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Abstract— In this paper, we aim at improving the change 

detection techniques by introducing an adaptive thresholding 

with a sliding time window. In particular, a real-time optimal 

sliding time window length is implemented without any 

preliminary learning step as required in conventional sensor-

fault detection methods. Based on Shannon’s entropy, our 

method improves the change detection techniques using an 

adaptive thresholding. The technique can be applied by any 

change detection technique based on the generalized likelihood 

ratio (GLR). To validate the robustness of our approach, two 

commonly used change detection techniques are considered: the 

cumulative sum (Cusum) and the exponentially weighted Moving 

average (EWMA) control charts. Experimental validation is 

experimentally shown considering real data in the context of 

collaborative mobile robots. In addition, this experiment leads to 

a fault-tolerant fusion methodology based on the use of an 

extended Kalman filter (EKF). 

I. INTRODUCTION 

Change detection is concerned with the identification of 

data points that differ from those previously observed in the 

shortest time delay between data change.  This technique is 

also known under the terminology “quickest change 

detection” [1]. Commonly, change detection techniques are 

developed through on control charts, implementing statistics 

based on online tests. These control charts are divided into two 

categories: memory-less and memory-type [2]. 

The Shewhart type charts [3] are considered in the category 
of memory-less control charts. They are entirely based on 
current information. One of the main drawbacks of the 
Shewhart control charts is the lack of sensitivity to small 
changes in the observed signal behavior compared to memory-
type charts. 

Memory-type control charts include the cumulative sum 
(Cusum) and the exponentially weighted moving average 
(EWMA). These methods allow the accumulation of 
information over time. Indeed, both control charts take into 
account past and current information to maintain their 
statistics. This feature of memory-type helps them react 
quickly to small changes in signal parameters.  

The Cusum control chart was initiated in 1954 by Page [4], 
and has been widely studied in the literature. Examples include 
Basseville and Nikiforov [5]; Grigg, Farewell and 
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Spiegelhalter [6] and Granjon [7]. The EWMA control chart 
was introduced and developed by Roberts [8]. It was 
subsequently studied in many works. Examples are Hunter [9]; 
and Ye, Vilbert and Chen [10]. Numerous comparative studies 
are also presented in [11], [12]. In this respect, various tools, 
techniques, approaches and their applications in different fields 
have been developed [13], [14]. 

In this context, it is important to determine an appropriate 
value for the threshold used in these control charts. This value 
will determine the performance of the detection system. 
Indeed, by considering a too low threshold, we risk getting a 
large number of false alarms. On the other hand, a too high 
threshold leads to a detection delay in the best case, and a set 
of missed detections in the worst case. For example, if we 
consider the EWMA chart, the width of the control limits is 
usually defined as three times the standard deviation of the 
signal. The value of this threshold is somewhat arbitrary. In this 
sense, several studies have proposed an adaptation for change 
detection methods [15-17].  

In our previous studies [18-21], an entropy-based strategy 
was proposed in order to overcome the constraint of using a 
fixed predetermined threshold. Moreover, we have discussed 
in [19] that the entropy-based adaptive threshold takes into 
account all previous observations. Thus, when several errors 
have occurred, the threshold can be significantly influenced. 
This problem has been addressed in [19] and a sliding time 
windowing technique was proposed. This technique consists in 
considering, at each iteration, only a window of the most recent 
observations. The window of length ‘𝑛’ has been determined 
in [19] according to a method based on the minimization of the 
sum of the squared errors between the observations and the 
corresponding smoothed values. However, this method cannot 
work in a real-time manner as a preliminary learning step is 
necessary.  

To address the need of fast and real-time sensor fault 
detection method, we extend our previous work by introducing 
a technique based on the use of Shannon's minimum 
conditional entropy. Thus, giving similar performance to the 
first one, but allowing moreover real-time operation without 
the necessity of the learning step. This paper is organized as 
follows. Section II briefly recalls the detection methodology 
based on the entropy-based criterion associated to two 
commonly used change detection techniques (Cusum and 
EWMA). Then, an improvement of this methodology using the 
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sliding time window technique is presented in section III: a 
new method for real-time window length determination is 
implemented. Finally, section IV presents an experimental 
validation on real data from a mobile robotics platform. 

