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24 rue Lhomond, 75231 Paris, France

(Dated: 3 January 2022)

Spin squeezing is now a well-established “quantum technology”, where correlations designed in an ensemble
of two-level systems reduce the statistical uncertainty of spectroscopic experiments. The article reviews some
significant advances in this field, focusing on the fundamental limits imposed by decoherence and outlining
some promising developments.

I. INTRODUCTION AND OVERVIEW

A. Collective spin, spin squeezing and quantum gain

A quantum system with two energy levels Ea and Eb
is formally equivalent to a spin 1/2. Starting from N
such identical systems, for example atoms, one can form

a collective spin operator ~S whose three components in
first quantization are

Ŝx + iŜy =

N∑
i=1

|a〉〈b|i ; Ŝz =

∑N
i=1(|a〉〈a|i − |b〉〈b|i)

2
(1)

In a state of the system in which each atom is in a su-
perposition of the two levels, the collective spin precesses
around the z-axis at the frequency ωab = (Eb − Ea)/h̄.
Whether one wants to measure the unperturbed fre-
quency ωab of a given atomic transition as in an atomic
clock, or whether one is interested in the change of this
frequency induced by an external field, for example a
magnetic field, spin precession is at the hart of many
atomic sensors. Such sensors, even after eliminating all
sources of technical noise, remain limited by the quan-
tum noise intrinsic to the state in which the collective

FIG. 1. Collective spin prepared in the Ŝx eigenstate of
eigenvalue N/2 without correlation between the atoms (left)
and in a spin-squeezed state (right), represented on the Bloch
sphere of radius N/2. The red-colored part schematically rep-
resents the uncertainty on the spin components orthogonal to
the mean spin, due to their quantum nature (figure taken
from26).
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spin has been prepared. If, for example, the system is
in the eigenstate of Ŝx with maximum eigenvalue N/2,

tensor product of the state (|a〉+ |b〉)/
√

2 for each atom
shown on the left in figure 1, the uncertainty on the an-
gular position of the collective spin is given by

(∆φ)NC =
∆Sy
〈Sx〉

=

√
N

N
=

1√
N
. (2)

On the contrary, in a spin-squeezed state1, shown on the
right in figure 1, the uncertainty on one spin component
orthogonally to the mean spin is reduced thanks to quan-
tum correlations among the atoms. If the reduced uncer-
tainty is on the Sy component as in figure 1, the accuracy
∆φ on the angular position of the collective spin is in-
creased. We then define a spin squeezing parameter ξ2,

ξ2 ≡ N∆S2
⊥

|〈~S〉|2
(3)

noise-to-signal squared ratio in a spectroscopy experi-
ment where the phase φ is to be determined, which we
want to be as small as possible, and which allows to quan-
tify the metrological gain of a spin-squeezed state with
respect to an uncorrelated one. In fact, we have2

∆φ = ξ(∆φ)NC =
ξ√
N

(4)

The definition of ξ2 in (3) can be generalized for non-
Gaussian states, more complex than the spin-squeezed
state represented in figure 1, for which the information
on the precession phase φ must be extracted from an
observable X̂ which is in general a nonlinear function of
the three components of the collective spin3, with the
same meaning as indicated by equation (4).

B. Non-linear evolution and non-destructive quantum
measurement

In order to generate the correlations that change a
factorized state into a spin-squeezed state, an elegant
method consists of a unitary evolution with a nonlinear
Hamiltonian, e.g.1

HNL = h̄χŜ2
z (5)
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which represents a Kerr-type nonlinearity for the atoms.
It can result from short-range interactions between cold
atoms in a Bose-Einstein condensate4,5, but also, in an
ensamble of atoms without interaction, from their collec-
tive interaction with an electromagnetic field in an optical
cavity6. In both cases it is possible to control the value of
the constant χ. For condensates, in the simple case where
a and b play symmetric roles and do not interact with
each other, χ = (dµ/dN)/h̄ where µ = ρg is the chem-
ical potential and ρ the atomic density for each of the
two components. The coupling constant g = 4πh̄2as/m
is proportional to the s-wave scattering length as between
cold atoms.

