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Abstract

We focus on mono-dimensional hyperbolic systems approximated by a particular lattice Boltz-
mann scheme. The scheme is described in the framework of the multiple relaxation times method
and stability conditions are given. An analysis is done to link the scheme with an explicit finite
differences approximation of the relaxation method proposed by Jin and Xin. Several numeri-
cal illustrations are given for the transport equation, Burger’s equation, the p-system, and full
compressible Euler’s system.
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Introduction

The strength of the lattice Boltzmann schemes lies in their effectivity. They are intensively
used in academic and industrial contexts for numerical simulations of fluid dynamics. Their
links with the mesoscopic physics and in particular with the Boltzmann equation make that these
schemes are especially well adapted to simulate fluid phenomenas obtained by asymptotic limits
from the kinetic theory. However, it is sometimes awkward to fix the several parameters of a lat-
tice Boltzmann scheme in order to simulate a given equation, even if this equation is written into
a conservative form: the conservation of the energy is classically a difficulty that can involve to
use two different schemes coupled by a source term [1]. Other very particular schemes were pro-
posed and investigated in order to simulate the full compressible Euler system, with substantial
works on the equilibria [2, 3, 4, 5, 6].

In this contribution, a new lattice Boltzmann scheme is introduced in order to approximate
any mono-dimensional hyperbolic conservative system, the intended target being the various
equations of the fluid dynamics: many systems are written as conservation laws and the propa-
gation of the waves is an essential property. In particular, the equations obtained by the kinetic
theory of gases (as Euler’s equations) are of that type [7]. The followed methodology is to
treat separately the equations of the system by leaving aside the Boltzmann equation as much
as possible. Usually, in order to increase the dimension of the system—that is the number of
conservation equations—densities with larger velocities are introduced with two consequences:
first, the lattice of the velocities is extended with the obvious difficulties concerning the boundary
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conditions; second, added new velocities deeply modifies the scheme so that all previous investi-
gations have to be redone. The proposed scheme denoted by D1Qn

2 is built by duplicating for each
of the n conserved moments the well-known and simplest lattice Boltzmann scheme: the D1Q2
(one spatial dimension and two discrete velocities). Therefore, the results on the scalar equation
can easily be extended to the system of n equations. Moreover, as the boundary conditions are
written on the densities in the framework of the lattice Boltzmann schemes, the decoupling of the
density functions extremely simplifies the choices of the incoming densities on the boundaries to
fit the boundary conditions on the moments.

In [8], Jin and Xin introduced the relaxation method to replace a non linear hyperbolic system
of dimension n by a linear hyperbolic system of dimension 2n with a stiff source term—called a
relaxation term as it enforces the added moment to relax to the flux of the initial system. The con-
vergence of this method when the relaxation term becomes dominant was investigated in [9, 10].
Many publications deal then with numerical relaxation schemes [11, 12, 13]. Otherwise, Junk
reinterprets the lattice Boltzmann method—in particular the D2Q9—as an explicit finite differ-
ences discretization of a relaxation formulation for the incompressible Navier-Stokes equation
in the diffusive scaling [14]. In this paper, the proposed D1Qn

2 scheme is related to a particular
discretization of the relaxation method: a splitting between the linear hyperbolic part treated with
an explicit finite differences discretization (Lax-Friedrichs discretization) and the relaxation part
treated with an explicit Euler solver.

The first section of this paper is devoted to the scalar case: the D1Q2 scheme is written into
the framework of d’Humières [15]; the equivalent equations are given up to the second order by
using the Taylor expansion method [16, 17]; the description of the scheme as a discretization of
the relaxation method is then done and stability conditions are given; finally numerical illustra-
tions for the transport equation and for Burger’s equation are performed. In the second section,
we consider the case of n-dimensional hyperbolic systems: the D1Qn

2 scheme is introduced and
described; the Taylor expansion method is then used to obtain the second order equivalent equa-
tions and the link with the discretization of the relaxation method is done; finally numerical
illustrations for the p-system and for the full compressible Euler equation are performed.

1. The D1Q2 scheme for the 1−D scalar equation

In this section, we consider the following mono-dimensional hyperbolic equation

∂tu(t, x) + ∂xϕ(u)(t, x) = 0, t > 0, x ∈ R, (1)

where the flux ϕ is a smooth function on R. A two-velocities lattice Boltzmann scheme is used
to approximate the solution of this equation.

1.1. Description of the scheme
We use the notation proposed by d’Humières in [15] by considering L, a regular lattice in

one dimension of space with typical mesh size ∆x. The time step ∆t is determined after the
specification of the velocity scale λ by the relation:

∆t =
∆x
λ
. (2)

For the scheme denoted by D1Q2, we introduce v = (−λ, λ) the set of the two velocities and
we assume that for each node x of L, and each vj in v, the point x + vj ∆t is also a node of the
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lattice L. The aim of the D1Q2 scheme is to compute a particles distribution vector f = ( f0, f1)T

on the lattice L at discrete values of time: it is a numerical scheme to approximately solve the
PDEs

∂t fj + vj ·∇ fj = −
1
τ j

( fj − f eq
j ), 0 ≤ j ≤ 1,

on a grid in space and time where f eq
j describes the distribution fj at the equilibrium and τ j is the

relaxation time (applied to fj). The scheme splits into two phases for each time iteration: first,
the relaxation phase that is local in space, and second, the transport phase for which an exact
characteristic method is used.

The framework proposed by d’Humières [15] reduced here to the two moments denoted by
m = (u, v)T and defined for each space point x ∈ L and for each time t by

u = f0 + f1, v = λ
(
− f0 + f1

)
. (3)

The matrix of the moments M such that m = M f satisfies

M =

(
1 1
−λ λ

)
, M−1 =

( 1
2 − 1

2λ
1
2

1
2λ

)
. (4)

Let us now describe one time step of the scheme. The start point is the density vector f (x, t)
in x ∈ L at time t, the moments are computed by

m(x, t) = M f (x, t). (5)

The relaxation phase then reads

u?(x, t) = u(x, t), v?(x, t) = v(x, t) + s(veq(x, t) − v(x, t)), (6)

where s is the relaxation parameter and veq the second moment at equilibrium that is a function of
u. As a consequence, the first moment u is conserved during the relaxation phase. The densities
are then computed after the relaxation phase by

f?(x, t) = M−1m?(x, t). (7)

The transport phase finally reads

fj(x, t + ∆t) = f ?j (x − vj ∆t, t), 0 ≤ j ≤ 1. (8)

1.2. Asymptotic Analysis : the Taylor expansion method
The aim of this section is to find the equivalent equations of the scheme and in particular to

fix the equilibrium value veq as a function of u in order to ensure that the scheme is consistent
with (1). This reasoning consists in a formal development of the distribution functions f (x, t)
at small ∆t and ∆x, assuming that these functions are regular enough to use the Taylor formula.
The results of this section are particular cases of the general expansion of Dubois [16, 17]. The
interested reader can find proofs in Appendix A.

