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Abstract: Today, the palindromic analysis of biological sequences, based exclusively on the study of “mirror”1

symmetry properties, is almost unavoidable. However, other types of symmetry, such as those present in friezes,2

could allow us to analyze binary sequences from another point of view. New tools, such as symmetropy and3

symmentropy, based on new types of palindromes allow us to discriminate binarized 1/ f noise sequences4

better than Lempel–Ziv complexity. These new palindromes with new types of symmetry also allow for better5

discrimination of binarized DNA sequences. A relative error of 6% of symmetropy is obtained from the6

HUMHBB and YEAST1 DNA sequences. A factor of 4 between the slopes obtained from the linear fits of the7

local symmentropies for the two DNA sequences shows the discriminative capacity of the local symmentropy.8

Moreover, it is highlighted that a certain number of these new palindromes of sizes greater than 30 bits are more9

discriminating than those of smaller sizes assimilated to those from an independent and identically distributed10

random variable.11
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1. Introduction16

The palindromic analysis of discrete sequences has partly revolutionized molecular biology and is widely17

used as shown by the following work [1–8], to name a few. Very recently, the study of quantum behavior [9],18

encountered in palindromes within the DNA structure, revealed that the symmetry properties of the unitary19

structure, other than those present in classical palindromes, play an important role in the origin and cause of20

mutations.21

In the continuity of the work carried out by Tibatan and Sarisaman [9], our article aims to highlight the22

symmetry links between the concept of frieze and the concept of palindrome, which have been insufficiently23

exploited until now in the analysis of binary data.24

The “mirror” symmetry on which the concept of palindrome was based is certainly the basis of the oldest25

symmetry descriptors. Its greatest success is undoubtedly derived from the analysis of biological sequences26

(DNA, RNA and proteins), even if in this case the definition of DNA palindromes is slightly different from the27

classical definition. (Let us consider the sequence of characters ‘ATGGCCAT’. It is qualified as a 8-palindrome28

sequence. It is composed of a 4-pattern on the right (‘CCAT’) obtained by a mirror reflection of its 4-pattern29

complementary on the left (‘ATGG’): ‘ATGG’|’CCAT′, where •|• indicates the mirror reflection and •30

indicates the complementary. Note that ‘T’ is the complementary of ’A’, and ’C’ is the complementary of ‘G’.)31

To fix ideas, a palindrome of size m, called “m-palindrome”, is a discrete sequence composed of32

two contiguous symmetrical (mirror) sub-sequences each composed of k-patterns with k = bm/2c. For33

example, the alphabetic character sequence ddddddddbbbbbbb is a 16−palindrome composed of two 8−patterns:34
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dddddddd, bbbbbbbb. Even if the theoretical research around the palindrome is still going on, as shown by the35

recent article by Gabric and Shallit [10] to name but a few, it is the older work of Allouche et al. [11,12], which36

is used as a starting point in this work and in particular the notion of palindromic complexity.37

Today, when studying a word or a discrete sequence, its analysis is still limited to only one type of symmetry:38

the “mirror” symmetry. Wanting to extract many more intrinsic features in the discrete sequences studied can39

consist of looking for other types of symmetries, as it is explicitly the case in friezes.40

A frieze is a horizontal strip composed of an infinite number of symmetrical patterns, i.e., a periodic41

geometric object. As an illustration, five types of alphabetical sequences of 16 characters, having the same42

symmetries as friezes, are presented as follows: bbbbbbbbbbbbbbbb, dbdbdbdbdbdbdbdb, bpbpbpbpbpbpbpbp,43

bqbqbqbqbqbqbqbq, bqpdbqpdbqpdbqpd.44

If the objective is indeed to extend the analysis of discrete periodic sequences to other types of sequences,45

then the search for all symmetric patterns is the next step. To reach this goal, the concept of palindrome and46

then that of frieze is presented in Section 2. Then, the concept of palindromes is extended and new tools such as47

symmetropy and symmentropy are proposed in Section 3. Finally, the set of symmetry descriptors are tested on48

binarized 1/ f noises and binarized DNA sequences in Section 4; then, the results are discussed in Section 5.49

2. Palindromes and Friezes50

In this section, we recall the concept of palindromes [11–13] and the concept of friezes [14,15].51

