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Abstract (162 words)

 

Objective: Computational neuroscience combines mathematics, computer science models, and 

neurosciences for theorizing, investigating, and simulating neural systems involved in the 

development, structure, physiology, and cognitive abilities of the brain. Computational models 

constitute a major stake in translational neuroscience: the analytical understanding of these models 

seems fundamental to consider a translation towards clinical applications. 

Method: We propose a minimal typology of computational models, which allows distinguishing 

between more realistic models (e.g., mechanistic models) and pragmatic models (e.g., 

phenomenological models). 

Result: Understanding the translational aspects of computational models goes far beyond the intrinsic 

characteristics of models. First, we assume that a computational model is rarely uniquely mechanistic 

or phenomenological. Idealization seems necessary because of i) the researcher’s perspectives on the 

phenomena and the purposes of the study (i.e., by the relativity of the model); ii) The complexity of 

reality across different levels and therefore the nature and number of dimensions required to consider 

a phenomenon. Especially, the use of models goes far beyond their function, and requires considering 

external characteristics rooted in path dependence, interdisciplinarity, and pluralism in neurosciences. 

Conclusion: The unreasonable use of computational models, which are highly complex and subject 

to a shift in their initial function, could be limited by bringing to light such factors. 

 

 

Keywords: Computing Methodologies; Computer Simulation; Models, Biological; Models, 

Theoretical. 
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Summations 

 

• A detailed understanding of computational models seems fundamental to consider a 

translation towards clinical applications: a typology of computational models distinguishing 

their realistic part from their pragmatic part can be fruitful. 

• The realistic part involves understanding the biological plausibility, the notion of validity of 

models, and the necessary internal and external approximations of computational models. 

• The pragmatic part involves understanding the need to simplify computational models in order 

to reproduce behaviors, and to enable prediction and generalizability. 

• The use of computational models brings at least three challenges that go beyond the internal 

understanding of the models themselves: i) concerning the historical anchoring inseparable 

from the models and the notion of path dependence; ii) concerning the necessary idealization 

of models when translating to practice; iii) concerning the necessary challenge of pluralism 

and sociological factors which lobbied during the translation of computational models. 

 

 

 

Perspectives 

 

• A simplistic conception of this typology (pragmatic / realistic) could lead to a naive view of 

computational neuroscience; conversely, qualifying these differences enable to support the 

inherent complexity of computational models. 

• Highlighting external factors (path dependence, sociological factors, interdisciplinarity, etc.) 

influencing computational models does not necessarily improve their use and translational 

aspect – such findings should not undermine the inherent prudence and humility of this highly 

complex neuroscientific field. 

• The knowledge of the various factors isolated in this article would need to be considered by 

the modelers as by the users of the computational models — programmatic horizon necessary 

to avoid a drift of uses, at the base of the theoretical stakes of translational neuroscience.
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Introduction 1 

 2 

Computational neuroscience is a relatively new but already extremely complex and dynamic field. 3 

Through its methodologies and applications mixed between dynamical systems, machine and deep 4 

learning analyzes, biological simulations, Bayesian statistics, the creation and use of computational 5 

models is one of its main challenges. Indeed, computational neuroscience developed models that can 6 

be reused for clinical applications (Varenne et al. 2018), and various other uses, e.g., for their 7 

descriptive power (Kording et al. 2020). Likewise, computational theories, for the most part resulting 8 

from the relevance of these models (Borsboom et al. 2020), are exported between different fields and 9 

applied in research programs that diverge in their foundations as in their objectives (Kuhn 1971). 10 

Thereby, neuroscience models are exported within ambitious projects such as the Blue Brain Project 11 

(BBP), initiatives that seek to develop infrastructure research projects exploring the human brain 12 

(Markram 2012). Despite minimum output, this project has been followed in Europe by the Human 13 

Brain Project (1.19 billion euros over ten years) (HBP now gives birth to a platform, EBRAINS, 14 

which includes a very important part of simulations, through tools such as The Virtual Brain) and in 15 

the USA by the BRAIN Initiative ($ 300 million per year for 10 years). 16 

For methodological and ethical reasons, it seems essential to clarify the different concepts underlying 17 

these models involved in various areas of computational neuroscience, in order to increase their 18 

transparency, analyze whether they can be used with robustness outside their initial context of 19 

development, or explore their potential in terms of explanation, realism or pragmatism. 20 

