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Abstract. Forecasting complex dynamical phenomena in settings where only partial
knowledge of their dynamics is available is a prevalent problem across various scientific
fields. While purely data-driven approaches are arguably insufficient in this context,
standard physical modeling based approaches tend to be over-simplistic, inducing non-
negligible errors. In this work, we introduce the APHYNITY framework, a principled
approach for augmenting incomplete physical dynamics described by differential
equations with deep data-driven models. It consists in decomposing the dynamics
into two components: a physical component accounting for the dynamics for which we
have some prior knowledge, and a data-driven component accounting for errors of the
physical model. The learning problem is carefully formulated such that the physical
model explains as much of the data as possible, while the data-driven component only
describes information that cannot be captured by the physical model, no more, no
less. This not only provides the existence and uniqueness for this decomposition, but
also ensures interpretability and benefits generalization. Experiments made on three
important use cases, each representative of a different family of phenomena, i.e. reaction-
diffusion equations, wave equations and the non-linear damped pendulum, show that
APHYNITY can efficiently leverage approximate physical models to accurately forecast
the evolution of the system and correctly identify relevant physical parameters. Code
is available at https://github.com/yuan-yin/APHYNITY.

https://github.com/yuan-yin/APHYNITY
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1. Introduction

Modeling and forecasting complex dynamical systems is a major challenge in domains such
as environment and climate (Rolnick, Donti, Kaack, Kochanski, Lacoste, Sankaran, Ross,
Milojevic-Dupont, Jaques, Waldman-Brown et al. 2019), health science (Choi, Bahadori,
Sun, Kulas, Schuetz & Stewart 2016), and in many industrial applications (Toubeau,
Bottieau, Vallée & De Grève 2018). Model Based (MB) approaches typically rely
on partial or ordinary differential equations (PDE/ODE) and stem from a deep
understanding of the underlying physical phenomena. Machine learning (ML) and deep
learning methods are more prior agnostic yet have become state-of-the-art for several
spatio-temporal prediction tasks (Shi, Chen, Wang, Yeung, Wong & Woo 2015, Wang,
Gao, Long, Wang & Yu 2018, Oreshkin, Carpov, Chapados & Bengio 2020, Donà,
Franceschi, Lamprier & Gallinari 2020), and connections have been drawn between
deep architectures and numerical ODE solvers, e.g. neural ODEs (Chen, Rubanova,
Bettencourt & Duvenaud 2018, Ayed, de Bézenac, Pajot, Brajard & Gallinari 2019).
However, modeling complex physical dynamics is still beyond the scope of pure ML
methods, which often cannot properly extrapolate to new conditions as MB approaches
do.

Combining the MB and ML paradigms is an emerging trend to develop the interplay
between the two paradigms. For example, Brunton, Proctor & Kutz (2016) and Long, Lu,
Ma & Dong (2018) learn the explicit form of PDEs directly from data, Raissi, Perdikaris
& Karniadakis (2019) and Sirignano & Spiliopoulos (2018) use NNs as implicit methods
for solving PDEs, Seo, Meng & Liu (2020) learn spatial differences with a graph network,
Ummenhofer, Prantl, Thuerey & Koltun (2020) introduce continuous convolutions for
fluid simulations, de Bézenac, Pajot & Gallinari (2018) learn the velocity field of an
advection-diffusion system, Greydanus, Dzamba & Yosinski (2019) and Chen, Zhang,
Arjovsky & Bottou (2020) enforce conservation laws in the network architecture or in the
loss function. The large majority of aforementioned MB/ML hybrid approaches assume
that the physical model adequately describes the observed dynamics. This assumption is,
however, commonly violated in practice. This may be due to various factors, e.g. idealized
assumptions and difficulty to explain processes from first principles (Gentine, Pritchard,
Rasp, Reinaudi & Yacalis 2018), computational constraints prescribing a fine grain
modeling of the system (Ayed, Cedilnik, Gallinari & Sermesant 2019), unknown external
factors, forces and sources which are present (Large & Yeager 2004). In this paper, we
aim at leveraging prior dynamical ODE/PDE knowledge in situations where this physical
model is incomplete, i.e. unable to represent the whole complexity of observed data. To
handle this case, we introduce a principled learning framework to Augment incomplete
PHYsical models for ideNtIfying and forecasTing complex dYnamics (APHYNITY). The
rationale of APHYNITY, illustrated in Figure 1 on the pendulum problem, is to augment
the physical model when—and only when—it falls short.

Designing a general method for combining MB and ML approaches is still a widely
open problem, and a clear problem formulation for the latter is lacking (Reichstein,
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(a) Data-driven Neural ODE (b) Simple physical model (c) Our APHYNITY framework

Figure 1. Predicted dynamics for the damped pendulum vs. ground truth (GT)
trajectories d2θ/dt2+ω2

0 sin θ+αdθ/dt = 0. We show that in (a) the data-driven approach
(Chen et al. 2018) fails to properly learn the dynamics due to the lack of training
data, while in (b) an ideal pendulum cannot take friction into account. The proposed
APHYNITY shown in (c) augments the over-simplified physical model in (b) with a
data-driven component. APHYNITY improves both forecasting (MSE) and parameter
identification (Error T0) compared to (b).

Camps-Valls, Stevens, Jung, Denzler, Carvalhais & Prabhat 2019). Our contributions
towards these goals are the following:

• We introduce a simple yet principled framework for combining both approaches. We
decompose the data into a physical and a data-driven term such that the data-driven
component only models information that cannot be captured by the physical model.
We provide existence and uniqueness guarantees (Section 3.1) for the decomposition
given mild conditions, and show that this formulation ensures interpretability and
benefits generalization.

• We propose a trajectory-based training formulation (Section 3.2) along with an
adaptive optimization scheme (Section 3.3) enabling end-to-end learning for both
physical and deep learning components. This allows APHYNITY to automatically
adjust the complexity of the neural network to different approximation levels of the
physical model, paving the way to flexible learned hybrid models.

• We demonstrate the generality of the approach on three use cases (reaction-
diffusion, wave equations and the pendulum) representative of different PDE families
(parabolic, hyperbolic), having a wide spectrum of application domains, e.g. acoustics,
electromagnetism, chemistry, biology, physics (Section 4). We show that APHYNITY
is able to achieve performances close to complete physical models by augmenting
incomplete ones, both in terms of forecasting accuracy and physical parameter
identification. Moreover, APHYNITY can also be successfully extended to the
partially observable setting (see discussion in Section 5).

2. Related work

Correction in data assimilation Prediction under approximate physical models has been
tackled by traditional statistical calibration techniques, which often rely on Bayesian
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methods (Pernot & Cailliez 2017). Data assimilation techniques, e.g. the Kalman
filter (Kalman 1960, Becker, Pandya, Gebhardt, Zhao, Taylor & Neumann 2019), 4D-var
(Courtier, Thépaut & Hollingsworth 1994), prediction errors are modeled probabilistically
and a correction using observed data is applied after each prediction step. Similar residual
correction procedures are commonly used in robotics and optimal control (Chen 2004, Li,
Yang, Chen & Chen 2014). However, these sequential (two-stage) procedures prevent the
cooperation between prediction and correction. Besides, in model-based reinforcement
learning, model deficiencies are typically handled by considering only short-term rollouts
(Janner, Fu, Zhang & Levine 2019) or by model predictive control (Nagabandi, Kahn,
Fearing & Levine 2018). The originality of APHYNITY is to leverage model-based prior
knowledge by augmenting it with neurally parametrized dynamics. It does so while
ensuring optimal cooperation between the prior model and the augmentation.

