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ABSTRACT

Several decades of field, geophysical, analogue, and numerical modeling 
investigations have enabled documentation of the wide range of tectonic 
transport processes in accretionary wedges, which constitute some of the 
most dynamic plate boundary environments on Earth. Active convergent mar-
gins can exhibit basal accretion (via underplating) leading to the formation of 
variably thick duplex structures or tectonic erosion, the latter known to lead to 
the consumption of the previously accreted material and eventually the forearc 
continental crust. We herein review natural examples of actively underplating 
systems (with a focus on circum-Pacific settings) as well as field examples 
highlighting internal wedge dynamics recorded by fossil accretionary systems. 
Duplex formation in deep paleo–accretionary systems is known to leave in 
the rock record (1) diagnostic macro- and microscopic deformation patterns 
as well as (2) large-scale geochronological characteristics such as the down-
stepping of deformation and metamorphic ages. Zircon detrital ages have also 
proved to be a powerful approach to deciphering tectonic transport in ancient 
active margins. Yet, fundamental questions remain in order to understand the 
interplay of forces at the origin of mass transfer and crustal recycling in deep 
accretionary systems. We address these questions by presenting a suite of 
two-dimensional thermo-mechanical experiments that enable unravelling 
the mass-flow pathways and the long-term distribution of stresses along 
and above the subduction interface as well as investigating the importance 
of parameters such as fluids and slab roughness. These results suggest the 
dynamical instability of fluid-bearing accretionary systems causes either an 
episodic or a periodic character of subduction erosion and accretion processes 
as well as their topographic expression. The instability can be partly deci-
phered through metamorphic and strain records, thus explaining the relative 
scarcity of paleo–accretionary systems worldwide despite the tremendous 
amounts of material buried by the subduction process over time scales of 
tens or hundreds of millions of years. We finally stress that the understand-
ing of the physical processes at the origin of underplating processes as well 
as the forearc topographic response paves the way for refining our vision of 

long-term plate-interface coupling as well as the rheological behavior of the 
seismogenic zone in active subduction settings.

■ INTRODUCTION

Active ocean-continent subduction margins are commonly dominated by
one of the two following end-member regimes: tectonic erosion or sediment 
accretion (e.g., Cloos and Shreve, 1988; McClelland et al., 1992; von Huene and 
Scholl, 1993; Scholl and von Huene, 2010). Accretionary wedges, which repre-
sent a common feature in subduction systems worldwide, form by the recycling 
of material mostly deposited on the downgoing oceanic plate (e.g., Platt, 1986; 
Le Pichon et al., 1993; Kukowski et al., 2002; Cawood et al., 2009). Sediments 
scraped off the top of the downgoing plate may be frontally accreted as large 
fault-bounded slivers or recycled as underplated nappes forming duplex struc-
tures in the basal accretion site (Fig. 1A; e.g., Byrne, 1986; Gutscher et al., 1998; 
Sick et al., 2006; Menant et al., 2019; Haberland et al., 2020). More than half of 
the convergent margins worldwide exhibit evidence for consumption of the 
forearc crust by subduction erosion (Figs. 1B, 1C; von Huene and Scholl, 1991; 
Ranero and von Huene, 2000; Stern, 2011), with eroded fragments either under-
plated in the basal accretion site (e.g., Polino et al., 1990) or recycled by melting 
into the Earth’s mantle (Stern, 2011; Ducea and Chapman, 2018). This process, 
fundamental for mass-balance crustal budgets, is most commonly observed in 
subduction zones with high convergence rates and sediment-starved trenches 
(Clift and Vannucchi, 2004; Kukowski and Oncken, 2006).

Erosive margins commonly exhibit crustal thinning (e.g., Contreras-​Reyes 
et al., 2015), subsidence of the outer forearc (e.g., Fisher et al., 2004; Boston et 
al., 2017, and references therein), as well as long-term arcward retreat of the 
trench and of the magmatic arc (e.g., Parada et al., 1988; Kay et al., 2005; Clift 
et al., 2005b; Jicha and Kay, 2018). In most cases, the front of the margin does 
not exhibit a proper accretionary wedge and the continental slope is rather 
steep (Clift and Vannucchi, 2004). Removed material may be composed either 
of a previously accreted (paleo–)accretionary wedge (e.g., Litchfield et al., 2007; 
Glodny et al., 2006; Moore et al., 2009) or by plutonic rocks from the roots of a 
former volcanic arc (Kay et al., 2005). Even though tectonic erosion has been 
identified geophysically mostly at shallow depth (“frontal erosion”, 0–5 km 
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Figure 1. (A) Idealized accretionary 
wedge sketch locating the main struc-
tural features. The S point corresponds 
to the location of the downdip end of 
the wedge (see Ellis et al., 1999) for 
details. pmp.—pumpellyite. (B) Inter-
pretive cross-section of the northern 
Hikurangi margin (New Zealand) show-
ing the structural features as imaged 
by geophysical observations (after 
Litchfield et al., 2007; Williams et al., 
2009). SSE—slow-slip events. (C) Map 
of circum-Pacific ocean-​continent ac-
tive margins showing erosive and 
accretionary margins as defined by 
Clift and Vannucchi (2004). Average 
depth of tectonic underplating along 
margins where this process has been 
documented by geophysical observa-
tions is also shown (see details in the 
text and Table 1). Subduction zones: 
(1)—Hikurangi, New Zealand (Suther-
land et al., 2009; Bassett et al., 2010; 
Henrys et al., 2013); (2)—Nankai, Japan 
(Tsuji et al., 2017); (3)—Sagami, Japan 
(Kimura et al., 2010); (4)—Alaska, USA 
(Moore et al., 1991); (5)—Cascadia, west-
ern North America (Calvert et al., 2006); 
(6)—Costa Rica (Arroyo et al., 2009); 
(7)—Colombia-Ecuador (Collot et al., 
2008); (8)—northern Chile (Husen et al., 
2000); (9)—central Chile (Krawczyk et 
al., 2006; Haberland et al., 2009; Ramos 
et al., 2018). The location of blueschist-​
facies paleo–accretionary wedges is also 
shown (after Maruyama et al., 1996) for 
comparison with active margins in the 
circum-​Pacific realm.
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depth; von Huene and Lallemand, 1990; Bangs et al., 2006), the geological 
record has demonstrated that this process may occur along the entire interface, 
down to mantle depth (“basal erosion”; Polino et al., 1990; Wagreich, 1995; 
Oncken, 1998) with potential implications for forearc topographic evolution.

Effective erosion is strongly controlled by the subduction of rough lower-​
plate asperities, commonly associated with bathymetric highs such as ridges, 
seamounts, plateaus, or fracture zones, which increases intraplate mechanical 
coupling and triggers (seismic) fracturing, playing a critical role in the trim-
ming of the interface hanging wall (e.g., Scholl et al., 1980; Collot et al., 1992, 
2008; Lallemand et al., 1992; Clift and Vannucchi, 2004; Gerya et al., 2009; 
Wang et al., 2010). It has also been proposed that hydrofracturing due to high 
pore-fluid pressures along the shallow interface could control the thinning 
of the underside of the margin (e.g., von Huene et al., 2004). However, while 
the entrance of a single seamount asperity is not expected to impact the 
margin dynamics at a large scale, the subduction of an entire fracture zone, 
a large plateau, or a seamount chain (when oblique to the trench direction) 
can substantially affect its dynamics from accretionary to erosive over a time 
window of several million years (e.g., Litchfield et al., 2007; von Huene and 
Ranero, 2009; Clarke et al., 2018). Importantly, tectonic erosion and accretion 
may occur contemporaneously at different depths along the same subduction 
interface (e.g., Clift and Hartley 2007; Collot et al., 2008; Contreras-Reyes et al., 
2015; St. Clair et al., 2016; Comte et al., 2019), thus making difficult an accurate 
categorization of active margin types, as shown on Figure 1C. Clift and Hartley 
(2007) have also underlined that “erosion effectiveness” may also be variable 
in intensity over space and time scale, leading to a wide palette of erosional 
patterns transiently alternating with periods of sediment accretion over long 
geological time scales (e.g., Scholl and von Huene, 2010).

While frontal and shallow basal accretionary and erosional processes are 
now relatively well imaged and understood in several active subduction set-
tings worldwide (e.g., Alaska, USA: Ye et al., 1997; von Huene et al., 2021; Costa 
Rica: Ranero and von Huene, 2000; Arroyo et al., 2009; Nankai, Japan: Park 
et al., 2002), basal underplating and duplex formation mechanisms occurring 
along and above the interface at depths >20 km require further documentation 
(e.g., Oncken, 1998; Calvert et al., 2011). Deformation processes occurring in 
this region of the subduction interface can be assessed thanks to (1) field-based 
observations from ancient subduction zones now exposed at Earth’s surface 
(e.g., Bachmann et al., 2009a, 2009b; Angiboust et al., 2014; Liu et al., 2014; 
Fagereng et al., 2018, and references therein), (2) analogue modeling studies 
reproducing structures expected in accretionary systems (e.g., Dominguez 
et al., 2000; Lohrmann et al., 2006; Noda et al., 2020), and (3) long-term and 
short-term geodynamic numerical modeling illustrating tectonic patterns and 
kinematics (e.g., Ellis et al., 1999; Selzer et al., 2008; Keppie et al., 2009; van 
Dinther et al., 2013; Buiter, 2012; Ruh et al., 2015).

The aim of this paper is to provide a synthetic vision of the formation 
and destruction of deep accretionary systems in ocean-continent settings, 
(1) providing a review of the existing literature onshore (i.e., the exposed 
rock record) and offshore (i.e., geological and geophysical information) with 

a focus on the circum-Pacific realm, (2) explaining how accretionary and ero-
sive dynamics is recorded in suture zones, using field-based metamorphic and 
geochronological studies which can help decipher tectonic trajectories during 
mass-transfer along subduction margins, and (3) discussing the nature of the 
deep subduction interface and its evolution across geological time scales. The 
investigation of accretion and erosion mechanisms at depth is supported by 
a series of new high-resolution numerical models enabling tracking of the 
trajectories of tectonic slices as well as their thermal and strain evolution and 
assessing the effect of slab strength on the dynamics and morphology of a 
forearc margin over tens of millions of years.

■■ MARKERS OF DEEP MASS TRANSFER IN ACTIVE SUBDUCTION 
MARGINS

Because the geological record preserves only a fraction of the past geody-
namic picture, the understanding of forearc tectonic processes over geological 
time scales must be complemented by observations from active systems. From 
that perspective, the great variety of subduction regimes encountered along 
the circum-Pacific belt provides the opportunity for documenting mass-transfer 
processes in both erosional and accretionary systems for a similar fast-spread-
ing-type downgoing oceanic lithosphere. For the sake of coherence, we have 
discarded from this brief overview ocean-ocean systems (e.g., Marianas) as 
well as cases with the subduction of a slow-spreading oceanic plate (e.g., 
Antilles), the latter being not representative of circum-Pacific seafloor material.

Geophysical Highlights of the Deep Forearc Structure and 
Composition

In forearc settings where coastal morphology enables the development 
of sufficiently dense seismological networks, it is possible to image the sub-
duction interface, the upper- and lower-plate Moho, structures in the forearc 
domain, as well as the seismic deformation pattern (Sick et al., 2006; Bostock, 
2013; Bassett and Watts, 2015; Scholl, 2019, and references therein). Basal accre-
tion, commonly identified by multichannel seismic reflection profiles, seismic 
tomography models, gravity anomalies, and high-resolution microseismicity 
clusters, has been suggested in a number of active subduction segments 
around the Pacific realm along both accretionary and erosive margins (Fig. 1C). 
It has been observed to occur at depths between ~5 and ~40 km for tempera-
tures typically ranging between 200 and 400 °C (Table 1).