Neuroscientists seem keenly aware of the social, ethical, and regulatory challenges of computational 21 

neuroscience, from potential threats to privacy until an understanding of the awareness and meaning 22 

of human and personal identity (Evers 2017). But it seems important that clarification of experiments, 23 

models, theories, and the whole scope of computational neuroscience comes from the researchers 24 

themselves involved in this scientific field – and such theoretical work has already been started in 25 

other biological fields (Blohm et al. 2020; Brette 2015, 2019; Haefner 2005; Pradeu et al. 2021). 26 

Models are one of the main tools of computational neuroscience. A model is a material or formal 27 

construction used to represent a real-world object. It is an object of facilitating mediation that allows 28 

to transform reality or to anticipate it (Morgan & Morrison 1999; Varenne 2007). Minsky defines a 29 

model as an object A*, which is a model of an object A, inasmuch as an observer B can use A* to 30 

answer questions that interest her/him about A (Minsky 1965). Such a minimal definition enables to 31 

understand computational models as (mathematical) functions acting as mediators between the 32 

modeled object and a user or a modeler. Such mathematical models aim to reproduce a certain number 33 

of brain observable phenomena, functions, or dynamics. However, they cannot reproduce all the 34 

aspects of a brain function or a structure, unless being the considered brain itself. Given the significant 35 
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complexity of the objects studied in computational neuroscience, this mediator value represented by 36 

the model depends on the question asked by the researcher. Indeed, as we will detail later, the choice 37 

of the model should be clearly conceived according to the question which must be solved – 38 

influencing the number of dimensions introduced in a specific model. For instance,  single neuron 39 

models (neudels) like Izhikevich’s models cannot fully account for a biological neuron (Izhikevich 40 

2003). Indeed, they do not have a whole biophysical representation, but show apparent realistic 41 

dynamics (Izhikevich & FitzHugh 2006) by modeling behaviors similar to the time evolution of the 42 

membrane potential of a biological neuron. In other words, some of these models enable the 43 

prediction of neuronal behavior without seeking to exactly reproduce the biological parameters of the 44 

(human) brain. These examples are from a specific type of model, dynamical systems, based on 45 

differential equations. In the first section of this work, we mainly consider and refer to this category 46 

of model and open to a broader definition in the remaining sections.  47 

 48 

Aims of the Study. A typology of models might be useful to discuss the relationship between the 49 

idealization of the model and its different applications. In this article, we will see that such a typology 50 

could explain the use, generalization and appropriation of a model by a scientific community. 51 

  52 
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Material and methods 53 

 54 

In this perspective, we aim to propose a minimal typology of computational models. For this purpose, 55 

we use a set of inclusion criteria according to the SANRA guidelines (Scale for the Assessment of 56 

Narrative Review Articles) (Baethge et al. 2019): 57 

• identify articles discussing the translational aspect and the use of computational models, and 58 

more particularly models of biological neurons; 59 

• English or French language studies published in peer-review journals are used, especially by 60 

using MEDLINE (– 2021) and Cochrane (– 2021) databases; 61 

• for all identified articles published, reference lists were also scanned to see whether we had 62 

missed any articles suitable for inclusion. These steps allowed us to reduce the possibility of 63 

non-indexed studies being missed. Single case studies, commentary, opinion articles, 64 

unpublished studies, conference posters and reviews and meta-analyzes were allowed. 65 

Finally, the full text of the chosen literature was manually reviewed to determine inclusion into this 66 

perspective. 67 

  68 
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Results 69 

 70 

This perspective allows to distinguish between realistic models (e.g., mechanistic models) and 71 

pragmatic models (e.g., phenomenological models). 72 

 73 

 74 

1. A framework for computational models  75 

 76 

Three essential characteristics of a computational model can be distinguished: a level of idealization 77 

(“modeling involves a selection of characteristic features of the modeled target”), a level of relativity 78 

(“the representation is oriented by tools and objectives”), and reversibility (“such models serve both 79 

as a representation of reality and as a support for its future modification”) (Potochnik 2017). Indeed, 80 

all computational models have a level of idealization. Their relativity to technical tools can be 81 

variable, but it remains low compared to many other scientific fields (e.g., in medicine). They are 82 

highly reversible because they support research in the present time while serving as a support for its 83 

future modifications. 84 

In accordance with the classical theorization of models (Hempel 1965), computational models have 85 

at least two main components: a realistic component and a pragmatic component. Indeed, it could be 86 

useful to distinguish the realistic part of models, used in order to facilitate mechanistic designs of a 87 

scientific object (e.g., the wooden model of an airplane) or facilitate its intelligible presentation (e.g., 88 

the double helix of DNA presented by Watson and Crick) (Varenne et al. 2018). On the other hand, 89 

the pragmatic part of computational models could be used to determine what type of response is 90 