Proposition 1.1 (zeroth order). Defining the vectors meq = (u, veq)T and f eq = M−1meq, we have

fj = f eq
j + O(∆t), f ?j = f eq

j + O(∆t), 0 ≤ j ≤ 1. (9)
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Proposition 1.2 (First order macroscopic equation). The first moment u satisfies the partial dif-
ferential equation

∂tu + ∂xveq = O(∆t). (10)

The choice veq = ϕ(u) is then done so that u satisfies (1) at order 1.

We then define the equilibrium default θ by using the particular derivatives d j
t = ∂t + vj ∂x,

0 ≤ j ≤ 1,

θ =

1∑
j=0

vj d j
t f eq

j .

The equilibrium default θ can then be rewritten into the form

θ = ∂tveq + λ2∂xu. (11)

Lemma 1.3 (Transition lemma). The second moment v satisfies

v = veq −
∆t
s
θ + O(∆t2), v? = veq + ∆t

(
1 −

1
s

)
θ + O(∆t2). (12)

Moreover, we have
f ?j − fj = ∆t d j

t f eq
j + O(∆t2), 0 ≤ j ≤ 1.

Proposition 1.4 (Second order macroscopic equation). The first moment u satisfies the second-
order partial differential equation

∂tu + ∂xϕ(u) = ∆t σ∂x

((
λ2 −

(
ϕ′(u)

)2
)
∂xu

)
+ O(∆t2), (13)

with σ = 1/s − 1/2.

Let us remark that this second-order macroscopic equation (13) then contains a diffusion term
with a regularization effect if σ > 0 (that is s < 2) and |ϕ′(u)| < λ. These conditions are indeed
compatible with the stability conditions of the section 1.4. In order to simulate the hyperbolic
equation (1), the relaxation parameter s could be taken equal to 2. But this term has a stabilization
effect and it could be sometime useful to choose s smaller to minimize the oscillations around
the discontinuities.

1.3. Link with the relaxation method
The relaxation method introduced by Jin and Xin [8] to solve the conservation equation (1)

consists in forming a linear hyperbolic system with a stiff source term:
∂tuε + ∂xvε = 0,

∂tvε + a∂xuε = −
1
ε

(vε − ϕ(uε)),
(14)

where ε is a small positive parameter. This kind of approximation was proposed in the general
setting of the quasilinear systems of hyperbolic conservation laws and possesses some very in-
teresting features. Natalini proves in [9, 10] that uε and vε converge to u and ϕ(u) when ε goes
to zero under some technical assumptions where u is the unique entropy solution in the sense of
Kružkov [18].
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In this section we write the D1Q2 scheme as a discretization of the relaxation system. Indeed,
denoting un

i = u(xi, tn), vn
i = v(xi, tn), xi ∈ L and tn = n∆t, we have

vn?
i = vn

i − s(vn
i − ϕ(un

i )), (15)

un+1
i = 1

2 (un
i+1 + un

i−1) − ∆t
2∆x (vn?

i+1 − vn?
i−1), (16)

vn+1
i = 1

2 (vn?
i+1 + vn?

i−1) − λ2 ∆t
2∆x (un

i+1 − un
i−1). (17)

We then reinterpret the scheme as a splitting of the relaxation system (14) between the relaxation
part (15) and the hyperbolic part (16,17). The relaxation part is treated by the explicit Euler
method with ε = ∆t/s, and the hyperbolic part by the Lax-Friedrichs method with a = λ2.

Moreover, we observe that the transport phase of the lattice Boltzmann scheme corresponds
exactly to the hyperbolic part in the base of the eigenvectors. Indeed, writting the hyperbolic part
of Eq. (14) as

∂tU + A∂xU = 0, with A =

(
0 1
λ2 0

)
,

we have

M−1 AM =

(
−λ 0
0 λ

)
.

The D1Q2 scheme then treats the hyperbolic part of the relaxation system by an upwind method
in the base of the eigenvectors.

1.4. Stability

In this section, we are interested in the stability of the D1Q2 scheme. We first investigate
the L2-stability for the linear scheme, that is if ϕ(u) = cu with c a real constant. We then give a
property of L∞-stability in the general case but with a more restrictive condition.

In the case where ϕ(u) = cu, c ∈ R, the amplification matrix of the linear D1Q2 scheme is
given by

G(∆x, ξ) =


(
1 − s

2 (1 + c
λ
)
)

e−i∆xξ s
2 (1 − c

λ
)e−i∆xξ

s
2 (1 + c

λ
)ei∆xξ

(
1 − s

2 (1 − c
λ
)
)

ei∆xξ

 .
Proposition 1.5. The linear D1Q2 scheme is stable for the L2-norm if, and only if, λ ≥ |c| and
s ∈ [0, 2].

Proof. Considering the two discs of Gershgorin of the matrix G(∆x, ξ), the condition |c| ≤ λ and
s ∈ [0, 2] immediately implies that the two eigenvalues of G have a modulus smaller than 1. The
reciprocal property is trivially true taking ξ = 0. �

Proposition 1.6 (maximum principle). Let M be a positive constant and ϕ a smooth flux function
such that |ϕ′(u)| ≤ K for u in the compact [0,M]. Considering the D1Q2 scheme where

• the initial distribution functions are nonnegative fj(x, 0) ≥ 0, for 0 ≤ j ≤ 1, x ∈ L,

• the initial global mass utot =
∑

x∈L( f0 + f1) satisfies utot ≤ M,

• the relaxation parameter s verifies s ∈ [0, 1],

• the velocity of the scheme is such that λ ≥ K,
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then we have
0 ≤ fj(x, tn) ≤ M, for 0 ≤ j ≤ 1, x ∈ L, n ∈ N. (18)

As a consequence, the first moment u remains bounded and nonnegative.