2.1. Palindromes52

For a binary sequence, an m-palindrome is, by definition, a grouping of m bits that form an m-pattern53

of mirror symmetry. In other words, for a binary sequence X = {x(1), x(2), . . . , x(M)} composed of M54

bits, an m-palindrome can be defined as the concatenation of two k-patterns: Xm(i) = [Xk(i) ΓR[Xk(i)],55

with k = bm/2c being the order of the palindrome. The first k-pattern Xk(i) = {x(i), x(i + 1), . . . , x(i +56

k− 1)}, 1 ≤ i ≤ M− k + 1 is the reference pattern, and the second k-pattern obtained by ΓR[Xk(i)] is the57

symmetric pattern, where ΓR[•] is the transformation corresponding to the mirror symmetry, a reflection.58

For example, for the binary sequence X = {01100110} of 8 bits, the first 4-pattern of X of order 2 is written59

as X4(1) = [X2(1) ΓR[X2(1)] = [{01}{10}] = {0110}, with X2(1) = {01} and ΓR[X2(1)] = {10}. In the60

same way, the 8-palindrome of X of order 4 is written as X8(1) = [X4(1) ΓR[X4(1)] = [{0110}{0110}] =61

{0110010}, with X4(1) = {0110} and ΓR[X4(1)] = {0110}.62

A palindrome of odd length can be seen as the concatenation of a pattern of size (m− 1) and its mirror, for63

which the rightmost bit of the (m− 1)-reference pattern (bit in bold in the following example) and the leftmost64

bit of the (m− 1)-mirror pattern (bit in bold in the following example) are merged to give only one. Example:65

[{01}{10}] = {01 10} becomes {010}.66

Although there is a plethora of scalar descriptors such as those indicated in [11–13] to name but a few,67

here, we limit ourselves to the concept of palindromic complexity c̃ computed from D, which lists, from the68

palindromic dictionary, the cardinal of the different palindromic words of size m:69

D = [d(0), d(1), . . . , d(m), . . . , d(M)]t. (1)70

where d(m) is the cardinal of “palindrome words” of size m [11] present in the binary sequence. The empty71

palindrome obtained for m = 0 is e and {e, 0, 1} are the trivial palindromes. The palindromic complexity c̃,72

which corresponds to the cardinal of D, is defined by the following:73

c̃ = card (D) . (2)74

In order to measure the level of mirror symmetry present in a binary sequence, we propose to count the75

frequency of occurrence of m-palindromic patterns in the binary sequence studied by the following:76

V = [v(0), v(1), . . . , v(m), . . . , v(M)]t. (3)77
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where v(m) is the frequency of occurrence of a palindromic pattern of size m. The “mirror” symmetry level σ̃ is78

the sum of all occurrences for non-trivial palindromes:79

σ̃ =
M

∑
m=2

v(m). (4)80

An illustration given in Table 1 for the binary sequence X = {01101001}, specifies the value of the81

palindromic complexity c̃ = 5. There are, in all, five non-zero elements in D = {1, 2, 2, 2, 2, 0, 0, 0, 0} which is82

itself computed from the empirical palindromic dictionary Dict = {e, 0, 1, 00, 11, 010, 101, 0110, 1001}.83

Table 1. Dict, d(m) and v(m) calculated from the binary sequence X = {01101001} composed of M = 8 bits.
There are in total c̃ = 5 sizes of palindromes (0, 1, 2, 3, 4) derived from the dictionary and used in the binary
sequence X. There are two palindromes of size 2, two palindromes of size 3, and two palindromes of size 4, so a
total of σ̃ = 6 = 2 + 2 + 2 palindromes composing the binary sequence.

m 0 1 2 3 4 5 6 7 8
Dict e 0,1 00,11 101,010 0110,1001 - - - -
d(m) 1 2 2 2 2 0 0 0 0
v(m) 8 8 2 2 2 0 0 0 0

2.2. Friezes84

As stated in the Introduction, a frieze is a periodic horizontal band composed of a few basic symmetrical85

patterns repeated ad infinitum. There are only seven different types of friezes [14,15] (see Figure 1) obtained from86

five types of isometries (isometry is a geometrical transformation that leaves the objects invariant thus transformed87

while preserving the distances, which is the case for the five following operations: translation, vertical reflection,88

horizontal reflection, inversion, and glide reflection). (TRIGH: Translation, vertical Reflection, Inversion and89

