
HAL Id: hal-03509198
https://hal.science/hal-03509198v1

Submitted on 4 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

DEISA: dask-enabled in situ analytics
Amal Gueroudji, Julien Bigot, Bruno Raffin

To cite this version:
Amal Gueroudji, Julien Bigot, Bruno Raffin. DEISA: dask-enabled in situ analytics. HiPC 2021 - 28th
International Conference on High Performance Computing, Data, and Analytics, Dec 2021, virtual,
India. pp.1-10. �hal-03509198�

https://hal.science/hal-03509198v1
https://hal.archives-ouvertes.fr

DEISA: Dask-Enabled In Situ Analytics
Amal Gueroudji∗†, Julien Bigot∗‡ and Bruno Raffin§

∗ Université Paris-Saclay, UVSQ, CNRS, CEA, Maison de la Simulation, 91191, Gif-sur-Yvette, France
† Email: amal.gueroudji@cea.fr

‡ Email: julien.bigot@cea.fr, ORCID: https://orcid.org/0000-0002-0015-4304
§ Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LIG, 38000 Grenoble, France

Email: bruno.raffin@inria.fr, ORCID: https://orcid.org/0000-0002-7980-4946

Abstract—A widening performance gap is separating CPU
performance and IO bandwidth on large scale systems. In some
fields such as weather forecast and nuclear fusion, numerical
models generate such amounts of data that classical post hoc
processing is not feasible anymore due to the limits in both
storage capacity and IO performance. In situ approaches are
attractive to bypass disk accesses in these cases and fully leverage
the HPC platform. They are however often complex to set up
and can require to re-develop parallel versions of the analysis
from scratch.

In this paper we propose a hybrid model that is well suited for
in situ workflows that combine regular simulations and irregular
analytics. Our model couples the bulk synchronous parallel
paradigm for simulation with a distributed task-based one for
analysis. This reduces complexity and leverages the best of each
of these two powerful paradigms. We validate the model with
a prototype, called DEISA, that supports coupling MPI parallel
codes with analyses written using Dask. This implementation
requires minimal modifications of both the simulation and
analysis codes compared to their post hoc counterpart. It give
access to an already existing rich ecosystem to be used in situ
such as the parallel versions of Numpy, Pandas and scikit-learn.

Experiments in configurations up to 1024 cores show that
DEISA can improve the simulation wallclock time (excluding
analysis) by a factor up to 3 and the total experiment (including
analysis) hour.core cost by a factor of up to 5 compared to parallel
post hoc with plain Dask while requiring the modification of only
two lines of python code, three of YAML, and none at all in a C
simulation code already instrumented with PDI Data Interface.

Index Terms—In situ processing, code coupling, task-based
programming, MPI, Dask

I. INTRODUCTION

The classical way to handle simulation data is by saving it
to disk to read it back later for Post Hoc processing. In many
fields such as weather forecast and fusion plasma, simulations
can generate dozens of terabytes of data per hour. At this scale,
performance is limited by the file system, in what is known
as the IO bottleneck. In Situ processing proposes to process
the data as soon as produced by the simulation, bypassing
the disk to avoid the bottleneck. The performance of both
the simulation and analysis are improved. However processing
data in situ is usually more complex to setup than post hoc. In

This project has received funding from the European Union’s Horizon
2020 research and innovation program under grant agreement No 824158
(EoCoE-2).
†AG was supported by the CEA NUMERICS program, which has received

funding from the European Union’s Horizon 2020 research and innovation
program under the Marie Sklodowska-Curie grant agreement No 800945

situ tools are typically built following the MPI programming
model inherited from the host simulation.

In MPI, codes are expressed as a set of statically placed,
long-lived processes that explicitly communicate during their
life-time and manipulate data through variables whose value
evolve along the execution. The Bulk Synchronous Parallel
(BSP) paradigm and MPI in particular are well adapted for
massively parallel codes where performance is crucial, thus it
is widely used for simulation codes. Users do however need
to explicitly specify all resource allocations, communications
and computation ordering which make it difficult to compose
and complex to use for data analysis.

In task-based systems, applications are expressed as task
graphs whose tasks are short-lived and communicate through
immutable data values that also express dependencies. Task
execution and placement is automatically and dynamically
handled by the runtime, as are communications and the life-
time of data. Task-based programming has proven well suited
for data analysis where easy adaptation is key and performance
is usually less critical than for the simulation itself.

In order to offer the best of both worlds, we propose a
new hybrid model that combines the BSP and the distributed
task-based paradigms. This reduces the complexity and takes
advantage of these two powerful paradigms in the same
workflow. In this paper we have chosen Dask distributed
framework as a task-based environment because of the rich
ecosystem it offers in particular the distributed versions of
well known libraries such as numpy and scikit-learn.

Overall, this paper makes the following contributions: 1) it
proposes a new paradigm that combines BSP and task-based
programming, 2) it implements this paradigm in a prototype,
called DEISA, coupling MPI with Dask, 3) it validates the
approach with an application example that highlights the ease
of use from the user perspective and compares it to a post hoc
version that requires similar development efforts, 4) finally, it
evaluates its performance and shows gains when using DEISA
compared to a pure Dask post hoc version that can reach a
factor up to 5 in execution time.

The remaining of the paper is organized as follow, Section II
presents a brief review of the related work on in situ data
analytics and task-based systems. Section III presents Dask.
Section IV introduces our approach and the architecture of
DEISA. Section V evaluates its performance for different
configurations before Section VI concludes the paper.

https://orcid.org/0000-0002-0015-4304
https://orcid.org/0000-0002-7980-4946

II. RELATED WORK

The in situ paradigm was applied first to visualisation
[1], before being extended to more general purpose data
processing. As such, most of scientific visualization frame-
works meant for high performance computing support in
situ visualization. Paraview [2], built on top of VTK [3] or
Visit/Libsim [4], are both supporting in situ processing through
the extensions Catalyst [5] and Libsim [6] respectively. In situ
visualization comes as a built-in feature in the latest develop-
ments such as Alpine/Ascent/VTKm [7], [8] or SENSEI [9].

Other frameworks take a more generic approach to support
any kind of data processing in situ, in transit (data are first
moved to extra nodes not running the simulation) or a mix of
both. Analysis results are eventually saved to disk rather than
directly visualized. FlowVR [10], Decaf [11] and Bredala [12],
in situ extensions for ADIOS1 [13], [14] and ADIOS2 [15],
Damaris [16] or Dataspaces [17] are examples of frameworks
in that category. All these tools rely on a static parallelization,
derivative of the data-flow model: the tasks of the analysis
workflow are mapped to compute resources statically. This
often leads to high performance, but require the user to
explicitly control this mapping. The underlying transport layer
is often based on MPI, simplifying the coupling with the
simulation code also based on MPI, or the introduction of
an analysis algorithm parallelized with MPI in the workflow.

The map/reduce model, supported by frameworks like Spark
or Flink, is a popular parallelization model for data analysis
tasks for Big Data oriented applications. A few attempts have
been made with this model for in situ processing: SMART [18]
proposes a map/reduce interface for programming analysis on
top of MPI/OpenMP, while [19] takes benefit of Flink stream
processing support for enabling in transit analysis. But the
model provides a loose control on data partitioning that is
not well adapted to support efficient parallelization of patterns
such as stencil computations [20] or large scale linear algebra.

