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Comparisons of FV-MHMM with Other Finite Volume 
Multiscale Methods 

Jacques Franc1 • Gerald Debenest1 • Laurent Jeannin2 • Rachid Ababou1 • 

Roland Masson3 

Abstract 

Upscaling and multiscale methods in reservoir engineering remain a complicated task 

especially when dealing with heterogeneities. In this study, we focus on flow field problem 

with a 

Darcy's equation considered at the fine scale. The main difficulty is then to obtain an accurate 

description of the flow behavior by using multiscale methods available in petroleum engi

neering. We cross-compare three of the main finite volume formulations: multiscale finite 

volume method (MsFv), multiscale restriction smoothed (MsRSB) and a new finite volume 

method, FV-MHMM. Comparisons are done in terms of accuracy to reproduce the fine scale 

behavior. 

Keywords Upscaling . Multiscale method . Finite volume . Heterogeneity 

1 Introduction 

Upscaling and multiscale algorithms both serve the same aim of defining models that are 

able to capture global trends of the flow properties on a Jarger scale than the reference scale, 
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referred to as the fine scale. However, upscaling and multiscale methods differ when it comes
to the treatment of the fine scale. Upscaling techniques, once they have averaged the flow
properties, produce an upscaled equivalent model and deal with it at the large-scale. On
the other hand, multiscale methods are designed to keep the fine scale information as they
consider that a good accuracy cannot be achieved without it. Then, they will couple scales
thanks to upgridding and downgridding steps.

For the methods that are in use in this study, the Darcy-to-Field scale upscaling will be
considered. The generalized Darcy’s law is considered as the fine scale model. This will give
us the reference solution. Multiscale algorithms have been extensively studied, starting from
the works of Hou and Wu on multiscale finite elements (Hou and Wu 1997) for Darcy-like
equations.

On the one hand, the finite elements methods have known important developments with
multiscale finite element methods (MsFEM) (Arbogast et al. 2000), numerical subgrid meth-
ods (Arbogast 2002; Arbogast et al. 2007) and more recently generalized multiscale finite
element methods (GMsFEM) (Efendiev et al. 2013). These rely on the construction of local
basis function that fits the underlying heterogeneities. Numerical subgrid methods are rather
solving for averaged pressure values on the coarse scale and for its variation on subgrid scale.

On the other hand, the multiscale finite volume methods [MsFv (Jenny et al. 2003)]
have been derived and designed to be locally and globally conservative. This work has
been extended by introducing iterative algorithm to smooth multiscale approximate solu-
tions (Hajibeygi et al. 2008). Later works have introduced other features to model density
driven flows or flows with capillary forces by using correction functions (Lunati and Lee
2009; Lunati and Jenny 2006a; Hajibeygi and Jenny 2008; Jenny and Lunati 2009). More
recently, an algebraic formulation of the method has been developed (Wang et al. 2014; Lee
et al. 2009; Zhou et al. 2012). Its use as a preconditioner for Krylov-type iterative solvers
has been investigated (Castelletto et al. 2017; Lunati et al. 2011; Manea et al. 2016). On
another branch, the multiscale restriction smoothed basis [MsRSB (Møyner and Lie 2016)]
has been developed. It takes its inspiration from extensive studies of MsFv algorithm and
algebraic multigrid solvers (Vaněk et al. 1996) introducing multiple time Jacobi smoothing
on overlapping supports to construct its basis functions. An alternative method, finite volume
multiscale hybrid mixed method [FV-MHMM (Franc et al. 2017)] has been proposed. It is
based on the family of multiscale hybrid mixed finite element methods introduced in Harder
et al. (2013) which has been adapted to finite volume formulation.

This paper intends to cross-compare the above-mentioned finite volume multiscale meth-
ods, i.e., the multiscale finite volume method (MsFv), the multiscale restriction smoothed
basis method (MsRSB) and the finite volume multiscale hybrid mixed method (FV-MHMM).
The first section will give more details about the considered three methods. In a second sec-
tion, the performance of each method on 2D layers of the 10th SPE (Christie et al. 2001) test
case will be compared. As a last test case, a slanted permeability field will be considered.