The Cascadia forearc region (offshore western North America) has been 
one of the first segments where recent and (likely) active tectonic underplat-
ing has been inferred, notably along the northern subduction segment where 
there are series of landward-dipping reflectors above the plate interface that 
likely correspond to a stack of mafic or sedimentary bodies (Yorath et al., 
1985; Clowes et al., 1987; Calvert et al., 2006). These reflectors likely image 
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TABLE 1. SUMMARY OF DATA FOR CIRCUM-PACIFIC OCEAN-CONTINENT SUBDUCTION SEGMENTS WHERE 
BASAL ACCRETION HAS BEEN IDENTIFIED OR SUGGESTED BY GEOPHYSICAL OBSERVATIONS

Locality Reported depth range 
for basal underplating

(km)

Underplated material References

Northeastern New Zealand 
(northern Hikurangi)

10–30 Sediments, forearc crust Sutherland et al. (2009); Bassett et al. (2010); Scherwath et al. 
(2010); Henrys et al. (2013)

Southwestern Japan (Nankai) 5–20 Sediments Park et al. (2002); Tsuji et al. (2017)
Central Japan (Sagami) 15–20 Sediments Kimura et al. (2010)
Alaska, USA 25–35 Sediments Moore et al. (1991); Ye et al. (1997)
Cascadia, western North America 25–45 Sediments, mafic rocks, and/or forearc crust Calvert et al. (2006)
Costa Rica 15–40 Sediments, mafic rocks Arroyo et al. (2009); St. Clair et al. (2016)
Columbia-Ecuador 5–15 Sediments Collot et al. (2008)
Northern Chile 15–30 Forearc material (i.e., sediments?) Husen et al. (2000)
Central Chile 20–40 Sediments Krawczyk et al. (2006); Haberland et al. (2009); Ramos et al. (2018)

4Angiboust et al.  |  Deep accretionary wedge tectonicsGEOSPHERE  |  Volume 17  |  Number X

Research Paper

a stack of mafic or sedimentary slivers separated by active and tectonically 
abandoned shear zones enabling the transfer of detached slab-top material 
toward the base of the overriding crust (Calvert et al., 2006). The forearc 
domain is itself composed of a large number of similar slivers (or terranes) 
previously accreted over the last tens of millions of years, including the Siletz-​
Crescent terrane, which consists of a >15-km-thick mafic volcanic sequence 
likely frontally accreted in the middle to late Eocene (McCrory and Wilson, 
2013). Between ~25 and 45 km depth, a low-velocity zone imaged by seismic 
tomography encompasses some of these reflectors and has been interpreted 
by some authors as deeply accreted sedimentary and mafic rocks (Calvert et al., 
2011). A similar seismic signature correlated with a low Bouguer gravity signal 
has been recently evidenced in the deep forearc crust of the southernmost 
segment of the Cascadia margin, but not in between, supporting the previous 
observations and suggesting lateral variations in deep accretion dynamics 
(Delph et al., 2021). We note, however, that the physical nature of the low-​
velocity zone remains largely debated (Bostock, 2013). Accreted material at the 
base of the forearc crust may have been pervasively infiltrated by silica-rich, 
slab-derived fluids, depositing sufficient amounts of quartz to explain the low 
Vp/Vs and Poisson’s ratios, seismic tremor recurrence intervals, and crustal 
microseismicity clusters (Audet and Bürgmann, 2014; Savard et al., 2018). 
It is noteworthy that these observations require, however, the transportation 
of great amounts of silica and the formation of very large amounts of quartz 
veins (>15 vol%). Further north in the southern Alaska subduction zone on the 
Kodiak Island, which exposes at the surface a Mesozoic accretionary complex 
(Moore et al., 1991; Scholl, 2019), seismic reflection profiles imaged a series 
of reflectors forming a dome-like structure perhaps 20 km thick on the plate 
interface. The low-velocity properties of this layered forearc region suggest it 
is composed of underplated sediments and possibly oceanic and continental 
fragments (Ye et al., 1997).

Geophysical insights for tectonic underplating have also been reported 
along the long-lived Chilean subduction zone. Along the south-​central Chil-
ean accretionary margin, seismic reflection profiles at 38 °S show reflection 

horizons forming a dome-like structure within the forearc domain similar to 
that associated with the southern Alaska subduction zone (Krawczyk et al., 
2006; Ramos et al., 2018). This layering may be the deep expression of the 
Western Series, a now-exhumed paleo–accretionary complex that was basally 
accreted in the late Paleozoic (Glodny et al., 2005; Willner, 2005). This inter-
pretation is supported by tomographic images and receiver function analysis 
suggesting the existence of underplated metasediments between ~20 and 
40 km depth at the base of the forearc crust (Haberland et al., 2009; Bishop et 
al., 2019). Alternatively, the northern Chilean erosive margin does not exhibit 
clear geophysical imaging of underplated material (e.g., Oncken et al., 2003) 
despite indirect evidence (see the Surface Expression of Ongoing Basal Accre-
tion section). Nonetheless, seismic tomography models below the Mejillones 
Peninsula documented a low-​velocity zone at ~15–30 km depth above the sub-
ducting plate, interpreted by some authors as underplated material previously 
scraped off the base of the outer forearc region (Patzwahl et al., 1999; Husen et 
al., 2000). Further north, interpretation of seismic reflection profiles across the 
Colombia-​Ecuador erosive margin suggests active and ancient sedimentary 
duplexes at shallow depth (i.e., ~5–15 km depth; Sage et al., 2006; Collot et al., 
2008). Nonetheless, considering the ~3–4-km-thick trench-filling sediments, tec-
tonic underplating at greater depth is not precluded, coeval with more frontal 
erosion (Scholl, 2019). Offshore Costa Rica, seismic reflection and refraction 
surveys suggest stacking from ~15 to ~35–40 km depth of metasediments and/
or mafic rocks possibly originated from tectonically eroded material from the 
outer wedge (e.g., Arroyo et al., 2009; St. Clair et al., 2016).

Geophysical imaging along the western forearc margins of the Pacific realm 
also documents underplating processes. Landward of the Sagami Trough (cen-
tral Japan), two seismic reflection profiles show series of reflectors depicting 
a stack of tectonic slices underplated along the ~15–20-km-depth region of the 
plate interface where microseismicity and slow-slip events are recorded (Kimura 
et al., 2010). Further west, seismic profiles across the Nankai accretionary wedge 
also suggest underplated duplex structures at ~5–20 km depth (Park et al., 2002; 
Tsuji et al., 2017). In the south, a series of seismic reflection and refraction 
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surveys and combined magnetic and gravimetric modeling along the Hikurangi 
margin (New Zealand) support the existence of deep accretionary complexes 
made of sediments and tectonically eroded crustal rocks at depths between 
~10 and ~30 km (Sutherland et al., 2009; Bassett et al., 2010; Scherwath et al., 
2010; Henrys et al., 2013). In Sanriku (northeastern Japan), seismicity clusters 
located above the plate interface in the 25–50 km depth region of the mantle 
wedge has been interpreted by Uchida et al. (2010) as potentially reflecting 
active basal accretion of seamounts from the downgoing Pacific plate.

These geophysical pieces of evidence constitute the only remote proxies to 
have imaged large-scale duplex structures at crustal depth, which are commonly 
inferred (and likely ubiquitous) along both accretionary and erosive margins 
(Fig. 1C). The decreasing spatial resolution of geophysical imaging at mantle 
depth (i.e., >30 km depth) prevents the identification of deeper underplating 
processes but does not preclude their existence, given that they are commonly 
recorded in now-exhumed paleo–accretionary systems worldwide (Table 2).

Surface Expression of Ongoing Basal Accretion

Along active circum-Pacific subduction margins, a number of diagnostic 
tectonic, topographic, and geomorphological observations have been long 
related with deep-seated processes such as tectonic underplating (e.g., Platt, 
1987; Bassett and Watts, 2015, and references therein), offering insights com-
plementary to those provided by deep geophysical imaging. One of the most 
representative markers of deep duplex formation is coastal uplift and high 
topography, which is a direct consequence of the huge mass transfer charac-
terizing basal accretion of kilometer-scale tectonic slices. Similarly, outer-arc 
structural highs are commonly observed trenchward of the above-mentioned 
coastal topography and may result from accretionary dynamics at shallower 
depth (Seely, 1979; von Huene et al., 2021). Multiple methods, encompassing 
a large time window of observation (i.e., from days to millions of years), have 
long been used to investigate vertical motions along active margins. These 
include (1) GPS measurements, (2) measurement of uplift of geomorpholog-
ical features encompassing marine terraces and fluvial incisions, (3) analysis 
of stratigraphic records in forearc basins, and (4) low-temperature thermo-
chronology. Enhanced uplift rates have thus been locally evidenced all along 
the Pacific realm and interpreted as a consequence (at least partly) of deep 
accretionary events, e.g., at Hikurangi (Walcott, 1987; Litchfield et al., 2007; 
Houlié and Stern, 2017), Nankai (Hasebe and Tagami, 2001), Cascadia (Bran-
don et al., 1998; Pazzaglia and Brandon, 2001), Costa Rica (Fisher et al., 1998), 
southern Peru (Regard et al., 2021), northern Chile (Hartley et al., 2000; Clift 
and Hartley, 2007), and south-central Chile (Glodny et al., 2005; Saillard et al., 
2009; Encinas et al., 2012, 2020). This interpretation is supported by analogue 
and numerical experiments (Gutscher et al., 1996; Ellis et al., 1999; Lohrmann 
et al., 2006; Litchfield et al., 2007), but it is also worth noting that other mech-
anisms occurring at very different time scales contribute to vertical motions 
of the upper plate. They include cumulative coseismic deformations on the 

plate interface or forearc faults (Melnick, 2016; Mouslopoulou et al., 2016) and 
aseismic crustal deformations (Victor et al., 2011; Noda et al., 2018), both being 
controlled by variations in subduction-channel properties (Saillard et al., 2017) 
and plate kinematics (McNeill et al., 2000; Martinod et al., 2016).

Recent high-resolution numerical modeling has shown that the surface 
signature of active underplating events is characterized by vertical oscillations 
in the forearc domain with a million-year-scale periodicity and maximum 
uplift rates ~1–2 mm yr−1 (Menant et al., 2020). This implies that the surface 
expression of basal accretion is likely inaccessible to short-term geodetic 
and geomorphological records, although it must be included in the aseismic 
component of these records (e.g., Victor et al., 2011; Jolivet et al., 2020). Spa-
tial and temporal variations of long-term forearc topography thus appear to 
be a more reliable marker of deep accretion processes, likely in combination 
with other deformation mechanisms also driven by the frictional properties 
of the plate interface (e.g., upper-plate faulting; Roseneau and Oncken, 2009). 
Accordingly, a coastal topographic high and an inner-forearc depression would 
support a long-lived duplex at depth, whereas coastal promontories would 
reflect active (or recent) underplating events underneath (e.g., Bassett and 
Watts, 2015; Menant et al., 2020).

Faulting in the shallow forearc crust may also provide insights on basal 
accretion processes along active margins. Normal faults contribute to the exhu-
mation of deep accretionary complexes (Platt, 1987; Ring et al., 1999) and are 
thought to be part of the crustal response to active tectonic underplating, e.g., 
at the Hikurangi margin (Böttner et al., 2018) and northern Chile (Adam and 
Reuther, 2000; Hartley et al., 2000). However, thrust and back-thrust faulting 
are also predicted along with formation of sedimentary duplexes in sandbox 
analogue models (Gutscher et al., 1998; Lohrmann et al., 2006), thus support-
ing the lack of widespread extensional faulting along some active margins 
where tectonic underplating is suspected (e.g., Cascadia; Brandon et al., 1998). 
Accretion-related normal or reverse faulting may be thus controlled by the 
dominant horizontal or vertical mass flow within the forearc wedge, respec-
tively (e.g., Pazzaglia and Brandon, 2001; Menant et al., 2020). This implies 
that shallow forearc deformation style has to be considered with caution and 
combined with other observations in order to track deep underplating events 
along active subduction zones (e.g., Shirzaei et al., 2012). This statement is of 
paramount importance because an increasing amount of evidence reveals that 
rocks also record the complex deformation pattern inherent to each seismic 
cycle (including switches in stress regime; e.g., Loveless et al., 2010).

Forearc Basal Erosion: Potential Examples

While frontal erosion is particularly well imaged along active margins, basal 
erosion is more challenging to identify due to the low resolution of geophysical 
methods at greater depths and may only be suspected in present-day subduc-
tion margins by the identification of crustal thinning processes (e.g., Scholl et 
al., 1980; Ranero and von Huene, 2000; Wells et al., 2003; Sage et al., 2006, and 
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TABLE 2. SUMMARY OF DATA FOR PALEO–ACCRETIONARY SYSTEMS FOR (MOST) OCEAN-CONTINENT SUBDUCTIONS AROUND THE 
PACIFIC REALM WHERE BASAL ACCRETION IS THE MOST ACCEPTED TECTONIC EMPLACEMENT MODEL, EXCLUDING LOCALITIES 

AND UNITS WITH HIGH PRESSURE–LOW TEMPERATURE ROCKS EXHUMED IN A SERPENTINIZED CHANNEL

Locality Basal underplating 
depth range and age

Peak 
temperature 

range
(°C)

Underplated material Reference

Powell Island (South Shetland Islands) 30–40 km (Early Jurassic) 500–550 Pelitic schists Vinagre da Costa et al. (2019)

Elephant and Smith Islands  
(South Shetland Islands) 

20–30 km (Cretaceous–
Paleocene)

300–350 Mafic and pelitic schists Trouw et al. (1998)

Diego de Almagro Island 
(Chilean Patagonia)

30–50 km (Cretaceous) 450–700 Mafic and pelitic schists Willner et al. (2004a); Hyppolito et al. (2016); 
Angiboust et al. (2018)

Chonos complex, Western belt 
(southern Chile)

25–35 km (Early Jurassic) 380–550 Mafic and pelitic schists Willner et al. (2000); Thompson and Hervé (2002)

Valdivia and Pichilemu regions 
(Western Series, central Chile)

25–35 km (Early 
Carboniferous)

350–400 Mafic and pelitic schists Willner et al. (2004b); Willner (2005); Glodny et al. 
(2005); Hyppolito et al. (2014)

Choapa complex (northern Chile) 20–30 km (Carboniferous) 350–430 Pelitic schists and mafics Willner et al. (2012)

Arquia complex (central Colombia) 20–30 km (Cretaceous) 400–500 Mafic and pelitic schists Ríos Reyes et al. (2008); Bustamante et al. (2011); 
García-Ramírez et al. (2017)

Villa de Cura complex (Venezuela) 15–25 km (Early 
Cretaceous)