Augmented physical models Combining physical models with machine learning (gray-box
or hybrid modeling) was first explored from the 1990’s: (Psichogios & Ungar 1992,
Thompson & Kramer 1994, Rico-Martinez, Anderson & Kevrekidis 1994) use neural
networks to predict the unknown parameters of physical models. The challenge of proper
MB/ML cooperation was already raised as a limitation of gray-box approaches but
not addressed. Moreover these methods were evaluated on specific applications with
a residual targeted to the form of the equation. In the last few years, there has been
a renewed interest in deep hybrid models bridging data assimilation techniques and
machine learning to identify complex PDE parameters using cautiously constrained
forward model (Long, Lu, Ma & Dong 2018, de Bézenac et al. 2018), as discussed
in introduction. Recently, some approaches have specifically targetted the MB/ML
cooperation. HybridNet (Long, She & Mukhopadhyay 2018) and PhICNet (Saha, Dash
& Mukhopadhyay 2020) both use data-driven networks to learn additive perturbations
or source terms to a given PDE. The former considers the favorable context where the
perturbations can be accessed, and the latter the special case of additive noise on the
input. Wang, Li, Tang & Xu (2019) and Mehta, Char, Neiswanger, Chung & Schneider
(2020) propose several empirical fusion strategies with deep neural networks but lack
theoretical groundings. PhyDNet (Le Guen & Thome 2020) tackles augmentation in
partially-observed settings, but with specific recurrent architectures dedicated to video
prediction. Crucially, all the aforementioned approaches do not address the issues
of uniqueness of the decomposition or of proper cooperation for correct parameter
identification. Besides, we found experimentally that this vanilla cooperation is inferior
to the APHYNITY learning scheme in terms of forecasting and parameter identification
performances (see experiments in Section 4.2).
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3. The APHYNITY Model

In the following, we study dynamics driven by an equation of the form:
dXt

dt
= F (Xt) (1)

defined over a finite time interval [0, T ], where the state X is either vector-valued, i.e. we
have Xt ∈ Rd for every t (pendulum equations in Section 4), or Xt is a d-dimensional
vector field over a spatial domain Ω ⊂ Rk, with k ∈ {2, 3}, i.e. Xt(x) ∈ Rd for every
(t, x) ∈ [0, T ]× Ω (reaction-diffusion and wave equations in Section 4). We suppose that
we have access to a set of observed trajectories D = {X· : [0, T ] → A | ∀t ∈ [0, T ], dXt/dt =

F (Xt)}, where A is the set of X values (either Rd or vector field). In our case, the
unknown F has A as domain and we only assume that F ∈ F , with (F , ∥ · ∥) a normed
vector space.

3.1. Decomposing dynamics into physical and augmented terms

As introduced in Section 1, we consider the common situation where incomplete
information is available on the dynamics, under the form of a family of ODEs or PDEs
characterized by their temporal evolution Fp ∈ Fp ⊂ F . The APHYNITY framework
leverages the knowledge of Fp while mitigating the approximations induced by this
simplified model through the combination of physical and data-driven components. F
being a vector space, we can write:

F = Fp + Fa

where Fp ∈ Fp encodes the incomplete physical knowledge and Fa ∈ F is the data-driven
augmentation term complementing Fp. The incomplete physical prior is supposed to
belong to a known family, but the physical parameters (e.g. propagation speed for the
wave equation) are unknown and need to be estimated from data. Both Fp and Fa

parameters are estimated by fitting the trajectories from D.
The decomposition F = Fp + Fa is in general not unique. For example, all the

dynamics could be captured by the Fa component. This decomposition is thus ill-defined,
which hampers the interpretability and the extrapolation abilities of the model. In other
words, one wants the estimated parameters of Fp to be as close as possible to the true
parameter values of the physical model and Fa to play only a complementary role w.r.t
Fp, so as to model only the information that cannot be captured by the physical prior.
For example, when F ∈ Fp, the data can be fully described by the physical model, and
in this case it is sensible to desire Fa to be nullified; this is of central importance in a
setting where one wishes to identify physical quantities, and for the model to generalize
and extrapolate to new conditions. In a more general setting where the physical model
is incomplete, the action of Fa on the dynamics, as measured through its norm, should
be as small as possible.

This general idea is embedded in the following optimization problem:

min
Fp∈Fp,Fa∈F

∥Fa∥ subject to ∀X ∈ D,∀t, dXt

dt
= (Fp + Fa)(Xt) (2)
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The originality of APHYNITY is to leverage model-based prior knowledge by augmenting
it with neurally parametrized dynamics. It does so while ensuring optimal cooperation
between the prior model and the augmentation.

A first key question is whether the minimum in (2) is indeed well-defined, in other
words whether there exists indeed a decomposition with a minimal norm Fa. The answer
actually depends on the geometry of Fp, and is formulated in the following proposition
proven in Appendix B:

Proposition 1 (Existence of a minimizing pair). If Fp is a proximinal set‡, there exists
a decomposition minimizing (2).

Proximinality is a mild condition which, as shown through the proof of the
proposition, cannot be weakened. It is a property verified by any boundedly compact set.
In particular, it is true for closed subsets of finite dimensional spaces. However, if only
existence is guaranteed, while forecasts would be expected to be accurate, non-uniqueness
of the decomposition would hamper the interpretability of Fp and this would mean that
the identified physical parameters are not uniquely determined.

It is then natural to ask under which conditions solving problem (2) leads to a
unique decomposition into a physical and a data-driven component. The following result
provides guarantees on the existence and uniqueness of the decomposition under mild
conditions. The proof is given in Appendix B:

Proposition 2 (Uniqueness of the minimizing pair). If Fp is a Chebyshev set‡, (2)
admits a unique minimizer. The Fp in this minimizer pair is the metric projection of the
unknown F onto Fp.

The Chebyshev assumption condition is strictly stronger than proximinality but is
still quite mild and necessary. Indeed, in practice, many sets of interest are Chebyshev,
including all closed convex spaces in strict normed spaces and, if F = L2, Fp can be any
closed convex set, including all finite dimensional subspaces. In particular, all examples
considered in the experiments are Chebyshev sets.

Propositions 1 and 2 provide, under mild conditions, the theoretical guarantees for
the APHYNITY formulation to infer the correct MB/ML decomposition, thus enabling
both recovering the proper physical parameters and accurate forecasting.

3.2. Solving APHYNITY with deep neural networks

In the following, both terms of the decomposition are parametrized and are denoted as
F

θp
p and F θa

a . Solving APHYNITY then consists in estimating the parameters θp and
θa. θp are the physical parameters and are typically low-dimensional, e.g. 2 or 3 in our
experiments for the considered physical models. For Fa, we need sufficiently expressive
models able to optimize over all F : we thus use deep neural networks, which have

‡ A proximinal set is one from which every point of the space has at least one nearest point. A
Chebyshev set is one from which every point of the space has a unique nearest point. More details in
Appendix A.
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shown promising performances for the approximation of differential equations (Raissi
et al. 2019, Ayed, de Bézenac, Pajot, Brajard & Gallinari 2019).

When learning the parameters of F
θp
p and F θa

a , we have access to a finite
dataset of trajectories discretized with a given temporal resolution ∆t: Dtrain =

{(X(i)
k∆t)0≤k≤⌊T/∆t⌋}1≤i≤N . Solving (2) requires estimating the state derivative dXt/dt

appearing in the constraint term. One solution is to approximate this derivative using
e.g. finite differences as in Brunton et al. (2016), Greydanus et al. (2019), and Cranmer,
Greydanus, Hoyer, Battaglia, Spergel & Ho (2020). This numerical scheme requires
high space and time resolutions in the observation space in order to get reliable gradient
estimates. Furthermore it is often unstable, leading to explosive numerical errors as
discussed in Appendix D. We propose instead to solve (2) using an integral trajectory-
based approach: we compute X̃ i

k∆t,X0
from an initial state X(i)

0 using the current F θp
p +F θa

a

dynamics, then enforce the constraint X̃ i
k∆t,X0

= X i
k∆t. This leads to our final objective

function on (θp, θa):

min
θp,θa

∥∥F θa
a

∥∥ subject to ∀i,∀k, X̃(i)
k∆t = X

(i)
k∆t (3)

where X̃
(i)
k∆t is the approximate solution of the integral X(i)

0 +
∫ k∆t

0
(F

θp
p + F θa

a )(Xs) ds

obtained by a differentiable ODE solver.
In our setting, where we consider situations for which F

θp
p only partially describes the

physical phenomenon, this coupled MB + ML formulation leads to different parameter
estimates than using the MB formulation alone, as analyzed more thoroughly in Appendix
C. Interestingly, our experiments show that using this formulation also leads to a better
identification of the physical parameters θp than when fitting the simplified physical
model F θp

p alone (Section 4). With only an incomplete knowledge on the physics, θp
estimator will be biased by the additional dynamics which needs to be fitted in the data.
Appendix F also confirms that the integral formulation gives better forecasting results
and a more stable behavior than supervising over finite difference approximations of the
derivatives.