2 Methods Description

In this section, we describe briefly the three finite volume methods used to study multiscale
problems for fluid flow in heterogeneous media. For single-phase incompressible flows,
pressure field equation over the domain � follows the Darcy’s equation:

∇ · (K (x)∇p) = −f in �, (1)



where K (x) stands for the permeability field which is heterogeneously distributed over �,
and f a general source term. Boundary conditions are needed and are defined according to
the following equations.

(K (x)∇p) · n∂� = g on ∂�N,

p = pg on ∂�D,

where n∂� stands for the unit normal vector to the boundary ∂� outward to �, and ∂�D ∪
∂�N = ∂�, ∂�D ∩ ∂�N = ∅. The first equation is a classical Neumann boundary condition
with prescribed flux g on ∂�N, whereas the second one is a Dirichlet boundary condition
with imposed pressure pg on ∂�D.

Herein, we focus on the finite volume methods available and we briefly recall the systems
of equations to be solved in each of them.

2.1 FV-MHMM

Let MH be the set of coarse cells K partitioning the domain �, FH be the set of coarse
faces, and ∂K denote the boundary of a coarse cell K with its unit normal vector nK oriented
outward to K .

Starting from the primal hybrid formulation of Raviart and Thomas (1977a, b), Harder
et al. (2013, 2015) explain how to construct a multiscale method sharing the same idea that
flux continuity between cells (here coarse scale cells) can be enforced weakly using Lagrange
multipliers λ. It is formulated as:

find (p, λ) ∈ V × � such that:∫
�

K (x)∇p · ∇qdx +
∑

K∈MH

∫
∂K

λn · nK q|K dσ

+
∑

K∈MH

∫
∂K

μn · nK p|K dσ for all (q, μ) ∈ V × �,

=
∫

�

f vdx +
∫

∂�

μpgdσ (2)

where V is the broken Sobolev space H1(MH ) defined as:

H1(MH ) = {v ∈ L2(�) : v|K ∈ H1(K ), K ∈ MH }, (3)

� stands for the following Lagrange multipliers space

� :=
⎧⎨
⎩μ ∈

∏
K∈MH

H− 1
2 (∂K ) : ∃σ ∈ Hdiv(�) s.t. μ|∂K = σ · n|∂K , K ∈ MH

⎫⎬
⎭ , (4)

∇v is the broken gradient equal to ∇v|K on each coarse cell K ∈ MH , and H− 1
2 (∂K ) is

the dual space of the space H
1
2 (∂K ) spanned by the traces on ∂K of functions in H1(K ).

Let then split the space V orthogonally as:

V = V0 ⊕ ΠK∈MH WK ,

where V0 is the space of piecewise constant functions on each coarse cell K ∈ MH and WK

is the subset of null mean function over H1(K ). This definition introduces the two-scale
modeling scheme.



At fixed Lagrange multiplier λ, the fine scale solution in WK defined by Eq. (2) decouples.
It is obtained by superposition of the solutions of two local problems, a local lambda problem
for Lagrange multipliers-driven effects and a local source problem for source-driven effects.
They, respectively, read:

Find p̃K ∈ WK such that:∫
K

K (x)∇ p̃K · ∇q̃K dx +
∫

∂K
λn · nK q̃K dσ = 0 for all ṽK ∈ WK , (5)

Find p̃K ∈ WK such that:∫
K

K (x)∇ p̃K · ∇q̃K dx =
∫

K
f q̃K dx for all ṽK ∈ WK , (6)

setting p̃K = TK λ and p̃K = T̂K f .
The coupling of the local fine scale solutions is obtained using Eq. (2) with test functions

in V0 × � to compute the Lagrange multiplier λ and the mean values in the coarse cells. It is
formulated as follows using the previous solutions of the local problems TK λ and T̂K f for
all coarse cells K ∈ MH :

Find p0,K ∈ R, K ∈ MH and λ ∈ � such that:
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
K∈MH

∫
∂K

λn · nK dσ =
∫

K
f dx for all K ∈ MH ,

∑
K∈MH

∫
∂K

μn · nK

(
p0,K + TK λ + T̂K f

)
dσ =

∫
∂�

μug for all μ ∈ �.
(7)

This multiscale algorithm is here implemented using a TPFA scheme for the local problems
on each coarse cell K and by replacing the space � by a subspace �H . In the following test
cases, the vector space �H will be typically defined as the vector space of polynomials
Pl(σ ) of degree l on each coarse face σ ∈ FH . These choices of �H will be denoted by �l ,
l = 0, 1, 2 in the following sections. These polynomial spaces can also be weighted using
harmonic averaging of the permeability field on each fine face of FH as described in the
following section. Readers can refer to Franc et al. (2017) for further details.