Task-based programming where the tasks are dynamically
distributed to compute resources is today classical for shared
memory programming using for instance OpenMP or Intel
TBB. TINS [21] leverages this approach as long as the
simulation is also parallelized on each node with tasks. TINS
relies on the TBB work-stealing scheduler to dynamically
distribute the tasks on the cores, being simulation or analytics
tasks. The benefits are twofold: performance is improved as
cores are not assigned exclusively to analysis or simulation
workload, and the user does not have to take care of task to
core mapping. Goldrush investigates a similar approach in the
context of OpenMP [22].

Extensions of task-based programming to distributed pro-
gramming, such as PyCOMPSs [23], [24], Dask [25], Ray
[26], Parsl [27], and Pygion [28] are gaining popularity for
scientific data analysis for the mix of performance and simplic-
ity they offer. They provide a Python interface and often the
transparent parallelization of some classical APIs (or part of
them) like Numpy or Pandas. But direct coupling of MPI based
parallel simulation with such task-based system is not directly

Dask scheduler

Analytics client

Worker #1 Worker #NWorker #2 …

2. task-graph
submission

3. tasks
execution

PFS
1. metadata
 read

4. data read

Fig. 1: Dask architecture in a typical post hoc context, one
client, N workers connected to the scheduler. 1) The client
reads small metadata regarding the needed files from the PFS,
2) creates the Dask data structure and submits a task graph,
3) the workers execute the tasks, 4) some of which read data
blocks in parallel from the PFS.

supported. Either it needs to go through a file interface with
the associated performance impact or requires to aggregate
data on the application side to mask the parallelization (this
also has a performance impact), if not completely rewriting
the application. Some early work has been done with Legion
for in situ visualization [29]. In this paper we propose a direct
coupling solution for Dask.

III. DASK

Dask is a tool for distributed parallel execution of python
code that is built on task-based programming model. Its
architecture is organized around three components: a central-
ized scheduler, multiple workers and one or more clients as
illustrated in Figure 1. At the lowest level, the scheduler and
workers support remote procedure calls using Tornado web
services.

The workers offer services to store data and to remotely exe-
cute code on this data. The scheduler offers services to execute
complete task graphs submitted by the client, delegating tasks
execution to the workers. It manages the graph to identify
and submit to the workers those tasks whose dependencies
are fulfilled. It also takes care of data management based on
reference counting. When some data stops being referenced, a
garbage collector on the scheduler triggers its deallocation on
the workers. From the client point of view, task programming
is based on python Delayed and Future interfaces. One can
build and submit a task graph using the usual python API
for asynchronous code execution. The resulting future acts as
a reference to the actual data on a worker. This prevents its
deallocation and supports fetching the value back to the client.

Higher-level APIs such as Dask Array, Dask DataFrame
and Dask-ML are also available. They are mostly drop-in
replacement for the popular Numpy, Pandas and scikit-learn
APIs. For example, dask.array supports a distributed data
structure representing an array split in blocks distributed on
multiple workers. When instantiating an Array from HDF5,
as illustrated in lines 11 and 12 of Listing 2, the client only

1 from sklearn.decomposition import IncrementalPCA
2 import yaml, json
3 import h5py
4 # load the simulation configuration
5 simu = yaml.load(open('simulation.yml'))
6 # Load data from HDF5
7 gtemp = h5py.File('data.hdf5',mode='r')['gtemp']
8 # process each time-step independently
9 for step in range(0, simu['timesteps']):

10 pca = IncrementalPCA(n_components=2, copy=False,
11 svd_solver='randomized')
12 pca.fit(gtemp[step,:,:])
13 print(pca.explained_variance_)

Listing 1: Sequential post hoc data analysis with scikit-learn

1 import dask.array as da
2 from dask_ml.decomposition import IncrementalPCA
3 import yaml, json
4 import h5py
5 # Connect to Dask
6 sched = json.load(open('sched.json'))
7 client = dask.distributed.Client(sched["address"])
8 # load the simulation configuration
9 simu = yaml.load(open('simulation.yml'))

10 # Build a lazy array descriptor from HDF5
11 gtemp = h5py.File('data.hdf5',mode='r')['gtemp']
12 gtemp = da.from_array(gtemp, chunks=(1,4096,4096))
13 for step in range(0, simu['timesteps']):
14 pca = IncrementalPCA(n_components=2, copy=False,
15 svd_solver='randomized')
16 pca.fit(gtemp[step,:,:])
17 print(pca.explained_variance_)

Listing 2: Parallel post hoc data analysis with Dask. Lines
differing from the analysis of Listing 1 are highlighted

reads the metadata required to create the tasks that will actually
read data from the file chunk by chunk on the workers as
illustrated by Figure 1. This way, data can be larger than the
memory of a single node. With these high-level APIs, the users
can write analysis codes that are very similar to the sequential
codes. Listings 2 and 1 present an example of post hoc analysis
with a sequential NumPy code and the equivalent parallel code
using Dask-ML.

IV. DEISA APPROACH

Unlike the post hoc, in the in situ paradigm, the source
of data is not a file anymore, but the parallel simulation
code itself. In order to support this, DEISA adds two main
components to Dask post hoc architecture, as illustrated in
Figure 2: the DEISA bridge and DEISA metadata adapter. The
bridge is instantiated by each MPI process of the simulation
and is responsible for sending the data to Dask workers and the
metadata to the scheduler. The metadata adapter is executed
by the Dask analytics client that fetches this metadata to re-
construct a global descriptor for the distributed data. This can
then be used by Dask client in the construction and submission
of a standard task graph. After this step, the execution of
the task graph by Dask proceeds normally and similarly to
a standard post hoc execution.

1 int main(int argc, char* argv[]) {
2 MPI_Init(&argc, &argv);
3 PDI_init(PC_parse_path("pdi_spec.yml"));
4 int rank; PDI_Comm_rank(MPI_COMM_WORLD, &rank);
5 config_t cfg = read_config("simulation.yml");
6 // share one-off configuration
7 PDI_multi_expose("init",
8 "cfg", &cfg, PDI_OUT,
9 "rank", &rank, PDI_OUT,

10 NULL);
11 // our temperature field
12 double* temp = malloc(sizeof(double) *
13 cfg.loc[0] * cfg.loc[1]);
14 initialize(temp);
15 // main loop
16 for (int step=0; ii<nb_steps; ++step) {
17 do_compute(temp, MPI_COMM_WORLD);
18 // share data at every iteration
19 PDI_multi_expose("iter",
20 "step", &step, PDI_OUT,
21 "temp", temp, PDI_OUT,
22 NULL);
23 MPI_Barrier(MPI_COMM_WORLD);
24 }
25 free(temp);
26 PDI_finalize();
27 MPI_Finalize();
28 }

Listing 3: PDI instrumentation of the C simulation code

1 types: #[...] including config_t description
2 metadata: { step: int, cfg: config_t, rank: int }
3 data:
4 gtemp: #< virtual global 3D array (t, x, y)
5 type: array
6 subtype: double
7 size:
8 - inf #< t dimension is infinite
9 - '$cfg.loc[0] * ($rank % $cfg.proc[0])'

