a scalar product
g describing a notion of distance on Q. It is expressed as (Q, HQ, g). The horizontal vector
fields span the horizontal tangent space H(q,z)Q at each (q, z) ∈ Q. The horizontal tangent
space can be thought of as the analog of the Euclidean tangent space. In other words,
differential operators such as gradient and Laplacian are defined in terms of the horizontal
vector fields in the sub-Riemannian geometry. We remark that the differential operators are
degenerate since the horizontal tangent space is spanned by four vector fields although it
corresponds to Q, which is a five-dimensional geometry. The horizontal integral curves are
defined as the integrated curves along the horizontal vector fields given in (6). Despite the
degenerate character of the horizontal tangent space H(q,z)Q, they provide full connectivity
in Q due to the fact that X1 and X2 do not commute, as we see below.

Nonzero commutators of the horizontal vector fields are found as

[X1, X2] = sin(θ) ∂x − cos(θ) ∂y,

[X2, X3] =− cos(θ) ∂x − sin(θ) ∂y,

[X3, X4] =− ∂s.

(7)

The horizontal vector fields are bracket generating since

T(q,z)Q = span(X1, X2, X3, X4, [X1, X2])
∣∣
(q,z), (8)

for all (q, z) ∈ Q where T(q,z)Q denotes the tangent space at (q, z) ∈ Q. Indeed, (8) shows
that the horizontal vector fields fulfill the Hörmander condition [62]. Consequently, they
provide the connectivity of any two points in Q through the horizontal integral curves
due to the Chow–Rashevskii theorem [63–65]. This connectivity property has particular
importance since it ensures that any two points in the V1 sub-Riemannian model geometry
Q can be connected via the horizontal integral curves, which are the models of the neural
connections implemented biologically in V1 and are close approximations of the association
fields at the psychophysical level.

We emphasize that the horizontal tangent space is a natural consequence of the choice
of the receptive profile function, which is the Gabor function given in (1). The one-form
given in (4) induces the horizontal vector fields, which characterize the horizontal tangent
space at every point in the cortical space. The horizontal tangent space is endowed with
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the aformentioned scalar product g, which is defined only in the horizontal tangent space.
This scalar product provides a measure of the length ` of a horizontal curve γ connecting
not only two spatial points, but also the corresponding orientation, frequency and phase
values to those two spatial points. Therefore, the notion of length defined on the horizontal
tangent space H(q,z) takes into account how close feature values two simple cells are
sensitive to. The length of a horizontal curve is described via `(γ) =

∫ √
g(γ′(t), γ′(t)) dt.

The horizontal curve γ connecting two points in the cortical space Q, i.e., two simple
cells, and minimizing the length ` is called geodesic. Geodesics can be used as models
of the neural connectivity in which a principle of minimizing the energy of activated
neurons can also be taken into account. However, the computation of geodesics and the
geodesic flow in a high-dimensional sub-Riemannian geometry such as Q is cumbersome
and too mathematically involved. Therefore, in the present paper, we restrict ourselves to
horizontal curves in general, and consider establishing the neural connectivity based on
geodesics in Q as the refinement of the presented framework here.

3. Horizontal Integral Curves

The association fields were proposed to be modeled by the horizontal integral curves
of SE(2) in the classical orientation-sensitive framework [33]. A similar line of thought was
followed in [55], and it was proposed to employ the horizontal integral curves correspond-
ing to the the five-dimensional sub-Riemannian geometry Q as the cortical counterparts
of the association fields. The projection of those horizontal integral curves of Q are the
same as the projections of the horizontal integral curves of SE(2), which are shown in
Figure 5. It was conjectured in [55] that the horizontal integral curves of Q coincide with
the long-range lateral connections between orientation, frequency and phase-selective
simple cells in V1.