As an illustration, a typical basis function is reported, respectively, in Fig. 3a.
Once these basis functions are computed and the global system Eq. (7) solved, the approx-

imate fine scale pressure pfv-mhmm(x) is interpolated as a linear combination of the coarse
cell pressures as follows:

p(x) ≈ pfv-mhmm(x) =
∑

K∈MH

⎡
⎣p0,K +

∑
σ∈FH ,K

(
TK λ + T̂K f

)⎤
⎦ (8)

Now, we will briefly recall the MsFv method.

2.2 MsFv

The multiscale method multiscale finite volume (MsFv) (Jenny et al. 2003) is constructed 
using two different meshes. A primal coarse grid is defined by partitioning a fine grid as 
usual in multiscale methods (solid line on Fig. 1). Then, a dual coarse grid is constructed, 
joining the cell centers of the primal grid (dashed lines in Fig. 1). The basis functions will be 
evaluated on this staggered dual grid. Those basis functions are useful to calculate equivalent



Fig. 1 MsFv: primai grid (full 

lines) dual grid (dashed lines) 
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transmissivities (see Fig. 3b). Those meshes are superimposed to a fine mesh grid, capturing 
the details of the fine scale properties. 

We now briefly recall the first three steps of the construction regarding the calculation 
of the coarse pressure. A remaining step deals with conservative fine scale velocity field 
reconstruction which is required to couple the flow with a transport equation. 

Let us consider a primat coarse grid denoted by M H with coarse cells K E M H of cell 
center XK. At each vertex Xf of the primai grid, a dual coarse cell denoted by K is built 
joining the neighboring cell centers XK, K E Mf, where MK denote the set of primai coarse 
cells sharing the vertex Xf, This defines the dual coarse grid MH as the set of dual coarse 
ce Ils K E M H. Let us also de note by x K, K E M K the vertices of the cell K.

The first step is to build the basis functions <Î>r K e M K (Fig. 3b) on each dual coarse 
cell K. The second step is the computation of the correction functions <i>! for ail K E M H.
Both sets of basis functions are used to interpolate the pressure as a linear combination of the 
primai coarse cell pressures pK , K E M H. This allows to express the fluxes on the primai 
coarse cell faces as linear combinations of the primai coarse cell pressures. Then, in the third 
step, the linear system for the primai coarse cell pressures is obtained from the conservation 
equations written on the primai coarse cells. 

For each K E MH , the basis functions <l>r K E Mï{ are solutions of the following 
equations set on ,!!ie dual coarse cell K with value ôK,L at the vertices XL, L E Mï{ of the 
dual coarse cell K: 

I
V·K(x)V<I>� = 0 
V!. K(x)V<I>� = 0 
<l>f (xL) = ôK,L, 

inK, 

on aK,
LEMï{ , 

(9) 

The addition of a second kind of basis functions, correction basis functions, is set to model 
inhomogeneous part of the multiscale approximation of the fine scale pressure, introducing 
<I>f whose definition reads: 
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⎧⎪⎨
⎪⎩

∇·K(x)∇�K̃∗ = f in K̃ ,

∇⊥ · K(x)∇�̃K̃∗ = 0 on ∂ K̃ ,

�K̃∗ (xL) = 0, L ∈ MK̃ .

(10)

It has to be noted that the correction functions are no more in use among the MsFv
community nowadays (Ţene et al. 2015), but are presented as originally part of the method.
Once these basis functions are computed, the approximate fine scale pressure pmsfv(x) is
interpolated as a linear combination of the primal coarse cell pressures as follows:

p(x) ≈ pmsfv(x) =
∑

K∈MH

p̄K

⎡
⎣ ∑

K̃∈M̃K

�K̃
K (x)

⎤
⎦ +

∑
K̃∈M̃H

�K̃∗ (x) (11)

and the primal coarse cell pressures p̄K , K ∈ MH are obtained from the conservation
equations in each primal coarse cell K defining the set of linear coarse scale equations.