expected in terms of action and behavior (e.g., the paper plane or an interdisciplinary model of 91 

pandemic management). The pragmatic part of the models aims to reproduce the target behavior for 92 

which the model was designed. Thereafter, we will detail these two components of the models, 93 

classically called the realistic and pragmatic components.  94 

 95 

 96 

1.1. Mechanistic models (with a strong realistic component) 97 

 98 

Models with a strong realistic component could be based on direct description of actual biological 99 

components of the brain. Most of them seek to reproduce neural mechanisms. In this approach of 100 

computational models, a behavior is prescribed by an equation through functional relations between 101 

components. This equation aims at reproducing dynamics of neural correlates at different scales. 102 
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Although the definition of a mechanism has been extensively discussed, we retain the definition of a 103 

mechanism as a network of interrelated parts, each performing its own functions, that are combined 104 

in such a way that each contributes to producing a behavior (Bechtel & Richardson 2010). For 105 

example, they can be useful in providing a causal explanation for a phenomenon. Such models are 106 

therefore mechanistic because they can be decomposable and offer a functional definition of their 107 

relations (Bechtel & Richardson 2010), allowing the model to have a biological correspondence, i.e., 108 

the relationship between variables is specified in terms of biological processes. In other words, they 109 

have a strong biological plausibility in terms of biophysics. The plausibility of a mechanistic model 110 

can be thus measured by the ability of the experimenter to identify in the physical system parts 111 

organized in a manner analogous to or conforming to the model. This realistic component and 112 

biological plausibility are intrinsically related to the notion of validity of a model, which can itself be 113 

understood in terms of validity: i) apparent, corresponding to the overall resemblance of the model to 114 

the manifest phenomenon; ii) predictive, corresponds to the power of the model to predict; iii) 115 

discriminating, corresponding to the relevance and representativity of its content; iv) structural, 116 

corresponding to the explanatory power of the model (Belzung & Lemoine 2011). 117 

However, describing biology does not necessarily lead to good predictions, or may even limit them. 118 

In addition, the number of parameters within a computational model could be very large and cannot 119 

be modeled. And moreover, the more there are free parameters, the lower the confidence in the model 120 

is. Thus, it is often necessary to identify what are the minimum “ingredients” (biophysical variables 121 

and parameters) that are necessary to provide biological plausibility. Thus, in practice, purely 122 

mechanistic models are not possible, given the necessary consideration of a phenomenological part. 123 

Any model that seeks to faithfully reproduce reality should, by definition, make approximations of 124 

two types. The first type of approximation is internal (Batterman & Rice 2014). For modeling, 125 

computational, temporal and  tractability reasons, a computational model (e.g., a neudel) cannot 126 

model all the parameters of a real brain structure (e.g., a neuron), and therefore approximates some 127 

parameters, i.e., performs an idealization (e.g., with some ion channels) (Elgin 2017). The second 128 

type of approximation is external. Whenever a mechanistic model wishes to integrate part of the 129 

environment, it must simplify it to its limits. 130 

These two impediments of mechanistic models (limits to prediction and internal and external 131 

approximations) lead in computational neurosciences to the development of models with a strong 132 

pragmatic component, such as the phenomenological models that we will describe. 133 

 134 

 135 

1.2. Phenomenological models (with a strong pragmatic component) 136 

 137 
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Models with a strong pragmatic component describe simplified patterns of data, unlike mechanistic 138 

models which rather aim to grasp causes or processes (and which therefore have a higher biological 139 

plausibility due to the structural analogy with the biology of the target phenomenon). In this approach, 140 

a scale of granularity of the nervous system (e.g., a neuron) enable to describe emerging properties at 141 

the scale of physiology or behaviors. 142 

For example, models with a strong pragmatic component can be useful for prediction (rather than 143 

explanation, as is the case with mechanistic models). These phenomenological models do not 144 

deliberately seek (or little) biological correspondence between their parameters and the biological 145 

parameters (Hilborn & Mangel 1997). Instead, they serve to facilitate biological understanding by 146 

seeking to reproduce a behavior. 147 

For example, Leaky Integrate and Fire (LIF) models do not attempt to combine all the ion channels 148 

of a neuron. Such a model captures a global aspect of the membrane by mimicking the sub-threshold 149 

integration of the inputs, and the spiking phenomenology is a way to perform simulations by 150 

circumventing the difficulty associated with the modelisation of a large number of biological 151 

parameters. Moreover, the behavior of high-dimensional systems of nonlinear differential equations 152 

is difficult to visualize or analyze beyond a two-dimensional system which can be more easily studied 153 

by means of a phase plane analysis. Reducing the four-dimensional equation of Hodgkin Huxley 154 