10 - '$cfg.loc[1] * ($rank / $cfg.proc[0])'
11 temp: # the main temperature field
12 type: array
13 subtype: double
14 size: ['$cfg.loc[0]', '$cfg.loc[1]']
15 +map_in: # map as a slice in gtemp
16 array: gtemp
17 size: [1, '$cfg.loc[0]', '$cfg.loc[1]']
18 start:
19 - $step
20 - '$cfg.loc[0] * ($rank % $cfg.proc[0])'
21 - '$cfg.loc[1] * ($rank / $cfg.proc[0])'

Listing 4: Data description in PDI YAML file

a) Simulation Code Instrumentation: To extract the data
from the simulation, DEISA relies on the PDI Data Interface
(PDI) [30], [31]. PDI is a thin interface designed to move
the IO concerns that often pollute the simulation code out
of it. It supports C, C++, Fortran & python. As illustrated
in Listing 3 (lines 7 and 19), PDI calls are introduced in
the simulation code to identify when and where internal data
structures become accessible to external tools. A YAML file,
selected at initialization (line 3), describes the data structures
and specifies what actions (provided by PDI plugins) to trigger
on the exposed data.

For example, Listing 4 provides the YAML description of

M
P

I

P0

P1

PM

DEISA
Bridge

Dask scheduler

PDI

DEISA
BridgePDI

DEISA
BridgePDI

Analytics client

Worker #1 Worker #NWorker #2

...

…

DEISA
metadata
adapter

1. data transfer

2. metadata
transfer

3. metadata
fetch

4. task-graph submission

5. tasks
execution

Fig. 2: DEISA example coupling an MPI application with M processes to a complete Dask instance running N workers

the data exposed by the code of Listing 3. The type of small
metadata is described on line 2 and a copy of these values
is kept by PDI. For the data itself, PDI only manipulates
pointers on the user data so as to limit memory and execution
time overheads to a minimum. The description of the data
structures, such as temp on line 11, can use the value of
metadata exposed by the code through $-expressions. This is
for example illustrated for the size of the array on line 14. This
reduces information redundancy between the code and YAML
and ensures information used by PDI reflects that from the
simulation.

In addition to the data directly exposed by the code, a 3D
array (gtemp) is defined on line 4. The size of this array is
infinite in the time dimension and the product of the local array
size ($cfg.loc) by the number of processes in the two other
dimensions. It represents the logical global array distributed
over MPI and the time-steps; it is never fully stored in memory
or exposed by the code. Instead, the temp array is mapped in
gtemp as a time-slice and a block in the other two dimensions
on line 15) to give PDI a global view of the distributed data.

PDI is typically used to push data to files as illustrated
for the HDF5 case in Listing 5. The Decl’HDF5 plugin is
loaded (line 4) and used to write the gtemp array to the
data.h5 file. A filter expression introduced by the when
keywords on line 8 is used to select the data to actually write.
The MPI plugin is also loaded on line 3 and parallel HDF5
with collective IO over the MPI_COMM_WORLD is selected on
line 9. Whenever the temp array is exposed from the code,
an HDF5 operation is triggered. The first time this happens,
a 3D dataset whose shape matches that of gtemp is created.
Then, HDF5 hyperslabs are used to describe the part of gtemp
available in the local MPI process according to the mapping
information of Listing 4, line 15. This data is written to the file
using HDF5 collective IOs over the communicator provided
as is usual in parallel HDF5. This specification results in the
writing of a 3D array in the HDF5 file independent of the
MPI distribution and including all time-steps in a dedicated
dimension.

In addition to Decl’HDF5, other PDI plugins support IO in
formats like NetCDF, SIONlib, FTI, etc. Existing plugins also
support data serialization or integration in FlowVR workflows.
Finally, plugins exist to call code that manipulates and trans-
forms the data directly from the YAML file in any language
supported by PDI (C, C++, Fortran, python). In particular,

1 #[...] data description from Listing4
2 plugins:
3 mpi: ˜
4 decl_hdf5:
5 - file: data.h5
6 write:
7 gtemp:
8 when: '$step>0'
9 communicator: $MPI_COMM_WORLD

Listing 5: PDI YAML file to write to HDF5

1 #[...] data description from Listing4
2 plugins:
3 deisa:
4 scheduler_file: "/home/user/xp/sched.json"
5 transfer: { gtemp: { when: '$step>0' } }

Listing 6: PDI YAML file to analyze data through DEISA

this allows python code to be called from a C, C++ or Fortran
simulation code.

DEISA leverages PDI to limit its intrusiveness in the simu-
lation code. It requires neither modification nor recompilation
of a code already instrumented with PDI for file output. Only
the YAML file must be changed as illustrated in Listing 6.
The deisa plugin is loaded instead of decl_hdf5 (in fact,
both can be loaded alongside each other without interference).
In the DEISA-specific configuration, on line 4, one gives
the path to the JSON encoded scheduler information file,
which is generated by the Dask scheduler at initialization.
The transfer keyword on line 5 selects the data to make
available for analysis and can include a filter expression as in
the HDF5 case. When the DEISA plugin is loaded, it instanti-
ates a DEISA bridge and passes the scheduler_file path
to it. Then, similarly as in Decl’HDF5, whenever the temp
array is exposed from the code, if the when filter condition
is true, a DEISA operation is triggered. The plugin gathers the
information about the buffer (name, type and size of the local
block and its position in the global array) as well as the data
itself and calls the publish_data method of the bridge.

b) DEISA bridge: DEISA bridge is a python class that
handles the data exposed through PDI and that interfaces with
Dask. It uses Dask client API and behaves as a regular client
from Dask point of view. It does however limit its role to the
transfer of data to Dask workers and metadata to the scheduler,
without submitting any task.

At initialization, the class retrieves the information re-
quired to connect to the scheduler from the provided
scheduler_file file. It queries the scheduler about the
list of workers available. Since in the Dask model, clients can
not directly communicate with each others, the bridge (that is a
client from Dask point of view) initialize a Dask Queue on the
scheduler to support information transfer to DEISA metadata
adapter.

When the publish_data method is called, the bridge
starts by sending the metadata (name, type and size of the
local block and its position in the global array) to the queue
on the scheduler; this is a very small message (typically a
few bytes). It then selects a peer worker where it sends the
data using Dask scatter function. The function is called
with the direct parameter set to True in order to enable
transfer data to the worker directly, without going through the
scheduler. The peer worker is selected in a round robin fashion
based on the local MPI rank to ensure a balanced memory load
on the different workers that are often less numerous than MPI
processes.

The scatter function returns a Dask future that acts as a
reference whose existence keeps the data alive and prevents
its deallocation by Dask garbage collector. The bridge then
sends this future to the queue on the scheduler. Sending the
future in a separate message enables the scheduler to include it
in the list of references keeping the data alive in the workers.
The bridge then destroys its local future and completely forgets
about the data it just sent. By default, the queue size on the
scheduler is unlimited. It can however be limited to setup a
flow control: a bridge is blocked when intending to write in the
queue if this queue is full. A dedicated buffer_nb keyword
in the YAML enables to set the max queue size.

c) DEISA metadata adapter: DEISA metadata adapter
is a python class instanciated from the analytics code in
Dask client that gives access to the data produced by the
simulation for use in task graphs. This adapter implements
a subscript operator (line 11 of Listing 7) that takes a name
as parameter and returns a descriptor associated to the array
provided with that name by the MPI simulation code. This
descriptor is returned as an instance of a dedicated class that
also implements the subscript operator for slicing (line 15 of
Listing 7). When called, this second subscript operator returns
the Array describing the data on the workers matching the
described selection and that can be used in the construction
of a normal Dask task graph.