If one would like to add, sink terms, gravity or capillary effects, new basis functions have
to be defined, denoted as correction functions in the system of basis functions calculations
[see Lunati and Jenny (2008) or Jenny and Lunati (2009)]. An iterative scheme can also be
applied in order to reduce the error which happened at dual coarse cells’ boundaries. For
multiphase flow, a conservative fine scale velocity field is required and an extra step is then
needed to ensure that pmsfv fulfills this requirement (Lunati and Jenny 2006b).

As a last method, we choose to report one of the most recent multiscale method MsRSB.

2.3 MsRSB

MsRSB method is inspired from the work on AMG solver (Vaněk et al. 1996). It takes
advantages of overlapping areas between coarse cells to compute the needed basis functions
(see Fig. 2). However, a particular treatment has to be done during smoothing iterative process
for the fine cells included in these overlapping regions. This will enforce the partition of
unity, and it will allow to build a conservative operator (see Fig. 3c). Let us define three
different areas for defining the basis functions computation associated with a given coarse
cell K ∈ MH : IK the overlap support, the overlap’s boundary BK and the global boundary
inside the overlap region G ∩ IK introducing G as the superposition of all the overlaps’
boundaries, G = ⋃

K
BK (see Fig. 2).

Let F denote the set of fine cells. For convenience, we identify in the following the domains
K , IK , BK and G with their corresponding subsets of fine cells. Starting from the prolongation
operator defined for all fine cells i ∈ F as P1

i,K = 1, i ∈ K and P1
i,K = 0, i /∈ K and

smoothing it using n relaxed Jacobi iterations, the algorithm then reads for ν = 1, n:
Starting from the prolongation operator defined for all fine cells i ∈ F as P1

i,K = 1, i ∈ K

and P1
i,K = 0, i /∈ K and smoothing it using n relaxed Jacobi iterations, the algorithm then

reads for ν = 1, n:

1. Compute the relaxed Jacobi update with ω = 2/3 optimal value for Poisson-like equation
for IK , for each area K

d̂i,K = −ω
∑
j∈F

(D−1(A − D))i, j Pν
j,K (12)

with A the fine grid operator and D its diagonal.
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Fig. 2 MsRSB: definition of mesh elements, different areas, and boundaries used 
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Fig. 3 Illustration of basis function for a FV-MHMM, b MsFv and c MsRSB 

(c) 

2. Correct on the overlapping areas, introducing Hi = { K I i E iK} collection of coarse
owner's indexes of a fine cell i E G

di,K, i E fK\G, 

d;,K 
-

PtK L d;t
keH; 

i e iK ne, (13) 

0, 

3. Update Pt'fê1 = P.V K + d;,K, i E F, and evaluate the error eK = max (ldi,K 1) on the
• ' 1e/K\G 

internai support. Terminate if eK < tol and set P;,K = P(k1
, i E F. 

The fine scale approximate pressure is then obtained as the following linear combination of 
the coarse cell pressures pK , K E M H 

p
MsRSB (x) = L PKPi,K for all x E i, i E F. 

KEMH 
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and the coarse scale system is obtained from the conservation equations in each coarse cell
K ∈ MH .

3 Methods Improvement

Dealing with highly heterogeneous permeability fields exhibiting higly connected path is
problematic for such methods. Both MsFv and MsRSB methods have known significant
improvements since they were derived (Hajibeygi et al. 2008, 2010; Hajibeygi and Jenny
2011; Lunati and Jenny 2008; Wang et al. 2014). One of the most notable is to use several
cycles successively smoothing and solving via multiscale methods to converge to the fine
scale results.

The FV-MHMM does not implement such a technique. But two types of weighting
schemes are proposed in this section in order to enhance its solution accuracy.

Let pms denote the approximation of the fine scale pressure and pc be the coarse scale
solution obtained by the multiscale method (without mention of the multiscale method). Let
us introduce the operator notation of Eq. (1) as

Ap = b (14)

Ac pc = Rb. (15)

With P the prolongation operator based on the basis function computed in MsFv or
MsRSB and R the restriction operator as described in Møyner and Lie (2016). The coarse
scale operator Ac is then related to the fine scale operator A, in such a way as:

R(Apms) = R A(Ppc) = Ac pc. (16)

Using this multigrid formulation, an iterative form of these two methods can be written.