Proof. As the transport phase (8) just exchanges the data, we prove that fj ≥ 0 implies f ?j ≥ 0.
The problem being invariant by adding a constant to the flux function ϕ, we assume that ϕ(0) = 0.
We have for each discrete point x ∈ L and each discrete time tn = n∆t

f ?0 =
(
1 −

s
2

)
f0 +

s
2

f1 −
s

2λ
ϕ( f0 + f1),

f ?1 =
s
2

f0 +
(
1 −

s
2

)
f1 +

s
2λ
ϕ( f0 + f1).

Writting ϕ( f0 + f1) = ϕ′(ξ)( f0 + f1) for one ξ ∈ [0,M] yields

f ?0 =
(
1 −

s
2

(
1 +

ϕ′(ξ)
λ

))
f0 +

s
2

(
1 −

ϕ′(ξ)
λ

)
f1,

f ?1 =
s
2

(
1 +

ϕ′(ξ)
λ

)
f0 +

(
1 −

s
2

(
1 −

ϕ′(ξ)
λ

))
f1.

The assumptions s ∈ [0, 1] and λ ≥ K then immediately imply that f ?0 and f ?1 are nonnegative
linear combinations of f0 and f1, so that are nonnegative. The superior bound is then a conse-
quence of the conservation of the global first moment utot. �

Remark 1.7. The assumption utot ≤ M can be removed in the case where the flux ϕ is K-
lipschitzienne over R.

1.5. Numerical illustrations

In this section, we perform two numerical simulations, one for the transport equation with a
constant velocity, and one for Burger’s equation. The latticeL is reduced to [0, 1] and a homoge-
neous Neumann condition is added to treat the boundaries. In order to visualize the properties of
the D1Q2 scheme, the initial condition is chosen of two types: first a smooth function and second
a Riemann problem type function.

1.5.1. The transport equation
Let c be a real constant, we consider in this section ϕ(u) = cu.
In Fig. 1, the left (resp. right) plot shows the initial and the final (at time T = 0.4) moment

u for several relaxation parameters s for smooth initial condition (resp. Riemann problem).
The number of points in space N = 200 had been chosen in order to visualize that the maximum
principle is fulfilled when s ∈ [0, 1] and is not when s ∈]1, 2] (the condition λ ≥ |c| is true). Tbl. 1
(resp. Tbl. 2) shows the convergence of the L2-norm for several relaxation parameters s when ∆x
goes to zero for smooth initial condition (resp. Riemann problem). Each line corresponds to the
integer k ∈ {3, . . . , 16} with ∆x = 2−k. We then verify numerically that the scheme is consistent
at order 1 with the transport equation in the general case and at order 2 if s = 2, for smooth
solutions. The convergence is lowered when the solution is less regular.
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Figure 1: Transport equation with c = 0.75 at final time T = 0.4 (left: smooth solution, right: Riemann problem)

k s 2.000 1.900 1.750 1.000 0.750 0.500

3 1.536e-01 1.416e-01 1.256e-01 8.104e-02 7.881e-02 8.113e-02
4 1.733e-01 1.714e-01 1.712e-01 2.062e-01 2.288e-01 2.550e-01
5 1.319e-01 1.153e-01 1.073e-01 1.495e-01 1.757e-01 2.100e-01
6 4.897e-02 4.697e-02 5.138e-02 1.145e-01 1.405e-01 1.719e-01
7 1.254e-02 1.429e-02 2.162e-02 7.983e-02 1.049e-01 1.357e-01
8 3.113e-03 4.850e-03 9.913e-03 4.990e-02 7.081e-02 9.927e-02
9 7.761e-04 1.991e-03 4.836e-03 2.863e-02 4.329e-02 6.599e-02
10 1.943e-04 9.263e-04 2.412e-03 1.551e-02 2.448e-02 3.990e-02
11 4.863e-05 4.522e-04 1.208e-03 8.096e-03 1.311e-02 2.233e-02
12 1.216e-05 2.241e-04 6.041e-04 4.138e-03 6.794e-03 1.188e-02
13 3.039e-06 1.117e-04 3.022e-04 2.092e-03 3.461e-03 6.136e-03
14 7.598e-07 5.577e-05 1.512e-04 1.052e-03 1.747e-03 3.121e-03
15 1.900e-07 2.787e-05 7.559e-05 5.277e-04 8.778e-04 1.574e-03
16 4.749e-08 1.393e-05 3.780e-05 2.642e-04 4.400e-04 7.904e-04

slope 2.000e+00 1.000e+00 9.999e-01 9.979e-01 9.965e-01 9.937e-01

Table 1: Transport equation with c = 0.75 at final time T = 0.4 (smooth solution: error in L2 norm)

k s 2.000 1.900 1.750 1.000 0.750 0.500

3 2.722e-01 2.657e-01 2.590e-01 2.649e-01 2.758e-01 2.893e-01
4 8.353e-02 8.611e-02 9.415e-02 1.696e-01 2.027e-01 2.389e-01
5 1.488e-01 1.372e-01 1.304e-01 1.434e-01 1.587e-01 1.832e-01
6 1.055e-01 9.036e-02 8.323e-02 1.066e-01 1.225e-01 1.444e-01
7 8.651e-02 7.416e-02 7.188e-02 9.591e-02 1.082e-01 1.251e-01
8 6.158e-02 4.995e-02 5.070e-02 7.838e-02 8.932e-02 1.038e-01
9 5.568e-02 4.470e-02 4.497e-02 6.609e-02 7.494e-02 8.675e-02
10 4.421e-02 3.434e-02 3.570e-02 5.515e-02 6.270e-02 7.268e-02
11 3.460e-02 2.684e-02 2.954e-02 4.657e-02 5.289e-02 6.125e-02
12 2.710e-02 2.089e-02 2.424e-02 3.909e-02 4.442e-02 5.146e-02
13 2.230e-02 1.732e-02 2.043e-02 3.288e-02 3.735e-02 4.326e-02
14 1.783e-02 1.406e-02 1.707e-02 2.763e-02 3.140e-02 3.637e-02
15 1.403e-02 1.151e-02 1.432e-02 2.324e-02 2.641e-02 3.059e-02
16 1.111e-02 9.517e-03 1.202e-02 1.954e-02 2.220e-02 2.572e-02

slope 3.374e-01 2.746e-01 2.527e-01 2.502e-01 2.501e-01 2.501e-01

Table 2: Transport equation with c = 0.75 at final time T = 0.4 (Riemann problem: error in L2 norm)
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Remark 1.8. The decrease of the convergence rate for discontinuous solution is in conformity
with previous results for the hyperbolic systems: Kuznetsov established the 1/2 order for the non
linear Lax’s scheme on a multi-dimensional Cartesian mesh [19]; Delarue and Lagoutière prove
that the upwind scheme is of order 1/2 in L∞([0,T ], L1(Rd)) for an integrable initial datum of
bounded variation for the transport equation on a polygonal mesh [20]; finally, concerning the
mono-dimensional non linear equation investigated in this section, Sabac established that the 1/2
order is optimal for the monotone finite differences schemes [21]. High order accurate methods
like the streamline upwind Petrov-Galerkin (SUPG) method introduced by Hughes and Brooks
[22] or like the essentially non-oscillatory (ENO) and the weighted essentially non-oscillatory
(WENO) methods initiated by Harten, Engquist, Osher, and Chakravarthy [23] have also a de-
crease of their convergence rates [24, 25].