Glide reflection, Horizontal reflection). There are only 5 possible types of periodic discrete sequences obtained90

from 4 types of isometries (TRIG: Translation, vertical Reflection, Inversion and Glide reflection), vertical91

reflection not allowing to obtain a 1D-sequences.92

For example, from the friezes in Figure 1 and replacing p by {10}, we can construct five types of periodic93

discrete sequences, all having different types of symmetry:94

• sequence X = {10101010 . . . } obtained with translations;95

• sequence X = {10011001 . . . } obtained with vertical reflections (mirror);96

• sequence X = {10011001 . . . } obtained with glide reflections and translations;97

• sequence X = {10101010 . . . } obtained with inversions and translations;98

• sequence X = {10100101 . . . } obtained with inversions and vertical reflections.99

Among the five previous sequences, two are composed of mirror palindromes (the second and the last). By100

no longer limiting the search to mirror palindromes, it should be possible to describe binary sequences more101

precisely; this is the subject of the next section.102
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Figure 1. The seven types of friezes with a p pattern. The friezes 1, 2, 4, 5 and 6 can constitute periodic discrete
sequences because no pattern appears with the same abscissa. This is not the case for friezes 3 and 7, which
cannot constitute a discrete sequence. Among the five periodic sequences, friezes 2 and 6 are composed of
palindromes.

3. Methods103

In this section, we propose to extend the different palindromic vector and scalar descriptors by integrating104

the different types of symmetry revealed in the friezes. Then, new palindromic descriptors such as the notions of105

symmetropy and symmentropy are proposed.106

As mentioned later, through the notion of friezes, several types of symmetries can be considered using the107

combination of only four isometries (TRIG). On this basis, we propose to generalize the notion of palindromes108

by taking into account all types of symmetries.109

For a binary sequence X = {x(1), x(2), . . . , x(M)} composed of M bits, an m-palindrome of type110

j ∈ {T, R, I, G} can be defined as the concatenation of two k-patterns: Xm(i) = [Xk(i) Γj[Xk(i)]] with111

k = m/2. The first k-pattern Xk(i) = {x(i), x(i + 1), . . . , x(i + k− 1)}, 1 ≤ i ≤ M− k + 1 is the reference112

pattern, and the second k-pattern is the one obtained by one of the four isometries Γj[Xk(i)] with j ∈ {T, R, I, G}:113

- ΓT [Xk(i)]] = {x(i), x(i + 1), . . . , x(i + k− 1)}. A translation is simply a “copy and paste”;114

- ΓR[Xk(i)]] = {x(i + k− 1), . . . , x(i + 1), x(i)}. A vertical reflection is simply a “copy, return and paste”;115

- Γ I [Xk(i)]] = {x(i + k − 1), . . . , x(i + 1), x(i)}. An inversion is simply a116

“copy-complement-return-paste”;117

- ΓG[Xk(i)]] = {x(i), x(i + 1), . . . , x(i + k− 1)}. A glide reflection is simply a “copy-complement-paste”;118

where • is the logical function NOT, also called a complement. For example, with the binary sequence119

X = {01010101}, the first 4-palindrome of type ‘T’ is written as X4(1) = {0101}, with X2(1) = {01} and120

ΓT [X2(1)] = ΓI [X2(1)] = {01}.121

If the objective is to measure the level of symmetry of a binary sequence through the presence of palindromes122

of type j ∈ {T, R, I, G}, then we can define the following measure:123

v∗j (m) =
vj(m)

2(M−m + 1)(M− 1)
(5)124

with vj(m) being the total number of palindromes of size m, vj(0) = M and the palindrome vector of type j by125

the following:126

V∗j = [v∗j (0), v∗j (1), . . . , v∗j (m), . . . , v∗j (M)]t. (6)127
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In order to propose a scalar measure of the level of symmetry of a given type, it seems judicious not to take128

into account the non-trivial palindromes because they could mask, for very long sequences, the presence of larger129

palindromes in smaller numbers. The total number of non-trivial palindromes σ∗j of type j ∈ {T, R, I, G}, for130

the whole range of sizes m, is obtained by computing131

σ∗j =
M

∑
m=2

v∗j (m). (7)132

To obtain the global level of symmetry present in a binary sequence, the global palindromic symmetropy σ∗133