300–400 Mafic and pelitic schists Smith et al. (1999)

Baja California (Mexico) 20–50(?) km (Cretaceous) 200–600 Serpentinite mélange Kienast and Rangin (1982); Moore (1986); Baldwin 
and Harrison (1989); Sedlock (1988, 1996)

Santa Catalina Island 
(southern California, USA)

30–50 km (Cretaceous) 300–550 Serpentinite and mafic-
sedimentary slivers

Grove and Bebout (1995)

Pelona-Orocopia-Rand Schists 
(southern California, USA)

30–40 km (Late 
Cretaceous)

500–700 Pelitic schists with mafic layers Chapman (2017); Xia and Platt (2017)

Eastern Franciscan belt 
(California, USA)

20–30 km (Jurassic–
Cretaceous)

150–350 Metagraywackes Dalla Torre et al. (1996); Kimura et al. (1996); Ernst 
and McLaughlin (2012)

Klamath Mountains 
(northern California, USA)

20–40 km (Jurassic–
Cretaceous)

280–450 Pelitic schists with mafic layers Helper (1986); Schmidt and Platt (2020); Tewksbury-
Christle et al. (2021)

Coast Range, Yolla Bolly 
(northern California, USA)

25–35 km (Cretaceous) 200–300 Metagraywackes Ernst (2016)

Liberty Creek–Seldovia 
(southern Alaska, USA)

40–50 km (Jurassic–
Cretaceous)

400–500 Mafic and calcschists López-Carmona et al. (2011)

Olympic Peninsula (Washington, USA) 10–15 km (Miocene) 200–300 Pelitic schists with mafic layers Brandon and Calderwood (1990)

Korjakia (Kamchatka, Russia) 20–30 km (early Mesozoic) 400–500 Mafic and pelitic schists Dobretsov and Sobolev (1984, and references therein)

Karaginsk (Kamchatka, Russia) 15–20 km (Cretaceous) 400–500 Pelitic schists with mafic layers Dobretsov and Sobolev (1984, and references therein)

Susunai complex (Sakhalin, Russia) 15–25 km (Cretaceous) 250–400 Pelitic schists with mafic layers Dobretsov (1974, 1975); Sakakibara et al. (1997); 
Kimura et al. (1992)

Kamuikotan (Hokkaido, Japan) 20–40 km (Cretaceous) 250–400 Mafic and pelitic schists Ishizuka et al. (1983); Sakakibara and Ota (1994); 
Iwasaki et al. (1995)

Sambagawa (non-eclogitized unit; 
Asemi‑Gawa and Bessi, Japan)

20–35 km (Jurassic–
Cretaceous)

360–540 Mafic and pelitic schists Enami et al. (1994)

Shimanto belt (Shikoku, Japan) 15–17 km (Cretaceous) 240–270 Mafic and pelitic schists Aoki et al. (2008); Raimbourg et al. (2014)

Shimanto belt (Kanto Mountain, Japan) 20–30 km (Cretaceous) 350–550 Mafic and pelitic schists Hirajima and Banno (1989); Aoki et al. 
(2011, and references therein)

Suo belt (southwestern Japan) 35–50 km (Triassic) 380–540 Pelitic schists with mafic layers Nishimura (1998); Ishiwatari and Tsujimori (2003); Li 
et al. (2017)

Yuli belt (eastern Taiwan) 25–35 km (age unclear, 
likely Miocene)

350–500 Pelitic schists with 
(ultra)mafic layers

Liou et al. (1981); Ernst and Jahn (1987); Beyssac et 
al. (2008); Tsai et al. (2013)

6Angiboust et al.  |  Deep accretionary wedge tectonicsGEOSPHERE  |  Volume 17  |  Number X

Research Paper

Downloaded from http://pubs.geoscienceworld.org/gsa/geosphere/article-pdf/doi/10.1130/GES02392.1/5479176/ges02392.pdf
by guest
on 03 January 2022

http://geosphere.gsapubs.org


7Angiboust et al.  |  Deep accretionary wedge tectonicsGEOSPHERE  |  Volume 17  |  Number X

Research Paper

references therein) and long-term, landward migration of the volcanic arc (e.g., 
Kay et al., 2005; Kukowski and Oncken, 2006, and references therein). Various, 
more indirect proxies can also be used to identify deep basal erosion. An age gap 
in the sequential younging toward the base of a well-preserved duplex setting 
(e.g., Angiboust et al., 2018) could be potentially interpreted as an argument 
for transient tectonic erosion (e.g., Scholl and von Huene, 2010) but also may 
well just reflect a temporary cessation of accretion in a continuous underplating 
history. Transient tectonic erosion could be the consequence of higher stresses 
related to the downward transport of a topographic high, such as a seamount, 
plateau, or ridge (see discussion section Wedge Consumption Mechanisms and 
Transient Dynamics of Accretionary Edifices). For instance, multichannel seismic 
reflection and gravity anomalies were used by Miura et al. (2004) to propose 
that a seamount in the Izu-Bonin forearc region has been basally eroded, pos-
sibly as a consequence of the subduction of the Ogasawara oceanic plateau.

Vertical motion of the forearc crust investigated at different time scales has 
been used as a proxy for tracking (long-term) subduction erosion. Using the 
vertical component of the GPS signal, Heki (2004) proposed that a large section 
of the forearc crust undergoes basal erosion in northeastern Japan due to a 
relatively high degree of subsidence (~15 mm yr−1). For geological time scales, 
evidence of massive subsidence recorded in forearc basin scientific drillings 
might also be considered as a good proxy. For instance, the recovery of beach 
sands at 3 km depth off Tohoku (northeastern Japan) and the progression of 
paleo-depths in the overlying strata provide a history of Neogene subsidence 
that can be extended across the shelf and slope with seismic imaging (e.g., von 
Huene et al., 1982). A similar case study is known in the Lima Basin (Peru) where 
the shallow forearc is eroded as demonstrated by drilling and multichannel seis-
mic reflection data (Clift et al., 2003). While these two correspond to relatively 
shallow basal erosion examples, deeper case studies are more challenging to 
document because seafloor seismic reflection multiples degrades and hinders 
deep resolution where basal erosion processes are thought to occur.

In fossil systems, the formation of basins (e.g., Gosau Basin in the Austrian 
Alps) has been attributed to periods of forearc subsidence, possibly related to 
the removal of material along the base of the forearc crust (e.g., Wagreich, 1995; 
Vannucchi et al., 2004; see also Oncken, 1998, for similar observations in the 
Variscan). For the Swiss Alps, Bachmann et al. (2009a, 2009b) have proposed 
that similar Rb-Sr deformation ages for the sheared base of the crystalline 
upper plate and sheared upper-plate fragments found in the underlying sub-
duction mélange could indicate, together with the formation of Gosau-​type 
basins, that tectonic erosion was the prevailing mass-transfer mode during 
the waning deformation stages of the South Penninic–Austroalpine fossilized 
plate interface. In California (western United States; Condrey Mountain Schist 
complex), Tewksbury-Christle et al. (2021) reported ultramafic and mafic blocks 
in basally accreted blueschist-facies metapelites and used geochemistry to 
suggest that these blocks were tectonically eroded (likely from an obducted 
ophiolite) in the frontal part of the upper plate.

The Pelona-Orocopia-Rand schist complex in southern California exhibits a 
primary plate interface contact representative of a peculiar, shallow subduction 

environment where the upper-plate Sierran magmatic arc is likely preserved, 
tectonically overlying a sequence of Franciscan Complex–affiliated pelitic 
schists (e.g., Chapman, 2017). The entire lower crust and upper mantle beneath 
the arc were tectonically removed in the process. This strongly foliated Paleo-
cene complex displays a metamorphic imprint (with an inverted metamorphic 
sequence) typical of a relatively hot subduction setting (mostly amphibolite 
facies) formed at ~30 km depth in the basal accretion site (e.g., Kidder and 
Ducea, 2003). Some authors have invoked the possibility that both tectonic 
erosion and basal accretion were competing during the Late Cretaceous (Chap-
man, 2017, and references therein). The debate existing in the literature about 
the emplacement, exhumation, and significance of the Pelona-Orocopia-Rand 
complex may be due to the discontinuous nature of exposures as well as to 
the pervasive exhumation-related overprint that partly reworked prograde, 
burial-related structural features (e.g., Jacobson et al., 2007; Xia and Platt, 2017).

Basal deformation at depths greater than 40 km remains extremely chal-
lenging to detect from surface anomalies because many tectonic variables 
such as gravitational collapse, large-scale lithospheric buckling, slab rollback, 
or reactivation of forearc structural lineaments could equally explain these 
apparently anomalous topographic features. For instance, Tonarini et al. (2011) 
proposed that mantle-wedge serpentinites could be tectonically recycled (i.e., 
dragged) deeper at sub-arc depths in order to explain boron isotopic signa-
tures in lavas from the South Sandwich Islands arc volcanoes. Given the 
extreme scarcity of pristine mantle-wedge structures now exposed at Earth’s 
surface, a considerable number of unknowns remains regarding the physics 
and dynamics of tectonic erosion of the subcontinental mantle.

■■ FIELD AND GEOCHRONOLOGICAL INSIGHTS ON WEDGE 
DYNAMICS

High pressure–low temperature (HP-LT) belts are widespread along suture 
zones where oceanic lithosphere has been consumed by subduction. We focus 
here on the natural record of oceanic-continent systems in the circum-​Pacific 
realm, avoiding settings of ocean-ocean subduction (Cuba–Dominican Repub-
lic, Marianas). For the sake of consistency with the geographic focus of this 
study, HP-LT paleo–accretionary systems outside the circum-​Pacific realm are 
discarded (see the review from Agard et al., 2018, for further details on these 
other localities). Listed occurrences all belong to the B-type (Cordilleran type) 
typical of active continental margins as classified by Maruyama et al. (1996).

What Composes a Deep Crustal Wedge?

The extensive amount of literature focusing on paleo–accretionary systems 
reveals that deep wedges are dominantly composed of metasediments (gray-
wackes, cherts, pelites, and, to a minor extent, reef limestones; Maruyama 
et al., 1996; Wakita, 2019). It has been proposed that continentally derived 
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clastic turbidites are preferentially accreted while pelagic sediments are more 
readily subducted in the mantle (e.g., Moore, 1989; Le Pichon et al., 1993). 
Variable amounts (never >50 vol%) of mid-ocean-ridge basalts and oceanic 
island basalts (and locally arc-derived mafic tuffs) are also reported, commonly 
intercalated within metasedimentary sequences (Fig. 2; e.g., Hashimoto and 
Kimura, 1999; Hyppolito et al., 2014). Each sliver forming the duplex edifice is 
generally constituted by laterally coherent bodies ranging in thickness between 
several tens of meters and a kilometer (e.g., Grove and Bebout, 1995; Kimura 
et al., 1996; Angiboust et al., 2017; Schmidt and Platt, 2018; Muñoz-Montecinos 
et al., 2020; Raymond et al., 2020; Tewksbury-Christle et al., 2021; Figs. 3A, 3B, 
3C). Kusky et al. (2013) reported the possibility of identifying primary sea-
floor lithological contacts in material accreted in paleo–accretionary systems, 
although this recognition becomes generally more challenging with increasing 
metamorphic grade. In several localities, some of the slivers forming these 
deep duplexes exhibit an apparent “mélange” structure, which could have 
formed either near the trench as olistostromes (Fig. 3B; e.g., Wakabayashi, 
2011; Kusky et al., 2013) or tectonically during burial as a consequence of high 
strain, boudinage, fragmentation, and comminution (Fig. 3A; e.g., Kimura and 
Mucai, 1991; Wakabayashi and Rowe, 2015; Raimbourg et al., 2019) or via a 
combination of both processes (Fig. 3C). Underplating of mélange-bearing 
slivers (comprising semi-brittle deformation) at relatively shallow conditions 
has been reported on Kii Peninsula and Shikoku island (Japan; e.g., Kimura 
and Mukai, 1991; Makimine mélange: Ujiie et al., 2018; Fig. 3A) or in some 
parts of the Franciscan belt in California (Fig. 3B; Underwood and Laughland, 
2001; Krohe, 2017). Note that Kato and Godoy (2015), Pavlis and Roeske (2007), 

and Amato et al. (2013) have also emphasized that further tectonic mixing may 
occur along post-accretionary strike-slip structures, thus locally obscuring the 
structures related to basal accretion history.

Isozaki et al. (1990) and Kimura et al. (1992) have already recognized that 
deeply underplated metamorphic complexes generally comprise greater 
amounts of mafic material than shallower ones (i.e., frontally accreted; e.g., 
Strasser et al., 2009). On one hand, this statement may indicate that a sub-
stantial part of the sedimentary cover of the downgoing plate is scraped off 
and recycled in the upper wedge so that subduction interface strains can be 
transferred deeper in the downgoing sequence, down to the basaltic crust, 
thus impacting accretion dynamics and mélange formation (Kusky et al., 1997). 
On the other hand, massive sediment recycling is at odds with the estimates 
by Clift and Vannucchi (2004) pointing to relatively minor (<20% on average) 
sedimentary recycling in accretionary edifices. This apparent paradox, which 
certainly requires further investigation, may arise from the fact that it remains 
very challenging to use geophysical methods to evaluate the composition and 
volume of active deep duplexes in active margins (e.g., Calvert et al., 2011).