Another method to create a spin-squeezed state from
an uncorrelated state consists in performing a non-
destructive quantum measurement on a component of the
collective spin. In general, this is done by coupling the
system S to be measured to a second quantum system
P and, after some interaction time between the two sys-
tems, by performing a destructive measurement on P. In
order to measure non-destructively the Ŝz component of
the collective spin, one can take as a secondary system

the Stockes spin ~̂P obtained from the two polarisation
modes x and y of an electromagnetic field propagating in
the z-direction

Px =
1

2

(
c†xcx − c†ycy

)
; Py + iPz = c†xcy . (6)

where cα is the annihilation operator of a photon po-
larized in the direction α = x, y, and use the Faraday
interaction between the two spins7.

HFaraday = χŜzP̂z . (7)

C. Overview of the experimental results and application
perspectives

Using the two methods mentioned in the previous sec-
tion, spin-squeezed states have been obtained in the lab-
oratory and the demonstration of the their metrological
gain has been done in several systems8, which include
Bose-Einstein gas condensates9,10, cold atoms interact-
ing with an electromagnetic field11–13 for which a metro-
logical gain ξ−1 of the order of 10 has been measured
with 5 × 105 atoms13, and hot atomic vapors14. These
remarkable results are proofs of principle. The transition
to applications in metrology should take place if quan-
tum gain becomes easily accessible from a technological
point of view or if in some cases it is indispensable. An
interesting example from this point of view is that of
squeezed states of light, widely studied in the 1980s and
now used in an interferometer for detecting gravitational
waves15. Among the various atomic sensors, the clocks
that already in 1999 had reached and observed the quan-
tum limit in the case of independent atoms16, could be
the first to benefit from spin squeezing techniques. In
general, the smaller the number N of atoms that we use,

and here we have in mind the evolution towards minia-
turisation of atomic sensors, the greater the relative im-
portance of quantum noise and the potential utility of
spin-squeezed states.

II. QUANTUM METROLOGY AND DECOHERENCE

Quantum metrology aims to improve the accuracy of
measurements by reducing their “fundamental” statisti-
cal uncertainty given by quantum fluctuations. This is
achieved by preparing the physical system of interest in
a state with particular quantum correlations. For this
approach to make sense from a practical point of view,
two conditions seem necessary. The first is that the sta-
tistical uncertainty on the variable, obtained from a mea-
surement with independent atoms in an imparted time,
is dominated by quantum fluctuations and not by other
sources of classical noise. The second is that the deco-
herence is sufficiently weak not to destroy the quantum
correlations we want to put to use. Mathematically, if we
fix the time T of the measurement, the second condition
is automatically verified in the limit γ → 0 where γ is
the decoherence rate in the system.

A. Scaling laws of the quantum gain

If, as we have said, decoherence plays an important
role in the use of entangled states, it equally plays an
important role in their preparation, determining in gen-
eral a fundamental limit to the quantum gain that can
be obtained. Starting from an uncorrelated, eigenstate
of Ŝx of eigenvalue N/2 with N � 1, unitary evolution
with the nonlinear Hamiltonian (5) generates at an op-
timal time χt ' N−2/3 a spin-squeezed state for which
ξ2 ' N−2/3. This very favourable scaling law of quan-
tum gain for spin-squeezed states becomes even more
favourable for non-Gaussian states obtained by prolong-
ing the unitary evolution for longer times until the max-
imum limit ξ2 = N−1 is reached.17–19 However, very en-
tangled states offering large quantum gain are in general
more fragile to decoherence, which modifies the scaling
laws of quantum gain20–22. In some cases one loses the
scaling law completely and obtains a spin squeezing pa-
rameter that tends towards a constant ξ2min in the limit
N →∞. If this indicates that one finds a classical scaling
law for ∆φ in the light of the equation 4, the quantum
gain can remain very large if ξ2min � 1.

III. FUNDAMENTAL LIMITS FOR SPIN SQUEEZING
IN BOSE-EINSTEIN CONDENSATES

With colleagues we have studied the fundamental lim-
its on spin squeezing that can be achieved in a Bose-
condensed gas formed by N two-level atoms, usually two
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hyperfine levels in the fundamental state, using short-
range van der Waals interactions between cold atoms. If
this physical system embodies well in simple model (5)
in the mean-field description4,5, an intrinsic source of de-
coherence for spin squeezing dynamics comes from the
interaction of the condensate with thermally populated
low-energy excitations in the gas, whose population fluc-
tuates from one realization to another in the experiment
even under identical conditions for the experimental pa-
rameters. In the framework of a multimodal microscopic
description, that of Bogoliubov23, we have shown that at
the thermodynamic limit N → ∞, and for an optimal
interaction time topt which remains finite, the squeezing
parameter tends towards a constant ξ2min:24

ξ2(topt)
N→∞→ ξ2min , (8)

which then constitutes a limit for the quantum gain. For
a temperature above the chemical potential of the gas,
but well below the critical condensation temperature,
the limit ξ2min is well approximated by the initial non-
condensed fraction in the gas. An important point is
that for realistic values of the parameters, it is in princi-
ple possible to obtain values of ξ2min of the order of 1/900
corresponding to a gain of a factor 30 on ∆φ according
to the formula (4) compared to the use of uncorrelated
atoms.