is defined as follows:134

σ∗ = σ∗T + σ∗R + σ∗I + σ∗G, (8)135

where σ∗R = σ̃ is defined in Section 2. Note that, for binary sequences where the level of symmetry is the136

maximum as for example for the sequences X = {01010101} and X = {111111}, the symmetropy is maximum137

with σ∗ = 1.138

To quantify the “diversity” of different types of palindromes, the overall palindromic symmentropy E can139

be defined as follows:140

E = −Pt log4 P, (9)141

where P is the quarte probability P defined as follows:142

P = [pT , pR, pI , pG]
t, (10)143

with pj = σj/σ∗. Note that the values of the symmentropy are between 1/2 and 1. When there is equi-probability,144

then E = 1. For example, for the sequence X = {01010101} of M = 8 bits, the symmentropy is maximal at E =145

0.99, and the value of E = limM→∞ 1. When two probabilities out of four are null with P = [1/2, 1/2, 0, 0]t,146

as is the case for the 8-bit sequence X = {11111111}, then the symmentropy is minimal and is E = 1/2. This147

means that, when the symmentropy is minimal, there is always a minimum symmetric information content in the148

binary sequences.149

Finally, it seems appropriate to compute a local palindromic symmentropy ε(m) for each m scale:150

ε(m) = −Qt(m)log4Q(m), (11)151

where Q(m) = [qT(m), qR(m), qI(m), qG(m)]t is the quarte probability at scale m, where qj(m) =
vj(m)

σ(m)
and152

with σ(m) = vT(m) + vR(m) + vI(m) + vG(m).153

To illustrate, let us consider the binary sequence X = {01101001} of 8 bits. We reported in Table 2 Dictj,154

vj(m), v∗j (m) and qj with j ∈ {T, R, I, G}.155

Remark: This measure of symmentropy is similar in idea to the one proposed by Yodogawa [16], who156

proposed an entropic measure of the level of symmetry present in the images via a decomposition in the157

Walsh–Hadamard basis. (The method of Yodogawa that measures the entropy of symmetric patterns is called158

symmetropy. From our point of view, it is rather a symmentropy since it is derived from an entropy measure,159

which is not the case of symmetropy as we define it in Section 3. On the other hand, in Yodogawa’s approach,160

the probabilities allowing us to computation the entropy in base 2 are obtained from a decomposition in the161

Walsh–Hadamard basis. In Yodogawa’s paper, it is clearly stated that not all symmetries are considered, which is162

not the case for our approach based on symmetry friezes.) Here, the proposed definition is different.163
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Table 2. Dictj, vj(m), qj and ε(m) with j ∈ {T, R, I, G} computed from the 8 binary sequence X =

{01101001}. The non-trivial palindromic symmetropy is σ∗ = 0.44 = 1302/2940 with σ∗T = 102/2940,
σ∗R = 214/2940, σ∗I = 472/2940 and σ∗G = 514/2940, and the global palindromic symmentropy is

E = 0.89 = −
(

102
1302 log4(

102
1302 ) +

214
1302 log4(

214
1302 ) +

472
1302 log4(

472
1302 ) +

514
1302 log4(

514
1302 )

)
.

m 0 1 2 3 4 5 6 7 8
DictT e 0,1 00,11 - 1010 - - - -
vT(m) 8 8 2 0 1 0 0 0 0
v∗T(m) - - 2

2×7×7
0

2×6×7
1

2×5×7
0

2×4×7
0

2×3×7
0

2×2×7
0

2×1×7
qT(m) - - 2/14 0 1/6 - 0 - 0
DictR e 0,1 00,11 101,010 0110,1001 - - - -
vR(m) 8 8 2 2 2 0 0 0 0
v∗R(m) - - 2

2×7×7
2

2×6×7
2

2×5×7
0

2×4×7
0

2×3×7
0

2×2×7
0

2×1×7
qR(m) - - 2/14 1/2 2/6 - 0 - 0
DictI e 0,1 01,10 - 1010 - 110100 - 01101001
vI(m) 8 8 5 0 1 0 1 0 1
v∗I (m) - - 5

2×7×7
0

2×6×7
1

2×5×7
0

2×4×7
1

2×3×7
0

2×2×7
1

2×1×7
qI(m) - - 5/14 0 1/6 - 1 0 1/2
DictG e 0,1 01,10 010,101 0110,1001 - - - 01101001
vG(m) 8 8 5 2 2 0 0 0 1
v∗G(m) - - 5