1.5.2. Burger’s Equation
In this section, the flux ϕ is taken to simulate Burger’s equation ϕ(u) = u2/2.
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Figure 2: Burger’s equation at final time T = 0.2 (left: smooth solution, right: discontinuous solution)

k s 2.000 1.900 1.750 1.000 0.750 0.500

3 1.378e-01 1.378e-01 1.378e-01 1.378e-01 1.378e-01 1.378e-01
4 4.301e-02 4.019e-02 3.878e-02 7.735e-02 1.029e-01 1.344e-01
5 1.416e-02 1.036e-02 1.047e-02 4.100e-02 6.042e-02 8.991e-02
6 4.256e-03 2.441e-03 4.038e-03 2.142e-02 3.334e-02 5.389e-02
7 1.200e-03 8.378e-04 1.836e-03 1.114e-02 1.789e-02 3.033e-02
8 3.172e-04 3.565e-04 8.763e-04 5.698e-03 9.306e-03 1.620e-02
9 8.073e-05 1.655e-04 4.274e-04 2.878e-03 4.743e-03 8.381e-03
10 2.036e-05 7.977e-05 2.111e-04 1.448e-03 2.398e-03 4.271e-03
11 5.142e-06 3.919e-05 1.050e-04 7.270e-04 1.207e-03 2.161e-03
12 1.289e-06 1.942e-05 5.238e-05 3.644e-04 6.061e-04 1.087e-03
13 3.206e-07 9.669e-06 2.616e-05 1.825e-04 3.037e-04 5.456e-04
14 8.019e-08 4.824e-06 1.307e-05 9.131e-05 1.521e-04 2.734e-04
15 2.017e-08 2.410e-06 6.534e-06 4.568e-05 7.610e-05 1.369e-04
16 5.043e-09 1.204e-06 3.267e-06 2.285e-05 3.807e-05 6.850e-05

slope 2.000e+00 1.001e+00 1.000e+00 9.994e-01 9.992e-01 9.988e-01

Table 3: Burger’s equation at final time T = 0.2 (smooth solution: error in L2 norm)
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k s 2.000 1.900 1.750 1.000 0.750 0.500

3 2.216e-01 2.216e-01 2.216e-01 2.216e-01 2.216e-01 2.216e-01
4 6.980e-02 7.162e-02 7.667e-02 1.323e-01 1.616e-01 1.971e-01
5 6.115e-02 6.021e-02 6.318e-02 1.031e-01 1.246e-01 1.555e-01
6 6.144e-02 5.565e-02 5.328e-02 7.651e-02 9.299e-02 1.173e-01
7 5.498e-02 3.606e-02 3.560e-02 5.471e-02 6.796e-02 8.742e-02
8 5.584e-02 1.553e-02 1.163e-02 3.619e-02 4.732e-02 6.312e-02
9 8.526e-02 1.030e-02 1.119e-02 2.506e-02 3.308e-02 4.498e-02
10 6.426e-02 1.220e-02 1.202e-02 1.755e-02 2.283e-02 3.132e-02
11 7.534e-02 8.772e-03 8.165e-03 1.192e-02 1.545e-02 2.130e-02
12 6.869e-02 3.545e-03 2.193e-03 7.612e-03 1.022e-02 1.429e-02
13 7.320e-02 2.403e-03 2.532e-03 5.269e-03 6.969e-03 9.674e-03
14 7.377e-02 3.012e-03 2.930e-03 3.808e-03 4.852e-03 6.611e-03
15 7.302e-02 2.175e-03 2.001e-03 2.645e-03 3.346e-03 4.526e-03
16 7.229e-02 8.734e-04 4.971e-04 1.706e-03 2.254e-03 3.091e-03

slope ? ? ? ? ? ? ? ? ? 6.324e-01 5.700e-01 5.500e-01

Table 4: Burger’s equation at final time T = 0.2 (discontinuous solution: error in L2 norm)

In Fig. 2, the left (resp. right) plot shows the initial and the final (at time T = 0.2) moment u
for several relaxation parameters s for smooth (resp. discontinuous) initial condition. Concerning
the maximum principle, the conditions of Prop. 1.6 are more complicated. The initial data are
chosen in order to have |ϕ′(u)| ≤ λ and we can observe that the principle is fulfilled for s ∈ [0, 1]
and is not for s > 1 with the discontinuous solution.

The smooth initial data has been chosen as a piecewise polynomial function of order three
so that an expression of the exact solution can be given. Moreover, this function is increasing so
that no shock appears. Its expression reads

u(x + 1/2, t = 0) =

 sign(x) for |x| ≥ 1/4,

sign(x)
(
1 + (4|x| − 1)3) for |x| ≤ 1/4.

The discontinuous initial data is a piecewise constant function with two discontinuities: the first
one at x = 0.3 and the second one at x = 0.7. The left discontinuity leads to a rarefaction wave
whereas the right one leads to a shock wave.

Tbl. 3 (resp. Tbl. 4) shows the convergence of the L2-norm for several relaxation parameters
when ∆x goes to zero for smooth initial condition (resp. discontinuous initial condition). We
then verify numerically that the scheme is consistent at order 1 with Burger’s equation in the
general case and at order 2 if s = 2, for smooth solutions. In the case of the discontinuous initial
condition, we observe a lower convergence if s ∈ [0, 1] but no convergence rate if s > 1 even if
the error seems to be small.