A second source of fundamental decoherence that we
have considered is given by particle loss, a consequence of
an imperfect vacuum for one-body losses, and inherent to
the metastable nature of ultracold gases for three-body
losses. In the theoretical framework of an open system
described by a master equation25,26 we have shown that
in the limit of N large the optimal spin squeezing is lim-
ited by a constant, as in (8), where ξ2min is in this case
proportional to the fraction of atoms lost at time topt.
Once spin squeezing has been prepared at time t = 0,
its evolution in the absence of interactions and in the
presence of losses à a body of rate γ is given by

ξ2(t)− 1 =
[
ξ2(0)− 1

]
e−γt . (9)

Spin squeezing that lasts more than one second and is
limited by losses according to equation (9) has been seen
in27.

IV. PROMISING DEVELOPMENTS FOR THE FUTURE

Research in the field of quantum technologies is abun-
dant and several promising avenues are being explored.
For atomic clocks, I am thinking of the first demonstra-
tions of spin squeezing on an optical transition28, and of
theoretical studies of schemes that allow spin squeezing
for atoms in optical lattices29,30. By adiabatically raising
an optical lattice in a two-component condensate where
the interactions between atoms embody the Hamiltonian
(5), one can freeze a spin-squeezed state29 or an even

(a)

b)(

FIG. 2. (a) An optical lattice is adiabatically raised in an in-
teracting two-component condensate. (b) The system enters
the Mott insulating phase with one atom per site at the op-
timal squeezing time, thus freezing the quantum correlations
between atoms (figure taken from29).

more entangled non-Gaussian state31, in a Mott insula-
tor configuration with one atom per site, figure 2 (b),
where van der Waals interactions are suppressed as the
atoms are separated, and each atom is a spin 1/2 that
shares quantum correlations with all others. In addi-
tion to the potential interest for atomic clocks32,33, such
a configuration where quantum entanglement is shared
between individually accessible spatial modes offers in-
teresting prospects for quantum information and multi-
parameter quantum metrology34,35.

Interesting perspectives are also offered by degenerate
gases of fermions in two spin states, in which one can
control the strength of the interactions without inducing
significant losses of atoms, and obtain at will: a gas of
dimers formed by two strongly bonded atoms of opposite
spin, a gas of weakly bonded Cooper pairs, or a strongly
interacting gas in the so-called unitary regime36. To
give an example, let us consider the following Gedanken-
experiment inspired by our studies on phase coherence
of a paired-fermions condensate37,38. A condensate of
fermion dimers of opposite spin is initially prepared in
a symmetric double-well in an uncorrelated state, where
each is dimer is symmetrically delocalized on the two
wells (figure 3(a)-(b)). By raising the barrier between
the two wells until they are completely separated, slowly
enough not to excite the condensates, one actually pre-
pares the initial state 〈Ŝx〉 = N/2 where this time a and b
refer to the two potential wells, and one can show that the
state of the system evolves according to the Hamiltonian
(5) where, as for atomic condensates, χ = (dµ/dN)/h̄,
µ being the chemical potential of the gas in each well.
Similar experiments with bosonic condensates, aimed at
using spin-squeezed states in an atomic interferometer,
have been carried out39,40. In the case of the fermionic-
pairs condensate, as shown for example in37, the largest
value of χ, hence the fastest spin squeezing dynamics, is
obtained in the limit as → 0− where the chemical po-
tential in each well tends towards the Fermi energy of
an ideal gas of fermions µ→ εF . This paradoxical situa-
tion, where spin squeezing would be generated in a Fermi
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FIG. 3. Spin squeezing Gedankenexperiment with a conden-
sate of fermion pairs at zero temperature in a double-well.
(a)-(b) A condensate of fermions “dimers” is prepared in a
delocalized coherent state on the two wells. (c) After raising
adiabatically the barrier separating the two wells, the scat-
tering length is set to the desired value, e.g. as → 0−, for
the spin squeezing phase. In this case, squeezing is created in
the ideal Fermi gas due to the N -dependence of the chemical
potential: εF ∝ ρ2/3 in 3D. After the squeezing phase, the
scattering length is restored to the initial positive value cor-
responding to a dimer condensate, obtaining a spin-squeezed
state for the latter. In the lower parts of figures (b) and (d),
we plot on the Bloch sphere the fluctuations of the collective
spin constructed from the a and b modes for the center of
mass of the dimers corresponding to the ground state in the
left and right wells.