2×7×7
2

2×6×7
2

2×5×7
0

2×4×7
0

2×3×7
0

2×2×7
1

2×1×7
qG(m) - - 5/14 1/2 2/6 - 0 - 1/2
ε(m) - - 0.93 0.50 0.96 - 0 - 0.50

4. Results164

In this section, we wish to show the interest of these new scalar and vector descriptors in the study of165

binarized sequences. We propose to compute the different proposed descriptors (palindromic vectors, symmetropy166

and symmentropy) for binarized sequences taken from 1/ f noises and 2 DNA sequences.167

4.1. Binarized 1/ f Noise168

One way to study complexity, in which the meaning here is reduced to that of irregularity as reported in169

[17], is to vary the exponent β of the noise in f β. For β = 0, the generated noise is white noise, and for β = −2,170

the generated noise is a Brownian motion, with the integral of a white noise being a Brownian motion.171

Here, in order to stay within the framework of our study, the time series are binarized. All values above172

the median are replaced by ’1’, otherwise ’0’. Moreover, in order to compare the different scalar and vector173

descriptors, the Lempel–Ziv complexity Clz is proposed as a reference and is computed as presented in [18]. This174

normalized complexity is almost zero for periodic binary sequences and close to unity for random sequences175

such as white noise.176

In Figures 2–4, the scalar and vector descriptors obtained for noises in f β with β ∈ {−2 : 0} by step of 0.2177

are presented. For a same value of β, 300 binarized noises composed of 1000 bits are generated.178

In Figure 2, the different scalar palindromic descriptors are computed and plotted as whisker boxes. From179

Figure 2, we observe that all scalar palindromic descriptors describe monotonic curves increasing for Lempel–Ziv180

complexity and symmentropy and decreasing for symmetropy (as well as these components through the quarte181

probability P). This monotonicity property can be auspicious for tracing the values of β knowing the value of the182

descriptor. Indeed, it is possible to discriminate binarized noises in f β on larger or smaller regions depending on183

the descriptor considered. For example, for the Lempel–Ziv complexity, the body (second and third quartile) of184

the non-overlapping whisker boxes in the region −1.2 < β < −0.6 allows us, from a Lempel–Ziv complexity185

of 0.62, to go back to a value of β = −1.2 without much error. When β = 0, the complexity is maximal186

and tends to unity; when β = −2, the complexity is less and is 0.2 for a Brownian motion. For symmetropy,187

the non-overlapping boxes for −1.2 < β < −0.4 also allows us to find the value of β from the symmetropy188

measures. Note that the discrimination range (β > −1.2) of symmentropy is much larger than those obtained by189
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Lempel–Ziv complexity and symmetropy. We also check that the values of the symmentropy are well between190

1/2 and 1. Finally in Figure 2, we observe a decrease in the probabilities drawn from the quarte P. Indeed,191

it decreases as β approaches zero for types ‘T’ and ‘R’ to go from 50% to 25% and 33%, respectively, and it192

increases progressively for types ‘I’ and ‘G’ to go from 0% to 17% and 25%, respectively. At the maximum193

complexity β = 0, we observe that the reflection symmetry level is always higher than the translation/glide194

reflection and inversion: σ∗R > σ∗T = σ∗G > σ∗I .195

Figure 2. Scalar palindromic descriptors obtained from binarized f β noises and for different values of β. Left,
Lempel–Ziv complexity Clz, in which the boxes do not overlap for −1.2 < β < −0.6. Left middle, symmetropy
σ∗, in which the boxes do not overlap for −1.2 < β < −0.4. Right middle, symmentropy E , in which boxes
do not overlap for β > −1.2. Left, quarte probability P versus β. When β = −2, the quarte probability is
P = [0.50, 0.50, 0.00, 0.00]. When β = 0, the quarte probability is P = [0.25, 0.33, 0.17, 0.25] and the level of
reflection symmetry is higher than the translation/ glide reflection and the inversion: σ∗R > σ∗T = σ∗G > σ∗I . The
closer β is to zero, the higher the complexity. We notice that both Clz and E increase as the complexity increases.
On the contrary σ∗ decreases as the complexity increases.