II. ADAPTIVE THRESHOLDING BASED ON THE ENTROPY 

CRITERION 

A. Entropy-based criterion 

From a given phenomenon, the detection theory addresses 
the problem of discriminating a finite number of hypotheses. 
The knowledge of the vector of measurement 𝑦 =
(𝑦1, 𝑦2, … , 𝑦𝑁) issued from a vector of sensors 𝑌 =
(𝑌1 , 𝑌2, … , 𝑌𝑁) allows to take a final decision 𝑢. In the context 
of the binary detection, this decision has two possible 
values 𝑢 ∈ {0,1} , depending on whether true hypothesis 𝐻 is 
considered to be 𝐻0 or 𝐻1 “Fig. 1”. 

 

Figure 1. Principle of a binary detection system. 

The optimization criterion chosen in this work is the 

minimization of the part of 𝐻 which is not explained by the 

final decision 𝑢. This quantity is defined by Shannon's 

conditional entropy ℎ(𝐻/𝑢) [20], [21], and represents the 

uncertainty on 𝐻 knowing the decision 𝑢. It can be written as 

a function of the probability of detection ‘𝑃𝐷’ and the 

probability of false alarms ‘𝑃𝐹’ as follows: 

ℎ(𝐻/𝑢) =  − ∑ [𝛼𝑖 log
𝛼𝑖  

𝛼𝑖 + 𝛽𝑖  
+ 𝛽𝑖 log

𝛽𝑖
𝛼𝑖 + 𝛽𝑖  

]

𝑖∈{0,1}

  (1) 

with:   

{
𝛼1 = 𝑃0𝑃𝐹

𝛼0 = 𝑃0(1 − 𝑃𝐹)
𝛽1 = (1 − 𝑃0)𝑃𝐷

𝛽0 = (1 − 𝑃0)(1 − 𝑃𝐷)
           (2) 

𝑃0 is the prior probability of the hypothesis 𝐻0. Minimizing 

ℎ(𝐻/𝑢) consists thus of minimizing a mean risk for which the 

costs are not constant, unlike the Bayesian criterion. 

Moreover, taking into account the following notation: 

{
 

 𝐶00 = log
𝛼0 + 𝛽0 

𝛼0 
      𝐶10 = log

𝛼1 + 𝛽1 

𝛼1 

𝐶01 = log
𝛼0 + 𝛽0 

𝛽0 
      𝐶11 = log

𝛼1 + 𝛽1 

𝛽1 

               (3) 

And under the reasonable assumption that 𝐶10 > 𝐶00 

and 𝐶10 > 𝐶11, the decision rule can be expressed as a 

likelihood ratio: 

𝑃(𝑢 /𝐻1)

𝑃(𝑢 /𝐻0) 

𝑢 = 1
≷

𝑢 = 0

𝑃0
1 − 𝑃0 

×
𝐶10 − 𝐶00
𝐶01 − 𝐶11 

= 𝑇ℎ∗          (4) 

 

This structure is similar to that obtained using Bayes or 

Neyman-Pearson criterion. In this entropy-based approach, the 

costs are not constant but depend on the posterior probabilities. 

In order to find the optimal value 𝑇ℎ∗ of the threshold, an 

exhaustive search could be proposed. It consists of testing all 

possible values and keeping only the value minimizing 
 ℎ(𝐻/𝑢). In most cases, and especially in a real-time context, 

a gradient-based technique is preferable [21]. 

B. Control charts 

In the context of change detection, the Shewhart chart is 
very efficient when the magnitude of the shift is 1.5 σ to 2 σ or 
larger. Conversely, in the case of small shifts, the Cusum and 
EWMA control charts are good alternatives. However, these 
methods use predefined fixed thresholds, without any real 
justifications. We apply the variable threshold technique, based 
on the entropy, to these two algorithms.  