3.3. Adaptively constrained optimization

Algorithm 1: APHYNITY
Initialization:
λ0 ≥ 0, τ1 > 0, τ2 > 0;

for epoch = 1 : Nepochs do
for iter in 1 : Niter do

for batch in 1 : B do
θj+1 = θj −
τ1∇ [λjLtraj(θj) + ∥Fa∥]

λj+1 = λj+ τ2Ltraj(θj+1)

The formulation in (3) involves constraints
which are difficult to enforce exactly in practice.
We considered a variant of the method of
multipliers (Bertsekas 1996) which uses a
sequence of Lagrangian relaxations Lλj

(θp, θa):

Lλj
(θp, θa) = ∥F θa

a ∥+ λj · Ltraj(θp, θa) (4)

where Ltraj(θp, θa) =
∑N

i=1

∑T/∆t
h=1 ∥X(i)

h∆t −
X̃

(i)
h∆t∥.

This method needs an increasing sequence
(λj)j such that the successive minima of Lλj
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converge to a solution (at least a local one) of the constrained problem (3). We select
(λj)j by using an iterative strategy: starting from a value λ0, we iterate, minimizing
Lλj

by gradient descent§, then update λj with: λj+1 = λj + τ2Ltraj(θj+1), where τ2 is a
chosen hyper-parameter and θ = (θp, θa). This procedure is summarized in Algorithm 1.
This adaptive iterative procedure allows us to obtain stable and robust results, in a
reproducible fashion, as shown in the experiments.

4. Experimental validation

We validate our approach on 3 classes of challenging physical dynamics: reaction-diffusion,
wave propagation, and the damped pendulum, representative of various application
domains such as chemistry, biology or ecology (for reaction-diffusion) and earth physic,
acoustic, electromagnetism or even neuro-biology (for waves equations). The two first
dynamics are described by PDEs and thus in practice should be learned from very
high-dimensional vectors, discretized from the original compact domain. This makes the
learning much more difficult than from the one-dimensional pendulum case. For each
problem, we investigate the cooperation between physical models of increasing complexity
encoding incomplete knowledge of the dynamics (denoted Incomplete physics in the
following) and data-driven models. We show the relevance of APHYNITY (denoted
APHYNITY models) both in terms of forecasting accuracy and physical parameter
identification.

4.1. Experimental setting

We describe the three families of equations studied in the experiments. In all experiments,
F = L2(A) where A is the set of all admissible states for each problem, and the L2

norm is computed on Dtrain by: ∥F∥2 ≈
∑

i,k ∥F (X
(i)
k∆t)∥2. All considered sets of physical

functionals Fp are closed and convex in F and thus are Chebyshev. In order to enable
the evaluation on both prediction and parameter identification, all our experiments
are conducted on simulated datasets with known model parameters. Each dataset
has been simulated using an appropriate high-precision integration scheme for the
corresponding equation. All solver-based models take the first state X0 as input and
predict the remaining time-steps by integrating F through the same differentiable
generic and common ODE solver (4th order Runge-Kutta)∥. Implementation details and
architectures are given in Appendix E.

Reaction-diffusion equations We consider a 2D FitzHugh-Nagumo type model (Klaasen
& Troy 1984). The system is driven by the PDE ∂u

∂t
= a∆u + Ru(u, v; k),

∂v
∂t

=

b∆v + Rv(u, v) where a and b are respectively the diffusion coefficients of u and v,

§ Convergence to a local minimum isn’t necessary, a few steps are often sufficient for a successful
optimization.
∥ This integration scheme is then different from the one used for data generation, the rationale for this
choice being that when training a model one does not know how exactly the data has been generated.
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∆ is the Laplace operator. The local reaction terms are Ru(u, v; k) = u − u3 −
k − v,Rv(u, v) = u − v. The state is X = (u, v) and is defined over a compact
rectangular domain Ω with periodic boundary conditions. The considered physical
models are: • Param PDE (a, b), with unknown (a, b) diffusion terms and without
reaction terms: Fp = {F a,b

p : (u, v) 7→ (a∆u, b∆v) | a ≥ amin > 0, b ≥ bmin > 0};
• Param PDE (a, b, k), the full PDE with unknown parameters: Fp = {F a,b,k

p : (u, v) 7→
(a∆u+Ru(u, v; k), b∆v +Rv(u, v) | a ≥ amin > 0, b ≥ bmin > 0, k ≥ kmin > 0}.

Damped wave equations We investigate the damped-wave PDE: ∂2w
∂t2

− c2∆w +

k ∂w
∂t

= 0 where k is the damping coefficient. The state is X = (w, ∂w
∂t
) and

we consider a compact spatial domain Ω with Neumann homogeneous boundary
conditions. Note that this damping differs from the pendulum, as its effect is
global. Our physical models are: • Param PDE (c), without damping term:
Fp = {F c

p : (u, v) 7→ (v, c2∆u) | c ∈ [ϵ,+∞) with ϵ > 0}; • Param PDE (c, k):
Fp = {F c,k

p : (u, v) 7→ (v, c2∆u− kv) | c, k ∈ [ϵ,+∞) with ϵ > 0}.

Damped pendulum The evolution follows the ODE d2θ/dt2 + ω2
0 sin θ + αdθ/dt = 0,

where θ(t) is the angle, ω0 the proper pulsation (T0 the period) and α the damping
coefficient. With state X = (θ, dθ/dt), the ODE is F ω0,α

p : X 7→ (dθ/dt,−ω2
0 sin θ − αdθ/dt).

Our physical models are: • Hamiltonian (Greydanus et al. 2019), a conservative
approximation, with Fp = {FH

p : (u, v) 7→ (∂yH(u, v),−∂xH(u, v)) | H ∈ H1(R2)},
H1(R2) is the first order Sobolev space. • Param ODE (ω0), the frictionless pendulum:
Fp = {F ω0,α=0

p | ω0 ∈ [ϵ,+∞) with ϵ > 0} • Param ODE (ω0, α), the full pendulum
equation: Fp = {F ω0,α

p | ω0, α ∈ [ϵ,+∞) with ϵ > 0}.

Baselines As purely data-driven baselines, we use Neural ODE (Chen et al. 2018) for
the three problems and PredRNN++ (Wang et al. (2018), for reaction-diffusion only)
which are competitive models for datasets generated by differential equations and for
spatio-temporal data. As MB/ML methods, in the ablations studies (see Appendix F),
we compare for all problems, to the vanilla MB/ML cooperation scheme found in Wang
et al. (2019) and Mehta et al. (2020). We also show results for True PDE/ODE, which
corresponds to the equation for data simulation (which do not lead to zero error due to
the difference between simulation and training integration schemes). For the pendulum,
we compare to Hamiltonian neural networks (Greydanus et al. 2019, Toth, Rezende,
Jaegle, Racanière, Botev & Higgins 2020) and to the the deep Galerkin method (DGM,
Sirignano & Spiliopoulos (2018)). See additional details in Appendix E.

4.2. Results

We analyze and discuss below the results obtained for the three kind of dynamics.
We successively examine different evaluation or quality criteria. The conclusions are
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Table 1. Forecasting and identification results on the (a) reaction-diffusion, (b) wave
equation, and (c) damped pendulum datasets. We set for (a) a = 1 × 10−3, b =

5 × 10−3, k = 5 × 10−3, for (b) c = 330, k = 50 and for (c) T0 = 6, α = 0.2 as
true parameters. log MSEs are computed respectively over 25, 25, and 40 predicted
time-steps. %Err param. averages the results when several physical parameters are
present. For each level of incorporated physical knowledge, equivalent best results
according to a Student t-test are shown in bold. n/a corresponds to non-applicable
cases.

Dataset Method log MSE %Err param. ∥Fa∥2

(a)
Reaction-
diffusion

Data-
driven

Neural ODE -3.76±0.02 n/a n/a
PredRNN++ -4.60±0.01 n/a n/a

Incomplete
physics

Param PDE (a, b) -1.26±0.02 67.6 n/a
APHYNITY Param PDE (a, b) -5.10±0.21 2.3 67

Complete
physics

Param PDE (a, b, k) -9.34±0.20 0.17 n/a
APHYNITY Param PDE (a, b, k) -9.35±0.02 0.096 1.5e-6
True PDE -8.81±0.05 n/a n/a
APHYNITY True PDE -9.17±0.02 n/a 1.4e-7

(b)
Wave
equa-
tion

Data-driven Neural ODE -2.51±0.29 n/a n/a

Incomplete
physics

Param PDE (c) 0.51±0.07 10.4 n/a
APHYNITY Param PDE (c) -4.64±0.25 0.31 71.