In Figure 3, the palindromic vectors obtained for β = −2,−1, 0, which correspond to Brownian motion,196

pink noise and white noise, respectively, are presented. From Figure 3, we observe that all of the average197

palindromic vectors (obtained by averaging 300 palindromic vectors) decrease as the palindromic size m198

increases and this decrease is all the more marked as β approaches zero, i.e., when the correlations between199

samples are almost non-existent. Note that, for Brownian motions (β = −2), there are large palindromes up to200

about 450. On the contrary, for white noise, we note that the size of the palindromes does not exceed 20 bits.201

Moreover, the palindromic vector obtained for β = 0 is very similar to the one obtained in the case of binary iid202

(independent and identically distributed) sequences, as shown in Figure 5.203
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Figure 3. Average palindromic vectors obtained for binarized f β noises of length 1000, with
β = −2.0,−1.0,−0.0 (from top to bottom) and m ∈ {1 : 500}. Top, average palindromic vectors obtained after
averaging 300 vectors for β = −2.0. Middle, average palindromic vectors obtained after averaging 300 vectors
for β = −1.0. Bottom, average palindrome vectors obtained after averaging 300 vectors for β = 0.0. The more
irregular the sequence (strong negative value of β) and the larger the spread of the palindromic vector descriptors.

Figure 4. Average local symmentropy (with 300 trials) computed for three types of noises. Top, local
symmentropy of a Brownian motion (β = −2). Middle, local symmentropy of a pink noise (β = −1).
Bottom, local symmentropy of a white noise (β = 0). The sawtooth fluctuation comes from the fact that the
symmentropy values are slightly different for even and odd palindromes. The local symmentropy synthesizes the
information carried by the four palindromic vectors into only one.

In Figure 4, the local symmentropy (averaged from 300 trials) ε(m) computed for three different types of204

noise (Brownian motion, pink noise and white noise) is plotted. As for the palindromic vectors, the symmentropy205
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decreases as the size of the palindromes increases. The spread out of the symmentropy depends on the type of206

noise and thus on the correlations between samples. The range in size is very small for white noise with no207

correlation between samples/bits compared with Brownian motion. Moreover, the value of the symmetropy is208

close to unity for the white noise and close to half for the Brownian motion.209

In Figure 5, the palindromic vectors obtained from binary sequences independent and identically distributed210

are plotted. We observe in Figure 5 a different distribution between even and odd palindromes. There is an211

equi-distribution between the different types of symmetry for the even palindromes. For odd palindromes, we212

also note the non-presence of palindromes of type ‘I’. Note that there are no palindromes with sizes exceeding 40213

bits. On average, the proportion of palindromes is PT = 25%, PR = 33%, PI = 17%, PG = 25%. We notice a214

decrease in the symmetry levels as the size of the palindromes increases. In logarithmic scale, the decrease in the215

symmetry level (and thus of the number of symmetrical palindromes) is linear. Indeed, for a fixed length of the216

binary sequence, the more the palindrome size increases, the smaller the number of palindromes composing the217

binary sequence. For example, a sequence of 8 bits can only be composed of one palindrome of size m = 8,218

of two palindromes of size m = 4, of four palindromes of size m = 2 and of eight palindromes of size m = 1.219

This decrease is therefore inversely proportional to the size m. If we suppose that, for a given type of symmetry,220

the palindrome vector is expressed by Vj(m) = Kj/m, then log(Vj(m)) = −1× log(m) + log(Kj). This is221

indeed the affine line observed in Figure 5.222

Figure 5. Logarithm of the four average palindromic vectors computed from 100 binary sequences iid
(independent and identically distributed) of 5000 bits. We note a different distribution between even and
odd palindromes. There is an equi-distribution between the different types of symmetry for even palindromes. For
odd palindromes, we also note the non-presence of palindromes of ‘I’ type. We note a decrease in the symmetry
levels as the size of the palindromes increases. Note that there are no palindromes with sizes exceeding 40.
Finally, on average, the proportion of palindromes is PT = 25%, PR = 33%, PI = 17% and PG = 25%.