Let us denote a time interval by I = [0, T] with 0 < T < ∞ and consider a
horizontal integral curve (q1, q2, θ, f , φ) = γ : I → M associated with the horizon-
tal vector fields given in (6). We denote the initial point of γ by α̂ = (q̂1, q̂2, θ̂, f̂ , φ̂)
and its velocity by γ′. At each time instant t ∈ I , the velocity is written as a vector
γ′(t) ∈ span(X1, X2, X3, X4)

(
γ(t)

)
at γ(t) = (q1(t), q2(t), θ(t), f (t), φ(t)) ∈ Q. One way

to compute the horizontal integral curves starting from the initial point α̂ is to solve the
following ODE system for all t ∈ I :

γ′(t) = (c1X1 + c2X2 + c3X3 + c4X4)|γ(t), (9)

where c2,3,4 denote the coefficients. In the activity propagation machinery which we propose
here, the propagation is concentrated along a neighborhood of the horizontal integral curves
with constant coefficients c2,3,4 in the cortical space Q [55]; see Figures 7 and 8. However,
the coefficients need not necessarily be constants in the generic framework of horizontal
integral curves.

Figure 7. A horizontal integral curve along the vector field X1 + X2. It represents an orientation fiber
once f and φ are fixed. The tangent planes spanned by X1, X2 (left) and X3, X4 (right) are shown at
six points on the curve.
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Figure 8. Horizontal integral curve fans corresponding to X1 + c2X2 (left) and X3 + c4X4 (right)
where c2 and c4 are varied.

4. Sub-Riemannian Diffusion in the Cortical Space

The activity propagation was proposed to be modeled in terms of a sub-Riemannian
diffusion process in the classical orientation-sensitive SE(2) framework [33]. This sub-
Riemannian diffusion process can be interpreted as the model of the interacting neural
dynamics defined in terms of the corresponding horizontal vector fields, and it was applied
to several biologically inspired image processing algorithms [43–45,50].

We follow a similar approach as in [33] and define a sub-Riemannian diffusion pro-
cedure in the five-dimensional model geometry Q. We denote by Σ ⊂ Q the subspace in
which all output responses OIs are defined. These are the output responses obtained as the
lifting of the two-dimensional input image I. We denote by Π ⊂ Σ the subspace in which
we only find the output responses corresponding to the part to be completed in the image
I. The sub-Riemannian diffusion operator for all (q, z) ∈ Σ is defined as

L := X2
1 + β2

2X2
2 + β2

3X2
3 + β2

4X2
4 ,

where X2
i denotes the ith second-order horizontal derivative, and β2,3,4 are coefficients as-

suring the unit coherency in spatial, orientation, frequency and phase dimensions. The sub-
Riemannian diffusion is described for all (q, z) ∈ Σ by

∂tu(q, z, t) = Lu(q, z, t), u(q, z, 0) = OI(q, z), t ∈ (0, T], 0 < T < ∞, (10)

with the corrupted region marked by the boundary conditions given by u(q̃, z̃, t) = OI(q̃, z̃)
for all (q̃, z̃) ∈ Σ−Π and t ∈ (0, T]. Here, T denotes a sufficiently large final time and
u : Q × [0, T] → C stands for the output responses evolving in time. We denote the
number of orientations, frequencies and phases of the N × N image I by K, L and M,
respectively. We consider the cortical space to be periodic in orientation, frequency and
phase dimensions to guarantee the diffusion to remain in axes boundaries corresponding
to those dimensions. Then, the coefficients are found as:

β2 =
K

N
√

2
, β3 =

L
N
√

2
, β4 =

M
N
√

2
.