The first subscript operator call (line 11) only stores the
name and a reference to the adapter in the returned descriptor.
The implementation lies entirely in the subscript operator of
this returned descriptor. When called (line 15), it fetches the
metadata and futures from the queues on the scheduler and
stores them on the client. This empties the queues on the
scheduler and enables the MPI processes to send more data
if this was blocking them. It also creates a new reference to
the data on the analytics client, hence ensuring the data on
the workers is not deallocated by Dask garbage collector. As
soon as all blocks that are part of the requested selection are

1 import dask.array as da
2 from dask_ml.decomposition import IncrementalPCA
3 import yaml, json
4 import deisa
5 # Connect to Dask
6 sched = json.load(open('sched.json'))
7 client = dask.distributed.Client(sched["address"])
8 # load the simulation configuration
9 simu = yaml.load(open('simulation.yml'))

10 # Get data from DEISA
11 gtemp = deisa.Adapter(client)['gtemp']
12 for step in range(0, simu['timesteps']):
13 pca = IncrementalPCA(n_components=2, copy=False,
14 svd_solver='randomized')
15 pca.fit(gtemp[step,:,:])
16 print(pca.explained_variance_)

Listing 7: Parallel in situ data analysis with DEISA. Lines
differing from the analysis of Listing 2 are highlighted

retrieved, the adapter combines them into a single Array
descriptor that represents the global distributed array. The
resulting descriptor can be seamlessly used as input to Dask
parallel algorithms.

An example of use of this API is illustrated in Listing 7.
This example performs the exact same analysis using Dask as
in Listing 2, but it uses DEISA for in situ execution instead of
loading data from HDF5 for post hoc execution. Apart from
importing DEISA module on line 4, the only difference with
the post hoc version is that a DEISA metadata adapter instance
must be initialized with a reference to the Dask client on
line 11 instead of opening a HDF5 file. The actual fetching
of metadata and construction of the Array descriptor occurs
when gtemp is in turn subscripted on line 15. This final
descriptor can be used in the IncrementalPCA in the exact
same way it was used post hoc.

In this section, we have focused on the implemented pro-
totype on top of Dask, however a similar approach can be
adapted for other distributed task-based frameworks such as
PyCompSs, Ray and so on. Each of them has its strengths
and may be the best framework for a particular need. In our
case we have chosen Dask because it’s widely used by the data
analytics community in several domains for the rich ecosystem
it offers, in particular the parallel versions of numpy, pandas
and scikit-learn.

V. EVALUATION

To evaluate DEISA, we have implemented a mini-app cou-
pling a MPI simulation code to parallel data analytics. The
simulation code is illustrated in Listing 3 and relies on a mod-
ified 2D explicit finite difference heat solver parallelized in
MPI using a block domain decomposition. It is representative
of a typical 2D Eulerian simulation with stencil computation
pattern and MPI ghosts data exchange. Outputs, consisting
in the temperature field on the 2D domain, are produced
periodically after a fixed number of iterations set to represent
a realistic compute-to-output time ratio. Outputs are either
written to parallel HDF5 files (then reread for post processing

with Dask) or sent directly to DEISA for in situ processing as
discussed in the previous section.

The analytics code, illustrated in Listings 2 for its post
hoc version and 7 for DEISA version, computes a principal
component analysis on the 2D temperature field at each time-
step. The PCA is computed using the parallel incremental PCA
provided by Dask [32] that is more memory efficient than the
basic PCA algorithm. This analysis has not been selected for
its physical significance in this specific case, but because it is
representative of analytics used in real simulations [33].

A. Ease of use

To switch from Dask + PDI/Decl’HDF5 for parallel post hoc
analytics to DEISA for in situ analytics, the simulation code
does not have to be modified or even recompiled. PDI YAML
file must be modified to load the DEISA plugin instead of
Decl’HDF5, however the configuration format of both plugins
is very similar and this is only a minor change. The python
analytics code must be changed also, but once again, the
interface offered by deisa.Adapter is close enough to that
of h5py that this change is very limited.

For our PCA example, only four lines change in the YAML
file between Listing 5 and 6. A more complex simulation
would only require one more line by result exported from the
simulation. For this same example, only two lines change in
the python analysis code between Listing 2 and 7. Once again,
a more complex simulation would only require one more line
by result imported from the simulation.

Execution setup is also simple. At start-up, the scheduler
generates a json file to a user-specified path. Providing this
same path to the client and simulation is enough for all the
elements to auto-configure themselves.

In DEISA, data buffering between the simulation and anal-
ysis happens in the the Dask workers memory. In case the
analysis is slower than the simulation, DEISA also provides
a buffer_nb parameter to provide basic flow control and
wait for the analysis instead of filling the memory. As in any
in situ analytics solution however, the analysis must consume
the data in the order it is produced, which can somewhat
constrain the way the analysis code must be written, potentially
leading to changes with respect to the post hoc version. In our
experience however, many scripts can be reused as-is as they
use independent analyses in the time dimension.

The PDI based architecture of DEISA makes it possible to
extract metadata directly from the simulation code and transfer
it to the analysis client. All parameters controlling the coupling
(Dask nodes addresses, data description, extraction frequency,
etc.) are either directly extracted from the simulation code or
set up only once, in the YAML or python. This unicity of
information ensures that the simulation and analysis remain
in sync and that a small modification of the code does not
lead to an invalid analysis.

Like any in situ approach, DEISA makes it possible to
only store the final analysis results to disk while post hoc
approaches requires to additionally store potentially huge
intermediate results. In order to achieve this, the user must

Parameter Value
MPI nodes / Dask worker node 4
MPI process / MPI node 32
Dask worker / Dask worker node 16
Thread / Dask worker 2
MPI process / Dask worker 8
Data size / MPI process 128 MiB
Data size / MPI node 4 GiB
Mean data size / Dask worker node 16 GiB
Data analysis Listing 7

TABLE I: Fixed parameters used in Experiment #1

Configuration 128+16 256+32 512+64
MPI processes 128 256 512
Dask workers 16 32 64
MPI nodes 4 8 16
Dask worker nodes 1 2 4
Global data size 16 GiB 32 GiB 64 GiB
Dask generated tasks 15210 29010 55150

TABLE II: The three configurations of Experiment #1

however define all its analysis before in situ execution. On the
contrary, in post hoc, the analysis can be tuned and adapted
once the data is available. By providing a framework making
it easy to switch between both approaches, DEISA takes the
best of both worlds. It for example supports a workflow where
the user can tune its analysis post hoc on the first simulation
runs before switching to in situ for later production runs.

Overall DEISA presents a comparable ease of use as the
post hoc version. The user neither needs to explicitly set
up the parallelization used for the analytics nor any kind of
communication between workers. With Dask high-level API
there is even no need to parallelize the analysis explicitly by
defining the task graph.