Complete
physics

Param PDE (c, k) -4.68±0.55 1.38 n/a
APHYNITY Param PDE (c, k) -6.09±0.28 0.70 4.54
True PDE -4.66±0.30 n/a n/a
APHYNITY True PDE -5.24±0.45 n/a 0.14

(c)
Damped
pendu-
lum

Data-driven Neural ODE -2.84±0.70 n/a n/a

Incomplete
physics

Hamiltonian -0.35±0.10 n/a n/a
APHYNITY Hamiltonian -3.97±1.20 n/a 623
Param ODE (ω0) -0.14±0.10 13.2 n/a
Deep Galerkin Method (ω0) -3.10±0.40 22.1 n/a
APHYNITY Param ODE (ω0) -7.86±0.60 4.0 132

Complete
physics

Param ODE (ω0, α) -8.28±0.40 0.45 n/a
Deep Galerkin Method (ω0, α) -3.14±0.40 7.1 n/a
APHYNITY Param ODE (ω0, α) -8.31±0.30 0.39 8.5
True ODE -8.58±0.20 n/a n/a
APHYNITY True ODE -8.44±0.20 n/a 2.3

consistent for the three problems, which allows us to highlight clear trends for all of
them.

Forecasting accuracy The data-driven models do not perform well compared to True
PDE/ODE (all values are test errors expressed as log MSE): -4.6 for PredRNN++
vs. -9.17 for reaction-diffusion, -2.51 vs. -5.24 for wave equation, and -2.84 vs. -
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8.44 for the pendulum in Table 1. The Deep Galerkin method for the pendulum in
complete physics DGM (ω0, α), being constrained by the equation, outperforms Neural
ODE but is far inferior to APHYNITY models. In the incomplete physics case, DGM
(ω0) fails to compensate for the missing information. The incomplete physical models,
Param PDE (a, b) for the reaction-diffusion, Param PDE (c) for the wave equation,
and Param ODE (ω0) and Hamiltonian models for the damped pendulum, have even
poorer performances than purely data-driven ones, as can be expected since they ignore
important dynamical components, e.g. friction in the pendulum case. Using APHYNITY
with these imperfect physical models greatly improves forecasting accuracy in all cases,
significantly outperforming purely data-driven models, and reaching results often close
to the accuracy of the true ODE, when APHYNITY and the true ODE models are
integrated with the same numerical scheme (which is different from the one used for data
generation, hence the non-null errors even for the true equations), e.g. -5.92 vs. -5.24
for wave equation in Table 1. This clearly highlights the capacity of our approach to
augment incomplete physical models with a learned data-driven component.

Physical parameter estimation Confirming the phenomenon mentioned in the
introduction and detailed in Appendix C, incomplete physical models can lead to
bad estimates for the relevant physical parameters: an error respectively up to 67.6% and
10.4% for parameters in the reaction-diffusion and wave equations, and an error of more
than 13% for parameters for the pendulum in Table 1. APHYNITY is able to significantly
improve physical parameters identification: 2.3% error for the reaction-diffusion, 0.3% for
the wave equation, and 4% for the pendulum. This validates the fact that augmenting
a simple physical model to compensate its approximations is not only beneficial for
prediction, but also helps to limit errors for parameter identification when dynamical
models do not fit data well. This is crucial for interpretability and explainability of the
estimates.

Ablation study We conduct ablation studies to validate the importance of the
APHYNITY augmentation compared to a naive strategy consisting in learning F =

Fp + Fa without taking care on the quality of the decomposition, as done in Wang
et al. (2019) and Mehta et al. (2020). Results shown in Table 1 of Appendix F show
a consistent gain of APHYNITY for the three use cases and for all physical models:
for instance for Param ODE (a, b) in reaction-diffusion, both forecasting performances
(logMSE =-5.10 vs. -4.56) and identification parameter (Error= 2.33% vs. 6.39%)
improve. Other ablation results are provided in Appendix F showing the relevance of
the the trajectory-based approach described in Section 3.2 (vs supervising over finite
difference approximations of the derivative F ).

Flexibility When applied to complete physical models, APHYNITY does not degrade
accuracy, contrary to a vanilla cooperation scheme (see ablations in Appendix F). This
is due to the least action principle of our approach: when the physical knowledge is
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(a) Param PDE (a, b), diffusion-
only

(b) APHYNITY Param PDE (a,
b)

(c) Ground truth simulation

Figure 2. Comparison of predictions of two components u (top) and v (bottom) of
the reaction-diffusion system. Note that t = 4 is largely beyond the dataset horizon
(t = 2.5).

(a) Neural ODE (b) APHYNITY Param PDE (c) (c) Ground truth simulation

Figure 3. Comparison between the prediction of APHYNITY when c is estimated
and Neural ODE for the damped wave equation. Note that t+ 32, last column for (a,
b, c) is already beyond the training time horizon (t+ 25), showing the consistency of
APHYNITY method.

sufficient for properly predicting the observed dynamics, the model learns to ignore
the data-driven augmentation. This is shown by the norm of the trained neural net
component Fa, which is reported in Table 1 last column: as expected, ∥Fa∥2 diminishes as
the complexity of the corresponding physical model increases, and, relative to incomplete
models, the norm becomes very small for complete physical models (for example in the
pendulum experiments, we have ∥Fa∥ = 8.5 for the APHYNITY model to be compared
with 132 and 623 for the incomplete models). Thus, we see that the norm of Fa is a
good indication of how imperfect the physical models Fp are. It highlights the flexibility
of APHYNITY to successfully adapt to very different levels of prior knowledge. Note
also that APHYNITY sometimes slightly improves over the true ODE, as it compensates
the error introduced by different numerical integration methods for data simulation and
training (see Appendix E).

Qualitative visualizations Results in Figure 2 for reaction-diffusion show that the
incomplete diffusion parametric PDE in Figure 2(a) is unable to properly match ground
truth simulations: the behavior of the two components in Figure 2(a) is reduced to
simple independent diffusions due to the lack of interaction terms between u and v. By
using APHYNITY in Figure 2(b), the correlation between the two components appears
together with the formation of Turing patterns, which is very similar to the ground truth.
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(a) a = 0.33 × 10−3, b = 0.94 ×
10−3, diffusion estimated with
Param PDE (a, b)

(b) a = 0.97 × 10−3, b = 4.75 ×
10−3, diffusion estimated with
APHYNITY Param PDE (a, b)

(c) a = 1.0×10−3, b = 5.0×10−3,
true diffusion

Figure 4. Diffusion predictions using coefficient learned with (a) incomplete physical
model Param PDE (a, b) and (b) APHYNITY-augmented Param PDE(a, b), compared
with the (c) true diffusion

This confirms that Fa can learn the reaction terms and improve prediction quality. In
Figure 3, we see for the wave equation that the data-driven Neural ODE model fails
at approximating dw/dt as the forecast horizon increases: it misses crucial details for
the second component dw/dt which makes the forecast diverge from the ground truth.
APHYNITY incorporates a Laplacian term as well as the data-driven Fa thus capturing
the damping phenomenon and succeeding in maintaining physically sound results for
long term forecasts, unlike Neural ODE.

Extension to non-stationary dynamics We provide additional results in Appendix G to
tackle datasets where physical parameters of the equations vary in each sequence. To
this end, we design an encoder able to perform parameter estimation for each sequence.
Results show that APHYNITY accommodates well to this setting, with similar trends
as those reported in this section.

Additional illustrations We give further visual illustrations to demonstrate how the
estimation of parameters in incomplete physical models is improved with APHYNITY.
For the reaction-diffusion equation, we show that the incomplete parametric PDE
underestimates both diffusion coefficients. The difference is visually recognizable between
the poorly estimated diffusion (Figure 4(a)) and the true one (Figure 4(c)) while
APHYNITY gives a fairly good estimation of those diffusion parameters as shown
in Figure 4(b).