We note that span(X1, X2) and span(X3, X4) define two subspaces of the horizontal
tangent space H(q,z)Q at each point (q, z) ∈ Q. This allows us to decompose the sub-
Riemannian horizontal tangent space into two components of which each one is defined by
the vector fields of those two subspaces of T(q,z)Q. Consequently, we may approximate the
sub-Riemannian diffusion described by (10) as a diffusion applied in each frequency and
phase channel separately. More precisely, we apply the classical sub-Riemannian diffusion
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procedure defined in SE(2) [33,45,50] for each frequency and phase channel separately by
using the SE(2) sub-Riemannian diffusion operator

L̃ = X2
1 + β2

2X2
2 , (11)

where β2 provides the unit coherency between the diffusion components in spatial and
orientation dimensions. The approximate sub-Riemannian procedure is described by

∂tu(q, z, t) = L̃u(q, z, t), u(q, z, 0) = OI(q, z), (12)

with the boundary conditions given as u(q̃, z̃, t) = OI(q̃, z̃). The advantage of such approxi-
mation is that we perform the diffusion procedure in L three-dimensional spaces instead
of in a five-dimensional geometry by still taking advantage of the frequency information
extracted from the input image. We implement both the exact and the approximate proce-
dures by using a simple forward Euler scheme in which the derivatives are implemented
in terms of B-spline interpolated central finite differences.

5. Algorithm

Our algorithm is based on three steps. Once a two-dimensional grayscale input image
is given, the first step is lifting the image via the convolution with Gabor functions, as given
in (2). This provides the output responses which encode the orientation, frequency, phase
values and which are represented in the five-dimensional model geometry. The second
step is the sub-Riemannian diffusion described by (10) or by (12) if the approximate setting
is used. In time, we integrate (10) for the exact framework and (12) for the approximate
framework by applying it on the output responses via iterating it with the time step ∆t until
the final time T, at which the steady state is reached, i.e., ∂tu = 0. We employ an explicit
method where we use B-splined interpolated finite differences to implement the horizontal
vector fields given in (6). The final step is to transform back the evolved output responses
to the two-dimensional image plane. This is achived by the inverse Gabor transform given
by (3).

5.1. Discretization of the Output Responses

We employ a uniform spatial grid to discretize the image plane such that

I[i, j] = I(i∆x, j∆y), (13)

where i, j ∈ {1, 2, . . . , N}, with N denoting the image size and ∆x, ∆y ∈ R+ denoting
the pixel width. In our case, the input images are square images and ∆x = ∆y = 1
in terms of pixel unit. We denote the number of samples in the orientation dimension
by K, in the frequency dimension by L and in the phase dimension by M. We express
the distance between two adjacent samples in the orientation dimension with ∆θ, in the
frequency dimension with ∆ f and in the phase dimension with ∆s. Discretized output
response OI(q1,i, q2,j, θk, fl , φm) given to I[i, j] on uniform orientation, frequency and phase
grids with points θk = k ∆θ, fl = l ∆ f and φm = m ∆s (k ∈ {1, 2, . . . , K}, l ∈ {1, 2, . . . , L},
m ∈ {1, 2, . . . , M}) is denoted by

OI [i, j, k, l, m] = OI(q1,i, q2,j, θk, fl , φm), (14)

where q1,i = i∆x and q2,j = j∆y.
The Gabor function given by (1) is written in the discrete setting as follows:

Ψ[i,j,k,l,m][ĩ, j̃, ñ] = Ψ(q1,i , q2,j , θk , fl , φm)(xĩ, y j̃, sñ), (15)

where ĩ, j̃ ∈ {1, 2, . . . , N}, k̃ ∈ {1, 2, . . . , K}, ñ ∈ {1, 2, . . . , M}, for each orientation θk,
frequency fl and phase φm. We fix sñ = 0 and express the discretized cell response obtained



J. Imaging 2021, 7, 271 11 of 21

from the input image I[i, j] via the lifting described by the discrete Gabor transform
as follows:

OI [i, j, k, l, m] = ∑̃
i, j̃

Ψ[i,j,k,l,m][ĩ, j̃, 0] I[ĩ, j̃]. (16)

We discretize the time interval by V ∈ N+ samples and denote it by hv. Here, hv is
the time instant hv = v ∆t, with ∆t satisfying T = V ∆t and v ∈ {1, 2, . . . , V}. Discretized
evolving output response is written as

U[i, j, k, l, m, v] = u(q1,i, q2,j, θk, fl , φm, hv) (17)