B. Performance evaluation

To evaluate the performance of our approach, we have
run experiments on the RUCHE cluster (Moulon mesocentre,
Paris-Saclay). The cluster is composed of 192 ThinkSystem
SD530 servers nodes; each with 2 Intel Xeon Gold 6230 20C
@ 2.1GHz CPUs and 180GB of maximum user-allocatable
memory. The interconnect uses Omni-Path 100 Gbit/s and
the parallel file system the Spectrum Scale GPFS (IOs rate:
9 GB/s).

We have performed three experiments:
• Experiment #1 compares DEISA performance to a base-

line with neither IO nor analysis, and to a version using
a parallel post hoc analysis with plain Dask.

• Experiment #2 investigates the performance of DEISA
more in depth on large and small data sets to explain
its behaviour.

For all experiments Dask scheduler and the analytics client
are run on the same dedicated node.

a) Experiment #1: Tables I and II summarize the param-
eters used in the 3 configurations of Experiment #1.

128+16 256+32 512+64
0

50

100

200

(1) (1) (1)

Configurations, w. (1) no analytics, (2) DEISA, (3) post hoc

E
xe

cu
tio

n
tim

e
pe

r
ite

ra
tio

n
(s

) MPI Simulation
DEISA transfer

HDF5 write
Data analytics

(2) (2) (2)

min: 421s
max: 445s

mean: 430s

(3) (3) (3)

Fig. 3: Execution time for the three configurations of Exper-
iment #1 in three analytics modes each. The width of each
bar represents the relative amount of nodes used for each step
(simulation vs. analytics).

We use a ratio of Dask workers to simulation processes of
1/8 as it gives a good load balancing between simulation and
analysis with enough memory on each Dask worker. We use
two compute threads per Dask worker that we found to be
the best from a performance point of view in this case. For a
different experiment, these values would have to be adjusted
by the user depending on the results size and generation
frequency, as well as the total compute cost and intrinsic
parallelism of the analysis.

Figure 3 presents the simulation execution time in the three
configurations of Table II. We present the average execution
time over 3 runs as well as an error bar representing the min
and max values when standard deviation exceeds 2%. Each
run comprises 10 iterations for the cases with no analytics or
DEISA, but only 5 in post hoc due to disk space limitations.
We excluded the first iteration from the figure since it includes
some setup time.

While running the simulation with no output is useless, it
provides a baseline for the simulation execution time. This
time is relatively stable over the three analysis strategies.
DEISA overhead accounts for 21, 23 & 24% of an iteration
in Configuration 128+16, 256+32 and 512+64 respectively.
HDF5 writing accounts for 36 to 60%, 45 to 52% and 53 to
86% of an iteration in the same three configurations. DEISA
performs and scales better than the post hoc version, with
an almost constant overhead where post hoc performance
decreases rapidly when increasing the problem size.

This can be explained by the scalability of the peak data
transfer bandwidth between the simulation and analysis, as
illustrated in Table III. For DEISA, data transfers use the net-
work and the available bandwidth is limited by the aggregate
bandwidth of all worker nodes 100 Gb/s interfaces. In post hoc,

Bandwidth BW
Case Configuration measured peak ratio

DEISA 128+16 53 Gb/s 100 Gb/s 53%
network 256+32 111 Gb/s 200 Gb/s 55%

bandwidth 512+64 199 Gb/s 400 Gb/s 49%

post hoc 128+16 7.21 Gb/s 72 Gb/s 10%
disk 256+32 15.29 Gb/s 72 Gb/s 21%

bandwidth 512+64 9.56 Gb/s 72 Gb/s 13%

TABLE III: Measured network and disk bandwidth compared
to theoretical peak.

data transfers go through disk and the available bandwidth
is limited by the 9 GB/s parallel file system bandwidth. For
DEISA, the bandwidth scales linearly with the number of
nodes, while for post hoc, it does not scale at all and is lower
than for DEISA, even with a single node.

Beyond the peak bandwidth consideration, the measures
show that DEISA manages to use at least 49% of the peak
bandwidth. This is a good performance even though Dask uses
Tornado on top of the socket API, which does not take advan-
tage of the full capabilities of OmniPath. In [34] only 37.5 Gb/s
out of 100 Gb/s could be used for IPoFabric. In future work
we will intend to use UCX [35], supported by Dask, to better
leverage high performance network capabilities.

HDF5 performance on the other hand, only reaches between
10 and 21% of the theoretical peak disk bandwidth, with high
variability as highlighted in Figure 3. This is partially due to
the interference due to other users in a shared cluster. Since
DEISA relies on the network and not the file system, it is much
less affected by this issue.

Figure 3 also presents the analytics execution time per-
formed in parallel with the MPI solver in DEISA, or post
hoc after using data from HDF5 files. We use the same
number of Dask nodes for in situ and post hoc, as specified
in Table I. This measures include the total time required to
execute the analysis task graph, including post hoc specific
tasks to read HDF5 files or network transfer in DEISA. Post
hoc analytics duration is surprisingly long compared to DEISA
analytics. Since we performed the exact same analysis in
both cases, we expect this to be due to the HDF5 reads
that may be desynchronized, thus less efficient compared to
the synchronized writing part. We used HDF5 chunks with a
size matching those in Dask (128 MiB), to reduce the risk of
performance gaps due to different configurations. Since Dask
applies specific optimizations on the task graph, for instance
fusing some tasks, it is impossible to distinguish the reading
tasks from the computations, thus identify the reading time
for these experiments. We have investigated more on that by
creating a task-graph that just reads the file and the reading
time is almost the difference between the analytics part of post
hoc experiments and analytics part of DEISA. Further specific
fine tuning may enable to improve post hoc performance, but
this is beyond the scope of this paper.

Enabling in situ processing with DEISA shows a significant
performance benefit, both on the simulation and analytics side.

Total cost per Simulation cost
iteration (core.h) Cost per iteration (core.h) Cost

Configuration Post hoc DEISA ratio Post hoc DEISA ratio
128+16 3.16 1.25 39% 1.35 0.83 61%
256+32 6.54 2.38 36% 2.63 1.73 65%
512+64 26.63 4.76 17% 10.94 3.63 33%

TABLE IV: Comparison of the compute resource costs for
the whole experiment (simulation + analytics) and for the
simulation only in core.hours and cost ratio of the DEISA
experiment compared to the post hoc one. For example in
Configuration 512+64, DEISA simulation costs 33% of the post
hoc simulation

Configuration 1:6 1:21 256:6 256:21
Data size / MPI process 1 MiB 1 MiB 256 MiB 256 MiB
Total nodes 6 21 6 21
MPI node 4 16 4 16
Dask worker nodes 1 4 1 4
client & scheduler node 1 1 1 1
Global data size 128 MiB 512 MiB 32 GiB 128 GiB
Data size / MPI node 32 MiB 32 MiB 8 GiB 8 GiB
Generated tasks 15330 55330 15210 55150

TABLE V: Four configurations used for Experiment #2. All
other parameters are kept the same as in Experiment #1.