Cumulative sum – Cusum 

The Cusum chart directly integrates all the information into 
the sequence of sample values by plotting the cumulative sum 
of the deviations of the sample values from a target value. 

Let 𝑥𝑘 be the 𝑘𝑡ℎ measurement. When the process is under 
control, 𝑥𝑘  is issued from a normal distribution with mean 
𝜇0 and standard deviation σ. The Cusum algorithm works with 
two statistics 𝐶𝑘

+ and 𝐶𝑘
−. These statistics are called the Upper 

and Lower Cusum respectively: 

{
𝐶𝑘
+ = max[0, 𝑥𝑘 − (𝜇0 + 𝐾) + 𝐶𝑘−1

+ ]

𝐶𝑘
− = max[0, −𝑥𝑘 + (𝜇0 − 𝐾) + 𝐶𝑘−1

− ]
            (5) 

with: 𝐶0
+ = 𝐶0

− = 𝜇0. 

𝐾 is usually called the reference value. It is often chosen 

halfway between the target 𝜇0 and the mean 𝜇1: 

𝐾 =
|𝜇1 − 𝜇0|

2
                                     (6) 

The mean 𝜇1 is the out-of-control value for which we 
consider that the process is out of control. 

If either 𝐶𝑘
+ or 𝐶𝑘

− exceeds the threshold 𝑇ℎ, the process is 
considered out of control. A typical value of 𝑇ℎ is usually 
defined as five times the standard deviation σ of the process.  

Exponentially Weighted Moving Average – EWMA 

The EWMA decision depends on the EWMA statistic, 

which is an exponentially weighted average of all previous 

data, including the most recent measurements. This decision is 

based on the weighting of the observations, so that the most 

recent observations contribute significantly. 

The EWMA is sensitive to a small or gradual drift of the 

process. It is defined as follows: 

𝑧𝑘 = 𝜆𝑥𝑘 + (1 − 𝜆)𝑧𝑘−1                      (7) 

With 𝑧0 = 𝜇0 is the target, and 𝜆 is the weighting factor. 

The upper and lower control limits of the EWMA algorithm 

are defined as follows: 



  

{
 
 

 
 
𝑈𝐶𝐿𝑘 = 𝜇0 + 𝐿𝜎√

𝜆

(2 − 𝜆)
[1 − (1 − 𝜆)2𝑘]

𝐿𝐶𝐿𝑘 = 𝜇0 − 𝐿𝜎√
𝜆

(2 − 𝜆)
[1 − (1 − 𝜆)2𝑘]

       (8) 

where 𝐿 is the width of the control limits. A typical value of 𝐿 

is usually defined as three times the standard deviation σ of 

the process. 

III. THE ADAPTIVE THRESHOLDING - SLIDING WINDOW 

TECHNIQUE 

The value of the threshold 𝑇ℎ used in the Cusum and 
EWMA charts is often determined without any real 
justification apart from the experiment. However, the value 𝑇ℎ 
retained chosen will condition the resulting performance. 

The threshold can be learned automatically, at each step of 
the algorithm, using the entropy-based criterion [18]. We have 
demonstrated that this approach is much more robust (with 
respect to false alarms and missed detections) than the usual 
approach considering a fixed threshold. However, at each 
iteration, our adaptive threshold takes into consideration all 
previous observations. Consequently, when several model 
changes have occurred, the adaptive threshold can be 
significantly influenced. In order to solve this problem, we 
propose an improvement of our approach by using a sliding 
time windowing technique. The latter consists in defining a 
fixed window of length 𝑛. This implies that at each iteration, 
only the 𝑛 most recent observations are considered. In the 
following, we present two different methods that allow to 
determine the sliding time window length 𝑛. 