Finally, the discrete inverse transform applied via a normalized kernel Ψ̄ on the
evolved output responses until the final time T gives the completed two-dimensional
image IT , which is found as follows:

IT [i, j] = ∑
ĩ, j̃,k̃,m̃

√
f l̃ ∑̃

l

UT [ĩ, j̃, k̃, l̃, m̃]Ψ̄[ĩ, j̃,k̃,l̃,m̃][i, j, 0]. (18)

5.2. Explicit Scheme with Finite Differences

Here, we provide the explicit numerical scheme which we employ to iterate the exact
and approximate frameworks given in (10) and (12), respectively. Our motivation for
choosing an explicit scheme rather than an implicit scheme is that the latter requires large
memory and computational power in our multidimensional framework.

We follow [44,66] to implement the horizontal vector fields given in (6) via B-spline
interpolated central finite differences. The interpolation takes place on a uniform grid. It
is needed since the horizontal vectors are not always aligned with the spatial grid point
samples. B-spline interpolation is based on the coefficients b(i, j)

sp(x, y) = ∑
i,j∈Z

b(i, j)ρ(x− i, y− j). (19)

The coefficients are determined such that the spline polynomial sp(x, y), together with
the B-spline basis functions ρ(x− i, y− j), coincides with the horizontal derivatives at the
grid points. For example, the condition sp(i∆x, j∆y) = X1OI [i, j, k, l, m] must be satisfied
once the correct coefficients b are determined; see [44,66,67] for more details.

We define

ek
ξ :=(∆x cos(θk), ∆y sin(θk)),

ek
η :=(−∆x sin(θk), ∆y cos(θk)),

(20)

whose illustrations corresponding to ∆x = ∆y = 1 case are given in Figure 9. We abuse the
notation to denote the evolving output responses:

U = U[i, j, k, l, m, v] = u(q1,i, q2,j, θk, fl , φm, hv), (21)

and then, we write the central finite differences of the second-order horizontal derivatives as



J. Imaging 2021, 7, 271 12 of 21

X1X1U ≈ 1
(∆x)2

(
u(q + ek

ξ , θk, fl , φm)− 2u(q, θk, fl , φm)

+ u(q− ek
ξ , θk, fl , φm)

)
,

X2X2U ≈ 1
(∆θ)2

(
u(q, θk+1, fl , φm)− 2u(q, θk, fl , φm)

+ u(q, θk−1, fl , φm)
)

,

X3X3U ≈ 1
(∆x)2

(
u(q + ek

η , θk, fl , φm)− 2u(q, θk, fl , φm) + u(q− ek
η , θk, fl , φm)

)
+

f 2
l

(∆s)2

(
u(q, θk, fl , φm+1)− 2u(q, θk, fl , φm)

+ u(q, θk, fl , φm−1)
)
+

f cos(θk)

2∆s∆x

(
u(q + ek

η , θk, fl , φm+1)

− u(q− ek
η , θk, fl , φm+1)− u(q + ek

η , θk, fl , φm−1)

+ u(q− ek
η , θk, fl , φm−1)

)
− f sin(θk)

2∆s∆x

(
u(q + ek

ξ , θk, fl , φm+1)

− u(q− ek
ξ , θk, fl , φm+1)− u(q + ek

ξ , θk, fl , φm−1)

+ u(q− ek
ξ , θk, fl , φm−1)

)
+

f 2

2∆s

(
u(q, θk, fl , φm+1)

− 2u(q, θk, fl , φ) + u(q, θk, fl , φm−1)
)

,

X4X4u[i, j, k, l, m] ≈ 1
(∆ f )2

(
u(q, θk, fl+1, φm)− 2u(q, θk, fl , φm) + u(q, θk, fl−1, φm)

)
.