5. Conclusion

In this work, we introduce the APHYNITY framework that can efficiently augment
approximate physical models with deep data-driven networks, performing similarly to
models for which the underlying dynamics are entirely known. We exhibit the superiority
of APHYNITY over data-driven, incomplete physics, and state-of-the-art approaches
combining ML and MB methods, both in terms of forecasting and parameter identification
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on three various classes of physical systems. Besides, APHYNITY is flexible enough to
adapt to different approximation levels of prior physical knowledge.

An appealing perspective is the applicability of APHYNITY on partially-observable
settings, such as video prediction. Besides, we hope that the APHYNITY framework
will open up the way to the design of a wide range of more flexible MB/ML models,
e.g. in climate science, robotics or reinforcement learning. In particular, analyzing the
theoretical decomposition properties in a partially-observed setting is an important
direction for future work.
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Appendix A. Reminder on proximinal and Chebyshev sets

We begin by giving a definition of proximinal and Chebyshev sets, taken from Fletcher
& Moors (2014):

Definition 1. A proximinal set of a normed space (E, ∥ · ∥) is a subset C ⊂ E such that
every x ∈ E admits at least a nearest point in C.

Definition 2. A Chebyshev set of a normed space (E, ∥ · ∥) is a subset C ⊂ E such that
every x ∈ E admits a unique nearest point in C.

Proximinality reduces to a compacity condition in finite dimensional spaces. In
general, it is a weaker one: Boundedly compact sets verify this property for example.

In Euclidean spaces, Chebyshev sets are simply the closed convex subsets. The
question of knowing whether it is the case that all Chebyshev sets are closed convex sets
in infinite dimensional Hilbert spaces is still an open question. In general, there exists
examples of non-convex Chebyshev sets, a famous one being presented in Johnson (1987)
for a non-complete inner-product space.

Given the importance of this topic in approximation theory, finding necessary
conditions for a set to be Chebyshev and studying the properties of those sets have been
the subject of many efforts. Some of those properties are summarized below:

• The metric projection on a boundedly compact Chebyshev set is continuous.

• If the norm is strict, every closed convex space, in particular any finite dimensional
subspace is Chebyshev.

• In a Hilbert space, every closed convex set is Chebyshev.

Appendix B. Proof of Propositions 1 and 2

We prove the following result which implies both propositions in the article:

Proposition 3. The optimization problem:

min
Fp∈Fp,Fa∈F

∥Fa∥ subject to ∀X ∈ D,∀t, dXt

dt
= (Fp + Fa)(Xt) (B.1)

is equivalent a metric projection onto Fp.
If Fp is proximinal, (B.1) admits a minimizing pair.
If Fp is Chebyshev, (B.1) admits a unique minimizing pair which Fp is the metric

projection.

Proof. The idea is to reconstruct the full functional from the trajectories of D. By
definition, A is the set of points reached by trajectories in D so that:

A = {x ∈ Rd | ∃X· ∈ D,∃t, Xt = x}
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Then let us define a function FD in the following way: For a ∈ A, we can find X· ∈ D
and t0 such that Xt0 = a. Differentiating X at t0, which is possible by definition of D,
we take:

FD(a) =
dXt

dt

∣∣∣∣
t=t0

For any (Fp, Fa) satisfying the constraint in (B.1), we then have that (Fp+Fa)(a) =
dXt/dt|t0 = FD(a) for all a ∈ A. Conversely, any pair such that (Fp, Fa) ∈ Fp × F and
Fp + Fa = FD, verifies the constraint.

Thus we have the equivalence between (B.1) and the metric projection formulated
as:

min
Fp∈Fp

∥∥FD − Fp

∥∥ (B.2)

If Fp is proximinal, the projection problem admits a solution which we denote
F ⋆
p . Taking F ⋆

a = FD − F ⋆
p , we have that F ⋆

p + F ⋆
a = FD so that (F ⋆

p , F
⋆
a ) verifies the

constraint of (2). Moreover, if there is (Fp, Fa) satisfying the constraint of (2), we have
that Fp + Fa = FD by what was shown above and ∥Fa∥ = ∥FD − Fp∥ ≥ ∥FD − F ⋆

p ∥ by
definition of F ⋆

p . This shows that (F ⋆
p , F

⋆
a ) is minimal.

Moreover, if Fp is a Chebyshev set, by uniqueness of the projection, if Fp ̸= F ⋆
p then

∥Fa∥ > ∥F ⋆
a ∥. Thus the minimal pair is unique.

Appendix C. Parameter estimation in incomplete physical models

Classically, when a set Fp ⊂ F summarizing the most important properties of a system
is available, this gives a simplified model of the true dynamics and the adopted problem
is then to fit the trajectories using this model as well as possible, solving:

min
Fp∈Fp

EX∼DL(X̃
X0 , X)

subject to ∀g ∈ I, X̃g
0 = g and ∀t, dX̃g

t

dt
= Fp(X̃

g
t ) (C.1)

where L is a discrepancy measure between trajectories. Recall that X̃X0 is the result
trajectory of an ODE solver taking X0 as initial condition. In other words, we try to find
a function Fp which gives trajectories as close as possible to the ones from the dataset.
While estimation of the function becomes easier, there is then a residual part which is
left unexplained and this can be a non negligible issue in at least two ways:

• When F ̸∈ Fp, the loss is strictly positive at the minimum. This means that reducing
the space of functions Fp makes us lose in terms of accuracy.¶

• The obtained function Fp might not even be the most meaningful function from Fp

as it would try to capture phenomena which are not explainable with functions in
Fp, thus giving the wrong bias to the calculated function. For example, if one is

¶ This is true in theory, although not necessarily in practice when F overfits a small dataset.
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considering a dampened periodic trajectory where only the period can be learned in
Fp but not the dampening, the estimated period will account for the dampening
and will thus be biased.

This is confirmed in the paper in Section 4: the incomplete physical models
augmented with APHYNITY get different and experimentally better physical
identification results than the physical models alone.

Let us compare our approach with this one on the linearized damped pendulum to
show how estimates of physical parameters can differ. The equation is the following:

d2θ

dt2
+ ω2

0θ + α
dθ

dt
= 0

We take the same notations as in the article and parametrize the simplified physical
models as:

F a
p : X 7→ (

dθ

dt
,−aθ)

where a > 0 corresponds to ω2
0. The corresponding solution for an initial state X0, which

we denote Xa, can then written explicitly as:

θat = θ0 cos
√
at

Let us consider damped pendulum solutions X written as:

θt = θ0e
−t cos t

which corresponds to:

F : X 7→ (
dθ

dt
,−2(θ +

dθ

dt
))

It is then easy to see that the estimate of a with the physical model alone can be obtained
by minimizing:∫ T

0

|e−t cos t− cos
√
at|2

This expression depends on T and thus, depending on the chosen time interval and the
way the integral is discretized will almost always give biased estimates. In other words,
the estimated value of a will not give us the desired solution t 7→ cos t.

On the other hand, for a given a, in the APHYNITY framework, the residual must
be equal to:

F a
r : X 7→ (0, (a− 2)θ − 2

dθ

dt
)

in order to satisfy the fitting constraint. Here a corresponds to 1 + ω2
0 not to ω2

0 as in
the simplified case. Minimizing its norm, we obtain a = 2 which gives us the desired
solution:

θt = θ0e
−t cos t

with the right period.
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Appendix D. Discussion on supervision over derivatives

In order to find the appropriate decomposition (Fp, Fa), we use a trajectory-based error
by solving:

min
Fp∈Fp,Fa∈F

∥Fa∥

subject to ∀g ∈ I, X̃g
0 = g and ∀t, dX̃g

t

dt
= (Fp + Fa)(X̃

g
t )

∀X ∈ D, L(X, X̃X0) = 0 (D.1)

In the continuous setting where the data is available at all times t, this problem is
in fact equivalent to the following one:

min
Fp∈Fp

EX∼D

∫ ∥∥∥∥dXt

dt
− Fp(Xt)

∥∥∥∥ (D.2)

where the supervision is done directly over derivatives, obtained through finite-difference
schemes. This echoes the proof in Appendix B where F can be reconstructed from the
continuous data.