A. Smoothed value-based method 

The first method was proposed in [16]. It consists in 
defining the weighting factor of EWMA (𝜆∗) as a first step. 
This is done by minimizing the sum of the squared errors (SSE) 
between the observations 𝑥𝑘 and the corresponding smoothed 
value 𝑆𝑘 calculated as follows: 

𝑆𝑆𝐸(𝜆) = ∑ [𝑆𝑘(𝜆) − 𝑥𝑘]
2

𝑁𝑂𝐵𝑆

𝑘=1

               (9) 

where: 

𝑆𝑘 = 𝜆𝑥𝑘−1 + (1 − 𝜆)𝑆𝑘−1               (10) 

with S1 = 𝑥1,  𝜆 ∈ [0 1]  and 𝑁𝑂𝐵𝑆 is the total number of 

observations. The optimal value of 𝜆 is the one for which the 

sum of the squared error is minimal. The window length 𝑛 is 

therefore determined according to this formula: 

𝑛 = (2/𝜆∗) − 1                                             (11) 

In other words, this window is a standard moving average that 
approximates the exponential smoothing S. 

B. Minimum conditional entropy based method 

According to the previous method, a learning step is 
required to determine 𝑛. To avoid this constraint, we propose a 
real-time method based on Shannon’s conditional entropy 
minimization. This quantity, calculated by Eq. (1), increases 

very quickly, then stabilizes. The stability of the minimal 
Shannon’s conditional entropy ℎ∗(𝐻/𝑢) seems to be a good 
criterion to determine the time-window needed to store a 
sufficient amount of information to minimize the uncertainty 
on 𝐻 knowing 𝑢. 

The method is as follows: the time derivative of ℎ∗(𝐻/𝑢) 
is calculated according to (12) at each time step, and a violation 
occurs when this derivative at time step 𝑘  is less than a 
predefined precision value (13). 

𝐷ℎ𝑘 =
ℎ∗(𝐻 𝑢⁄ )𝑘 −  ℎ∗(𝐻 𝑢⁄ )𝑘−1 

2
              (12) 

|𝐷ℎ𝑘| < (1 −
𝑝𝑟e𝑐𝑖𝑠𝑖𝑜𝑛

100
) × 𝐷ℎ1  → violation   (13) 

We set the value of the time-window length after a certain 
number of consecutive violations 𝐾𝑣.  

∑ 1
{|𝐷ℎ𝑝|<(1−

𝑝𝑟e𝑐𝑖𝑠𝑖𝑜𝑛
100

)×𝐷ℎ1}
> 𝐾𝑣

𝑘

𝑝=1
 → 𝑛     (14) 

Although we cannot determine the optimal values of 𝐾𝑣 and 

precision, with some approximations, this method can give an 

acceptable result. This is done without waiting for the end of 

the procedure as in the smoothed value method. We can thus 

obtain an approximated value of the time-window length in 

real-time situations. 

IV. APPLICATION IN COLLABORATIVE MOBILE ROBOTICS 

To validate our approach proposed, we consider an 
application consisting of two collaborative mobile robots 
(TurtlebotTM) [19]. The objective of the application is to 
accurately estimate the pose (i.e. position and orientation) of 
each robot. However, the information from the on-board 
sensors can be disturbed at any time (strong magnetic field, 
data loss, drift, etc.). Consquently, we need to detect and isolate 
faulty sensors in the most efficient way to exclude them from 
the pose estimation algorithm. 

After describing the platform used, we define the residual 
on which the Cusum and EWMA algorithms are applied in 
order to detect sensor faults. And finally, the results obtained 
using the classical approach (with fixed thresholds) and those 
obtained by the approach proposed in section III (with adaptive 
thresholds without/with a sliding time-window) are compared. 

A. Platform description 

Each robot in the platform is equipped with two differential 
wheels and two freewheels to improve stability (Fig. 2). The 
angular and linear velocities of each robot are independently 
controlled by an on-board laptop computer using the 
Ubuntu/ROS system. This laptop communicates 𝑣𝑖𝑎 Wi-Fi 
with a workstation equipped with MatlabTM software. 

Each robot has wheel encoders, a gyroscope and an indoor 
navigation system (MarvelmindTM). In addition, robot 1 is also 
equipped with a 2D-laser scanner (RPlidarTM) and a camera 
(KinectTM). 