4.2. Biological Sequences: DNA223

To show the relevance of the different symmetry descriptors proposed in a practical case, let us consider224

two DNA sequences. The objective is to identify descriptors that allow us to differentiate the two sequences:225

HUMHBB (human β-region, chromosome 11) with 73308 bases and YEAST1 (Saccharomyces cerevisiae yeast,226

chromosome 1) with 230209 bases obtained from (http://ncbi.nlm.nih.gov (accessed on 30 December 2021).).227

The DNA sequences is binarized, ‘A’ and ‘G’ are coded by 1, and ‘T’ and ‘C’ are coded by 0. For example, the228

sequence ‘ATATGCATTTCC . . . ’ is coded ’101010100000’.229

http://ncbi.nlm.nih.gov


Version accepted in in Entropy 10 of 13

At first, it seems interesting to indicate that, although the sequence “YEAST1” is 3.14 larger than the230

sequence “HUMHBB”, the total number of palindromes coming from the sequence “YEAST1” is 2.95 times231

larger than that of the sequence “HUMHBB”, as indicated in Table 3.232

Table 3. Distribution in % of the total number of palindromes of different types present in each of the two
non-randomized and randomized DNA sequences, m ∈ [1, 500]. For the non-randomized sequences, the most
frequent palindromes are reflection palindromes with NR > NT > NG > NI , while for the randomized
sequences, the distribution is NR > NT = NG > NI . The distribution of the different types of palindromes is
very similar regardless of the type of DNA sequence. The differences between the total number of palindromes
from non-randomized and randomized HUMHBB and YEAST1 sequences are 496,028 − 441,299 = 54,729 and
1,463,633 − 1,384,396 = 79,237, respectively.

DNA seq NT /NTotal NR/NTotal NI /NTotal NG/NTotal NTotal
HUMHBB 29.5% 36.8% 13.5% 20.2% 496,028

randomized HUMHBB 24.9% 33.3% 16.7% 25.1% 441,299
Yeast1 27.9% 35.5% 14.5% 22.1% 1 463 633

randomized Yeast1 25.0% 33.3% 16.7% 25.0% 1,384,396

Moreover, we notice in Table 3 that the proportion of palindromes of type “mirror” (i.e., ‘R’ type) is much233

higher than that in the other types regardless of the DNA sequence considered. This corroborates what has been234

observed for 1/ f noises, namely PR > PT > PG > pI , where Pj is the palindromic probability of type j.235

In Table 4, the Lempel–Ziv complexity Clz, the symmentropy E and the symmetropy σ∗ are reported. From236

Table 4, we notice that the scalar descriptors are slightly different for the 2 DNA sequences. We note a relative237

difference of 4% for the Lempel–Ziv complexity (4% = (0.98− 0.94)/0.94), of 1% for the symmentropy238

(1% = (0.97− 0.96)/0.96) and of 6% for the symmetropy (6% = (0.85− 0.80)/0.80)239

Table 4. Scalar palindromic descriptors of binarized DNA sequences. Lempel–Ziv complexity Clz, symmentropy
E and symmetropy σ∗ with m ∈ {0, 500}. From scalar palindromic descriptors, it seems possible to differentiate
the 2 DNA sequences. The values of Lempel–Ziv complexity and symmentropy are close to unity, indicating
a high level of complexity. For randomized DNA sequences, Lempel–Ziv complexity and symmentropy tend
toward unity.

DNA seq Clz E 100× σ∗

HUMHHB 0.94 0.96 0.85
randomized HUMHHB 1.02 0.98 0.75

Yeast1 0.98 0.97 0.80
randomized Yeast1 1.01 0.98 0.75

To go further in the analysis of DNA sequences, in Figure 6, the palindromic vector descriptors for each240

type j for m ∈ (0, 100) are reported, even if the calculation has been made with mmax = 500. We notice that241

the palindromic vectors are rather concentrated in the 0–100 band with some peaks (not shown here) beyond242

m = 100 located in m = 270, 192 for “YEAST1” and m = 124 for “HUMHBB”. As for the noises in 1/ f ,243

we notice a different distribution of the types of palindromes. For example, there are no more palindromes of244

type ‘R’ for the sequence “YEAST1” beyond m = 60, idem for the palindromes of type ‘I’ for the sequence245

“YEAST1” beyond m = 40. By the way, note that there are no even palindromes of type ‘I’. This shows the246

importance of taking into account all types of palindromes and not only the “mirror” palindromes of type ‘R’. By247

superimposing the palindromic vectors obtained after randomization, we can better see the “useful” information.248

The signature after randomization being similar to that of an independent and identically distributed random249

variable seems to be less important information and therefore useless for DNA sequence discrimination.250
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Figure 6. Logarithm of the palindromic vectors obtained from the entirety of the two DNA sequences for mmax =

500. Zoom for m ∈ (1, 100). In green, logarithm of the palindromic vectors obtained after randomization of the
DNA sequences.