2. The D1Qn
2 scheme for the 1−D system

In this section, we consider the following mono-dimensional hyperbolic system

∂tu(t, x) + ∂xϕ(u)(t, x) = 0, t > 0, x ∈ R, (19)

where the unknown u is a vector of Rn and the flux ϕ is a smooth function over Rn, for which the
jacobian matrix dϕ(u) is diagonalizable for each u, with eigenvalues λk(u) ∈ R, 1 ≤ k ≤ n. For the
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numerical illustrations, we consider the p-system and the full compressible Euler system (n = 2
or 3 in these cases). We propose an extension of the D1Q2 scheme compatible with the framework
of the Multiple Relaxation Times lattice Boltzmann Schemes proposed by d’Humière [15].

2.1. Description of the scheme
We use the same notations for the regular lattice L with mesh size ∆x. The time step ∆t is

linked with the scheme velocity by the relation λ = ∆x/∆t. Finally, the set of velocities v is
also defined by v = (−λ, λ). The D1Qn

2 scheme is then defined by concatenate n D1Q2 schemes
coupled through the equilibrium.

Let us introduce the particles distributions vector f = ( f1,0, f1,1, . . . , fn,0, fn,1)T and the mo-
ments vector m = (u1, . . . , un, v1, . . . , vn)T. For the sake of readibility, we also define u =

(u1, . . . , un)T and v = (v1, . . . , vn)T. The matrix of the moments M then reads

M =



1 1 0 0 . . . 0 0

0 0
. . .

. . .
...

...
. . .

. . . 0 0
0 0 . . . 0 0 1 1
−λ λ 0 0 . . . 0 0

0 0
. . .

. . .
...

...
. . .

. . . 0 0
0 0 . . . 0 0 −λ λ



. (20)

The inverse matrix M−1 is not given but can easily be obtained by the concatenatation of n
matrices corresponding to the scalar case. The starting point is the density vector f (x, t) in x ∈ L
at time t, the moments are then computed by

m(x, t) = M f (x, t). (21)

The relaxation phase in the space of the moments reads

u?k (x, t) = uk(x, t), v?k (x, t) = vk(x, t) + sk(veq
k (x, t) − vk(x, t)), 1 ≤ k ≤ n, (22)

where sk, 1 ≤ k ≤ n, is the k-th relaxation parameter and veq
k the moment at equilibrium that is a

function of the vector u. As a consequence, the first moment u is conserved during the relaxation
phase. The densities are then computed by

f?(x, t) = M−1m?(x, t). (23)

The transport finally reads

fk, j(x, t + ∆t) = f ?k, j(x − vj ∆t, t), 0 ≤ j ≤ 1, 1 ≤ k ≤ n. (24)

Concerning the treatment of the boundaries, as the densities of each moment are decoupled,
the standard Bouzidi conditions [26] can be applied independently on each moment: for instance,
anti-bounce back conditions in order to impose first-order Dirichlet conditions. These simplicity
is remarkable in particular for the full compressible Euler system for which the first and the third
moments (corresponding to the mass and the energy) are usually coupled with a standard lattice
Boltzmann scheme like D1Q5 or more elaborated schemes with seven velocities for instance
[2, 3].
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2.2. Asymptotic Analysis: the Taylor expansion method
In this section, we use the Taylor expansion method to write the system of the equivalent

equations as in section 1.2. No additional difficulties are involved by the dimension n.

Proposition 2.1 (zeroth order). Defining meq = (u1, . . . , un, v
eq
1 , . . . , v

eq
n ) and f eq = M−1meq, we

have
fk, j = f eq

k, j + O(∆t), f ?k, j = f eq
k, j + O(∆t), 0 ≤ j ≤ 1, 1 ≤ k ≤ n. (25)

Proposition 2.2 (First order macroscopic equation). The first moment u = (u1, . . . , un) satisfies
the partial differential equation

∂tu + ∂xveq = O(∆t), (26)

with veq = (veq
1 , . . . , v

eq
n ). The choice veq = ϕ(u) is then done so that u satisfies (19) at order 1.

We then define the equilibrium default θk, 1 ≤ k ≤ n, by using the particular derivatives
d j

t = ∂t + vj ∂x, 0 ≤ j ≤ 1,

θk =

1∑
j=0

vj d j
t f eq

k, j , 1 ≤ k ≤ n.

The equilibrium default θk can then be rewritten into the form

θk = ∂tv
eq
k + λ2∂xuk, 1 ≤ k ≤ n. (27)

Lemma 2.3 (Transition lemma). The second moment v satisfies

vk = veq
k −

∆t
sk
θk + O(∆t2), v?k = veq

k + ∆t
(
1 −

1
sk

)
θk + O(∆t2), 1 ≤ k ≤ n. (28)

Moreover, we have

f ?k, j − fk, j = ∆t d j
t f eq

k, j + O(∆t2), 0 ≤ j ≤ 1, 1 ≤ k ≤ n.

Proposition 2.4 (Second order macroscopic equation). The first moment u satisfies the following
system of second-order partial differential equations:

∂tu + ∂xϕ(u) = ∆t S ∂x

((
λ2In −

(
dϕ(u)

)2
)
∂xu

)
+ O(∆t2), (29)

with S = diag(σ1, . . . , σn), σk = 1/sk − 1/2, 1 ≤ k ≤ n, and In the identity matrix of size n×n.

Let us remark that this system of second-order macroscopic equations (29) then contains a
diffusion term with a regularization effect if σk > 0 (that is sk < 2), 1 ≤ k ≤ n, and |λk(u)| < λ,
for λk(u) eigenvalue of dϕ(u).

2.3. Link with the relaxation method
Jin and Xin [8] extended the relaxation method to solve hyperbolic systems of conservation

laws by forming the linear system with a stiff source term :
∂tuε + ∂xvε = 0,

∂tvε + A∂xuε =
1
ε

(ϕ(uε) − vε),
(30)

11



where A is a n×n-dimensional matrix.
If all the relaxation parameters sk, 1 ≤ k ≤ n, are equal to s (BGK type lattice Boltzmann

scheme), the D1Qn
2 scheme is then rewritten as a discretization of the relaxation system (30).

Indeed, denoting un
i = u(xi, tn), vn

i = v(xi, tn), xi ∈ L and tn = n∆t, relations (15, 16, 17) are
satisfied in a vectorial sens. We then reinterpret the scheme D1Qn

2 as a splitting between the
relaxation part (15) and the hyperbolic part (16,17). The relaxation part is treated by the explicit
Euler method with ε = ∆t/s, and the hyperbolic part by the Lax-Friedrichs method with A = λ2In.
Moreover, as for the scalar case, the transport phase of the D1Qn

2 treats the hyperbolic part of the
relaxation system (30) by an upwind scheme in the base of the eigenvectors.