3.1 MsFv andMsRSB iterative formulation

Both MsFv and MsRSB can be used in smoother-multiscale cycle as mentioned in Algo-
rithm 1.

Let us denote the multiscale residuals Rν−1
ms = b−Apν−1

ms , which measures the discrepancy
from the reconstructed multiscale solution pms to the finite volume solution A−1b.

with fsmooth(z) implementing either a Jacobi smoother or an I LU0 factorization with 
0 level of fill-in. The use of different smoothing functions leads both MsFv and MsRSB to 
different convergence behavior. The optimal number of smoothing iterations nsmooth has been 
reported to be approximatively the number of coarsening ratio ( ̧Tene et al. 2015, 2016). The 
cases reported in Fig. 4 are simulations over the two type of facies found in the layers in 10th 
SPE case. They are performed setting a tolerance stopping criteria on the residuals to 10−12 

and a 10 × 11 coarses cells onto the 60 × 220 fine cells discretization.
In Fig. 4a, for the log-normally distributed facies, the convergence of the Jacobi and 

I LU0 smoothers is comparable but allows lower error reduction with respect to the number 
of iterations.

In Fig. 4b, it can be seen, as reported in Møyner and Lie (2016), Wang et al. (2014), that 
the MsFv methods can struggle to find a solution on such channelized medium. It can be 
corrected choosing larger blocks to fit more heterogeneous features into the coarse blocks. 
Switching to a 5 × 11 coarse discretization allows to find a converged MsFv solution but 
implies a lower accuracy for the MsRSB solution. This configuration is reported in Fig. 4c.



Algorithm 1 Smoother-multiscale solution cycle description 

Let be fc21(z) = P(A;;- 1 Rz) and /smooth(Z).
1. Construct a first multiscale approximation of the fine scale pressure using:

P�s = fc2f(b) 

2. if [iterations are demanded and a smoother is provided], for v iterations limes (or before if residual is
small enough w.r.t tolerance) 
(a) apply llsmooth iteration of smoothing of the multiscale residual

v-l F (Rv-l) 
Pms = Jsmooth ms 

(b) update p:;,
5
by solving such as,

P� = P� 1 + fc2f ( R:;,-;')

... 

10°,----------------, 

.... _ -

io·'\'----2�0---4�0---6�0---8�0---'100 

iterations 

(a) 

' ·-·-•-•-•-•-•-•-

20 
40 60 80 100 

îteratîons 

(b) 

- - rsb one step 
-msfv one step 
-• ilu(O) msrsb 

-� jacobi msrsb
--ilu(O) msfv 
-+-jacobi msfv 

îteratîons 

(c) 

Fig. 4 Convergence behavior considering Jacobi or/ LUo smoother. Dotted lines stand for MsRSB method;
solid lines are for MsFv method. Behavior a for the 13th SPElO test case with a 10 x 11 coarse mesh, b for the
84th SPEJO test case with a 10 x 11 coarse mesh and c for a S x 11 coarse mesh. Blue lines represent for each
multiscale methods, the error level, as if they are considered as a single stage multiscale sol ver (corresponding
to step 1 in Algorithm 1)
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Jacobi is then limited as the fine scale operator has important off-diagonal coefficients. As
in Møyner and Lie (2016), Wang et al. (2014), the I LU0 smoother will be chosen when
operating smoother-multiscale solution cycles with these methods.

3.2 FV-MHMMWeighting Schemes

The definition of a weighting schemes is crucial for the FV-MHMM as previously described
in Franc et al. (2017). This is particularly important where the permeability field has both
high contrast in the values in a short distance range and long correlated features whose
characteristic lengths are larger than the size of a coarse cell. Two of them are described in
the following subsections.

3.2.1 Transmissivity Weighting (tw) Scheme

For the FV-MHMM, according to Franc et al. (2017), we can weight the functions of Pl(σ )

to produce a new space that is piecewisely adapted to the neighbor transmissivities of the
selected coarse face. Let us define the transmissivity weighting scheme (tw) for σ ∈ FH :

– Fh,σ denotes the set of fine faces of σ

– Te denote the transmissivity of the fine face e ∈ Fh,σ .