In Configuration 512+64, DEISA is 3 times faster than post hoc
on MPI side (MPI solver plus data transfer over network for
DEISA, MPI solver plus parallel HDF5 write for post hoc). The
wallclock time of the whole experiment (simulation+analysis)
is more than 16 times faster for DEISA than post hoc.

Table IV shows that in terms of compute resource usage,
DEISA is already cheaper for Configuration 128+16 as it only
uses 39% of the resources required for post hoc. Even without
considering the analytics part DEISA is cheaper by using only
61% of the resources required for post hoc for the same
experiment. The cost ratio increases with the size, due to a
better scalability of the data transfer on the network with
DEISA than through disk in post hoc. In Configuration 512+64
DEISA uses only 17% of the resources required for post hoc,
for the whole experiment and only 33% while considering only
the simulation part.

b) Experiment #2: In this experiment, we investigates
the performance of DEISA in depth when either the data size
or computer resources vary. We keep most parameters from
Experiment #1, but we vary the size of the data per MPI
rank from 1 MiB to 256 MiB and we use either 6 or 21
nodes. Table V summarizes the four configurations tested and
Figure 4 presents the average execution time over 3 runs of 10
iterations as well as an error bar representing the min and max
values when standard deviation exceeds 2%. We also excluded
the first iteration here.

On MPI side, we identify the time due to the simulation
(line 17 of Listing 3), the time to transfer the data from
DEISA adapter to Dask workers, and that to send the required
metadata to the scheduler. We also measure the duration of

1:6 1:21
0

1

2

3

4

1 MiB / rank configurations

E
xe

cu
tio

n
tim

e
pe

r
ite

ra
tio

n
(s

)

MPI simulation
Metadata transfer

Data transfer
Barrier

Dask analysis
Metadata fetch

MPIMPI DaskDask

256:6 256:21
0

10

20

30

40

50

256 MiB / rank configurations

E
xe

cu
tio

n
tim

e
pe

r
ite

ra
tio

n
(s

)
MPIMPI DaskDask

Fig. 4: Detailed timing per time step for DEISA with 1 or
256 MiB/rank and 6 or 21 nodes. For each configuration, the
left bar shows timing for the MPI side, and the right timings
for Dask side

a barrier inserted just after these communications (line 23
of Listing 3). This barrier captures the time required to re-
synchronize the processes after potentially differing time in
the communications. Without it, this time would be counted
as part of the computation time.

On Dask side, we identify the time required by DEISA
metadata adapter to gather all metadata from the scheduler
(line 15 of Listing 7) on the one hand and the time required
for the submission and actual execution of the task graph on
the other hand.

At 1 MiB/rank, the MPI simulation executes much faster
than the analysis; this is reversed at 256 MiB/rank. The task
granularity has a high impact on Dask performance. At
1 MiB/rank, the average time per task is at most 1ms, which
is very small compared to the minimum recommended task
duration of 100ms [36] in Dask. With a scheduling overhead
of about 1ms per task, scheduling and communication over-
heads account for more than half the measured time at this
granularity. With larger chunks, 256 MiB/rank, and so longer
tasks, Dask analytics become faster than the MPI part.

The experiment is run with no maximum queue size
between DEISA bridges and metadata adapter. Hence, when the

simulation produces data faster than the analysis can consume
it (1 MiB/rank configurations), data is buffered in the worker
nodes memory and processed after the end of the simulation.
The total time to solution is limited by the analytics part. On
the other hand, when the simulation produces data slower than
the analysis can consume it (256 MiB/rank configurations),
Dask spends time waiting for metadata that is not yet produced
by the simulation. The total time to solution is limited by the
MPI part and Dask workers are idle for more than 4/5 of the
iteration; a time that appears as part of the metadata fetch.

At 1 MiB/rank, data and metadata transfer costs are sig-
nificant. This is mostly explained by the fact that at this
scale, communication time is noticeably impacted by network
latency. The data transfer performance is also explained by
the behaviour of Dask scatter used by DEISA to transfer
data to the workers. This function directly transfers data to
the worker, but it also establishes an additional connection to
the scheduler to notify it of the new data reference. For large
enough data, this is negligible, but at this scale, this starts to
be noticeable. In addition to the latency, another factor impacts
network performance for small data sizes. When the data is
small, simulation time is too, and data production frequency
increases. The high number of requests sent to the scheduler
per second can impact its response time. For Configuration 1:6,
more than 1920 requests/s are sent to the scheduler, and
more than 9116 requests/s for Configuration 1:21. The time
required to send metadata becomes almost 7 times longer
in Configuration 1:21 than in Configuration 1:6 while the
number and size of requests per MPI rank is the same. At
256 MiB/rank, this difference is still visible, but metadata
handling represents less than 1.6% of an iteration in the worse
case.

The variation in data and metadata transfer time between
MPI ranks is measured by the barrier we inserted. For small
sizes, this can represent as much time as the mean duration of
data + metadata transfer. For larger sizes however, the transfer
time becomes more stable and the barrier represents a lower
relative amount of time. This can be explained by the existence
of a time spent waiting for the availability of Dask network
thread on the server when making a request. This time is very
irregular and does not seem to depend on the data size.

This bad network performance does not only affect DEISA at
the interface between the MPI simulation and Dask analysis.
Communications also happen in Dask execution of the task
graph. The number of communications grows with the number
of tasks, and their efficiency improves with the size of data.
Hence, with 4 times more compute resources to compute
a graph 4 times bigger, Dask task graph execution is 2.9
times slower at 1 MiB/rank, while this ratio is only of 1.36
at 256 MiB/rank.

Overall, data granularity must be set to a large enough
value for DEISA to be efficient. This is however not a DEISA
specificity and plain Dask post hoc usage must follow the same
rules.

VI. CONCLUSION

In this paper we have introduced a programming paradigm
that combines the BSP model from MPI and the distributed
task-based paradigms from Dask. We have presented its
implementation in DEISA, and stressed the advantages this
introduces in development efforts, performance for in situ
simulation data processing. Because the expression of par-
allelism is abstracted from the actual mapping of data and
tasks to compute nodes, an analytics task graph requires minor
modifications to move from a sequential post hoc to an in situ
execution context.

DEISA combines PDI and Dask features to minimize the
required code changes in both the simulation and the analytics
code. Turning a post hoc Dask analysis in situ, is both
easy from the user point of view and leads to significant
performance gain as demonstrated by the experiments. We
have shown that even considering only the simulation part is
more efficient than post hoc and up to 3 times cheaper.

This paper also stresses some limitations in the prototype
mainly related to the centralized Dask architecture that relies
on a single scheduler becoming a bottleneck at very large scale
or when handling small data sets.

Future work will focus on developing solutions to reduce the
pressure on the scheduler, for instance by aggregating metadata
on the MPI side between bridges before forwarding the result
to the scheduler. For the next steps we will also investigate how
to deploy tasks in situ and in transit, and not only in transit as
done in this paper, and we will collaborate with computational
physicists to develop production use cases, in particular using
the large scale plasma simulation code Gysela [37].

REFERENCES

[1] K.-L. Ma, C. Wang, H. Yu, and A. Tikhonova, “In-situ processing
and visualization for ultrascale simulations,” Journal of Physics:
Conference Series, vol. 78, no. 1, p. 012043, 2007. [Online]. Available:
http://stacks.iop.org/1742-6596/78/i=1/a=012043

[2] J. Ahrens, B. Geveci, and C. Law, “ParaView: An End-User Tool for
Large Data Visualization,” Visualization Handbook, Jan. 2005.