The relaxation proposed by Jin and Xin does not require that A is proportional to In (even
if this particular case is specifically investigated). On the other hand, the stiff source term cor-
responding to the relaxation is proportional to In when the D1Qn

2 allows different values for the
relaxation parameters.

2.4. Numerical Illustrations
In this section, we perform numerical illustrations for the p-system and the full Euler com-

pressible equation. The lattice L is reduced to [0, 1] and homogeneous Neumann conditions are
added to treat the boundaries. The initial condition is constant over [0, 0.5] and ]0.5, 1] in order
to numerically solve the corresponding Riemann problem. We then denote ukL and ukR the left
and the right value of the kth moment, so that we have at initial time

uk(0, x) =

 ukL if x ≤ 0.5,
ukR if x > 0.5.

The presented numerical results try to cover all the typical cases: the plots and the numerical
convergence rates can be extended to all Riemann problems.

2.4.1. p-system
In this section, we consider the following p-system: ∂tu1 − ∂xu2 = 0,

∂tu2 − ∂x p(u1) = 0,
(31)

where p(u) = −u−γ, with γ = 2/3. This system of equations is hyperbolic as γ > 0 and the
eigenvalues of the jacobian matrix are ±

√
γu−

γ+1
2 .

In Fig. 3 (resp. Fig. 4), the two plots show the initial and the final (at time T = 0.3) moments
u1 and u2 for several relaxation parameters s1, s2, where the initial conditions are chosen in order
to obtain 1-shock, 2-rarefaction waves (resp. 1-rarefaction, 2-shock waves). For the numerical
values, we have the velocity of the scheme λ = 1, the number of points N = 200, and the initial
condition given by

• for the 1-shock, 2-rarefaction: u1L = 1.5, u2L = 1.25, u1R = 1.0, u2R = 1.0,

• for the 1-rarefaction, 2-shock: u1L = 1.0, u2L = 1.0, u1R = 1.5, u2R = 1.25.

The Tbl. 5 (resp. Tbl. 6) shows the convergence of the L2-norm for several relaxation parameters
s1, s2 when ∆x goes to zero for the 1-shock, 2-rarefaction waves (resp. 1-rarefaction, 2-shock
waves). Each line corresponds to the integer k ∈ {3, . . . , 16} with ∆x = 2−k. Essentially, we
observe a convergence at order 0.5 due to the discontinuity of the solution. In the case of 1-
rarefaction, 2-rarefaction waves (the solution is then continuous for t > 0), the same investigation
yields to a higher order, between 0.64 and 0.8 depending on the relaxation parameters.
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Figure 3: p-system at final time T = 0.3 (left: u1, right: u2) Riemann problem corresponding to 1-shock, 2-rarefaction
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s1 0.500 1.000 1.500 1.900 0.500 1.000 1.500
k s2 0.500 1.000 1.500 1.900 1.000 0.500 1.000

3 1.527e-01 1.428e-01 1.379e-01 1.378e-01 1.497e-01 1.459e-01 1.396e-01
4 1.057e-01 9.754e-02 1.007e-01 1.154e-01 1.030e-01 1.012e-01 9.777e-02
5 9.398e-02 7.297e-02 6.757e-02 7.972e-02 8.562e-02 8.371e-02 6.930e-02
6 7.163e-02 4.956e-02 3.718e-02 5.121e-02 6.313e-02 6.259e-02 4.366e-02
7 5.801e-02 4.057e-02 3.138e-02 4.426e-02 5.111e-02 5.102e-02 3.605e-02
8 4.754e-02 3.313e-02 2.520e-02 3.552e-02 4.177e-02 4.158e-02 2.925e-02
9 3.697e-02 2.376e-02 1.496e-02 1.721e-02 3.177e-02 3.171e-02 1.986e-02
10 2.859e-02 1.803e-02 1.274e-02 1.776e-02 2.425e-02 2.418e-02 1.534e-02
11 2.118e-02 1.287e-02 9.210e-03 1.192e-02 1.764e-02 1.763e-02 1.098e-02
12 1.520e-02 8.813e-03 5.519e-03 6.085e-03 1.246e-02 1.246e-02 7.262e-03
13 1.083e-02 6.426e-03 4.486e-03 6.092e-03 8.899e-03 8.889e-03 5.436e-03
14 7.638e-03 4.376e-03 2.539e-03 2.883e-03 6.237e-03 6.233e-03 3.553e-03
15 5.402e-03 3.088e-03 1.769e-03 2.052e-03 4.408e-03 4.404e-03 2.502e-03
16 3.816e-03 2.178e-03 1.226e-03 1.500e-03 3.112e-03 3.108e-03 1.760e-03

slope 5.014e-01 5.035e-01 5.288e-01 4.519e-01 5.021e-01 5.027e-01 5.073e-01

s1 1.000 1.900 1.000 0.500 1.500 1.500 1.900
k s2 1.500 1.000 1.900 1.500 0.500 1.900 1.500

3 1.412e-01 1.397e-01 1.409e-01 1.481e-01 1.427e-01 1.376e-01 1.380e-01
4 9.755e-02 9.936e-02 9.863e-02 1.025e-01 1.014e-01 1.052e-01 1.056e-01
5 6.961e-02 6.835e-02 6.861e-02 8.253e-02 8.053e-02 6.968e-02 6.974e-02
6 4.346e-02 4.156e-02 4.100e-02 5.978e-02 5.937e-02 3.790e-02 3.841e-02
7 3.581e-02 3.443e-02 3.392e-02 4.836e-02 4.841e-02 3.210e-02 3.245e-02
8 2.928e-02 2.756e-02 2.757e-02 3.939e-02 3.918e-02 2.468e-02 2.471e-02
9 1.982e-02 1.805e-02 1.795e-02 2.960e-02 2.956e-02 1.372e-02 1.385e-02
10 1.539e-02 1.417e-02 1.424e-02 2.248e-02 2.239e-02 1.244e-02 1.241e-02
11 1.096e-02 1.023e-02 1.019e-02 1.625e-02 1.624e-02 8.956e-03 8.980e-03
12 7.241e-03 6.595e-03 6.543e-03 1.141e-02 1.142e-02 5.173e-03 5.222e-03
13 5.441e-03 5.023e-03 5.027e-03 8.164e-03 8.153e-03 4.348e-03 4.346e-03
14 3.552e-03 3.173e-03 3.163e-03 5.698e-03 5.695e-03 2.207e-03 2.224e-03
15 2.502e-03 2.227e-03 2.223e-03 4.025e-03 4.022e-03 1.511e-03 1.521e-03
16 1.762e-03 1.560e-03 1.561e-03 2.841e-03 2.836e-03 1.014e-03 1.017e-03

slope 5.055e-01 5.137e-01 5.098e-01 5.027e-01 5.037e-01 5.757e-01 5.798e-01

Table 5: p-system at final time T = 0.3 (1-shock, 2-rarefaction: error in L2 norm)
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s1 0.500 1.000 1.500 1.900 0.500 1.000 1.500
k s2 0.500 1.000 1.500 1.900 1.000 0.500 1.000