sea without interaction, is depicted in figure 3(c). In
the homogeneous three-dimensional case, it is straight-
forward to compare the nonlinearities χBose = ρg

N and

χFermi = 2
3
εF
N with εF ∝ ρ2/3 and it is seen that the

nonlinearity is much larger for the ideal Fermi gas

χFermi

χBose
' εF
ρg
' 1

asρ1/3
� 1 (10)

proportionally to the power − 2
3 of the parameter

√
ρa3s,

which typically holds 10−3-10−2 in an atomic Bose-
Einstein condensate41. If these considerations are very
encouraging, a study at non-zero temperature is needed
to draw conclusions on the best interaction regime to use
with fermions and calculate the maximum spin squeezing
that can be achieved with this method.

In the field of atomic sensors, spin squeezing and quan-
tum technologies have a vocation to extend into room
temperature gas or vapour systems42,43. An extreme sys-
tem for its level of isolation and coherence time, measured
in tens of hours, is the purely nuclear collective spin of a
rare gas such as helium-3 in its ground state. A first theo-
retical study showed that exchange collisions between he-

lium atoms in the ground state and in an optically acces-
sible metastable state, currently used to polarize the nu-
clear spins44, allow quantum correlations and squeezing
to be transferred to the nuclear spin45,46. More recently,
it has been shown that spin squeezing schemes using a
quantum non demolition measurement with a Faraday
Hamiltonian of type (7), successfully realized for alka-
line gaz47, can be adapted to nuclear spin squeezing48–50,
using spin-exchange collisions between the rare gas and
an alkaline51,52 or metastability exchange collisions in a
pure helium-3 gas.53 In the latter case, we have predicted
that the best spin squeezing parameter ξ2 accessible50

scales as
√
γ0/γm where γm is the rate of metastability

exchange collisions for a metastable helium atom, of the
order of 5×106s−1 for a ground state helium pressure of 2
mbar, and γ0 is the decoherence rate of metastable atoms,
dominated by their diffusion towards the cell walls, of the
order of 2 × 104s−1 for a centimetric cell without buffer
gas. The numerous spectroscopic applications of helium
nuclear spin, ranging from magnetometry to fundamen-
tal physics tests44, could thus in the future benefit from
quantum noise control and stimulate new ideas and ap-
plications of quantum technologies.
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V. Vuletić, Entanglement on an optical atomic-clock transition,
Nature, 414, 588 (2020).

29D. Kajtoch, E. Witkowska, A. Sinatra, Spin-squeezed atomic
crystal Europhys. Lett 123, 20012 (2018).

30P. He, M. A. Perlin, S. R. Muleady, R. J. Lewis-Swan, R. B.
Hutson, J. Ye, and A. M. Rey, Engineering spin squeezing in a
3D optical lattice with interacting spin-orbit-coupled fermions,
Phys. Rev. Res. 1, 033075 (2019).

31M. Plodzien, M. Koscielski, E. Witkowska, A. Sinatra, Pro-
ducing and storing spin-squeezed states and Greenberger-Horne-
Zeilinger states in a one-dimensional optical lattice, Phys. Rev.
A 102, 013328 (2020).

32T. Akatsuka, M. Takamoto, H. Katori, Optical lattice clocks
with non-interacting bosons and fermions Nature Physics 4, 954

(2008).
33S. L. Campbell, R. B. Hutson, G. E. Marti, A. Goban, N. Dark-

wah Oppong, R. L. McNally, L. Sonderhouse, J. M. Robinson,
W. Zhang, B. J. Bloom, and J. YeA, Fermi-degenerate three-
dimensional optical lattice clock Vol 358, Issue 6359 (2017).

34M. Gessner, L. Pezzé, and A. Smerzi, Sensitivity Bounds for Mul-
tiparameter Quantum Metrology, Phys. Rev. Lett. 121, 130503
(2018).

35M. Gessner, A. Smerzi and L. Pezzé, Multiparameter squeez-
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