Kimura and Ludden (1995) claimed that the material scraped off the top of 
the downgoing mafic crust is generally in the range of several tens to several 
hundreds of meters thick. These lenses, now found interlayered with meta
sediments in paleo–accretionary systems (e.g., Regalla et al., 2018; Raimbourg 
et al., 2019; Muñoz-Montecinos et al., 2020), may correspond to topographic 
highs such as the uppermost part of former seamount edifices that were peeled 
off the downgoing plate and intermixed with sediments or serpentinites within 
a subduction channel (Fig. 2; e.g., Ueda, 2005; Sang et al., 2020). Note that the 
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Figure 2. Idealized sketch of accretionary and 
tectonic processes in the basal accretion re-
gion of an ocean-continent subduction zone 
(inspired from our field observations and nu-
merical modeling results). This sketch combines 
observations made for paleo–accretionary sys-
tems in western, northern, and eastern Pacific 
margins (references provided in text). UOC—
upper oceanic crust; LOC—lower oceanic crust; 
OMP—oceanic mantle peridotites; FMC—forearc 
mantle-wedge corner.
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Figure 3. (A) Field view of the Makimine mélange (eastern coast of the Kyushu island, southwestern Japan; Ujiie et al., 2018) showing lenses of foliated metabasalt wrapped within 
strongly flattened foliated shales (courtesy H. Raimbourg). (B) Field view of a coastal exposure of the Franciscan mélange in the San Simeon region (Franciscan Complex, California, 
USA) where blocks of metagraywacke and metabasalt are tectonically embedded within black shales (courtesy L. Jolivet). Field of view is 20 meters. White lines depict the attitude 
of the schistosity. (C) Field view of a coastal exposure of the Western Series in central Chile (Infiernillo beach, Pichilemu) showing the complex intercalations of elongated tectonic 
slivers of mafic tuffs, quartzites, and black shales that were all underplated in the basal accretion site at blueschist-facies conditions (e.g., Muñoz-Montecinos et al., 2020). Field of 
view is ~100 meters. (D) Field sketch showing the structure of Puerto Bay on Diego de Almagro Island (Patagonia, Chile) where several tectonic slivers with very distinct pressure-tem-
perature-time paths were juxtaposed along the subduction interface (Angiboust et al., 2018; modified after Angiboust and Muñoz, 2018). Green shading indicates vegetation cover; 
blue dashed line indicates the inferred upper limit of the blueschists unit. Field of view in panel D is ~1 km.
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scale of imbrication deduced from field observations is much smaller than 
that inferred from geophysical studies due to resolution issues (e.g., Moore 
et al., 1991; St. Clair et al., 2016).

It is interesting to note that natural exposures exhibiting metagabbroic 
bodies metamorphosed at 20–35 km depth in circum-​Pacific paleo–accretionary 
basal wedges are extremely rare (e.g., Platt, 1986; Nishiyama et al., 2017), 
confirming that lower-plate deep structural levels are likely rarely involved in 
the basal underplating process (Fig. 2). Deeper eclogitized metagabbro occur-
rences are known in the Sambagawa belt (Japan) where they are associated 
with mantle-wedge serpentinites (e.g., Banno, 2004; Aoya et al., 2006, 2013). 
The scarcity of gabbros or oceanic peridotites within fossilized mélanges or 
paleo–accretionary edifices derived from fast-spreading seafloor systems 
(Fig. 3) indicates that only the uppermost structural levels of the downgoing 
plate (i.e., sediments, mafic tuffs, and hydrothermally altered basalts) or the 
top of asperities (i.e., platform carbonates, ocean-island basaltic seamounts; 
e.g., Wakita, 2019; Bonnet et al., 2020) are tectonically involved in the basal 
accretion process (Fig. 2). Experiments of Angiboust et al. (2012), Vogt and 
Gerya (2014a), and Ruh et al. (2015) have shown that extensive oceanic mantle 
serpentinization is a prerequisite for involvement of the oceanic-plate lower 
crust into the accretionary edifice, which is generally not the case for most 
circum-Pacific seafloor material where a thick (5–10 km) basaltic oceanic crust 
prevails (e.g., Vithana et al., 2019).

What does the physical connection with the deeper serpentinized subduc-
tion channel look like? Inside coherent, metasediment-rich paleo-duplexes (e.g., 
Western Series, Chile), ultramafic material is volumetrically very minor (Fig. 2). 
In south-central Chile, Godoy and Kato (1990) and Willner et al. (2004a) have 
indicated that blocks and/or lenses of serpentinized ultramafics are locally 
found intercalated within the Western Series paleo-accretionary sequence. 
Similar findings were made in Japan (Nishisonogi area, Kyushu island) where 
50–350-m-thick, jadeite-bearing serpentinite mélange slivers are tectonically 
intercalated within an epidote-blueschist metasedimentary paleo-duplex (e.g., 
Nishiyama et al., 2017). We postulate that the intercalation of ultramafics—
likely derived from the mantle-wedge “cold nose”—is made possible due 
to the very low viscosity and high buoyancy of serpentinite, which tecton-
ically injects along décollements separating metasedimentary slivers near 
the forearc “mantle-wedge” corner (FMC; Fig. 2). A similar process—recalling 
what is well known for evaporitic sequences in foreland basins—has been 
documented in the Western Alps belt where meter-thick, kilometer-long ser-
pentinite allochthonous slivers systematically line the boundary between 
deep paleo–accretionary wedge metasediments thrust slices (Schistes Lus-
trés; Angiboust and Agard, 2010). A slab origin for these serpentinite slivers 
is likely for the Alps where slow-spreading-type dynamics led to exposure 
of the oceanic mantle directly on the seafloor (e.g., Lagabrielle and Cannat, 
1990). In Pacific-type margins, the involvement of deep-seated (i.e., >6 km 
below seafloor) slab-derived serpentinites into a deep sediment-rich duplex 
intuitively appears unlikely (because they would be too deep into the slab for 
being peeled off on the subduction interface). Even though the identification of 

the tectonic origin of serpentinized ultramafics is challenging and debated in 
several localities (e.g., Deschamps et al., 2013; Barnes et al., 2013; Wakabayashi, 
2017), we herein speculate that most serpentinite bodies from circum-Pacific 
suture zones likely derive from the hydration of the mantle wedge. The finding 
of serpentinites in paleo–accretionary edifices may thus reflect deep “tectonic 
insertion” processes from the bottom end of the wedge at the contact area 
with the upper end of the serpentinized subduction channel (as depicted on 
Fig. 2; e.g., González-Jiménez et al., 2017).

In several circum-Pacific localities, it has been noted that higher-grade 
(>400 °C) blocks are also documented in mélange-like, block-​in-​matrix struc-
ture within lower-grade series, pointing to substantial pressure-temperature 
(P-T) difference between them and their encapsulating host (e.g., Kato and 
Godoy, 1995; Ukar and Cloos, 2014, and references therein; Nishiyama et al., 
2020). In the Diego de Almagro Island (Patagonia, Chile), Hyppolito et al. (2016) 
and Angiboust et al. (2018) have identified the presence of a 100-m-thick tec-
tonic sliver (“garnet amphibolite unit”) that reached eclogite-facies conditions 
before, several tens of millions of years later, being juxtaposed with epidote 
blueschists in the basal accretion region (Fig. 3D). Again, an extrusion of these 
blocks and/or slivers, traveling via transient return-flow episodes in a weak 
sedimentary or serpentinite-rich environment from the updip termination of the 
deep subduction channel (forming along the slab top at the base of the mantle 
wedge), represents one possible model to explain the P-T jumps occasionally 
visible in the exhumed material (Fig. 2). This model shares similarities with 
what has been recently proposed for the exhumation of the (poorly exposed) 
Cabaña HP ultramafics in south-central Chile that were juxtaposed together 
with lower-grade metasediments (e.g., González-Jiménez et al., 2017). Overall, 
the dynamics and tectonic transport processes that occur in this deep region 
remain poorly documented, calling for further investigation.

The Pressure-Temperature-Time-Strain Record of Basal Accretion 
Processes

While prehnite-pumpellyite– to lower greenschist-facies conditions (typi-
cally <0.4 GPa; i.e., <10 km of overburden) are expected for frontal accretion 
processes, HP-LT metamorphism—typically at lower blueschist-facies condi-
tions—appears to be a characteristic metamorphic imprint left during the basal 
accretion process. A review of available P-T paths for some localities where 
basal accretion has been identified (or inferred) is presented in Table 2 and 
in Figure 4. This compilation may suggest at a first sight that relatively warm 
subduction environments (e.g., Nankai, Cascadia) represent a more favorable 
environment for enabling deep duplex formation. Note that this statement is 
compatible with the finding from Heki (2004), who identified basal erosion as 
the dominant mass-transfer mode in northeastern Japan, a thermally stable, 
notably cold active margin (Fig. 4). Some of the P-T paths where deep duplex 
formation has been identified follow a nearly isothermal decompression stage, 
implying an increase in the local geothermal gradient as the exhuming material 
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is transported away from the cooled plate interface (see the white dashed arrow 
on Fig. 4, calculated for the Western Series in south-central Chile, a representa-
tive crustal-scale duplex sequence, by Willner [2005]). This exhumation mode 
strongly differs from that at localities (e.g., Marianas, Franciscan belt, eastern 
Australia) dominated by fast and buoyant, serpentinite-driven uplift of material, 
where interface-parallel exhumation along a P-T path as cool as the burial path 
is known and documented (e.g., Tsujimori et al., 2006; Tamblyn et al., 2020).

One of the most iconic processes in basally accreted metamorphic sequences 
is the gradual downstepping of deformation ages, generally decreasing toward 
the base (e.g., Silver et al., 1985; Platt, 1987; Kimura et al., 1992; Wakabayashi, 
1999; Angiboust et al., 2018). Among the various existing geochronological tech-
niques, the Rb-Sr multi-mineral method for mylonites (i.e., plastically deformed 
samples) has proven to be a very powerful and accurate way of evaluating 
end-of-deformation ages when samples are devoid of isotopic inheritance, i.e., 
fully dynamically recrystallized (e.g., Glodny et al., 2005). The combination of 
field, structural, and Rb-Sr studies has revealed a decrease of deformation ages 
toward the base of the paleo-duplex, confirming (1) the gradual downstepping 
invoked for building the duplex and (2) the abandonment of the shear zones 
bounding the thrust contacts between basally accreted slices (e.g., Angiboust 
et al., 2017). Out-of-sequence thrusting does exist in nature but is challenging 
to document from a geochronological point of view due to the mutual partial 
overprinting of deformation events. At a very large scale, Isozaki et al. (2010) 
have shown that the southern Japanese active margin has been formed after 
a very long, protracted history of terrane accretion that started in the early 
Paleozoic and proceeded trenchward until the end of the Cenozoic (Fig. 5; see 
also Wakita, 2013, 2019). There, slivers with a HP-LT imprint are interleaved 
with terranes devoid of HP-LT imprint and separated by age gaps on the order 
of several tens of millions of years. This region of Japan has been variably 
overprinted over the entire accretion history by a protracted sequence of out-
of-sequence thrusting, normal faulting, and strike-slip faulting that was not 
sufficient to shuffle the first-order age trend depicted in Figure 5. Transient 
episodes of tectonic erosion, likely related to plateau or ridge subduction, could 
also have increased the complexity of the structural record (e.g., Raimbourg 
et al., 2014) and/or disrupted the continuum of the accretionary sequence (see 
also Scholl and von Huene, 2010,  and Aouizerat et al., 2020, for other examples).

A similar pattern is known on Santa Catalina Island (California; Grove and 
Bebout, 1995; Grove et al., 2008), where several million years separate the vari-
ous slivers accreted in the basal accretion site during the Cretaceous. Also, the 
Diego de Almagro Island exhibits a similar—but much longer—discontinuous 
accretion history, spanning almost 100 m.y. of subduction history over the late 
Mesozoic (Angiboust et al., 2018). Given the present state of knowledge, it is 
extremely challenging to assess whether these long gaps in the accretionary 
sequence at these localities are the consequence of the destruction of the base 
of the previously formed duplex structure by tectonic erosion between two 
episodes of accretion (e.g., Isozaki et al., 2010; Aoki et al., 2012) or whether 
other factors (i.e., increase in trench-fill sediment income, change in slab dip, 
thermal structure fluctuation, convergence velocity variations) played a role in 
producing these “non-accretionary gaps.” Among these factors, the evolution 
of the margin thermal regime over million-year time scales (e.g., Grove and 
Bebout, 1995; Hyppolito et al., 2014, 2016) certainly has a paramount impor-
tance in controlling plate-interface strength, which is itself controlled by the 
distribution of fluids generated by prograde mineral dehydration reactions 
(e.g., Saffer and Tobin, 2011). The thickness of trench-fill sediments capping the 
top of the downgoing plate has also been considered by Clift and Vannucchi 
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(2004) and Scholl and von Huene (2007) as critical in switching mass-​transfer 
mode from non-accretionary or erosive to accretionary. In that sense, numerical 
modeling certainly represents a promising research direction that may provide 
some answers to this issue (e.g., Ruh, 2020; see also section Modeling Insights 
on Rock Records of Episodic Accretion and Erosion Events).