3 1.105e-01 1.016e-01 9.836e-02 1.003e-01 1.092e-01 1.030e-01 9.895e-02
4 1.005e-01 8.795e-02 8.294e-02 8.454e-02 9.734e-02 9.316e-02 8.549e-02
5 8.301e-02 6.054e-02 4.975e-02 5.020e-02 7.503e-02 7.365e-02 5.544e-02
6 6.483e-02 4.451e-02 3.236e-02 2.993e-02 5.678e-02 5.661e-02 3.924e-02
7 4.948e-02 3.265e-02 2.172e-02 1.831e-02 4.262e-02 4.283e-02 2.807e-02
8 3.807e-02 2.425e-02 1.513e-02 1.113e-02 3.244e-02 3.253e-02 2.040e-02
9 2.870e-02 1.753e-02 1.034e-02 6.624e-03 2.408e-02 2.416e-02 1.448e-02
10 2.114e-02 1.243e-02 7.105e-03 4.193e-03 1.747e-02 1.753e-02 1.015e-02
11 1.519e-02 8.681e-03 4.883e-03 2.745e-03 1.240e-02 1.244e-02 7.032e-03
12 1.071e-02 6.009e-03 3.363e-03 1.755e-03 8.662e-03 8.684e-03 4.852e-03
13 7.445e-03 4.150e-03 2.312e-03 1.158e-03 5.997e-03 6.011e-03 3.349e-03
14 5.149e-03 2.869e-03 1.586e-03 7.763e-04 4.146e-03 4.153e-03 2.312e-03
15 3.560e-03 1.978e-03 1.081e-03 5.688e-04 2.867e-03 2.872e-03 1.587e-03
16 2.460e-03 1.350e-03 7.328e-04 3.875e-04 1.976e-03 1.979e-03 1.078e-03

slope 5.332e-01 5.505e-01 5.607e-01 5.540e-01 5.373e-01 5.373e-01 5.575e-01

s1 1.000 1.900 1.000 0.500 1.500 1.500 1.900
k s2 1.500 1.000 1.900 1.500 0.500 1.900 1.500

3 1.010e-01 1.007e-01 1.011e-01 1.087e-01 1.004e-01 9.851e-02 1.002e-01
4 8.547e-02 8.633e-02 8.467e-02 9.583e-02 9.263e-02 8.289e-02 8.331e-02
5 5.515e-02 5.375e-02 5.306e-02 7.179e-02 7.116e-02 4.854e-02 4.900e-02
6 3.906e-02 3.697e-02 3.654e-02 5.364e-02 5.374e-02 2.979e-02 3.013e-02
7 2.783e-02 2.593e-02 2.547e-02 3.988e-02 4.031e-02 1.885e-02 1.916e-02
8 2.032e-02 1.851e-02 1.836e-02 3.016e-02 3.035e-02 1.249e-02 1.259e-02
9 1.443e-02 1.297e-02 1.287e-02 2.222e-02 2.235e-02 8.136e-03 8.207e-03
10 1.011e-02 9.021e-03 8.952e-03 1.600e-02 1.610e-02 5.461e-03 5.512e-03
11 7.007e-03 6.227e-03 6.183e-03 1.130e-02 1.136e-02 3.712e-03 3.746e-03
12 4.842e-03 4.287e-03 4.271e-03 7.869e-03 7.900e-03 2.540e-03 2.553e-03
13 3.342e-03 2.958e-03 2.945e-03 5.441e-03 5.461e-03 1.727e-03 1.738e-03
14 2.308e-03 2.037e-03 2.032e-03 3.762e-03 3.772e-03 1.178e-03 1.182e-03
15 1.583e-03 1.395e-03 1.389e-03 2.600e-03 2.608e-03 8.064e-04 8.126e-04
16 1.075e-03 9.464e-04 9.415e-04 1.788e-03 1.793e-03 5.473e-04 5.525e-04

slope 5.581e-01 5.595e-01 5.609e-01 5.403e-01 5.401e-01 5.591e-01 5.565e-01

Table 6: p-system at final time T = 0.3 (1-rarefaction, 2-shock: error in L2 norm)
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2.4.2. Full compressible Euler system
In this section, the D1Qn

2 scheme is tested to simulate the mono-dimensional Euler equations
∂tρ + ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu2 + p) = 0,
∂tE + ∂x(Eu + pu) = 0,

(32)

where ρ is the mass, u the velocity, E = ρu2 + p/(γ − 1) the energy, and p the pressure. The
Euler equations can then be viewed as a conservative hyperbolic system in the variable u1 = ρ,
u2 = ρu, and u3 = E. For the numerical simulations, the test case is the Sod shock tube (ρL = 1.0,
pL = 1.0, uL = 0.0, ρR = 0.125, pR = 0.1, uR = 0.0), γ is taken to 1.4, the number of points
N = 800, and the scheme velocity is λ = 3.0.

In Fig. 5, the mass ρ is plotted at time T = 0.2 for several relaxation parameters: s1 = s2 =

s3 = s, with s ∈ {0.5, 0.75, 1.0, 1.5, 1.75, 1.9}. The numerical diffusion is as expected higher
for small relaxation parameters, whereas numerical oscillations are observed for large relaxation
parameters (after the shock wave and also after the contact discontinuity).
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Figure 5: Euler system at final time T = 0.2 (left: s ≤ 1, right: s ≥ 1) Sod Shock Tube

Numerical convergence results in L2 norm are given in Tbl. 7 for several relaxation param-
eters s1, s2, and s3 when ∆x goes to zero, each line corresponding to the integer k ∈ {3, . . . , 16}
with ∆x = 2−k. The error in L2 norm goes to zero with an order that depends on the relaxation
parameters. The convergence seems to be quicker when the three relaxation parameters move
nearer to 2, the order approaching 0.5.