However, in practice, data is only available at discrete times with a certain time
resolution. While (D.2) is indeed equivalent to (D.1) in the continuous setting, in the
practical discrete one, the way error propagates is not anymore: For (D.1) it is controlled
over integrated trajectories while for (D.2) the supervision is over the approximate
derivatives of the trajectories from the dataset. We argue that the trajectory-based
approach is more flexible and more robust for the following reasons:

• In (D.1), if Fa is appropriately parameterized, it is possible to perfectly fit the data
trajectories at the sampled points.

• The use of finite differences schemes to estimate F as is done in (D.2) necessarily
induces a non-zero discretization error.

• This discretization error is explosive in terms of divergence from the true trajectories.

This last point is quite important, especially when time sampling is sparse (even
though we do observe this adverse effect empirically in our experiments with relatively
finely time-sampled trajectories). The following gives a heuristical reasoning as to why
this is the case. Let F̃ = F + ϵ be the function estimated from the sampled points with
an error ϵ such that ∥ϵ∥∞ ≤ α. Denoting X̃ the corresponding trajectory generated by
F̃ , we then have, for all X ∈ D:

∀t, d(X − X̃)t
dt

= F (Xt)− F (X̃t)− ϵ(X̃t)

Integrating over [0, T ] and using the triangular inequality as well as the mean value
inequality, supposing that F has uniformly bounded spatial derivatives:

∀t ∈ [0, T ], ∥(X − X̃)t∥ ≤ ∥∇F∥∞
∫ t

0

∥Xs − X̃s∥+ αt
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which, using a variant of the Grönwall lemma, gives us the inequality:

∀t ∈ [0, T ], ∥Xt − X̃t∥ ≤ α

∥∇F∥∞
(exp(∥∇F∥∞t)− 1)

When α tends to 0, we recover the true trajectories X. However, as α is bounded
away from 0 by the available temporal resolution, this inequality gives a rough estimate of
the way X̃ diverges from them, and it can be an equality in many cases. This exponential
behaviour explains our choice of a trajectory-based optimization.

Appendix E. Implementation details

We describe here the three use cases studied in the paper for validating APHYNITY.
All experiments are implemented with PyTorch (Paszke, Gross, Massa, Lerer, Bradbury,
Chanan, Killeen, Lin, Gimelshein, Antiga, Desmaison, Kopf, Yang, DeVito, Raison,
Tejani, Chilamkurthy, Steiner, Fang, Bai & Chintala 2019) and the differentiable ODE
solvers with the adjoint method implemented in torchdiffeq.+

Appendix E.1. Reaction-diffusion equations

The system is driven by a FitzHugh-Nagumo type PDE (Klaasen & Troy 1984)
∂u

∂t
= a∆u+Ru(u, v; k),

∂v

∂t
= b∆v +Rv(u, v)

where a and b are respectively the diffusion coefficients of u and v, ∆ is the Laplace
operator. The local reaction terms are Ru(u, v; k) = u− u3 − k − v,Rv(u, v) = u− v.

The state X = (u, v) is defined over a compact rectangular domain Ω = [−1, 1]2

with periodic boundary conditions. Ω is spatially discretized with a 32× 32 2D uniform
square mesh grid. The periodic boundary condition is implemented with circular padding
around the borders. ∆ is systematically estimated with a 3× 3 discrete Laplace operator.

Dataset Starting from a randomly sampled initial state Xinit ∈ [0, 1]2×32×32, we
generate states by integrating the true PDE with fixed a, b, and k in a dataset
(a = 1 × 10−3, b = 5 × 10−3, k = 5 × 10−3). We firstly simulate high time-resolution
(δtsim = 0.001) sequences with explicit finite difference method. We then extract states
every δtdata = 0.1 to construct our low time-resolution datasets.

We set the time of random initial state to t = −0.5 and the time horizon to t = 2.5.
1920 sequences are generated, with 1600 for training/validation and 320 for test. We
take the state at t = 0 as X0 and predict the sequence until the horizon (equivalent to
25 time steps) in all reaction-diffusion experiments. Note that the sub-sequence with
t < 0 are reserved for the extensive experiments in Appendix G.1.
+ https://github.com/rtqichen/torchdiffeq

https://github.com/rtqichen/torchdiffeq
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Neural network architectures Our Fa here is a 3-layer convolution network (ConvNet).
The two input channels are (u, v) and two output ones are (∂u

∂t
, ∂v
∂t
). The purely data-

driven Neural ODE uses such ConvNet as its F . The detailed architecture is provided
in Table E1. The estimated physical parameters θp in Fp are simply a trainable vector
(a, b) ∈ R2

+ or (a, b, k) ∈ R3
+.

Table E1. ConvNet architecture in reaction-diffusion and wave equation experiments,
used as data-driven derivative operator in APHYNITY and Neural ODE (Chen
et al. 2018).

Module Specification

2D Conv. 3× 3 kernel, 2 input channels, 16 output channels, 1 pixel zero padding
2D Batch Norm. No average tracking
ReLU activation —
2D Conv. 3× 3 kernel, 16 input channels, 16 output channels, 1 pixel zero padding
2D Batch Norm. No average tracking
ReLU activation —
2D Conv. 3× 3 kernel, 16 input channels, 2 output channels, 1 pixel zero padding

Optimization hyperparameters We choose to apply the same hyperparameters for all
the reaction-diffusion experiments: Niter = 1, λ0 = 1, τ1 = 1× 10−3, τ2 = 1× 103.

Appendix E.2. Wave equations

The damped wave equation is defined by
∂2w

∂t2
− c2∆w + k

∂w

∂t
= 0

where c is the wave speed and k is the damping coefficient. The state is X = (w, ∂w
∂t
).

We consider a compact spatial domain Ω represented as a 64× 64 grid and discretize
the Laplacian operator similarly. ∆ is implemented using a 5 × 5 discrete Laplace
operator in simulation whereas in the experiment is a 3 × 3 Laplace operator. Null
Neumann boundary condition are imposed for generation.

Dataset δt was set to 0.001 to respect Courant number and provide stable integration.
The simulation was integrated using a 4th order finite difference Runge-Kutta scheme
for 300 steps from an initial Gaussian state, i.e for all sequence at t = 0, we have:

w(x, y, t = 0) = C × exp
(x−x0)

2+(y−y0)
2

σ2 (E.1)

The amplitude C is fixed to 1, and (x0, y0) = (32, 32) to make the Gaussian curve
centered for all sequences. However, σ is different for each sequence and uniformly
sampled in [10, 100]. The same δt was used for train and test. All initial conditions are
Gaussian with varying amplitudes. 250 sequences are generated, 200 are used for training
while 50 are reserved as a test set. In the main paper setting, c = 330 and k = 50. As
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with the reaction diffusion case, the algorithm takes as input a state Xt0 = (w, dw
dt
)(t0)

and predicts all states from t0 + δt up to t0 + 25δt.

Neural network architectures The neural network for Fa is a 3-layer convolution neural
network with the same architecture as in Table E1. For Fp, the parameter(s) to be
estimated is either a scalar c ∈ R+ or a vector (c, k) ∈ R2

+. Similarly, Neural ODE
networks are build as presented in Table E1.

Optimization hyperparameters We use the same hyperparameters for the experiments:
Niter = 3, λ0 = 1, τ1 = 1× 10−4, τ2 = 1× 102.

Appendix E.3. Damped pendulum

We consider the non-linear damped pendulum problem, governed by the ODE
d2θ

dt2
+ ω2

0 sin θ + α
dθ

dt
= 0

where θ(t) is the angle, ω0 = 2π
T0

is the proper pulsation (T0 being the period) and α

is the damping coefficient. With the state X = (θ, dθ
dt
), the ODE can be written as

dXt

dt
= F (Xt) with F : X 7→ (dθ

dt
,−ω2

0 sin θ − αdθ
dt
).

Dataset For each train / validation / test split, we simulate a dataset with 25 trajectories
of 40 timesteps (time interval [0, 20], timestep δt = 0.5) with fixed ODE coefficients
(T0 = 12, α = 0.2) and varying initial conditions. The simulation integrator is Dormand-
Prince Runge-Kutta method of order (4)5 (DOPRI5, Dormand & Prince (1980)). We
also add a small amount of white gaussian noise (σ = 0.01) to the state. Note that
our pendulum dataset is much more challenging than the ideal frictionless pendulum
considered in (Greydanus et al. 2019).