(22)

Finally, we write the discretized numerical iteration for (10) and (12) as follows:

U[i, j, k, l, m, v] =u(qi,1, qj,2, θk, fl , φm, hv)

=u(qi,1, qj,2, θk, fl , φm, hv−1) + ∆t L̄u(qi,1, qj,2, θk, fl , φm, hv−1),
(23)

where L̄ represents the discretized version of either L or L̃, depending on which one
between the exact and approximate frameworks is chosen. The discretization is achieved
by replacing the second-order horizontal derivatives with their discrete versions given
in (22).

Figure 9. Illustration of the vectors ek
ξ and ek

η at (0, 0) with ∆x = ∆y = 1. The figure was modified
and adapted from [44].
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5.3. Pseudocode of the Algorithm

We denote the processed two-dimensional image at the final time T by IT and the
evolving discrete output responses at the time instant v ∆t by Uv. Then, we provide a
general scheme of the exact completion Algorithm 1 as follows:

Algorithm 1: Completion algorithm pseudocode.
Data: N × N input grayscale image I
Parameters: σ, β2, β3, β4, T, K, L, M, ∆t, , ∆θ, ∆ f , ∆s, tol
Result: Processed image IT
Compute the lifting OI via (16);
Initialize the iteration index v← 0;
repeat

v← v + 1;
Compute the right hand side of (23);
Update Uv via (23);

until (‖Uv −Uv−1‖L2 /‖Uv‖L2) < tol;
Inverse transform the evolved output responses UT to obtain the completed image

IT via (18).

The detailed Matlab ® code can be found in the following link: https://drive.google.
com/file/d/1YET47AxYo5_FQs3ObREAqvQp2KjuKh7n/view (accessible starting from
27 October 2021).

6. Numerical Experiments

We choose σ = 2 as the scale of the localizing Gaussian given in (1) for all experi-
ments. We use 128× 128 grayscale images in the experiments related to Figures 10–18
and 256× 256 grayscale image in the experiment corresponding to Figure 19. We use
θ ∈ {0, π

32 , 2π
32 , 3π

32 , . . . , 31π
32 }, φ ∈ {0, π

8 , 2π
8 , 3π

8 , 4π
8 } and ∆t = 0.1 in all the experiments.

Our first results are obtained by using an artificial test image, as shown in Figure 10.
In the test image, we have arcs of circles centered at the top left corner and with different
radii, with a sinusoidal function whose frequency increases linearly as the radius increases.
The arcs with sinusoidal patterns are occluded by zero valued arcs belonging to the circles
which are centered at the top right corner. We apply our completion procedure with
T = 10 and f ∈ {2, 2.5455, 3.0909, . . . , 8}. We observe that both the approximate and exact
frameworks show a similar performance and they provide proper completion.

Figure 10. Completion of arcs with sinusoidal pattern. Left: original image. Middle left: corrupted image with occluding
arcs. Middle right: completed image via the approximate method. Right: completion via the exact method.

In Figure 11, we present two cases of our completion algorithm applied to a real texture
image, which is occluded by arcs corresponding to circles with different radii. We perform our
completion procedure with f ∈ {2.00, 2.55, 3.09, 3.64, 4.18, 4.73, 5.27, 5.82, 6.36, 6.91, 7.45, 8.00}.
Here, T = 10 for the upper row and T = 5 for the bottom row. We use the same parameters
for T = 15 in Figure 12 on the same texture image but now occluded by vertical and

https://drive.google.com/file/d/1YET47AxYo5_FQs3ObREAqvQp2KjuKh7n/view
https://drive.google.com/file/d/1YET47AxYo5_FQs3ObREAqvQp2KjuKh7n/view
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horizontal bars. In such a set of test images, the challenge is that the bars cross each other.
Our completion algorithms provide proper completion of such crossing areas. We observe
that in all cases, both the approximate and the exact algorithms are able to complete the
occluded parts in Figures 11 and 12.