[3] M. D. Hanwell, K. M. Martin, A. Chaudhary, and L. S. Avila,
“The Visualization Toolkit (VTK): Rewriting the rendering code
for modern graphics cards,” SoftwareX, vol. 1-2, pp. 9–12, Sep.
2015. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S2352711015000035

[4] H. Childs, “VisIt: An End-User Tool for Visualizing and Analyzing Very
Large Data,” p. 17.

[5] N. Fabian, K. Moreland, D. Thompson, A. Bauer, P. Marion, B. Geveci,
M. Rasquin, and K. Jansen, “The Paraview Coprocessing Library: a
Scalable, General Purpose In Situ Visualization Library,” in Large Data
Analysis and Visualization Workshop(LDAV’11), 2011, pp. 89–96.

[6] B. Whitlock, J. M. Favre, and J. S. Meredith, “Parallel In Situ Coupling
of Simulation with a Fully Featured Visualization System,” in 11th
Eurographics conference on Parallel Graphics and Visualization, 2011,
pp. 101–109.

[7] M. Larsen, J. Ahrens, U. Ayachit, E. Brugger, H. Childs, B. Geveci,
and C. Harrison, “The alpine in situ infrastructure: Ascending from
the ashes of strawman,” in Proceedings of the In Situ Infrastructures
on Enabling Extreme-Scale Analysis and Visualization, ser. ISAV’17.
New York, NY, USA: Association for Computing Machinery, 2017, p.
42–46. [Online]. Available: https://doi.org/10.1145/3144769.3144778

http://stacks.iop.org/1742-6596/78/i=1/a=012043
http://www.sciencedirect.com/science/article/pii/S2352711015000035
http://www.sciencedirect.com/science/article/pii/S2352711015000035
https://doi.org/10.1145/3144769.3144778

[8] K. Moreland, C. Sewell, W. Usher, L. Lo, J. Meredith, D. Pugmire,
J. Kress, H. Schroots, K. Ma, H. Childs, M. Larsen, C. Chen, R. May-
nard, and B. Geveci, “VTK-m: Accelerating the Visualization Toolkit
for Massively Threaded Architectures,” IEEE Computer Graphics and
Applications, vol. 36, no. 3, pp. 48–58, May 2016, conference Name:
IEEE Computer Graphics and Applications.

[9] U. Ayachit, B. Whitlock, M. Wolf, B. Loring, B. Geveci, D. Lonie,
and E. W. Bethel, “The SENSEI Generic In Situ Interface,” in
2016 Second Workshop on In Situ Infrastructures for Enabling
Extreme-Scale Analysis and Visualization (ISAV). Salt Lake City,
UT, USA: IEEE, Nov. 2016, pp. 40–44. [Online]. Available:
http://ieeexplore.ieee.org/document/7836400/

[10] M. Dreher and B. Raffin, “A Flexible Framework for Asynchronous
In Situ and In Transit Analytics for Scientific Simulations.”
IEEE Computer Science Press, May 2014. [Online]. Available:
https://hal.inria.fr/hal-00941413

[11] M. Dreher and T. Peterka, “Decaf: Decoupled Dataflows for
In Situ High-Performance Workflows,” Argonne National Lab.
(ANL), Argonne, IL (United States), Tech. Rep. ANL/MCS-
TM-371, Jul. 2017. [Online]. Available: https://www.osti.gov/biblio/
1372113-decaf-decoupled-dataflows-situ-high-performance-workflows

[12] ——, “Bredala: Semantic Data Redistribution for In Situ Applications,”
in 2016 IEEE International Conference on Cluster Computing (CLUS-
TER), Sep. 2016, pp. 279–288, iSSN: 2168-9253.

[13] J. Lofstead and R. Ross, “Insights for exascale IO APIs from building
a petascale IO API,” in SC ’13: Proceedings of the International
Conference on High Performance Computing, Networking, Storage and
Analysis, Nov. 2013, pp. 1–12, iSSN: 2167-4337.

[14] D. A. Boyuka, S. Lakshminarasimham, X. Zou, Z. Gong, J. Jenkins,
E. R. Schendel, N. Podhorszki, Q. Liu, S. Klasky, and N. F. Sama-
tova, “Transparent in Situ Data Transformations in ADIOS,” in 2014
14th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing, May 2014, pp. 256–266.

[15] W. F. Godoy, N. Podhorszki, R. Wang, C. Atkins, G. Eisenhauer,
J. Gu, P. Davis, J. Choi, K. Germaschewski, K. Huck, A. Huebl,
M. Kim, J. Kress, T. Kurc, Q. Liu, J. Logan, K. Mehta,
G. Ostrouchov, M. Parashar, F. Poeschel, D. Pugmire, E. Suchyta,
K. Takahashi, N. Thompson, S. Tsutsumi, L. Wan, M. Wolf,
K. Wu, and S. Klasky, “ADIOS 2: The Adaptable Input Output
System. A framework for high-performance data management,”
SoftwareX, vol. 12, p. 100561, Jul. 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2352711019302560

[16] M. Dorier, G. Antoniu, F. Cappello, M. Snir, and L. Orf, “Damaris:
How to Efficiently Leverage Multicore Parallelism to Achieve Scalable,
Jitter-free I/O,” in CLUSTER 2012 - IEEE International Conference
on Cluster Computing. Beijing, China: IEEE, Sep. 2012. [Online].
Available: https://hal.inria.fr/hal-00715252

[17] C. Docan, M. Parashar, and S. Klasky, “DataSpaces: an interaction and
coordination framework for coupled simulation workflows,” Cluster
Computing, vol. 15, no. 2, pp. 163–181, Jun. 2012. [Online]. Available:
https://doi.org/10.1007/s10586-011-0162-y

[18] Y. Wang, G. Agrawal, T. Bicer, and W. Jiang, “Smart: a MapReduce-like
framework for in-situ scientific analytics,” in SC ’15: Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, Nov. 2015, pp. 1–12, iSSN: 2167-4337.

[19] H. C. Zanúz, B. Raffin, O. A. Mures, and E. J. Padrón, “In-transit
molecular dynamics analysis with Apache flink,” in Proceedings of the
Workshop on In Situ Infrastructures for Enabling Extreme-Scale Analysis
and Visualization. Dallas Texas USA: ACM, Nov. 2018, pp. 25–32.
[Online]. Available: https://dl.acm.org/doi/10.1145/3281464.3281469

[20] X. Xing, B. Dong, J. Ajo-Franklin, and K. Wu, “Automated parallel data
processing engine with application to large-scale feature extraction,” in
2018 IEEE/ACM Machine Learning in HPC Environments (MLHPC),
2018, pp. 37–46.