(HH) (Hodgkin & Huxley 1952) to two equations is possible without reducing the biological elements 155 

considered (Depannemaecker et al. 2021b). This reduction leads to a loss in terms of dynamics (i.e., 156 

time evolution) but not in the number of elements considered. Another approach is to reduce it to its 157 

core dynamics. In this case, the model will be the simplest equation that keeps the properties of the 158 

phase-space to reproduce only the considered phenomenon, as the FitzHugh-Nagumo model does 159 

(Gerstner et al. 2002; Izhikevich & FitzHugh 2006). In these examples, the HH model considers 160 

biologically plausible underlying mechanisms to capture membrane excitability, while the FitzHugh-161 

Nagumo model only keeps the minimal elements necessary to exhibit excitable properties comparable 162 

to neural excitability, but without giving any biophysical description. Thus, the interest of such 163 

phenomenological models is to enable prediction and generalizability within simplified models, and 164 

not to inherently imitate the physical parts of the mechanism of real biological neurons. This 165 

prediction and this generalizability, referring to the pragmatic part of the model, are commonly called 166 

the precision of the model (Massoud et al. 1998). 167 

 168 

 169 

 1.3. Interactions between mechanistic and phenomenological computational models 170 

 171 
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A model of a wooden plane will seek to reproduce the features of the real airplane. A wooden airplane 172 

model has a strong realistic component and is mechanistic due to the structural analogy with the shape 173 

of the target phenomenon. However, such a model flies much worse than a paper plane model, which 174 

however does not have the same shape as the real airplane, nor does it have a propeller or wheels 175 

(Brette 2012). The paper plane is an illustration of a phenomenological model, which has a strong 176 

pragmatic component. It mimics the functions and purposes for which the actual airplane was created 177 

(fly). We recognized in this distinction Marr’s levels applied to modeling: the phenomenological 178 

model responds to the Level 3 (Computational), while the mechanistic model corresponds to the Level 179 

2 (Algorithmic). Level 1 corresponds to the (organic) implementation (Bickle 2015). 180 

In the same way, models such as LIF are very unrealistic while multicompartmental Hodgkin-Huxley 181 

(HH) models have ion channels that reproduce the real biological neuron (Brette 2012; Nelson & 182 

Rinzel 1995). However, as described in the HH model, the sodium activation variable has no 183 

biophysical equivalent in the biological sodium channel: therefore, even though a biophysical 184 

parameter is integrated into the model, there is a pragmatic dimension within the model. Various other 185 

models in computational neuroscience have both the pragmatic component of phenomenological 186 

models and the realistic component of mechanistic models. Some of them have even been designed 187 

specifically to balance this distinction between realism and pragmatism, such as AdEx models 188 

(Adaptive exponential integrate-and-fire models) which are phenomenological models whose 189 

hybridization increases their predictability and generalizability (Touboul & Brette 2008). 190 

 191 

To go further, we claim that any mechanistic model should embed a phenomenological aspect which 192 

tie it to real life observations.  193 

On the other hand, we also state that any phenomenological model is built on mechanistic relations 194 

between entities, but these entities do not directly relate to observables. For example, an unrealistic 195 

but very pragmatic biological neuron model, such as LIF (Brunel & van Rossum 2007), allows, 196 

depending on the input current, to make predictions on the membrane potential and the temporality 197 

of the spikes.  198 

Indeed, in case of idealization of the model during its generalization, the comparison with the 199 

biological components allows to revise the hypotheses by adding or deleting the composition of the 200 

mechanism. The need for phenomenological models emanates from the difficulty to separate the 201 

contributions of a large number of components and mechanisms. This said, it must be stressed that 202 

commensurability between the level of description (scale and type) and the phenomenon to be 203 

explained, is necessary to give a complete explanation at this level, i.e., a necessary and sufficient 204 

relation between the elements considered and the observed phenomenon. This can be called a 205 

stabilized level of description. However, it is rarely the case in neurosciences, as we are in the 206 
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presence of a very high-dimensional complex system, which makes it generally difficult to know 207 

what levels of description (i.e., nature and number of components) should be chosen to explain a 208 

given phenomenon. In other words, idealization seems necessary because: i) of the researcher’s 209 

perspectives on the phenomena and the purposes of the study (i.e., by the relativity of the model); ii) 210 

of the messy nature of reality and ignorance of the number and nature of the dimensions of the 211 

phenomenon to be considered. 212 

To sum up, any model necessarily has a mechanistic part and a phenomenological part. However, 213 

such a theoretical characterization depends on the triple relativity of the scientific field, of the 214 

researcher’s question and of the temporality in which computational models are used.  215 