In order to see the impact of using multiple frequencies in the completion process
via the sub-Riemannian diffusion, we perform the sub-Riemannian diffusion by using
only one single frequency; see Figures 13 and 14. In other words, f is fixed to a constant
both in the lifting procedure and in the sub-Riemannian diffusion. In Figure 13, the same
corrupted image given in the bottom row of Figure 11 is used. The paramaters are the
same as in the bottom row results of Figure 11. We use f = 2, 2.55, 3.64 from left to right.
We observe that the performance of single-frequency framework is visibly lower than the
multi-frequency framework whose results are presented in Figure 11 due to the presence
of a wide range of spatial frequencies in the image to be completed. We observe the same
in the single-frequency results presented in Figure 14, which are obtained by using the
bottom row corrupted image given in Figure 12. Finally, we note that the inverse Gabor
transform in those single-frequency experiments is not well defined since the information
corresponding to the other frequency components in the input image is lost in the lifting
procedure. In other words, the Parseval formula associated with multi-frequency Gabor
transform does not hold any longer [46] (Equation (2)). Therefore, we simply project the
processed output responses onto the image plane via a sum over orientation and phase
components in the single-frequency results shown in Figures 13 and 14.

In Figures 15 and 16, we perform the same type of experiments as in Figures 11 and 12,
respectively, but now with f ∈ {1.00, 1.27, 1.55, 1.82, 2.09, 2.36, 2.64, 2.91, 3.18, 3.45, 3.73, 4.00}
and by using a different type of texture image. Here, T = 10 for both rows in Figure 15,
and T = 15 for both rows in Figure 16. In Figure 17, we display the single-frequency
experiments by using the occluded image found in the bottom row of Figure 15. Similarly,
in Figure 18, we show the same single-frequency experiments but now using the occluded
image given in the bottom row of Figure 16. Similarly to the case of the previous real test
image, single-frequency completion cannot perform a proper completion due to the loss of
the information corresponding to the other frequencies present in the input image.

Figure 11. Completion of an occluded real texture image by two different arc patterns on the top and bottom rows. Left:
Original image. Middle left: Image with occluding arcs. Middle right: Completed image via the approximate framework.
Right: Completed image via the exact framework.
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Figure 12. Completion of a real texture image occluded by two different line patterns on the top and bottom rows. Left:
original image. Middle left: image with occluding vertical and horizontal lines. Middle right: completed image via the
approximate framework. Right: completed image via the exact framework.

Figure 13. Single-frequency completion associated with the bottom row of Figure 11.

Figure 14. Single-frequency completion associated with the bottom row of Figure 12.
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Finally, in Figure 19, we compare the result of our algorithm to the results obtained by
applying the algorithms explained in [48,50]. The method proposed in [50] is defined in the
classical model framework SE(2) and it combines the SE(2) sub-Riemannian diffusion with
a concentration mechanism resulting in a diffusion driven motion by curvature in SE(2).
The algorithm explained in [48] uses a semidiscrete version of the classical model geometry
SE(2), and this allows us to perform completion via the integration of a parallelizable finite
set of Mathieu-type diffusions combined with a dynamical restoring mechanism. The main
difference between our method and those previously proposed algorithms is that our
model uses a higher order sub-Riemannian geometry; this allows us to take into account
frequency and phase information as well. Moreover, we do not combine in our framework
the diffusion procedure with a concentration or dynamical restoring mechanism. We see in
Figure 19 that our algorithm produces completion results comparable to the other two meth-
ods. We observe that our algorithm is able to preserve the contextual information better
than the other two, especially the high-frequency structures, thanks to the use of multiple
frequencies and the exact inverse Gabor transform. The trade off is that in the correspond-
ing stationary state, especially in the low-frequency parts such as the below-eye region,
the completion is weaker compared to the other two methods. This supports the idea that
our algorithm is better adapted to the texture images, such as the ones in Figures 11 and 12,
than to the natural images, such as the one given in Figure 19. In our simulation in
Figure 19, we use f ∈ {1.50, 2.09, 2.68, 3.27, 3.86, 4.45, 5.05, 5.64, 6.23, 6.82, 7.41, 8.00} and
T = 50.