Neural network architectures We detail in Table E2 the neural architectures used for
the damped pendulum experiments. All data-driven augmentations for approximating
the mapping Xt 7→ F (Xt) are implemented by multi-layer perceptrons (MLP) with 3
layers of 200 neurons and ReLU activation functions (except at the last layer: linear
activation). The Hamiltonian (Greydanus et al. 2019, Toth et al. 2020) is implemented
by a MLP that takes the state Xt and outputs a scalar estimation of the Hamiltonian
H of the system: the derivative is then computed by an in-graph gradient of H with
respect to the input: F (Xt) =

(
∂H

∂(dθ/dt)
,−∂H

dθ

)
.
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Table E2. Neural network architectures for the damped pendulum experiments. n/a
corresponds to non-applicable cases.

Method Physical model Data-driven model

Neural ODE n/a MLP(in=2, units=200, layers=3, out=2)

Hamiltonian MLP(in=2, units=200, layers=3, out=1) n/a
APHYNITY Hamiltonian MLP(in=2, units=200, layers=3, out=1) MLP(in=2, units=200, layers=3, out=2)

Param ODE (ω0) 1 trainable parameter ω0 n/a
APHYNITY Param ODE (ω0) 1 trainable parameter ω0 MLP(in=2, units=200, layers=3, out=2)

Param ODE (ω0, α) 2 trainable parameters ω0, λ n/a
APHYNITY Param ODE (ω0, α) 2 trainable parameters ω0, λ MLP(in=2, units=200, layers=3, out=2)

Optimization hyperparameters The hyperparameters of the APHYNITY optimization
algorithm (Niter, λ0, τ1, τ2) were cross-validated on the validation set and are shown in
Table E3. All models were trained with a maximum number of 5000 steps with early
stopping.

Table E3. Hyperparameters of the damped pendulum experiments.

Method Niter λ0 τ1 τ2

APHYNITY Hamiltonian 5 1 1 0.1
APHYNITY ParamODE (ω0) 5 1 1 10

APHYNITY ParamODE (ω0, λ) 5 1000 1 100

Appendix F. Ablation study

We conduct ablation studies to show the effectiveness of APHYNITY’s adaptive
optimization and trajectory-based learning scheme.

Appendix F.1. Ablation to vanilla MB/ML cooperation

In Table F1, we consider the ablation case with the vanilla augmentation scheme found in
(Le Guen & Thome 2020, Wang et al. 2019, Mehta et al. 2020), which does not present any
proper decomposition guarantee. We observe that the APHYNITY cooperation scheme
outperforms this vanilla scheme in all case, both in terms of forecasting performances
(e.g. log MSE= -0.35 vs. -3.97 for the Hamiltonian in the pendulum case) and parameter
identification (e.g. Err Param=8.4% vs. 2.3 for Param PDE (a, b for reaction-diffusion).
It confirms the crucial benefits of APHYNITY’s principled decomposition scheme.

Appendix F.2. Detailed ablation study

We conduct also two other ablations in Table F2:

• derivative supervision: in which Fp+Fa is trained with supervision over approximated
derivatives on ground truth trajectory, as performed in Greydanus et al. (2019) and
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Table F1. Ablation study comparing APHYNITY to the vanilla augmentation scheme
(Wang et al. 2019, Mehta et al. 2020) for the reaction-diffusion equation, wave equation
and damped pendulum.

Dataset Method log MSE %Err Param. ∥Fa∥2

Reaction-
diffusion

Param. PDE (a, b) with vanilla aug. -4.56±0.52 8.4 (7.5±1.4)e1
APHYNITY Param. PDE (a, b) -5.10±0.21 2.3 (6.7±0.4)e1

Param. PDE (a, b, k) with vanilla aug. -8.04±0.03 25.4 (1.5±0.2)e-2
APHYNITY Param. PDE (a, b, k) -9.35±0.02 0.096 (1.5±0.4)e-6

True PDE with vanilla aug. -8.12±0.05 n/a (6.1±2.3)e-4
APHYNITY True PDE -9.17±0.02 n/a (1.4±0.8)e-7

Wave
equation

Param PDE (c) with vanilla aug. -3.90 ± 0.27 0.51 88.66
APHYNITY Param PDE (c) -4.64±0.25 0.31 71.0

Param PDE (c, k) with vanilla aug. -5.96 ± 0.10 0.71 25.1
APHYNITY Param PDE (c, k) -6.09±0.28 0.70 4.54

Damped
pendu-
lum

Hamiltonian with vanilla aug. -0.35±0.1 n/a 837±117
APHYNITY Hamiltonian -3.97±1.2 n/a 623±68

Param ODE (ω0) with vanilla aug. -7.02±1.7 4.5 148±49
APHYNITY Param ODE (ω0) -7.86±0.6 4.0 132±11

Param ODE (ω0, α) with vanilla aug. -7.60±0.6 4.65 35.5±6.2
APHYNITY Param ODE (ω0, α) -8.31±0.3 0.39 8.5±2.0

Augmented True ODE with vanilla aug. -8.40±0.2 n/a 3.4±0.8
APHYNITY True ODE -8.44±0.2 n/a 2.3±0.4

Cranmer et al. (2020). More precisely, APHYNITY’s Ltraj is here replaced with
Lderiv = ∥dXt

dt
−F (Xt)∥ as in (D.2), where dXt

dt
is approximated by finite differences

on Xt.

• non-adaptive optim.: in which we train APHYNITY by minimizing ∥Fa∥ without
the adaptive optimization of λ shown in Algorithm 1. This case is equivalent to
λ = 1, τ2 = 0.

We highlight the importance to use a principled adaptive optimization algorithm
(APHYNITY algorithm described in paper) compared to a non-adpative optimization:
for example in the reaction-diffusion case, log MSE= -4.55 vs. -5.10 for Param PDE (a, b).
Finally, when the supervision occurs on the derivative, both forecasting and parameter
identification results are systematically lower than with APHYNITY’s trajectory based
approach: for example, log MSE=-1.16 vs. -4.64 for Param PDE (c) in the wave equation.
It confirms the good properties of the APHYNITY training scheme.
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Table F2. Detailed ablation study on supervision and optimization for the reaction-
diffusion equation, wave equation and damped pendulum.

Dataset Method log MSE %Err Param. ∥Fa∥2

Reaction-
diffusion

Augmented Param. PDE (a, b) derivative supervision -4.42±0.25 12.6 (6.8±0.6)e1
Augmented Param. PDE (a, b) non-adaptive optim. -4.55±0.11 7.5 (7.6±1.0)e1
APHYNITY Param. PDE (a, b) -5.10±0.21 2.3 (6.7±0.4)e1

Augmented Param. PDE (a, b, k) derivative supervision -4.90±0.06 11.7 (1.9±0.3)e-1
Augmented Param. PDE (a, b, k) non-adaptive optim. -9.10±0.02 0.21 (5.5±2.9)e-7
APHYNITY Param. PDE (a, b, k) -9.35±0.02 0.096 (1.5±0.4)e-6

Augmented True PDE derivative supervision -6.03±0.01 n/a (3.1±0.8)e-3
Augmented True PDE non-adaptive optim. -9.01±0.01 n/a (1.5±0.8)e-6
APHYNITY True PDE -9.17±0.02 n/a (1.4±0.8)e-7

Wave
equation

Augmented Param PDE (c) derivative supervision -1.16±0.48 12.1 0.00024
Augmented Param PDE (c) non-adaptive optim. -2.57±0.21 3.1 43.6
APHYNITY Param PDE (c) -4.64±0.25 0.31 71.0

Augmented Param PDE (c, k) derivative supervision -4.19±0.36 7.2 0.00012
Augmented Param PDE (c, k) non-adaptive optim. -4.93±0.51 1.32 0.054
APHYNITY Param PDE (c, k) -6.09±0.28 0.70 4.54

Augmented True PDE derivative supervision -4.42 ± 0.33 n/a 6.02e-5
Augmented True PDE non-adaptive optim. -4.97±0.49 n/a 0.23
APHYNITY True PDE -5.24±0.45 n/a 0.14

Damped
pendu-
lum

Augmented Hamiltonian derivative supervision -0.83±0.3 n/a 642±121
Augmented Hamiltonian non-adaptive optim. -0.49±0.58 n/a 165±30
APHYNITY Hamiltonian -3.97±1.2 n/a 623±68