 216 

  217 
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Discussion 218 

 219 

 220 

1. Computational models and path dependence 221 

 222 

Based on the identification of the two types of models widely confused, we broaden the understanding 223 

of these computational models to embed them in their research environment, in relation to their 224 

historical path dependence. Path dependence explains the continued use of a model based on historical 225 

preference or current use: a model may persist even if newer and more efficient alternatives are 226 

available, for instance because it is easier or more cost-effective to continue along an already set path 227 

than to create an entirely new one (Pierson 2000). 228 

We propose to identify two possible path dependencies: the polysemy of the term “computation” and 229 

a precocious occurrence of theoretical questions about computational neuroscience in the history of 230 

cognitive sciences. 231 

 232 

First, the term of computation has evolved over time. In the scientific literature of cognitive science, 233 

we track down a confusion between the term “computational” and “computationalism”. The former 234 

is applied to a particular science (such as brain science) and seems more restricted than the term of 235 

computationalism. Indeed, the term “computational” refers only to the processing of information 236 

allowing the performance of the function (hence its association with the term “functionalism”) (Marr 237 

1982). However, there may be different mechanisms underlying this realization of a function (e.g., 238 

the flight of a bird depends on the flapping of wings, but the bird can also hover). For Marr 239 

(1982/2010), the level of the computation is the level of the function, while the level of the mechanism 240 

is both the level of the rules which allows this function (i.e., algorithm level) and the level of the 241 

structural characterization of the system (i.e., implementation level), which are well separate. 242 

However, computational sciences bear a slightly different sense of “computational”, by sitting in 243 

between Marr’s levels, as they generally aim at explaining functions by algorithms.  244 

In a completely different field, computationalism is a form of cognitivism: it refers to the processing 245 

of information, via different methods, which can be especially connectionist. Such terminological 246 

confusion has led to a hermeticity of the fields of study of computational neuroscience (Aizawa 2010). 247 

 248 

Secondly, theoretical questions about computational aspects of neurosciences emerged very early in 249 

the history of cognitive sciences. Computational neuroscience was born with models of biological 250 

neurons, with a seminal article published in 1907 (Brunel & van Rossum 2007; Lapicque & Lapicque 251 

1907), introducing  dynamical systems theory within neurosciences, on the assumption that neuronal 252 
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spiking was the support of in the peripheral nervous system. We can trace back to the first Macy 253 

Conference in 1941 the need to promote communication between scientific disciplines in an attempt 254 

to “restore the unity of science”, a main objective of scientific positivism. This interest in so-called 255 

cybernetics and the presentation by Turing of a model of cognition as an embedded mechanism of 256 

treatment of information constrained by a hardware (Turing 1950) has led to limit the modeling of 257 

complexity, whether at the neuronal or mechanical level (Hevern 2012; Nagel & Newman 2008). 258 

 259 

The distinctions between the computational models currently used in different fields of neurosciences 260 

must therefore be understood through their history, which itself influences the different fields 261 

currently involved in the use of these models. 262 

 263 

 264 

 265 

2. Idealization and pluralisms in computational neuroscience 266 

 267 

Computational models derive their robustness from coherent interactions between the three fields of 268 

physics, mathematics and biology. However, as in any science, there are limitations in the use of such 269 

models which do not come from the intrinsic model, but from its use and extrapolation, and therefore 270 

involve notions like those of idealization and abstraction (Bickle 2006; Sober 1999). 271 

 272 

In many areas of the brain, neurons seem organized in populations of units which share some similar 273 

properties. Prominent examples are columns in the somatosensory and visual cortex (Hubel & Wiesel 274 

1962; Mountcastle 1957) and pools of motor neurons (Frotscher 1996). Given the large number of 275 

neurons within such a column or pool, one possible approach is to describe the mean activity of the 276 

neuronal population, rather than the spiking of each individual neurons (Abbott & van Vreeswijk 277 

1993; Amit & Brunel 1997; Brunel & Hakim 1999; Gerstner et al. 1993). The population activity 278 

equations allow study signal transmission, neural coding, oscillations and synchronization as well as 279 

the formation of activity patterns in spatially structured populations (Kähne et al. 2017). Moreover, 280 

density equations allow integration of different internal states (Knight 1972), with the stochastic spike 281 

triggering (Abbott & van Vreeswijk 1993; Brunel & Hakim 1999) or the state of refractoriness 282 