Field studies conducted on the Western Series in south-central Chile 
enabled a high-resolution understanding of kinematics and deformation pat-
terns associated with the transport of underplated material from the interface 
itself up to subsurface conditions in the case of a very thick (>30 km) paleo–
accretionary wedge (e.g., Hervé, 1988; Glodny et al., 2005; Richter et al., 2007). 
There, a common feature ubiquitously observed across 2500 km along strike 
is the presence of a first foliation acquired during prograde shearing (at tem-
peratures as high as 400 °C) that is overprinted by a tight crenulation cleavage 
together with a new, flat-lying transposition foliation in which remnants of 
prograde veins occur as dismembered intrafolial, rootless folds (Richter et 
al., 2007; Muñoz-Montecinos et al., 2020). This pervasive deformation record 
that formed within the duplex during exhumation (at rates of 0.2–0.6 km/m.y.; 
Glodny et al., 2005; Willner, 2005) is commonly referred to as “ductile thinning” 
and produces at the end of the record some brittle, localized normal faulting 
as the rocks finally cross the brittle-ductile transition, typically above 10–15 km 
depth (e.g., Feehan and Brandon, 1999; Glodny et al., 2005; Ring and Brandon, 
2008; Schmidt and Platt, 2018). Similar exhumation patterns were identified 
on discrete islands further south in Patagonia and the Antarctic Peninsula 
(Wilson et al., 1989; Tranter, 1992). When duplexing occurs at temperatures 

<300 °C (a range common for frontal accretion but much rarer for basal accre-
tion; Fig. 3), deformation occurs mostly by cataclastic flow along fault zones, 
which together with pressure solution appear to be the prevalent deformation 
patterns (e.g., Oncken et al., 2021), as reported, for instance, in the Kii Penin-
sula and the Franciscan suture by Hashimoto et al. (2002) and Regalla et al. 
(2018), respectively (see also Sample and Fisher, 1986, for similar features in 
the Kodiak Islands, Alaska).

Evidence for Mass Transfer and Crustal Recycling

The increasing use of detrital zircon geochronology has been challenging 
the common belief that subduction accretionary complexes preserve only 
accretionary periods of subduction activity. A common approach is the com-
parison of age distribution patterns and maximum ages of deposition inferred 
for the youngest grains in a distinct sample. This methodology, when applied 
for each of the subunits forming paleo-duplexes, is known to enable an efficient 
tracking of the source of accreted material as well as identification of age gaps 
and potential episodes of tectonic erosion (e.g., Cawood et al., 2012; Žák et 
al., 2020). For the Franciscan Complex, Snow et al. (2010) have demonstrated 
using detrital zircon U-Pb ages a decrease in maximum sedimentation ages 
from Cretaceous for the uppermost underplated slivers to Eocene for the 
structurally lowermost thrust sheets. Similar findings by Dumitru et al. (2010) 
and Grove et al. (2008) for the northern and southern parts of the Franciscan 
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Complex also pointed to transient periods of duplexing during the entire Fran-
ciscan subduction history that lasted >100 m.y. (e.g., Mulcahy et al., 2018). 
Only few exotic terranes of limited size exhibit peak burial ages back to mid-
dle Jurassic times while most other Franciscan ages span middle Cretaceous 
times. Through a compilation of existing peak metamorphism ages and zircon 
age dating, Dumitru et al. (2010) and Mulcahy et al. (2018) emphasized how 
discrete and relatively short-lived the accretionary record is within the Fran-
ciscan Complex compared with the full duration of subduction history there. 
Detailed processes explaining the detachment and preservation of these older 
outliers and their involvement in the main Cretaceous accretionary edifice 
remain a matter of discussion. From the extensive geochronological data set 
available, abrupt switches in mass-transfer mode (e.g., erosive to accretion-
ary, basally to frontally accreted) appear to be a widespread mechanism in 
subduction history around the Pacific realm (e.g., Franciscan: Dumitru et al., 
2010; south-central Chile: Glodny et al., 2006; Richter et al., 2007; Shimanto 
belt, Japan: Aoki et al., 2012).

For instance, in the Alaskan Chugach paleo–accretionary complex, Roeske 
et al. (1989), Clift et al. (2005a), Amato and Pavlis (2010), and Amato et al. (2013) 
have identified two episodes of subduction erosion: one in the middle Jurassic 
that ended at ca. 169 Ma, accompanied by an inboard migration of arc magma-
tism, and another one in the Early Cretaceous (125–101 Ma) as demonstrated 
by detrital zircon geochronology. Despite post-accretionary overprinting of 
accretion-related structures due to large-scale strike-slip shearing, the age 
gaps existing in the available data for the Chugach paleo–accretionary complex 
(together with the identification of a 125 Ma trondhjemitic magmatism) may 
reveal the past subduction of an oceanic ridge during the Early Cretaceous, 
given that such objects are known to be very efficient transient erosional agents 
(e.g., von Huene and Scholl, 1991). Later during middle Cretaceous (101–91 Ma), 
the mass-transfer mode along the southern Alaskan margin switched back to 
a basal accretionary mode as shown by the thick McHugh Creek formation 
(Amato et al., 2013). A rather similar scenario with two discrete subduction 
erosion events of Cretaceous age (associated with trench and arc magmatism 
retreat) has been identified in the southern Japan Shimanto belt by Aoki et 
al. (2012). There, ridge subduction is also suspected as a trigger for massive 
basal erosion of the previously accreted accretionary sequence.

In southern Chile, various coastal paleo–accretionary complexes are exposed 
(including the Chonos, the Madre de Dios, and the Diego de Almagro Metamor-
phic Complexes), providing an opportunity to decipher subduction dynamics 
and mass transfers during early Mesozoic times along this long-lived active 
margin (Hervé et al., 2008; Calderón et al., 2016; Fig. 6A). The Madre de Dios 
Metamorphic Complex is composed of pelagic limestones, pillow basalts, cherts, 
and turbidites that were frontally accreted under very low-grade metamorphic 
conditions (260 °C, <0.5 GPa) to the western Gondwana margin before the Early 
Jurassic (Thompson and Hervé, 2002; Sepúlveda et al., 2008; Hervé et al., 2008, 
and references therein). The Chonos Complex exhibits slightly deeper accretion 
conditions near the Triassic-Jurassic boundary, as revealed by Late Triassic 
detrital zircons and Early Jurassic fission-track zircon ages (Hervé and Fanning, 

2001; Willner et al., 2000; Thompson and Hervé, 2002; Table 2). During Early 
Jurassic times, the Madre de Dios and Chonos Metamorphic Complexes were 
thus forming the westernmost part of the Patagonian paleo–accretionary wedge. 
The eastern part of the Diego de Almagro Metamorphic Complex is formed by 
the Lazaro unit, a several-kilometers-thick, pervasively deformed stack of mafic 
and pelitic schists that comprises remnants of transitional upper amphibolitic 
to HP granulite-facies metamorphism with evidence for partial melting of this 
paleo-accretionary material during Middle Jurassic times (Angiboust et al., 2017). 
Recently, Angiboust et al. (2017, 2018) have shown using field and petrological 
investigations together with sensitive high-resolution ion microprobe (SHRIMP) 
U-Pb metamorphic rim and detrital zircon ages that the material now forming the 
Lazaro unit exhibits similar age distribution patterns and seafloor lithologies as 
those from the Madre de Dios Metamorphic Complex further east. From these 
observations, it has been proposed that a frontally accreted sliver from the 
Madre de Dios Metamorphic Complex has been tectonically eroded during Early 
Jurassic times and dragged down to the basal accretion site at 35–40 km depth 
(~1.2 GPa and 750 °C) at 160–165 Ma in a hot subduction environment (Figs. 6B, 
6C). There, the Lazaro unit has remained in a plate-interface hanging-wall posi-
tion for several tens of millions of years (Fig. 6B) during which younger tectonic 
slivers with various metamorphic histories became underplated at 120 Ma and 
80 Ma (Willner et al., 2004b; Hyppolito et al., 2016; Angiboust et al., 2018) and 
the shear zone bounding the base of the Lazaro unit was abandoned.

This list, far from being exhaustive, of natural laboratories where detri-
tal zircon geochronology can be used for deciphering subduction dynamics 
demonstrates the great potential of the method to identify punctuated episodes 
of tectonic erosion in long-lived accretionary edifices (see also Žák et al., 2020, 
and references therein for further reading).

■■ MODELING INSIGHTS ON ROCK RECORDS OF EPISODIC 
ACCRETION AND EROSION EVENTS

As described in the section Forearc Basal Erosion: Potential Examples, the 
modalities of basal erosion processes as well as their connection with crustal 
recycling are more challenging to document than for frontal erosion processes. 
Physically constrained, high-resolution numerical modeling can thus provide 
valuable insights into the dynamics of these deep mass transfers. In the fol-
lowing section, we present the results of numerical experiments highlighting 
with unprecedented detail the forearc dynamics and the pressure-tempera-
ture-time-strain (P-T-t-ε) record characterizing episodic accretion and erosion 
events in ocean-continent subduction zones.

Numerical Approach and Initial Setup

A set of two-dimensional thermo-mechanical experiments have been car-
ried out, solving the continuity, momentum, and heat conservation equations, 
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based on a finite-difference scheme and a non-diffusive marker-​in-​cell tech-
nique and assuming non-Newtonian, visco-elasto-plastic rheologies (Gerya 
and Yuen, 2007). Physicochemical processes such as hydration-dehydration 
and fluid transport are also considered by implementing fluid expulsion by 
compaction and thermodynamically constrained metamorphic reactions 
(Connolly, 2005). This comes along with fluid effects on rock density and vis-
cosity (i.e., weakening due to high pore-fluid pressure), which play a critical 
role in the frictional strength of the subduction interface and therefore on 
accretion-​erosion dynamics and associated tectonic processes at convergent 
margins (Peacock, 1990; Saffer and Tobin, 2011; Gerya and Meilick, 2011; Angi-
boust et al., 2012; Menant et al., 2019). To accurately reproduce topographic 
variations resulting from subduction-related tectonic processes, the model 
follows the sticky-air method (Schmeling et al., 2008), which solves the top 
of the lithospheres as an internal free surface where sedimentation and ero-
sion processes are also considered, providing a reasonable estimation of 

topographic variations. Details on governing equations, fluid implementation, 
and surface calculation are available in the Supplemental Material1.

Models have been set up to reproduce a typical ocean-continent subduc-
tion system where the rheological properties of the downgoing plate can vary 
through time, impacting margin dynamics (i.e., accretional versus erosive 
mode). The computational domain measures 1500 × 200 km in the x and y 
directions, respectively (Fig. 7A). It is discretized using an irregularly spaced 
Eulerian grid of 1467 × 271 nodes with a resolution of 0.5 × 0.5 km in the vicinity 
of the plate boundary (i.e., the area subjected to the largest deformation) and 
of 2.0 × 1.5 km elsewhere. Additionally, approximately eight million randomly 
distributed Lagrangian markers are initially prescribed for advecting material 

1 Supplemental Material. Methods and supplemental figures of the numerical experiments. Please 
visit https://doi.org/10.1130/GEOS.S.16746337 to access the supplemental material, and contact 
editing@geosociety.org with any questions.
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properties and computing water release, transport, and consumption. The 
initial setup is designed with a 30-km-thick overriding continental crust com-
posed of 15 km of felsic upper crust and 15 km of mafic lower crust and with a 
7.5-km-thick subducting oceanic crust made up of 0.5 km of pelagic sediments, 
2 km of hydrated basaltic crust, and 5 km of gabbroic crust (Figs. 7B, 7C). A tem-
perature threshold of 1200 °C is used to distinguish the underlying lithospheric 
mantle from the asthenosphere. To initiate subduction, the oceanic crust is ini-
tially underthrusted below the continental margin and a 10-km-thick weak zone 
is prescribed at the interface between the two plates. The convergence between 
the two domains is defined by prescribing a fixed-​​convergence-​condition 
region belonging to the subducting oceanic lithosphere (e.g., ~5 cm yr−1 for the 
reference model; Fig. 7A). The velocity boundary conditions are free slip for the 
left, right, and upper boundaries while the lower boundary is open to ensure 
mass conservation in the computational domain. An internal free surface is 
prescribed at the top of the oceanic and continental lithospheres, allowing 
modeling of the topography. The thermal structure of the oceanic lithosphere 
is calculated by applying a half-space cooling-age model from 10 k.y. (x = 0; 
i.e., simulating a mid-​oceanic ridge on the left boundary of the computational 
domain) to 53 m.y. (x = 854 km; i.e., initial location of the subduction zone). 
To limit the size of the computational domain, the cooling of the oceanic lith-
osphere is prescribed as 10 times faster for 0 ≤ x ≤ 200 km. This high-cooling 
zone is located at ~600 km away from the subduction zone, which avoids any 
thermal or mechanical effects on forearc dynamics. A geothermal gradient of 
~15 °C km−1 down to 90 km is defined for the continental lithosphere. Below, 
the asthenospheric geothermal gradient is set to ~0.5 °C km−1.