  

 

Figure 2. Mobile robotic platform. 

B. Residual definition 

At each step 𝑘, the state vector is defined as the pose of the 
two robots in a fixed global coordinate system: 

𝑋𝑘 = (𝑋1 𝑋2)𝑘
𝑇                                (15) 

Where 𝑋1 = (𝑥1  𝑦1  𝜃1)  and  𝑋2 = (𝑥2  𝑦2  𝜃2)   are the 

pose of the robot 1 and 2, respectively. An EKF, detailed in 

[22], is applied to properly estimate the state vector. This filter 

operates in two steps:  A prediction step based on an evolution 

model (e.g., an odometry model), and an update step based on 

sensor measurements. 

When the robot moves, its wheel encoders are used to 

predict its pose using an odometry model. Moreover, at each 

instant, each robot gets observations from its own onboard 

sensors. In addition, robot 2 receives information from the 

Kinect camera embedded on robot 1. In case of nominal 

operation (i.e. without any fault), these information are 

coherent. Nevertheless, in the case of a sensor failure, a drift of 

the estimation of the robot state compared to the real state will 

be observed. After detecting and excluding the faulty sensors, 

only the correct observations will be taken into account in the 

update step of the EKF. 

A commonly used mismatch measure is the difference 

between the sensor observation (𝑍𝑘) and the state prediction 

provided by the used evolution model ℎ(𝑋𝑘). This measure, 

called the "residual", and on which an appropriate detection 

methodology is applied, will allow to exclude any erroneous 

observation from the fusion and estimation procedures. At each 

time step 𝑘, and for each observation, a residual is defined as 

follows: 

𝑅𝑒𝑠𝑘 = |𝑍𝑘 − ℎ(𝑋𝑘)|                       (16)   

The proposed change detection method applied to each 

component of 𝑅𝑒𝑠𝑘 allows for the detection of a significant 

difference between the raw measurement given by the sensor 

and the data issued from the predicted state. This faulty sensor 

is then excluded from the EKF. For each robot, at least one 

fault-free observation is assumed available at any time. 

C. Experimental results 

The experiment lasts 80 seconds, with a sampling time of 50 

milliseconds. The robots follow a specific and defined 

trajectory while maintaining a distance of one meter between 

them. 

In order to highlight the proposed approach, we introduced 

three different types of default that occur successively during 

the KinectTM observation (a bias of 10 cm between iteration 

500 and 700; a Gaussian noise “𝒩(0;  𝜎 = 0.10)” between 

iteration 900 and 1100; and a drift between iteration 1250 and 

1500). In the following figure, we show the corresponding 

residual. 

 
Figure 3. Corresponding residual as function of iteration number. 

At each time step 𝑘, Cusum and EWMA techniques 

with/without adaptive threshold are applied to each 

component of the residual in order to detect the sensor faults. 

Fig. 4 shows the results obtained with the Cusum algorithm, 

using a fixed threshold (red) and using an adaptive threshold 

issued from the entropy-based criterion (green).  

Similarly, Fig. 5 shows the obtained results with the 

EWMA method, using a fixed threshold (red) and using the 

adaptive threshold issued from entropy-based criterion 

(green). 

 

 
Figure 4. Cusum result using a fixed/adaptive threshold. 



  

 
Figure 5. EWMA result using a fixed/adaptive threshold. 

Note that the fixed threshold technique generates some 

missed detections (Fig. 4). We also note that after each 

default, the adaptive threshold is highly influenced, 

generating therefore false alarms and missed detections in  

Fig. 5. Indeed, this adaptive method needs time after each 

default in order to re-adjust the threshold. We apply 

therefore the sliding time-windowing technique of length 𝑛.  

Since our application requires online, real-time operation 

without prior learning, the determination of the window 

length is performed using the minimum conditional entropy 

method. Fig. 6 presents the measure of Shannon's minimum 

conditional entropy applied to the residual andFig. 7” 

presents its temporal derivative 𝐷ℎ𝑘. 