(Wilson & Cowan 1972). For instance, for the Wilson–Cowan model (describing the dynamics of 283 

interactions between populations of simple excitatory and inhibitory neuron models), the validity of 284 

these population equations relies on stringent assumptions such as homogeneous populations, absence 285 

of finite size effects and adaptation. In this type of model, all the dynamical complexity that may exist 286 

at the lower scale is eliminated. Of course, these limits can be smoothed. For example, the variability 287 
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of a parameter between one neuron and the next is often replaced by slow noise in the parameters. In 288 

the same vein, adaptation could be phenomenologically corrected by introducing a slow variable that 289 

integrates over the population activity in the past (Knight 1972). However, some deeper questions 290 

resist any such correction. 291 

Thus, in the case of neural mass and neural field models, the various tools mentioned above, specific 292 

to averages and populations of neurons (e.g., a transfer function which designates which output is 293 

produced as a function of the input), are introduced in the computational model. But such an 294 

introduction needs to question if the effects observed within the model are observed for the same 295 

reasons as the effects observed within the real biological neuron. 296 

The causes that govern the behavior of the model are not necessarily the causes that govern the 297 

behavior of the biological neuron. In other words: is the causality introduced into the model similar 298 

to the biological causality, similarity necessary for extrapolation? For instance, doesn’t the airplane 299 

metaphor raise strong doubts that the causes that make the paper plane fly have anything to do with 300 

the causes that make the real plane fly? 301 

This deep question calls the legitimacy of translating a concept to build a model: does the model 302 

equation contain the same set of concepts as the object being studied? Moreover, in the case where 303 

the validation of the models is performed through simulations, the observed effect looks similar to 304 

the real effect – but it cannot be proven that the causes of these effects are similar. The same 305 

phenomenon is reproduced, without any intuitive or mathematical argument allowing to claim that 306 

the cause of this observed behavior is similar to the real cause. It is true that when a pure mechanistic 307 

single biological neuron is studied, the equations provide causal transparency. When scaling up, i.e., 308 

during the passage from one scale of description to another, it is not clear that causality is maintained. 309 

 310 

This observation of the same phenomenon related to multiple underlying causal mechanisms is called 311 

“multirealizability” (or multiple realizability). This could be understood as a generalization to models 312 

of “degeneracy” observed in biology. Multiple realizability concerns the difficulty in relating the 313 

behavioral function of a model with structural or organizational properties (e.g., flying can be 314 

achieved in multiple ways, by flapping its wings or by soaring) (Polger & Shapiro 2016). 315 

 316 

 317 

2.1. Multirealizability and scales of explanations 318 

 319 

Multiple realizability may appear in particular in the very specific case of scaling up. To continue 320 

with the example of biological neuron models, multirealizability appears when the model is translated 321 

from a scale (which was used to build the model) to another, e.g., from neudels to neural network. A 322 
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macroscopic phenomenon (e.g., epilepsy) can be explained by different causal mechanisms evolving 323 

at several scales (from genetic to interconnectivity network) having separate temporal scales 324 

(temporal dissection) (Depannemaecker et al. 2021a). Therefore, multirealizability requires exploring 325 

(or even integrating) different scales (from microscopic to macroscopic scales). Thus, 326 

multirealizability necessarily appears when biological neurons models are integrated in a process of 327 

scaling.  However, knowledge of the structure of a phenomenon is not necessary to highlight, because 328 

proxies may be sufficient to draw relevant inferences (e.g., Newton did not need to know the structure 329 

of water to describe the phenomenon of tides, but only its coefficient of viscosity and its density). 330 

 331 

We said that the injection of phenomenology into a computational model (e.g., AdEx) allows to 332 

compensate for what the model does not intrinsically consider. Likewise, the scaling process within 333 

the framework of biological neural networks requires reintroducing an approximation, by the 334 

necessary addition of a part of phenomenology in the model. Take the example of hyper-dissipation 335 

in meteorology: because researchers do not have infinite precision, they do not have access to what 336 

is happening under a minimum size scale. As such minimal scales cannot be resolved, it is necessary 337 

to add a parameter to the equation. This phenomenological injection corresponds to the “edges” of 338 

the model, defined as the impossibility of integrating realistic parameters during the complexification 339 

of the model. Scaling up takes the model away from biological plausibility by increasing its 340 

phenomenological part (i.e., scaling up necessarily increases the phenomenology part of the model 341 

since there are more external parameters to consider). The risk of such a scaling up is therefore to 342 

neglect this phenomenological injection, which could lead to interpretation bias. 343 