Modeling Strategy

The set of numerical simulations presented herein aims at evaluating the 
role of varying subduction regime on accretion and erosion processes and 
brings to light the associated geological records (i.e., from the underplated 
duplex to the surface evolution). A reference model is first designed to repro-
duce a long-lived, steady-state accretionary margin (model Steady-5). In an 
alternative experiment, we strengthen the subducting oceanic plate (and hence 
the subduction interface) by removing permanently the initial water content in 
the sediments and basaltic crust after ~18 m.y., therefore preventing fluid weak-
ening (model Transient-5; Fig. 7C). The effect of the size of this “subducting 
rheological asperity” is also investigated by only prescribing an ~100-km-wide, 
dry and strong oceanic crust subducting at ~18 m.y. (model Transient100-5). 
Finally, different plate-convergence rates are imposed to evaluate the impact 
of convergence rate on the changing subduction regime from accretional to 
erosive (models Transient-10 and Transient-2).

Description of the numerical results is presented hereafter with an empha-
sis on deep accretion and erosion dynamics, metamorphic rock records, and 
topography evolution. Further details on the whole parametric study are avail-
able in the Supplemental Material (footnote 1).

Modeled Steady-State versus Transient Underplating Dynamics

In the reference steady-state experiment (model Steady-5; see also Movie S12 
and Menant et al., 2019, for further details on model evolution), frontal and 
basal accretion is predicted during the entire model duration (i.e., >70 m.y.; 
Fig. 8). At the front, an ~50-km-wide sedimentary prism develops associated 
with splay fault–like thrusting events (Figs. 8A, 8B). At ~15–30 km depth, the suc-
cession of slicing events results in the growth of an ~75-km-wide dome-shaped 
duplex composed of sedimentary and basaltic material, which is progressively 
exhumed by the joint action of ongoing underplating, localized shallow normal 
faulting, and surface erosion. Resulting deformation patterns consist of hori-
zontal then vertical contraction from the base to the top of the nappe pile (see 
contraction strain axes on Fig. 8B) in agreement with conceptual models (Platt, 
1987; Ring et al., 1999). Resulting finite deformation is then characterized by kilo-
meter-scale nappe folding and boudinage, as well as symmetric and asymmetric 
shearing mostly acquired during the exhumation stage (Fig. 8C). Landward, 
minor back-thrusting events are predicted in the shallow crust, contributing to 
the overall forearc in response to protracted frontal and basal accretion pro-
cesses. At mantle depth, transient detachment of basaltic slices is promoted by 
the vigorously flowing serpentinite-rich mantle wedge (Fig. 8A; see also Movie 
S1 [footnote 2]). The persistence of a weak serpentinite layer atop these basal-
tic slivers seems to prevent their permanent insertion to the overriding plate.

The evolution of the model Transient-5, where the subducting oceanic litho-
sphere is strengthened during the simulation, may be described in three main 
stages (Fig. 9; see also Movie S2 [footnote 2]). The first stage (~0–18 m.y.) is similar 
to the reference experiment and is dominated by (1) frontal accretion leading to 
the growth of an ~60-km-wide sedimentary prism and (2) tectonic underplating 
of thick basaltic tectonic slices with minor sedimentary material forming a deep 
accretionary complex (i.e., duplex #1, Fig. 9A). The second stage (~18–40 m.y.) 
starts immediately after the inception of subduction of the dry and strong oceanic 
crust and is characterized by the downdip propagation of a tectonic erosion front 
(Fig. 9B). Frontal and basal erosion then significantly decreases the size of the 
frontal prism (from ~60 to ~25 km wide) and dismembers the duplex #1. Coevally, 
a second nappe stack develops at ~25–45 km depth (duplex #2), mostly composed 
of tectonically eroded sediments and basaltic crust from the former duplex #1 as 
well as minor continental crust. These deeper accretion events are triggered by the 
sudden increase of mass flux (i.e., the downgoing crust plus the rapidly eroding 
former accretionary wedge), which cannot be entirely consumed in the subduction 
channel while rocks are dragged down to mantle depth. Material in excess is then 
underplated during this second, deeper accretion stage, which results in an overall 
doming of the overlying forearc crust associated with high-angle normal faulting 
(Fig. 9D). This model thus shows that a drastic change in the rheological properties 
of the subducting lithosphere results in an ~23-m.y.-long transient period during 

2 Supplemental Videos. Five movies (S1–S5) of the numerical experiments. Please visit https://
doi​.org​/10.1130​/GEOS.S.16746349 to access the supplemental material, and contact editing@
geosociety​.org with any questions.
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which frontal and basal erosion in the outer forearc domain is concomitant with 
underplating in the inner forearc domain. Afterward, the downdip migration of 
the basal erosion front eventually leads to the consumption of the duplex #2 itself, 
and the margin becomes completely erosive after ~40 m.y. (Fig. 9C).

Predicted Tectono-Metamorphic Rock Record

To compare with the geological rock record of basal accretion and basal 
erosion, we extracted from the numerical experiments P-T-t-ε paths for a set 
of Lagrangian markers tracking underplated material (Fig. 10).

The P-T-t-ε trajectories for both pelagic sediment and basaltic crust in the 
reference experiment Steady-5 show prograde and retrograde paths following 
a similar ~10 °C km−1 geothermal gradient (Figs. 8A, 10A). Pressure and tem-
perature peak conditions lie between ~0.5–0.9 GPa and ~200–300 °C for rocks 
inserted into the duplex, except for some markers tracking material transiently 
accreted at mantle depth (>1.5 GPa and >300 °C). Differences between pelagic 
sediment and basaltic crust mostly come from their deformation record. Indeed, 
the prograde path for the sediments occurs under a high strain rate (~10−12 s−1) 
while it is commonly marked by a medium strain rate for the basaltic crust 
(~10−14–10−13 s−1) preceding a more intense deformation stage near peak condi-
tions (Fig. 10A). This discrepancy is explained by the fact that the sedimentary 
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cover is buried within the high-strain subduction channel while the oceanic 
crust is mostly subducted underneath and becomes part of the channel only 
during the deep slicing event (i.e., near peak conditions; Fig. 8B). Conversely, 
the retrograde path for both rock types is characterized by a low strain rate 
(~10−16–10−15 s−1) and slow exhumation (~0.4 mm yr−1).

In the experiment Transient-5, the P-T-t-ε trajectories depict a more complex 
pattern marked by pressure peak conditions mostly between ~1.0 and 1.7 GPa 
and between ~300 and 400 °C, although some rock markers reach ~1.9 GPa and 
~450 °C (Fig. 10B; see also the representative marker trajectory on Figs. 9A, 9B). 
While the peak pressure conditions characterize the second stage of under-
plating (duplex #2), transient storage, lasting ~10 m.y., is commonly predicted 
during the prograde path, reflecting the first stage of underplating (duplex #1) 
at ~0.6–0.8 GPa and ~200–250 °C. According to our model results, rock burial 
occurs following a typical subduction geothermal gradient of ~9 °C km−1 at 
crustal depth, while it shows a considerably higher variability at mantle depth 
(i.e., ~4–15 °C km−1), probably because of the temperature increase associated 
with the rapid mass flux that characterizes the sudden basal erosion and 
underplating events after 18 m.y. (Movie S2 [footnote 2]). As for the reference 
experiment, strain rates during the prograde path are higher in the sediments 
(buried within the subduction channel) than in the basaltic crust (Fig. 10B). 

The latter, however, records two peaks in the strain rate (~10−12 s−1), which 
mark the two successive underplating stages. The retrograde path records 
the incomplete exhumation of deeply accreted rocks and is characterized by 
low strain rates (~10−16–3.10−15 s−1) and a faster exhumation (~2.3 mm yr−1) than 
for the reference model. Note also that an ~30–50 °C temperature increase 
is commonly predicted during the first step of the retrograde path, reflecting 
the higher temperatures, and therefore the inverted geothermal gradient, in 
the overriding plate atop the subduction channel.

Diagnostic Forearc Topographic Evolution

Predicted forearc topography in experiments Steady-5 and Transient-5 
(for both accretionary and erosional stages) is consistently characterized by a 
coastal high with an ~2000 to ~4000 m maximum elevation spatially followed 
by an inner-forearc depression (Figs. 11A, 11C). Major discrepancies between 
the two models arise, however, when looking at the temporal evolution of 
the topography.

Long-lived frontal and basal accretion dynamics in the reference simula-
tion lead to the overall growth of the forearc margin, marked by the seaward 
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migration of the trench and the long-term rise of the forearc high achieved by 
a succession of uplift-then-subsidence sequences (Fig. 11B). These topographic 
pulses are characterized by uplift (and subsidence) rates ranging from ~0.5 to 
~1.5 mm yr−1 and a robust periodicity of ~3.4 m.y., which reflects the under-
plating dynamics at depth (see also Menant et al., 2020, for further details on 
this accretion-related topographic signal).

Alternatively, no periodic signal is predicted in experiment Transient-5, 
which rather shows a rapid landward migration of the trench and the forearc 
high, coevally with an increase of the tectonic relief, triggered by the subduc-
tion of a stronger oceanic crust and associated changing margin dynamics 
(Figs. 9, 11C). From ~18 m.y., the forearc high #1 subsides due to the basal 
erosion of duplex #1, while the forearc high #2 rises (i.e., ~3000 m increase 
in ~10 m.y.) in response to the growth of the duplex #2 underneath (Fig. 11D). 
After ~30 m.y., this newly formed high coastal topography starts to subside 
as the basal erosion front propagates downdip along the plate interface and 
eventually starts to dismember the deep duplex structure.

Some Parametric Investigations

The modeling results presented in the previous section place emphasis 
on the critical effect of the permanent strengthening of the subducting plate 
on forearc dynamics. In an alternative simulation, the subduction of an only 
100-km-wide, dry and strong oceanic crust segment after 18 m.y. (model Tran-
sient100-5) does not disturb the overall accretion dynamics. Despite a brief 
interruption, the protracted frontal and basal accretion result in the growth of 
a wide sedimentary prism and a deep duplex and the long-term rise of a high 
coastal topography (Fig. S1 [footnote 2]). This suggests that the subduction of 
small “asperities”, unlike drastic and sustained changes of the rheological proper-
ties of the downgoing plate, does not significantly modify the margin dynamics.

From the model Transient-5, different plate kinematics have been imposed 
in two additional experiments. With an increase in the convergence rate 
(~10 cm yr−1; model Transient-10), the margin evolution is akin to a dominant 
accretional then erosive regime and the development of two successive duplex 
structures at crustal then crustal-mantle depth (Fig. S2 [footnote 2]). It is worth 
noting that the transient accretionary-erosive period starts earlier than in the 
Transient-5 model (i.e., ~11 m.y.) and is associated with a more rapid growth 
(and dismembering) of the deep nappe stack and a faster topographic rise (and 
demise) of the high forearc topography. Alternatively, with a decrease in the 
convergence rate (~2 cm yr−1; model Transient-2), basal accretion is achieved by 
a mostly horizontal mass flow at the base of the forearc domain, which allows 
more basaltic crust to be scraped off the subducting plate (Fig. S3 [footnote 
2]). Accretion processes then prevail until ~42 m.y. and the subduction of the 
stronger oceanic crust, which changes the margin dynamics to erosive. The 
former accretionary wedge is then slowly dismembered and the whole of the 
remobilized material is progressively consumed in the subduction channel and 
dragged at depth, preventing the growth of a second, deeper duplex structure.

Further details on the modeling results of these additional experiments, 
including their topographic evolution, are available in the Supplemental Mate-
rial (footnote 1).

■■ DISCUSSION

Insights on Wedge Growth Processes in the Basal Accretion Region

The pioneering return-flow model described by Cloos and Shreve (1988) has 
been widely applied to study wedge formation mechanisms and deformation 
processes, in particular to illuminate the recycling of shallow, frontally accreted 
material, explaining olistostromes and chaotic block-in-matrix mixing such as 
in the Franciscan belt (e.g., Ernst, 2016). However, the extent of tectonic mixing 
within mélange-like slivers such as in the Cuban ophiolitic belt (e.g., Díaz et 
al., 2017) or on Santa Catalina (California) or Syros (Greek Cyclades) Islands 
remains controversial and debated (e.g., Grove et al., 2008; Laurent et al., 2016; 
Harvey et al., 2020). In other words, it remains unclear whether (1) meter-sized 
blocks can independently travel atop the slab interface over tens of kilometers 
in a rheologically weak matrix, or (2) the apparent block-in-matrix mélange 
characteristic feature is the protracted result of superimposed sedimentary 
and tectonic deformation processes (e.g., Wakabayashi, 1999; Krohe, 2017).