Finally, it seems interesting to show how local symmentropies allow us to differentiate each DNA sequence.251

In Figure 7, the local symmentropies calculated from “HUMHBB”, randomized “HUMHBB”, “YEAST1” and252

randomized “YEAST1” are reported. Straight lines derived from linear fitting from symmentropies show slopes253

that are significantly different between each DNA sequence. Indeed, from odd palindromes, the slope derived254

from the linear fitting for YEAST1 is 4.41 times the slope obtained from HUMHBB. For even palindromes, the255

slope derived from the linear fitting for YEAST1 is 3.61 times the slope obtained from HUMHBB. As expected,256

symmentropies obtained from randomized DNA sequences are similar while m < 20 and close to unity. Indeed,257

the binary sequence obtained after randomization is very similar to an independent and identically distributed258

random variable for which the symmentropy is maximal and worth unity. For m > 30, as shown in Figure 7, the259

symmentropies between the 2 DNA sequences are different.260
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Figure 7. Local symmentropies obtained from binarized DNA sequences in the scale range m ∈ {1, 60}. Top,
odd palindromes. In blue, local symmentropy obtained from HUMHBB and straight line fitting. In orange, local
symmentropy obtained from YEAST1 and straight line fitting. In magenta, local symmentropy obtained from
randomized HUMHBB. In red, local symmentropy obtained from randomized Yeast. The slope αy derived from
the linear fitting for YEAST1 is 4.41 times the slope αh obtained from HUMHBB. Bottom, even palindromes.
The slope αy derived from the linear fitting for YEAST1 is 3.61 times the slope αh obtained from HUMHBB.

5. Discussion and Conclusions261

In this work, we proposed new palindromic descriptors (scalar and vector). The notions of palindromic262

vectors, palindromic symmetropy and palindromic symmentropy have been tested with binarized 1/ f noises263

and 2 DNA sequences. For f β noises for which the “complexity” level is adjustable via β, we showed that264

palindromic symmetropy as well as palindromic symmentropy allows us to better discriminate the different265

f β noises on a larger range than the Lempel–Ziv complexity. Moreover, we showed that symmentropy is266

a complexity descriptor very similar to the Lempel–Ziv complexity. However, the palindromic symmetropy267

indicates the level of symmetry and is a descriptor of “anti-complexity”.268

From this preliminary study, we notice that the “mirror” symmetry is more present than the other types of269

symmetries regardless of the level of complexity (see Figure 2). This is probably why only the “mirror” symmetry270

through the classical notion of palindrome has been considered so far. However, we showed (see Figure 6) that271

the four types of palindromes are necessary to better discriminate the binary sequences. Moreover, we showed272

that the distribution of the types of palindrome evolves with complexity. It goes from 50% for ‘T’ and ‘R’ types273

and 0% for ‘I’ and ‘G’ types when the complexity is low to 25%, 33%, 17% and 25% for ‘T’, ‘R’, ‘I’ and ‘G’274

types when the complexity is maximal. These values are found when the binarized DNA sequences have been275

randomized.276

Multiscale palindromic exploration, i.e., for the whole m size range of palindromes, through palindromic277

vectors and local symmentropy, allows us to go further in the analysis of binary sequences. In particular, it allows278

us to highlight a particular signature of independent and identically distributed random binary sequences found279

for white noise (β = 0) and in the two DNA sequences. This exploration also allows us to clearly identify regions280

that allow us to discriminate the two DNA sequences. Furthermore, a factor of 4 between the slopes of the linear281

fits of the local symmentropies calculated from the two DNA sequences shows the discriminative capacity of the282

local symmentropy.283

It seems obvious, as in the article by Tibatan and Sarisaman [9], that symmetry properties, insufficiently284

exploited to date, play a more important role in the exploration of biological sequences, both at the molecular285

and sub-molecular levels. The new palindromic descriptors presented in this work should contribute in a286

non-negligible way and should be widely applied in the study of biological sequences.287
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