 344 

In this context, we could however cite the existence of causal modeling, which seems to offer a way 345 

out of the problems posed by multiple realizability. Such models provide probabilistic or 346 

deterministic versions to overcome the effects of multiple realizability from an interventionist 347 

perspective. In practice, such models lose in explanatory power what they gain in intervention 348 

capacity (Pearl 2009, 2010). 349 

 350 

 351 

2.2. Idealization and pluralism 352 

 353 

The multiplicity of physical and algorithmic implementations of a lower level at a higher level 354 

challenges the connection and validity between levels. Epilepsy or depression, i.e., macroscopic 355 

phenomena, could not be accurately modeled in the context of computational neuroscience: thus, even 356 

if scientific progress is possible thanks to computational models, such models do not refer only to a 357 
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single higher level. However, the problem of multirealizability can be approached in a more fruitful 358 

way for computational science than by raising the problem of reductionism. 359 

Indeed, debates about levels of explanation in neurosciences demonstrate that the field is increasingly 360 

departing from the classical hierarchical models in which a fundamental physical or algorithmic level 361 

is deemed the only truly explanatory level, and which allows all higher levels of a complex system’s 362 

organization have to be reduced to it. Thereby, explanatory pluralism is the thesis according to which 363 

the explanation of a phenomenon can especially refer to constructs or mechanisms belonging to 364 

several different scales (Cartwright 1979; Hacking 2002; Suppes 1977). There are two forms of 365 

explanatory pluralism: integrative pluralism (Mitchell 2009) and tolerant or non-integrative pluralism 366 

(Kellert et al. 2006). By studying these two forms of pluralisms, we will see that the question of 367 

integration between scales leads to the question of the necessary interdisciplinarity of neurosciences. 368 

 369 

 370 

 371 

3. Integrative and tolerant pluralism for computational neuroscience 372 

 373 

Integrative pluralism attempts to establish small local integrations between levels of analysis, without 374 

seeking to build a large theoretical structure. In the case of biological neural networks modeling a 375 

seizure disorder, there are many factors acting at different times and levels of the simulation of the 376 

system (or pathology) – such as nonlinearity or noise. Neither the model itself, independently of these 377 

factors, nor the environment external to the model are sufficient on their own to explain its behavior. 378 

There is not a single composition of causes involving different levels that will do the job in all cases 379 

(O’Malley et al. 2014). 380 

In other words, certain factors and certain levels are more important than others. These factors at 381 

certain levels are considered more important than others are called producers of differences (Kendler 382 

2012). For example, epilepsy can be caused by several producers of differences on at least three 383 

different levels: genetic (genetic variants influence the onset of epilepsy and / or the onset of a 384 

seizure), neuronal (hyper-synchrony as it can be modeled by biological neural networks) and 385 

environmental (trauma, dietary factors, disruption of circadian rhythms, etc.). All of these factors are 386 

producers of differences because they are involved in the development and maintenance of an 387 

epileptic disorder. But depending on the interindividual heterogeneity or different types of epilepsy, 388 

causal signatures are different, i.e., differences makers seem to be more or less concentrated at certain 389 

levels in some cases while in other cases they could be distributed on all levels (Woodward 2003). 390 

Therefore, causal signatures designate certain sets of concentrated levels which best explain a 391 

pathology. For example, a West syndrome or an epileptic encephalopathy would have more producers 392 
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of differences in the genetic domain, and therefore has a genetic causal signature. A generalized tonic-393 

clonic epilepsy would be better explained at the neuronal level and a temporal epilepsy has a causal 394 

signature based on developmental mechanisms, where neuronal plasticity plays major roles in 395 

creating a state of underlying hyperexcitability (Steinlein 2004). These findings are even more 396 

pronounced in psychiatric disorders, where environmental factors, for example, represent an 397 

important causal signature in depression while they are much less important in schizophrenia. 398 

However, this kind of integrative pluralism does not seem relevant to understanding the interest of 399 

models of biological neurons, an interest which would be restricted to certain macroscopic 400 

phenomena. On the contrary, tolerant (or non-integrative) pluralism seems much more fruitful for 401 

understanding biological neural networks. 402 

 403 

The tolerant pluralism postulates that certain phenomena at different levels may be required to answer 404 

different questions, without these levels necessarily being integrated into a coherent whole (Van 405 