The recognition of coherent nappe stacking all along circum-Pacific ancient 
(and active) accretionary systems (Figs. 1, 3) as well as the analogue and 
numerical outputs predicting tectonic slicing and duplex growth both in wedge- 
and lithosphere-scaled models (Fig. 8; Gutscher et al., 1996; Ellis et al., 1999; 
Lohrmann et al., 2006; Malavieille, 2010; Vogt and Gerya, 2014a; Ruh et al., 2015; 
Menant et al., 2019; Ruh, 2020) challenge this vision of a widespread chaotic 
mixing process within the subduction channel and overriding accretionary 
wedge. Instead, these physically constrained studies (1) allow comparison of 
the return-flow concept (as an overall mass flow) and transport of coherent 
slices through strain localization processes and (2) shed light on the mecha-
nisms responsible for the off-scraping and recycling of the downgoing oceanic 
crust at the base of the wedge. Menant et al. (2019) have thus evidenced that 
local, along-dip shear-stress increase along the interface—as a consequence of 
variability of fluid availability (see also Moreno et al., 2018)—critically controls 
the location of the slab-peeling event and the composition and thickness of the 
formed tectonic slice. A relative stability of underplating sites over multiple 
basal-accretion cycles (i.e., commonly predicted at 15–20 km and 25–30 km 
depth among the various parametric experiments undertaken; Fig. 8A; see 
also Menant et al., 2019) can be suspected from the compilation shown in 
Figure 4. A number of factors explains the dispersion of estimates, including 
(1) the uncertainties in pressure estimates from natural samples and (2) the 
variability of the subduction-zone geometry and of the rheological and thermal 
state recorded in subduction channels worldwide, which likely tends to result in 
distribution of underplating events at all crustal depths. Also, given that large 
and steady-state accretionary systems as modeled in our study are rather rare 
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in the geological record, we emphasize that the basal accretion segments at 
15–20 km and 25–30 km depth may not be systematically identified in active 
and fossil accretionary wedge systems (see also Oncken, 1998). Nonetheless, 
preferential tectonic underplating approaching the subcontinental Moho (see 
the preferential basal underplating depth in Fig. 4) appears to be a reasonable 
assumption given that differential stress increase is expected in this region 
corresponding to the resistance peak of the upper-plate rheological envelope 
(also called the “S point”; e.g., Ellis et al., 1999; Fig. 1A), where the cool lower 
crust and lithospheric mantle mechanically close (at least partially) the con-
nection with the deeper serpentinized interface. Although such a differential 
stress increase is likely limited along the plate interface (i.e., a few megapas-
cals, in agreement with the low stress drops invariably associated with seismic 
ruptures in subduction environments; e.g., Ruff, 1999), it appears to be large 
enough to localize tectonic slicing in weak lithologies (Ruh et al., 2015; Menant 
et al., 2019). However, it is worth noting that significantly higher differential 
stresses (i.e., on the order of several hundreds of megapascals) probably 
accumulate in particularly strong and relatively dry lithologies (e.g., gabbroic 
or peridotitic crust, continental granulites) that act as rheological asperities at 
the base of the crustal wedge. This is geologically supported by the formation 
of pseudotachylytes (i.e., seismically generated frictional melts) during brittle, 
blueschist-facies deformation of the alpine subduction complex (Austrheim 
and Andersen, 2004; Menant et al., 2018) and by the high differential stresses 
(i.e., >100 MPa) numerically predicted in the deepest part of the forearc crust 
(see Menant et al., 2019, their figure 1d).

The tracking of strain-rate evolution of rock markers in numerical exper-
iments throughout subduction and exhumation of the downgoing slab top 
confirms that high-strain rock fabrics, including mylonites, cataclasites, sheath 
folds, and vein networks, are mostly acquired in these basal accretion regions 
(Fig. 10A), in line with field and microstructural studies (e.g., Hashimoto et 
al., 2002; Richter et al., 2007; Ring, 2008; Meneghini et al., 2009; Behr and 
Bürgmann, 2021; Fig. 3). Previous prograde, burial-related deformation stages 
(in the form of schistosity and vein networks) may be variably affected by 
subsequent shearing and underplating (e.g., Muñoz-Montecinos et al., 2020) 
depending on the pervasiveness of peak burial deformation. Numerical inves-
tigations predict that the material subsequently transported from the interface 
upward into the duplex travels at relatively low velocities (on the order of 
~0.4 mm yr−1, in line with geological estimates; Glodny et al., 2005), associated 
with strain rates several orders of magnitude lower than during the underplat-
ing event, changing the main deformation mechanisms recorded in exhuming 
duplexes (most likely from brittle or semi-brittle creep to pressure-solution 
and locally dislocation creep; Fig. 10A; Oncken et al., 2021). Resulting internal 
duplex deformation appears as distributed folding and boudinage and localized 
extensional shearing, in agreement with field fabric descriptions in paleo–
accretionary systems, notably reporting crenulation cleavage, which does 
not fully overprint the fabrics formed along the subduction interface (Figs. 3, 
8C; e.g., Onishi et al., 2001; Richter et al., 2007; Regalla et al., 2018). In nature, 
however, local domains (too small to be resolved in our models) may exhibit 

full overprint during exhumation, as expected in particular along the duplex 
roof, the deep back-thrusts, or normal fault systems as seen for instance on 
Figure 8B. Note that the modeled absolute strain-rate values (Fig. 10A) cannot 
be directly compared with those geophysically and geologically estimated 
(e.g., Angiboust et al., 2015; Oncken et al., 2021) because of a scaling issue 
due to the resolution of the models. Nonetheless, it is interesting to track 
strain rate evolution using model markers because strain rates also impact 
fabric formation and likely mineral-reaction and isotopic-equilibration rates. 
This approach predicts the emplacement along the P-T path where fabric for-
mation, mineral equilibrium, and age freezing would occur, hence enabling 
further comparison with subduction-related (and potentially, a reassessment 
of) P-T data in literature.

When the system reaches a steady-state equilibrium, the slab-top peeling 
process is predicted to occur with a strikingly constant periodicity on the 
order of several millions of years (Menant et al., 2020; Figs. 8B, 11C), giving 
rise to a very thick and stable accretionary edifice (e.g., Konstantinovskaya 
and Malavieille, 2011). The growth and preservation of such an extremely thick 
wedge (>35 km thick) formed by protracted basal accretion events as recorded 
in south-central Chile during the late Paleozoic (Western Series; e.g., Willner, 
2005) may appear at first sight as a quite unusual phenomenon in Earth’s 
Phanerozoic subduction history. This process could be interpreted as reflect-
ing a “steady-state” subduction regime along the Gondwana margin over the 
second half of the Paleozoic. Two key factors that may have led to this situation 
are (1) a relatively smooth Panthalassa oceanic plate, devoid of large asperities 
that would act as effective tectonic erosion agents, and (2) a relatively stable 
climatic regime given that the amount of trench-​filling material—susceptible 
to impacting plate-interface coupling and margin dynamics (see also the fol-
lowing section Wedge Consumption Mechanisms and Transient Dynamics of 
Accretionary Edifices)—is known to be influenced by climatic changes and 
glaciations (e.g., Lamb and Davis, 2003; Kukowski and Oncken, 2006).

Wedge Consumption Mechanisms and Transient Dynamics of 
Accretionary Edifices

When the long-term mechanical coupling between the two plates becomes 
too high, the previously formed wedge is eroded from its base and the con-
nection with the deep serpentinized channel broadens (Fig. 9B). The growth 
(or destruction) of a wedge thus reflects a peculiar stress state of the interface 
as well as its structural stability over geological time. Indeed, our new modeling 
investigations demonstrate that an increase in the subduction interface strength 
on a limited spatial extent (i.e., small asperities) does not significantly affect the 
margin dynamics (compare models Transient-5 and Transient100-5; Fig. 9 and 
Fig. S1 [footnote 2]). Punctuated basal erosion episodes (e.g., associated with 
the subduction of an isolated seamount) could transiently unlock the “S point” 
and open the updip end of the serpentinized channel. Once such an asperity 
were passed, this deep connection would close and the mass-​transfer mode 
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return to accretionary. These short-lived (≤2 m.y.) changes likely leave only few 
imprints in the long-term geological records (Fig. S1). However, we stress that 
such events could allow for the extrusion (from the top of the deep channel; 
Fig. 2) and intercalation of higher-grade (generally serpentinite-bearing) mate-
rial within lower-grade, basally accreted duplex structures as documented in 
the thick Carboniferous Chilean paleo–accretionary wedge (Los Pabilos; e.g., 
Willner et al., 2004a) and elsewhere (Liberty Creek–Seldovia, Alaska: López-Car-
mona et al., 2011; Sambagawa, Japan: Wallis, 1998).

Alternatively, drastic and long-lived changes in the rheological properties 
of the plate interface resulting from climate-related variations of sedimentary 
input at the trench or subduction of large asperities such as plateaus, ridges, 
large seamount chains, or widespread oceanic fracture zones (e.g., Ranero 
and von Huene, 2000; Sisson et al., 2003; Gerya et al., 2009; Moreno et al., 
2014) have a major impact on accretion-erosion dynamics, leading to switches 
between deep accretionary wedge growth and dismembering during accretion-
ary-erosive periods tens of millions of years long (Fig. 12). In addition to these 
external parameters, wedge-internal dynamics also appears to be a critical 
factor affecting the spatial and temporal variations of the mass-transfer mode. 

Evolving density distribution in the growing duplex, strain and fluid weakening, 
and/or the development of a fabric anisotropy may also promote spatial and 
temporal switches between accretion and erosion without involving external 
changes (see the duplex dynamics for the steady-state subduction model 
in Movie S1 [footnote 2]). This non-exhaustive list of extrinsic and intrinsic 
parameters reflects the multiplicity of factors that can explain, for instance, 
the multiple gaps in the accretionary history along the Japanese archipelago 
(Fig. 5) since the Cambrian period (Isozaki et al., 2010). These transient tec-
tonic erosion events (and the associated consumption of previously formed 
duplexes) explain why very large accretionary edifices are much rarer in the 
geological record than expected from the widespread and long-term sub-
duction history on Earth. Studies from Bangs and Cande (1997) and Clift and 
Hartley (2007) have also tended to show that the “aggressiveness” of tectonic 
erosion is a non-steady factor in subduction history over time scales of tens of 
millions of years, capable of removing large amounts of previously accreted 
sediments at rates faster than accretion. In this highly dynamic plate-inter-
face environment, frontal erosion (and outer forearc subsidence) and basal 
underplating (and inner forearc uplift) may be concomitant (Fig. 12; Comte et 
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Figure 12. Three-dimensional sketch (not to scale) showing the morphology of the subduction system for accretionary and erosive environments based on geological 
observations and model predictions. The long-term accretionary margin (in the background) is marked by a wide frontal wedge and thick duplex (in yellow) that may be 
exposed at the surface in the region of high coastal topography. The erosive margin (in the foreground) shows the transient growth of a deep duplex (in orange) made 
of material previously scraped off the base of the outer forearc region in response to coeval frontal and basal erosion. The change of subduction regime (i.e., from ac-
cretional to erosive or vice versa) requires a drastic change in the rheological properties of the downgoing plate, here illustrated by the subduction of asperities (in dark 
green; see details in the text).
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al., 2019; see also Tewksbury-Christle et al., 2021, for a fossil example in Cali-
fornia) due to the balance between the mass flux and the amount of material 
that can be consumed by the subduction channel, which is notably controlled 
by the plate-convergence rate (see parametric investigations in the Supple-
mental Material [footnote 1]). The erosive northern Chilean margin and its 
high coastal topography may well illustrate this “hybrid” subduction regime 
(Clift and Hartley, 2007), with transient underplating at 30–50 km depth of 
tectonically eroded forearc material driving the long-term coastal uplift and 
associated forearc-basin exposure since the lower to middle Miocene (Cou-
durier-Curveur et al., 2015; Evenstar et al., 2017). Coeval increasing aridity in 
the Atacama Desert (Chile; Lamb and Davis, 2003; Armijo et al., 2015; Rech 
et al., 2019), likely associated with a decreasing amount of sediment entering 
the trench, thus provides a plausible mechanism for triggering the switch in 
the subduction regime and the subsequent deep-duplex growth and forearc 
topography rise in ~10–15 m.y. as predicted numerically (Figs. 9B, 11D).

A particularly vigorous coastal uplift recently also occurred in the Mejillones 
Peninsula in a long-term context of frontal erosion of the northern Chilean 
margin and arcward trench retreat. There, a sequence of first terrestrial sed-
imentation on arc basement is succeeded by marine sedimentation and a 
return to uplift with terrestrial sedimentation and erosion (e.g., Victor et al., 
2011) over a few million years. The spatial persistence of this uplift event in 
the same location over the last few million years discounts the subduction of 
a topographic high as an explanation for this peninsula formation. Instead, 
a spatially stable high-shear-stress region, with variable degrees of coupling 
of the plate interface segment under the uplifted region (i.e., a “barrier” at 
seismological time scales; e.g., Victor et al., 2011; Saillard et al., 2017), could 
explain the observed topographic feature (in northern Chile but also along the 
entire margin) by involvement of transient basal accretion events (Fig. 12; see 
also Menant et al., 2020, and references therein). Alternatively, Encinas et al. 
(2020) noted that the uplift of the Coastal Cordilleras in south-central Chile 
may be decreased where a strongly hydrated seafloor (such as a fracture zone) 
is subducted under the wedge (in line with previous geophysical data from 
Moreno et al. [2014]). Although debated, the question of the critical role of 
deep accretionary processes on the formation of these coastal promontories 
deserves to be addressed, notably through further geophysical investigations 
(e.g., Bassett and Watts, 2015).