Figure 15. Completion of an occluded real texture image by two different arc patterns on the top and bottom rows. Left:
original image taken from [68]. Middle left: image with occluding arcs. Middle right: completed image via the approximate
framework. Right: completed image via the exact framework.
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Figure 16. Completion of an occluded real texture image by two different line patterns on the top and bottom rows.
Left: original image taken from [68]. Middle left: image with occluding arcs. Middle right: completed image via the
approximate framework. Right: completed image via the exact framework.

Figure 17. Single-frequency completion associated with the bottom row of Figure 15.

Figure 18. Single-frequency completion associated with the bottom row of Figure 16.
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Figure 19. Top left: test image from [69]. Top right: image to be completed. Bottom left: completion via our method.
Bottom middle: completion via the method in [50]. Bottom right: completion via the method in [48].

7. Conclusions

In this work, we presented a completion algorithm which uses multiple-frequency
and phase channels to take advantage of the spatial frequency and phase information of
a given two-dimensional grayscale image. The algorithm consists of three mechanisms:
feature extraction, sub-Riemannian diffusion and inverse transform. The first one is a linear
filtering of the given input image with the Gabor filter banks. The filtering encodes the
visual feature values in the output responses, i.e., orientation, frequency and phase values,
of each pixel in the two-dimensional input image. The oputput responses are represented
in the five-dimensional sub-Riemannian model geometry. The second mechanism, which is
the sub-Riemannian diffusion, models the activity propagation between the simple cells in
V1. It is concentrated in a neighborhood along the horizontal integral curves corresponding
to the sub-Riemannian model geometry. Those horizontal integral curves are conjectured to
be good approximations of the neural connections in V1 [55]. Once they are projected onto
the two-dimensional image plane, their projections overlap closely with the association
fields as was shown in Figure 5. Resulting from the sub-Riemannian diffusion, subjective
contours of amodal completion are reconstructed in the five-dimensional model goemetry.
Finally, the inverse Gabor transform provides the representation of the evolved output
responses; therefore, the reconstructed subjective contours, together with the rest of the
lifted image, are shown on the two-dimensional image plane. This final result is the
completed image in which the initially occluded parts are revealed.

One of the novelties of the algorithm is that it is not only an image completion
algorithm but it takes into account neurophysiological and psychophysical orientation,
frequency and phase constraints observed in the visual cortex. Therefore, it should not be
considered as an highly specialized image processing algorithm such as those found in
medical imaging, radar imaging, robotics and computer vision. It should be considered
rather as an algorithm compatible with a natural geometry which was derived from one
of the first step mechanisms of the mammalian visual perception, from receptive profile.
In other words, it reflects the cortical architecture. Moreover, it uses multi-frequency and
phase channels, which was not the case in the previously proposed completion algorithms
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using the classical orientation-sensitive SE(2) sub-Riemannian framework [33,50] and its
variant [48]. This allows our algorithm to employ the inverse Gabor transform instead
of projecting the processed output responses onto the two-dimensional image plane to
provide the completed final image; this was not possible in the aforementioned previ-
ous methods [33,48,50]. This provides good preservation of the contextual information
(contours, edges etc.) with different frequencies in the input image.

One of the interesting aspects for future work is to consider a concentration mecha-
nism. In the proposed completion algorithm, it is possible to embed a similar concentration
mechanism to the one presented in [33], but now with a concentration in each frequency
and phase channel. Moreover, the proposed completion algorithm uses the same model
geometry as the enhancement algorithm which was presented in [55]. Another inter-
esting future work is to combine those two algorithms to perform both completion and
enhancement at the same time by employing orientation, frequency and phase information
existing in a two-dimensional input image. Finally, the study of an analytical solution
in a similar way as was carried out in SE(2) [70,71], but this time, a study regarding the
sub-Riemannian diffusion defined in the five-dimensional model geometry could provide
new techniques to perform the completion task, as well as many other image processing ap-
plications in the model geometry. This would open up new interesting questions, especially
at theoretical level.
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