Bouwel 2011). The choice of a level of explanation depends on the epistemic and pragmatic interests 406 

of the researcher (Kendler & Parnas 2017). Some levels are more important in terms of explanatory 407 

strength, generalizability to several phenotypes, specificity or manipulability in terms of therapeutic 408 

action. For example, biological neural networks are undoubtedly the best model in the current state 409 

of science to represent neural synchronization in terms of strength, generalizability, specificity, even 410 

manipulability, because despite all their approximations (necessary in any model), they allow to 411 

obtain with confidence a representation of neurons behavior. 412 

With a view to translational research and according to the logic of tolerant pluralism, the transfer of 413 

these models to clinical practice (i.e., diagnosis based on semiology and therapeutic management) 414 

should be carried out carefully. The best level of explanation for epilepsy (or any other neurological 415 

or psychiatric pathology) will depend on the question of the researcher (or the research and medical 416 

community), and there is no evidence to intuitively say that the questions answered by biological 417 

neural networks (including hyper-synchrony) will be relevant, for example, to the clinician. At least, 418 

it will be up to the researcher building models of biological neurons to convince other research 419 

communities of the relevance and applicability of his/her findings to the fields of application to which 420 

she/he is addressing. 421 

 422 

 423 

 424 

4. Sociological factors 425 

 426 
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Finally, the adoption of a tolerant pluralism, which accepts to conceive of multiple explanatory levels 427 

but retains only the most relevant for a given research question, leads to the question of 428 

interdisciplinarity. Often, a scientific result (e.g., biological neural networks) in a given context have 429 

to be translated to another level (e.g., to a pathology or to a larger integrative project such as the 430 

Human Brain Project). 431 

It seems important to consider sociological constraints that follow these scientific results. Each result 432 

engages the conviction of a researcher that his/her hypothesis, which has been proven by 433 

experimentation, can become a hypothesis transferable to another discipline or another project 434 

(Callon 1986). In this way, science studies and social epistemology has developed frameworks, e.g., 435 

theories of translation and regimes of promise (Joly 2015). For instance, for a result to be accepted 436 

by the research community and reach a larger audience, it is not so much the proof of its effectiveness 437 

for new discoveries in this field that is important (necessary, but not sufficient), but its credibility and 438 

legitimacy. Three types of legitimacy are described: charismatic, tradition-based, and rational (Kim 439 

2020). Credibility depends on factors such as the plausibility of the model in the scientific landscape, 440 

the verification procedures or its pragmatic aspect (Blok & Jensen 2011). Note that this transferability 441 

hypothesis can also be misused, as it is not impossible that a researcher, relying on his/her legitimacy 442 

and credibility, extrapolates non-transferable results in other disciplines or projects. 443 

Computational neuroscience could be thus analyzed as a network of social and political relationships. 444 

Scientific controversy constitutes an important stage in the validation of a scientific object (Pestre 445 

2006): a model will not necessarily prevail because it is close to reality, but because it is embedded 446 

in a context and a scientific community (Latour 2005). Obtaining an experimental result would not 447 

be enough to end scientific debates. On the contrary, such a result will be developed in a scientific 448 

community during an acculturation to practices and a concrete use of this result, through the exchange 449 

of arguments in the midst of controversies (Raynaud 2017). Consensus on a result would therefore 450 

be more the result of controversy than of a formal explanation isolated from any context. Therefore, 451 

in the scientific landscape, the contingency of discoveries depends on the acceptance of a 452 

computational model in a given context, at a given time and for a given community.  453 

 454 

 455 

5. Conclusion 456 

 457 

Computational neurosciences are concerned with analyzing models, providing a hierarchy of 458 

scientific concepts embedded in a scientific dynamic. A minimal typology of computational models 459 

allows distinguishing between more realistic models (i.e., mechanistic models) and pragmatic models 460 

(i.e., phenomenological models). A model is rarely (if ever) uniquely mechanistic or 461 
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phenomenological but has a part of each. When designing the model, or when using it, the cursor 462 

should be placed to best answer a particular question. More precisely, the model must be optimized 463 

for a specific function towards addressing this question. 464 

Questions about idealization and scientific pluralism are related hot topics. Indeed, the passage from 465 

one scale of description to another for a computational model requires discussing the interaction 466 

between scales, a discussion that can be conducted through scientific pluralism. Pluralism proposes 467 

to consider interdisciplinarity in computational neuroscience. Adopting a tolerant version of pluralism 468 

leads to conceiving a hierarchy of the epistemic relevance of a discovery. This prioritization 469 

necessarily involves unscientific factors, leads to a discussion of interdisciplinarity and involves 470 

sociological aspects which condition the success of some computational models among many others.  471 

Computational neurosciences, based on mathematics, seem to offer a common language to different 472 

sciences and thus facilitate their empirical, conceptual and sociological interactions. However, the 473 

presence of a theoretical framework guiding the construction of the models entails a path dependence 474 

of these models, at the risk of biasing the statement necessarily oriented by this framework.  475 
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