In Fig. 6, the mass, the velocity, and the pressure are plotted, the exact solution with a solid
line and the approximate one with a dashed line. The parameters of this simulation are N = 1000,
T = 0.14, s1 = 1.9, s2 = 1.5, and s3 = 1.4. It appears as a good compromise between numerical
diffusion and oscillations in the area of discontinuities.

3. Conclusion

In this paper, a new Lattice Boltzmann scheme is introduced in order to simulate mono-
dimensional hyperbolic systems. This scheme is described in the framework of d’Humières and
related to the relaxation method proposed by Jin and Xin. The equivalent conservation equations
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s1 1.900 0.500 1.000 1.500 1.900 1.990
s2 1.500 0.500 1.000 1.500 1.900 1.990

k s3 1.400 0.500 1.000 1.500 1.900 1.990

3 1.297e-01 1.709e-01 1.278e-01 1.133e-01 1.297e-01 1.361e-01
4 9.789e-02 1.242e-01 8.141e-02 7.408e-02 8.542e-02 9.103e-02
5 6.229e-02 8.670e-02 5.454e-02 4.380e-02 4.041e-02 4.230e-02
6 4.795e-02 6.764e-02 4.643e-02 3.445e-02 2.644e-02 3.112e-02
7 3.136e-02 5.136e-02 3.691e-02 2.528e-02 1.639e-02 2.358e-02
8 2.205e-02 4.132e-02 2.951e-02 1.957e-02 1.377e-02 2.085e-02
9 1.421e-02 3.369e-02 2.229e-02 1.416e-02 9.334e-03 1.944e-02
10 1.008e-02 2.645e-02 1.651e-02 1.023e-02 6.232e-03 1.591e-02
11 7.191e-03 1.974e-02 1.220e-02 7.995e-03 5.324e-03 1.173e-02
12 5.129e-03 1.452e-02 9.122e-03 6.169e-03 4.011e-03 8.173e-03
13 3.903e-03 1.080e-02 7.035e-03 4.876e-03 3.069e-03 6.121e-03
14 3.011e-03 8.179e-03 5.547e-03 3.980e-03 2.531e-03 4.304e-03
15 2.443e-03 6.363e-03 4.484e-03 3.301e-03 2.163e-03 3.177e-03
16 1.968e-03 5.064e-03 3.665e-03 2.738e-03 1.769e-03 2.259e-03

slope 3.119e-01 3.296e-01 2.908e-01 2.699e-01 2.901e-01 4.924e-01

Table 7: Sod shock tube at final time T = 0.1 (error in L2 norm)
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Figure 6: Euler system at final time t = 0.14 Sod Shock Tube
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are given up to the second order and stability conditions are investigated in the scalar case.
Numerical illustrations are produced for the scalar advection, Burger’s equation, the p-system,
and Euler’s equations.

Let us finally remark that the method can be generalized to any other elementary schemes:
the D1Q2 scheme can be replaced by the D1Q3 for instance. However, using more velocities
increases the size of the systems and does not necessarily improve the accuracy.

Appendix A. Taylor expansion method for the scalar case

The Taylor expansion method consists in expanding the distribution functions with respect to
the small parameter ∆t. Considering Eq. (8), we have

fj + ∆t∂t fj + 1
2 ∆t2∂tt fj = f ?j − vj ∆t∂x f ?j + 1

2 v2
j ∆t2∂xx f ?j + O(∆t3), 0 ≤ j ≤ 1, (A.1)

where the variables x ∈ L and t have been removed for readability. As the relaxation phase is
written in the space of moments, we immediately take the moments of order 0 and 1 of Eq. (A.1)
by summing over j after multiplication by v0

j or v1
j :

u + ∆t∂tu + 1
2 ∆t2∂ttu = u? − ∆t∂xv? + λ2

2 ∆t2∂xxu? + O(∆t3), 0 ≤ j ≤ 1, (A.2)

v + ∆t∂tv + 1
2 ∆t2∂ttv = v? − λ2∆t∂xu? + λ2

2 ∆t2∂xxv? + O(∆t3), 0 ≤ j ≤ 1. (A.3)

We then consider Eqs. (A.2) and (A.3) at order k for 0 ≤ k ≤ 2.
• Eq. (A.2) at zeroth-order does not give information: as the first moment u is conserved

during the relaxation phase, u = u?.
• Eq. (A.3) at zeroth-order reads v = v? +O(∆t). Using Eq. (6) v? = v + s(veq − v), it yields

to Eq. (9)
v = veq + O(∆t), v? = veq + O(∆t), (9)

as the relaxation parameter s is considered as a constant.
• Eq. (A.2) at first-order (after division by ∆t) can be rewritten in the form

∂tu + ∂xveq = O(∆t), (10)

by using (9).
• Eq. (A.3) at first-order reads

v? − v = ∆t(∂tveq + λ2∂xu) + O(∆t2) = ∆t θ + O(∆t2),

by using the definition of the equilibrium default (11). Combining this equation with Eq. (6) then
yields

v = veq −
∆t
s
θ + O(∆t2), v? = veq + ∆t

(
1 −

1
s

)
θ + O(∆t2). (12)

• Eq. (A.2) at second-order reads

∂tu + ∂xveq = −∂x(v? − veq) + 1
2 ∆t

[
−∂ttu + λ2∂xxu

]
+ O(∆t2).

The derivation of Eq. (10) over t gives

−∂ttu + λ2∂xxu = ∂xθ + O(∆t),
18



so replacing v? − veq by its expression (12) yields

∂tu + ∂xveq = ∆t σ ∂xθ + O(∆t2).

As veq is a function of u, veq = ϕ(u), we have

θ =
[
λ2 −

(
ϕ′(u)

)2]
∂xu + O(∆t),

and we obtain the second-order macroscopic equation

∂tu + ∂xϕ(u) = ∆t σ∂x

((
λ2 −

(
ϕ′(u)

)2
)
∂xu

)
+ O(∆t2). (13)
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[17] F. Dubois, Equivalent partial differential equations of a lattice Boltzmann scheme, Computers and Mathematics

with Applications. 55 (2008) 1441–1449.
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