Augmented Param ODE (ω0) derivative supervision -1.02±0.04 5.8 136±13
Augmented Param ODE (ω0) non-adaptive optim. -4.30±1.3 4.4 90.4±27
APHYNITY Param ODE (ω0) -7.86±0.6 4.0 132±11

Augmented Param ODE (ω0, α) derivative supervision -2.61±0.2 5.0 3.2±1.7
Augmented Param ODE (ω0, α) non-adaptive optim. -7.69±1.3 1.65 4.8±7.7
APHYNITY Param ODE (ω0, α) -8.31±0.3 0.39 8.5±2.0

Augmented True ODE derivative supervision -2.14±0.3 n/a 4.1±0.6
Augmented True ODE non-adaptive optim. -8.34±0.4 n/a 1.4±0.3
APHYNITY True ODE -8.44±0.2 n/a 2.3±0.4

Appendix G. Additional experiments

Appendix G.1. Reaction-diffusion systems with varying diffusion parameters

We conduct an extensive evaluation on a setting with varying diffusion parameters for
reaction-diffusion equations. The only varying parameters are diffusion coefficients,
i.e. individual a and b for each sequence. We randomly sample a ∈ [1× 10−3, 2× 10−3]

and b ∈ [3× 10−3, 7× 10−3]. k is still fixed to 5× 10−3 across the dataset.
In order to estimate a and b for each sequence, we use here a ConvNet encoder E

to estimate parameters from 5 reserved frames (t < 0). The architecture of the encoder
E is similar to the one in Table E1 except that E takes 5 frames (10 channels) as input
and E outputs a vector of estimated (ã, b̃) after applying a sigmoid activation scaled by
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1× 10−2 (to avoid possible divergence). For the baseline Neural ODE, we concatenate a

and b to each sequence as two channels.
In Table G1, we observe that combining data-driven and physical components

outperforms the pure data-driven one. When applying APHYNITY to Param PDE
(a, b), the prediction precision is significantly improved (log MSE: -1.32 vs. -4.32) with a

and b respectively reduced from 55.6% and 54.1% to 11.8% and 18.7%. For complete
physics cases, the parameter estimations are also improved for Param PDE (a, b, k) by
reducing over 60% of the error of b (3.10 vs. 1.23) and 10% to 20% of the errors of a
and k (resp. 1.55/0.59 vs. 1.29/0.39).

The extensive results reflect the same conclusion as shown in the main article:
APHYNITY improves the prediction precision and parameter estimation. The same
decreasing tendency of ∥Fa∥ is also confirmed.

Table G1. Results of the dataset of reaction-diffusion with varying (a, b). k = 5×10−3

is shared across the dataset.
Method log MSE %Err a %Err b %Err k ∥Fa∥2

Data-
driven Neural ODE (Chen et al. 2018) -3.61±0.07 n/a n/a n/a n/a

Incomplete
physics

Param PDE (a, b) -1.32±0.02 55.6 54.1 n/a n/a
APHYNITY Param PDE (a, b) -4.32±0.32 11.8 18.7 n/a (4.3±0.6)e1

Complete
physics

Param PDE (a, b, k) -5.54±0.38 1.55 3.10 0.59 n/a
APHYNITY Param PDE (a, b, k) -5.72±0.25 1.29 1.23 0.39 (5.9±4.3)e-1
True PDE -8.86±0.02 n/a n/a n/a n/a
APHYNITY True PDE -8.82±0.15 n/a n/a n/a (1.8±0.6)e-5

Appendix G.2. Additional results for the wave equation

We conduct an experiment where each sequence is generated with a different wave celerity.
This dataset is challenging because both c and the initial conditions vary across the
sequences. For each simulated sequence, an initial condition is sampled as described
previously, along with a wave celerity c also sampled uniformly in [300, 400]. Finally our
initial state is integrated with the same Runge-Kutta scheme. 200 of such sequences are
generated for training while 50 are kept for testing.

For this experiment, we also use a ConvNet encoder to estimate the wave speed c

from 5 consecutive reserved states (w, ∂w
∂t
). The architecture of the encoder E is the same

as in Table E1 but with 10 input channels. Here also, k is fixed for all sequences and
k = 50. The hyper-parameters used in these experiments are the same than described in
Appendix E.2.

The results when multiple wave speeds c are in the dataset are consistent with the
one present when only one is considered. Indeed, while prediction performances are
slightly hindered, the parameter estimation remains consistent for both c and k. This
extension provides elements attesting for the robustness and adaptability of our method
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to more complex settings. Finally the purely data-driven Neural-ODE fails to cope with
the increasing difficulty.

Table G2. Results for the damped wave equation when considering multiple c sampled
uniformly in [300, 400] in the dataset, k is shared across all sequences and k = 50.

Method log MSE %Error c %Error k ∥Fa∥2

Data-
driven Neural ODE 0.056±0.34 n/a n/a n/a

Incomplete
physics

Param PDE (c) -1.32±0.27 23.9 n/a n/a
APHYNITY Param PDE (c) -4.51±0.38 3.2 n/a 171

Complete
physics

Param PDE (c, k) -4.25±0.28 3.54 1.43 n/a
APHYNITY Param PDE (c, k) -4.84±0.57 2.41 0.064 3.64
True PDE (c, k) -4.51±0.29 n/a n/a n/a
APHYNITY True PDE (c, k) -4.49±0.22 n/a n/a 0.0005

Appendix G.3. Damped pendulum with varying parameters

To extend the experiments conducted in the paper (section 4) with fixed parameters
(T0 = 6, α = 0.2) and varying initial conditions, we evaluate APHYNITY on a much
more challenging dataset where we vary both the parameters (T0, α) and the initial
conditions between trajectories.

We simulate 500/50/50 trajectories for the train/valid/test sets integrated with
DOPRI5. For each trajectory, the period T0 (resp. the damping coefficient α) are
sampled uniformly in the range [3, 10] (resp. [0, 0.5]).

We train models that take the first 20 steps as input and predict the next 20 steps.
To account for the varying ODE parameters between sequences, we use an encoder that
estimates the parameters based on the first 20 timesteps. In practice, we use a recurrent
encoder composed of 1 layer of 128 GRU units. The output of the encoder is fed as
additional input to the data-driven augmentation models and to an MLP with final
softplus activations to estimate the physical parameters when necessary (ω0 ∈ R+ for
Param ODE (ω0), (ω0, α) ∈ R2

+ for Param ODE (ω0, α)).
In this varying ODE context, we also compare to the state-of-the-art univariate

time series forecasting method N-Beats (Oreshkin et al. 2020).
Results shown in Table G3 are consistent with those presented in the paper. Pure

data-driven models Neural ODE (Chen et al. 2018) and N-Beats (Oreshkin et al. 2020)
fail to properly extrapolate the pendulum dynamics. Incomplete physical models
(Hamiltonian and ParamODE (ω0)) are even worse since they do not account for friction.
Augmenting them with APHYNITY significantly and consistently improves forecasting
results and parameter identification.
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Table G3. Forecasting and identification results on the damped pendulum dataset
with different parameters for each sequence. log MSEs are computed over 20 predicted
time-steps. For each level of incorporated physical knowledge, equivalent best results
according to a Student t-test are shown in bold. n/a corresponds to non-applicable
cases.

Method log MSE %Error T0 %Error α ∥Fa∥2

data-
driven

Neural ODE (Chen et al. 2018) -4.35±0.9 n/a n/a n/a
N-Beats (Oreshkin et al. 2020) -4.57±0.5 n/a n/a n/a

Incomplete
physics

Hamiltonian (Greydanus et al. 2019) -1.31±0.4 n/a n/a n/a
APHYNITY Hamiltonian -4.72±0.4 n/a n/a 5.6±0.6
Param ODE (ω0) -2.66±0.9 21.5±19 n/a n/a
APHYNITY Param ODE (ω0) -5.94±0.7 5.0±1.8 n/a 0.49±0.1

Complete
physics

Param ODE (ω0, α) -5.71±0.4 4.08±0.8 152±129 n/a
APHYNITY Param ODE (ω0, α) -6.22±0.7 3.26±0.6 62±27 (5.39±0.1)e-10
True ODE -8.58±0.1 n/a n/a n/a
APHYNITY True ODE -8.58±0.1 n/a n/a (2.15±1.6)e-4
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