Another noteworthy implication from these numerical experiments is 
that temporal switches from basal accretion to basal erosion (as well as the 
along-strike variations in mass-transfer regime in active margins) may be 
used as a proxy to constrain the long-term frictional properties of the plate 
interface over geological time scales (Fig. 12). As a consequence, active mar-
gins where duplexing is identified near the subcontinental Moho could be 
viewed as reflecting a transition from decoupled to coupled segments along 
the subduction interface, which appears, however, at odds with GPS-based 
locking maps exhibiting a common decrease in plate coupling approaching 
the forearc mantle corner (e.g., Moreno et al., 2018). This suggests a “time 
scale–dependent” frictional pattern along the plate interface. Such pattern, 

typically at the seismic-cycle time scale, precludes the recognition of sites of 
million-year-long basal accretion events from the distribution of GPS-moni-
tored frictional heterogeneities (Bassett and Watts, 2015), which rather reflect 
short-term processes associated with the seismic cycle or slow slip processes 
(e.g., Obara and Kato, 2016).

Insights on the Structure and Dynamics of the Forearc Mantle Corner

Field studies confirm that a large number of suture zones where an oce-
anic realm has been closed by subduction exhibit tectonic slivers scraped off 
and stacked (in the presence of a duplex structure or not) in the 30–50 km 
depth range, i.e., at the base of the “cold nose” region (e.g., Bostock, 2013; 
Despaigne-Díaz et al., 2017; Bebout and Penniston-Dorland, 2016; Agard et 
al., 2018). These slivers, generally metamorphosed at blueschist- to eclogite-​
facies or amphibolitic conditions, exhibit thicknesses ranging between several 
hundred meters and kilometers (Fig. 2; e.g., Vitale-Brovarone et al., 2013; 
Angiboust et al., 2014, 2018; Plunder et al., 2015; Despaigne-Díaz et al., 2017). 
This observation reveals that the forearc lithospheric mantle in the forearc 
mantle-wedge corner (FMC) region may not always be in direct contact with 
the slab top but instead may be separated from the downgoing plate by a 
series of previously accreted slivers, remaining relatively immobile along 
the interface hanging wall for periods that can last as long as several tens of 
millions of years (Fig. 2; Franciscan: Wakabayashi, 1990; Diego de Almagro 
Island, Patagonia: Angiboust et al., 2018). These slivers may be constituted of 
ocean-derived material (plateaus, extensional continental allochthons, thick 
and coherent packages of mafic or sedimentary material) but also of shallow 
upper-plate continental crust frontally eroded near the trench (e.g., Fig. 6C; 
Cluzel et al., 2001; Beltrando et al., 2010; Angiboust et al., 2017). In our models, 
a several kilometers-thick layer of mixed sedimentary-​(ultra)mafic material can 
develop atop the subduction interface down to 50–60 km depth (Figs. 8, 9; see 
also Menant et al., 2019). This layer (which may be viewed as a subduction 
channel in the sense of Guillot et al., 2009) is never permanently attached to 
the base of the FMC because of the persistence of a weak serpentinite layer in 
between. Instead, our models suggest that this transiently accreted material 
package is regularly dragged deeper in the mantle by enhanced basal erosion 
due to fluctuations in plate interface shear stresses, which are mostly con-
trolled by fluid distribution, slab strength, or the presence of asperities. Such 
a process would be extremely challenging to identify in the rock record and 
require subsequent exhumation and exposure of key outcrops at the surface. 
One possibility for preservation may be a burial and a fast, buoyant exhumation 
of a large continental sliver (or an oceanic plateau) against a deep wedge that 
may freeze such deep-seated, transient structures (e.g., Vogt and Gerya, 2014b). 
Note also that the transport via basal erosion of such “mélange” packages (or 

“subduction channel” fragments) down to sub-arc depths (as inferred, e.g., in 
Central Mexico; Ducea and Chapman, 2018) may bear implications because 
their preferential melting would likely enhance magmatism and volcanism 
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TABLE 3. SUMMARY OF DIAGNOSTIC CRITERIA CHARACTERIZING EACH MASS-TRANSFER MODE IN ACCRETIONARY, 
EROSIVE, AND TRANSIENT ACCRETIONARY-EROSIVE CONTEXTS (MODIFIED AFTER ONCKEN, 1998)

Features Mass-flow mode

Accretion Tectonic erosion Transient accretion-erosion

Accretionary wedge Complete Frontal wedge is missing in models; a tiny 
wedge may locally develop in natural 
systems

Small frontal wedge; deep duplex formation

Fore-arc deformation

  Offshore Shortening, imbrication; peninsula 
formation

Extension, surface collapse in case of frontal 
erosion; embayments of shoreline

Compression at the toe of the margin, 
extension landward with local thrusting

  Onshore Deep duplexing at depth >15 km; 
formation of fore-thrust and back-thrusts; 
extension at the top of the duplex

Extension, surface collapse in case of basal 
erosion

Extension

Surface motion Periodic uplift and erosion; exhumation 
of a blueschist-facies duplex

Rapid subsidence, forearc basin formation; 
local uplift in the inner forearc when a deep 
duplex forms

Rapid subsidence, uplift above exhuming 
blueschist-facies duplex

Trench and volcanic front 
displacement

Toward the ocean Toward the continent Toward the continent

Seismic reflectivity Reflective imbricate fan Interface-parallel reflections in the duplex 
zone; truncated reflections at the base

Interface-parallel reflections in the duplex 
zone; truncated reflections at the base

Shear-zone rocks, mélanges Only lower-plate crust (or trench-fill 
sediments)

Tectonic mixing of material from both plates Tectonic mixing of material from both plates 
(likely also involving trench-fill material)

Provenance of high-pressure rocks Only lower plate Lower and upper plate Lower and upper plate
Basement of upper plate Thickened, possibly eroded at surface Lacking or too thin to accommodate neritic or 

subaerial sedimentation
Lacking or too thin to accommodate neritic 

or subaerial sedimentation
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and hence contribute to the growth of continental crust (e.g., Plank and Lang-
muir, 1993; Stern, 2011; Cruz-Uribe et al., 2018). A link may thus exist between 
episodes of continental crust growth along active margins and fluctuations in 
mass-transfer modes along the adjacent subduction interface.

Lastly, we conclude that the occurrence of a deep accretion process of large 
coherent slices along the FMC, as seen in current models and field examples 
(Fig. 2), perhaps calls for a reassessment of the common vision of the rheolog-
ical segmentation of the plate interface where the presence of weak hydrated 
mantle minerals such as serpentinite and talc are expected to control the depth 
of the downdip end of the seismogenic zone (e.g., Peacock and Hyndman, 1999; 
Hippchen and Hyndman, 2008). Indeed, an accreted metasedimentary sliver 
(or an interlayered mafic-sedimentary pile; Fig. 9B) is likely mechanically less 

“weak” than a hydrated, serpentinite, and/or talc-rich “cold nose” environment 
(e.g., Hilairet et al., 2007; Agard et al., 2018). Thus, in active margins where a 
package of blueschist-facies material is accreted at mantle depth, the down-
dip end of the locked seismogenic zone may be controlled by the rheological 
behavior of the accreted material—where fluid-saturated conditions are likely 
(e.g., Oleskevich et al., 1999; Palazzin et al., 2016; Fagereng et al., 2018)—rather 
than by the rheology of the hydrated FMC itself (see also discussions in Heuret 
et al., 2011; Abers et al., 2017). Reconsidering the compositional environment 
of the deep subduction interface is of paramount importance for setting the 
rheological framework, which controls the seismic behavior and acts together 
with mass fluxes to drive the long-term evolution of active margins.

Remaining Questions and Future Challenges

Undeniable progress was made in the 1980s and 1990s toward understand-
ing basal accretion processes from a field and structural perspective. Over the 
past 20 years, a number of important tectonic and kinematic issues have been 
resolved using analogue and numerical modeling tools as well as geodetic 
methods. A summary of diagnostic criteria typical for each mass-transfer mode, 
including the transient accretionary-erosive subduction regime (Figs. 9B, 12), 
has been tentatively compiled in Table 3. This non-exhaustive review evidences 
a widespread occurrence of basal tectonic underplating at active margins both 
in space and time (Fig. 1A) and underscores a need to integrate this wealth 
of geological and geophysical data in order to understand forearc dynamics 
and rheology in a comprehensive way, bridging space and time scales, aim-
ing at providing critical insights on a region of the plate interface where most 
megathrust ruptures (Mw >8) nucleate (e.g., Bassett and Watts, 2015). Some 
first-​order aspects appear to stand out of the crowd of remaining issues to be 
addressed by future studies:

(1)	Temperatures between 300 and 550 °C are typically inferred from basally 
accreted paleo–accretionary material (Fig. 4). This range encompasses 
the typical 350 °C threshold classically considered for the downdip end 
of locking at the plate interface (e.g., Oleskevich et al., 1999) where 
basal accretion commonly occurs (e.g., Bassett and Watts, 2015). The 
matter of peak burial temperatures warmer in rocks than in geophysical 
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and numerical models has been extensively debated in the last few 
years (e.g., Penniston-Dorland et al., 2015; van Keken et al., 2018) 
and unsurprisingly recurs in our compilation as well. Does this mean 
that petrological studies on these rocks systematically overestimate 
temperatures, as a consequence of very long residence times in a hang-
ing-wall position that caused full re-equilibration of assemblages at 
temperatures greater than the conditions at which each slice detached 
from the downgoing plate? Or does underplating preferentially occur in 
nature during transient warming of the subduction environment (e.g., 
decrease of convergence rate, subduction of a warmer seafloor)? The 
latter option is clearly not supported by our modeling approach, which, 
despite temperatures slightly cooler than in the compilation (Fig. 10), 
does not reveal such control for triggering deep duplex formation. Refin-
ing our understanding of subduction thermal structures, incorporating 
the plethora of factors that contribute to the heat budget (e.g., shear 
heating, effect of fluids, exothermic mantle wedge hydration reactions, 
etc.), certainly represents a first-order scientific challenge to solving this 
apparent discrepancy and refining our vision of rheological processes 
that control the position of the downdip end of the seismogenic zone 
(e.g., Peacock, 2020).

(2)	 What are the strain rates during slice accretion, and what would be the 
dominant deformation mechanism under these relatively fast-slipping, 
water-saturated conditions? For Japan, Kimura et al. (2010), Hashimoto 
et al. (2002), and Onishi et al. (2001) have tentatively correlated the tec-
tonic underplating process with slow slip events and cataclastic fabrics. 
While ductile shearing should prevail in relatively warm and young 
environments (e.g., Xia and Platt, 2017), brittle or semi-brittle creep is 
expected below 400 °C in the basal accretion region for most mature 
subduction systems (e.g., Onishi et al., 2001; Angiboust et al., 2015; 
Oncken et al., 2021; Behr and Bürgmann, 2021). The wide deformation 
spectrum potentially associated with accretion processes also calls for 
a reassessment, through further multidisciplinary investigations, of the 
origin of (micro)seismicity nests above the plate interface, i.e., where 
duplex structures likely develop and grow (e.g., Uchida et al., 2010; 
Menant et al., 2018; Savard et al., 2018; Comte et al., 2019). Future field 
studies should finally focus on the hydro-mechanical regime during 
slice detachment and more generally identify markers of periodicity in 
basally accreted material as a potential consequence of transient shear-
zone activity as well as transient fluid pulses associated with enhanced 
strain rates (e.g., Bürgmann, 2018; Fagereng et al., 2018; Taetz et al., 2018).

(3)	Understanding the physical processes acting on the main subduction 
shear zone during each basal accretion event is crucial for interpreting 
the significance of vertical motion of the forearc crust across time scales 
(e.g., Sieh et al., 2008; Mouslopoulou et al., 2016). Efforts should be 
made in the identification of permanent-deformation signals included 
in the geodetically measured surface displacements during the various 
stages of the seismic cycle, which may in part correspond to finite strain 

permanently recorded during duplexing sequences (e.g., Houlié and 
Stern, 2017; Jolivet et al., 2020).

(4)	We lack near-surface geological markers unambiguously indicating 
tectonic underplating at the base of active forearc margins. This is 
especially true because the accretion-related million-year-scale forearc 
topographic signal (Fig. 11B; Menant et al., 2020) interferes with long-
term, climate-related variations in the sediment input at the trench, 
which partly control the subduction regime. Nonetheless, we stress that 
detailed stratigraphic investigations on forearc basins located above 
potential underplating sites (e.g., Mountney and Westbrook, 1997; Enci-
nas et al., 2012), coupled with robust estimations of climatic variations, 
are crucial for tracking recent (or active) underplating events as well 
as potential switches in mass-transfer mode over millions of years.

(5)	The long-term modeling approach followed in studying accretion pro-
cesses in subduction systems fails at addressing the question of their 
potential short-term (seismic-related?) signature. Future studies should 
aim at bridging this gap, using, e.g., numerical modeling accounting 
for time-stepping refinement and rate(-and-state)-dependent, fluid pres-
sure–sensitive friction formulation (e.g., van Dinther et al., 2013; Dal 
Zilio et al., 2018; Herrendörfer et al., 2018; Petrini et al., 2020), as well as 
further detailed field investigations. Linking models with field structures 
will also inevitably (1) require a dramatic enhancement of the spatial 
resolution of the existing models, overcoming current computational 
limitations, and (2) require a fully coupled analytical and numerical 
development satisfactorily reproducing the rheological effect of fluids 
on plate-interface mechanical processes at various time scales.
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