[21] E. Dirand, L. Colombet, and B. Raffin, “TINS: A Task-Based Dynamic
Helper Core Strategy for In Situ Analytics,” in Supercomputing
Frontiers, R. Yokota and W. Wu, Eds. Cham: Springer International
Publishing, 2018, vol. 10776, pp. 159–178, series Title: Lecture Notes
in Computer Science. [Online]. Available: http://link.springer.com/10.
1007/978-3-319-69953-0 10

[22] F. Zheng, H. Yu, C. Hantas, M. Wolf, G. Eisenhauer, K. Schwan,
H. Abbasi, and S. Klasky, “GoldRush: Resource Efficient in Situ
Scientific Data Analytics Using Fine-grained Interference Aware
Execution,” in Proceedings of the International Conference on High

Performance Computing, Networking, Storage and Analysis, ser. SC
’13. New York, NY, USA: ACM, 2013, pp. 78:1–78:12. [Online].
Available: http://doi.acm.org/10.1145/2503210.2503279

[23] C. Ramon-Cortes, F. Lordan, J. Ejarque, and R. M. Badia, “A
Programming Model for Hybrid Workflows: combining Task-based
Workflows and Dataflows all-in-one,” Future Generation Computer
Systems, vol. 113, pp. 281–297, Dec. 2020, arXiv: 2007.04939.
[Online]. Available: http://arxiv.org/abs/2007.04939

[24] J. A. Cid-Fuentes, S. Sola, P. Alvarez, A. Castro-Ginard, and R. M.
Badia, “dislib: Large scale high performance machine learning in
python,” in 2019 15th International Conference on eScience (eScience),
Sep. 2019, pp. 96–105.

[25] M. Rocklin, “Dask: Parallel Computation with Blocked algorithms
and Task Scheduling,” Austin, Texas, 2015, pp. 126–132. [Online].
Available: https://conference.scipy.org/proceedings/scipy2015/matthew
rocklin.html

[26] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang,
M. Elibol, Z. Yang, W. Paul, M. I. Jordan, and I. Stoica, “Ray: A
distributed framework for emerging AI applications,” in 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
18). Carlsbad, CA: USENIX Association, Oct. 2018, pp. 561–
577. [Online]. Available: https://www.usenix.org/conference/osdi18/
presentation/moritz

[27] Y. Babuji, A. Woodard, Z. Li, D. S. Katz, B. Clifford, R. Kumar,
L. Lacinski, R. Chard, J. M. Wozniak, I. Foster, M. Wilde, and K. Chard,
“Parsl: Pervasive Parallel Programming in Python,” Proceedings of
the 28th International Symposium on High-Performance Parallel and
Distributed Computing, pp. 25–36, Jun. 2019, arXiv: 1905.02158.
[Online]. Available: http://arxiv.org/abs/1905.02158

[28] E. Slaughter and A. Aiken, “Pygion: Flexible, Scalable Task-
Based Parallelism with Python,” in 2019 IEEE/ACM Parallel
Applications Workshop, Alternatives To MPI (PAW-ATM). Denver,
CO, USA: IEEE, Nov. 2019, pp. 58–72. [Online]. Available:
https://ieeexplore.ieee.org/document/9062721/

[29] A. Heirich, E. Slaughter, M. Papadakis, W. Lee, T. Biedert,
and A. Aiken, “In situ visualization with task-based parallelism,”
in Workshop on In Situ Infrastructures on Enabling Extreme-
Scale Analysis and Visualization (ISAV’17), ser. ISAV’17. New
York, NY, USA: ACM, 2017, pp. 17–21. [Online]. Available:
http://doi.acm.org/10.1145/3144769.3144771

[30] “Pdi documentation.” [Online]. Available: https://pdi.julien-bigot.fr/
master/

[31] C. Roussel, K. Keller, M. Gaalich, L. Bautista Gomez, and J. Bigot,
“PDI, an approach to decouple I/O concerns from high-performance
simulation codes,” Sep. 2017, working paper or preprint. [Online].
Available: https://hal.archives-ouvertes.fr/hal-01587075

[32] “dask-ml 0.1 documentation -
dask ml.decomposition.IncrementalPCA.” [Online]. Available:
modules/generated/dask ml.decomposition.IncrementalPCA.html

[33] Y. Asahi, K. Fujii, D. M. Heim, S. Maeyama, X. Garbet, V. Grandgirard,
Y. Sarazin, G. Dif-Pradalier, Y. Idomura, and M. Yagi, “Compressing
the time series of five dimensional distribution function data from
gyrokinetic simulation using principal component analysis,” Physics
of Plasmas, vol. 28, no. 1, p. 012304, 2021. [Online]. Available:
https://doi.org/10.1063/5.0023166

[34] V. C. Barroso, U. Fuchs, and A. Wegrzynek, “Benchmarking message
queue libraries and network technologies to transport large data volume
in the ALICE O system,” in 2016 IEEE-NPSS Real Time Conference
(RT). Padova, Italy: IEEE, Jun. 2016, pp. 1–5. [Online]. Available:
http://ieeexplore.ieee.org/document/7543162/

[35] “OpenUCX — OpenUCX documentation.” [Online]. Available: https:
//openucx.readthedocs.io/en/master/

[36] “Dask documentation - Chunks.” [Online]. Available: array-chunks.html
[37] J. Bigot, V. Grandgirard, G. Latu, C. Passeron, F. Rozar, and

O. Thomine, “Scaling gysela code beyond 32k-cores on blue
gene/q,” in ESAIM: PROCEEDINGS, ser. 43, vol. CEMRACS
2012, Luminy, France, July 2012, pp. 117–135. [Online]. Available:
https://hal.inria.fr/hal-01050322

http://ieeexplore.ieee.org/document/7836400/
https://hal.inria.fr/hal-00941413
https://www.osti.gov/biblio/1372113-decaf-decoupled-dataflows-situ-high-performance-workflows
https://www.osti.gov/biblio/1372113-decaf-decoupled-dataflows-situ-high-performance-workflows
https://www.sciencedirect.com/science/article/pii/S2352711019302560
https://hal.inria.fr/hal-00715252
https://doi.org/10.1007/s10586-011-0162-y
https://dl.acm.org/doi/10.1145/3281464.3281469
http://link.springer.com/10.1007/978-3-319-69953-0_10
http://link.springer.com/10.1007/978-3-319-69953-0_10
http://doi.acm.org/10.1145/2503210.2503279
http://arxiv.org/abs/2007.04939
https://conference.scipy.org/proceedings/scipy2015/matthew_rocklin.html
https://conference.scipy.org/proceedings/scipy2015/matthew_rocklin.html
https://www.usenix.org/conference/osdi18/presentation/moritz
https://www.usenix.org/conference/osdi18/presentation/moritz
http://arxiv.org/abs/1905.02158
https://ieeexplore.ieee.org/document/9062721/
http://doi.acm.org/10.1145/3144769.3144771
https://pdi.julien-bigot.fr/master/
https://pdi.julien-bigot.fr/master/
https://hal.archives-ouvertes.fr/hal-01587075
modules/generated/dask_ml.decomposition.IncrementalPCA.html
https://doi.org/10.1063/5.0023166
http://ieeexplore.ieee.org/document/7543162/
https://openucx.readthedocs.io/en/master/
https://openucx.readthedocs.io/en/master/
array-chunks.html
https://hal.inria.fr/hal-01050322

	Introduction
	Related Work
	Dask
	deisa Approach
	Evaluation
	Ease of use
	Performance evaluation

	Conclusion
	References