 
Figure 6. Shannon's minimum conditional entropy as a function of time. 

 
Figure 7. Time derivative of h*(H/u) as a function of time. 

This stability of ℎ∗(𝐻/𝑢)  is a good indication of how long it 

takes for the system to stop needing additional observations to 

refine the adaptive threshold. Fig. 8 presents the optimal (in 

the informational sense) length of the sliding window obtained 

as a function of precision (ranging from 0 to 99) and 𝐾𝑣 

(ranging from 1 to 15). 

 
Figure 8. Optimal sliding window length obtained from the entropy method 

as a function of precision and Kv. 

The optimal window length is an increasing function of the 

precision and 𝐾𝑣. Moreover, when the precision tends to 100, 

it becomes difficult to have the required number of 𝐾𝑣 

violations, the window length increases significantly. 

Therefore, in this application we have chosen the following 

values: 𝐾𝑣 = 5, 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 95. The optimal length of the 

temporal window obtained is therefore equal to 39. 

We can notice that the window length determined online 

with the entropy method is very close to that determined after 
experimentation by the offline method based on the 

exponential smoothing (𝑛 = 30 in this case). However, we 

note that the offline method relies on the minimization of the 

sum of squared errors, a criterion that is difficult to justify as 

being the most appropriate. 

We therefore propose to apply the sliding window whose 

length is obtained by the entropy based method. This 

technique is performed online, without prior learning. Fig. 9 

(resp. Fig. 10) shows the results obtained with the Cusum 

(resp. EWMA) method with a fixed threshold on the one hand, 

and with an adaptive threshold derived from the entropy 

criterion and using the time window technique on the other 

hand. 

 
Figure 9. Cusum results using fixed / adaptive threshold with windowing - as 

a function of time. 



  

 
Figure 10. EWMA results using fixed / adaptive threshold with windowing - 

as a function of time. 

We note that the adaptive threshold without time-

windowing is highly influenced after each default, which may 

implies some false alarms and missed detections (Fig. 4 and 

Fig. 5). However, by using the sliding time-windowing 

technique, the adaptive threshold 𝑇ℎ makes it possible to 

avoid these false alarms and missed detections (Fig. 9 and  

Fig. 10). Furthermore, the new threshold is more adaptive with 

respect to the residuals and it is not influenced by the defaults 

occurred previously. 

V. CONCLUSION 

In this paper, we have proposed to use a criterion based on 

Shannon’s entropy to detect a model change in a digital 

sequence, in a general way. This digital sequence can be any 

kind of information delivered by a sensor. Our approach 

consists to determine an adaptive threshold that can be applied 

by any change detection method based on the (generalized) 

likelihood ratio. To illustrate our approach, we have combined 

this adaptive thresholding technique with two commonly used 

change detection methods: the Cusum and EWMA control 

charts.  

However, the proposed approach consists, at each iteration, 

to take into account all previous observations, which can lead 

to a loss of robustness when several model changes have been 

occurred. To solve this problem, an improvement is proposed 

by using a sliding time-windowing technique: at each iteration 

of the algorithm, we consider only the 𝑛 most recent 

observations. Two methods have been identified to determine 

the value of the time-window length. The first method is based 

on the minimization of the sum of the squared errors between 

the measurements and the corresponding smoothed value. 

However, this method cannot work in real-time situations, a 

learning step is required. Therefore, we have proposed in this 

paper a second method based on Shannon’s conditional 

entropy suited for real-time operation.  

Finally, our approach makes it possible to propose a fault-

tolerant fusion methodology, which is illustrated by the use of 

an EKF in the context of collaborative mobile robotics. Both 

the standard change detection methods and the proposed 

approach are applied and compared to detect and remove 

faulty sensors. Our strategy is much more robust with respect 

to false alarms and missed detections. The proposed strategy 

has a significant robustness with respect to rare events, 

allowing especially its use, completely in real-time, in any 

change detection algorithm. 
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