Let the function λσ be defined on σ such that

λσ (x) = Te∑
e∈Fh,σ

Te
for all x ∈ e, e ∈ Fh,σ .

Then, the weighted space �l is spanned on each coarse faceσ by λσ Pl(σ ).

3.2.2 MultiScale Two Point Flux Approximation (mstpfa) Scheme

Another adaptation can be inspired from Møyner and Lie (2014), Aarnes (2004). Performing
a local simulation of an imposed flux through the coarse face, the heterogeneous fine scale
fluxes along the coarse face can be used to build a weighting scheme. Let us define a multiscale
two point flux approximation weighting scheme (mstpfa) for σ ∈ FH , FH ∩ ∂� = ∅:

– Fh,σ denotes the set of fine faces of σ

– φe denote the flux of the fine face e ∈ Fh,σ .

Let the function λσ be defined on σ such that

λσ (x) = φe∑
e∈Fh,σ

φe
for all x ∈ e, e ∈ Fh,σ .

Then, the weighted space �l is spanned on each coarse faceσ by λσ Pl(σ ).
In the next section, a focus will be done on the accuracy of each method compared to

different facies. As an indicator, we will compare the fine scale solution to the multiscale
ones. The accuracy with respect to the fine grid finite volume solution will be assessed using
the following error measures:

εL2 = ||pms − pre f ||2
||pref ||2 (17)

ε1(x) = |pms(x) − pref (x)|
pmax

ref − pmin
ref

, x ∈ �. (18)



The first indicates the overall level of error, while the second plotted in colormap mode
will allow us to correlate the errors with the mesh and/or the permeability field features.
Whether use of weighted version or native of FV-MHMM, quadratic polynomial space will
be used to approximate �H (i.e., use of �2). An I LU0 smoother will be used when dealing
with smoother-multiscale methods cycle implementation, denoted as improved version for
MsFv and MsRSB. In the next section, MRST2016 Toolbox (Lie 2014) will be used when
considering tests for both MsFv and MsRSB methods.

4 The 10th SPE Case

The first test involves 2D layers of the 3D heterogeneous permeability field that has been
generated for the 10th SPE benchmark [see Christie et al. (2001)]. It is a well-known test case
that produces two main facies characteristics. On the 35 first layers, Tarbert formation types
have been generated. Those layers are characterized by correlated log-normally distributed
permeability values with high contrasts but moderate correlation lengths with respect to the
size of the domain. On the remaining 50 layers, a fluvial Upper-Ness type has been generated.
Those are channelized, i.e., the correlation length is of the size of the global domain extent. It
produces very challenging permeability fields to perform upscaling on, as the scale separation
assumption is not fulfilled. In a first step, native version of each multiscale method will be
tested on different layers. In a second step, some improvement techniques will be taken into
account and the error levels reported.

The two layers we select to perform this study are the 13th layer, for the top layers,
and 84th layer, for the bottom layers. Once again they are chosen because they correspond,
respectively, to two different permeability backgrounds, with different correlation lengths.
Their log-permeability maps are reported in Fig. 5.

Dealing with the channelized typed layers, MsFv struggles to converge as explained in
Møyner and Lie (2016), Wang et al. (2014). Nonetheless, a converged result can be obtained
coarsening the coarse mesh, including more heterogeneous features in the same coarse cell.
It is then decided to run tests with a 5 × 11 and 10 × 11 coarse meshes. Such a coarsening
will result in a loss of accuracy for both MsFv and FV-MHMM. The coarse discretization
5 × 11 is chosen when reporting ε1(x) as colormap.

For the numerical test cases, we define the following conditions reported in Table 1.

4.1 Native Versions of Multiscale Solvers

In this section, all the methods are used as direct solver. That is to say, with considering
only the first stage of Algorithm 1 for MsFv and MsRSB. For FV-MHMM, it excludes any
weighting schemes.

From Fig. 6a, the reader can notice that all methods localized their error peaks in the
impermeable area at the top of the layer. From the L2-norm error reported in Table 2a, it
can be observed that the FV-MHMM in this configuration produces one order of magnitude
lower error.

Switching to the channelized 84th layer, as the MsFv produces locally ε1(x) error measures
greater than 1, the scale is limited to the second largest value (which is obtained for FV-
MHMM). From Fig. 6b, it can be observed that each methods produces their maximum
errors, where impermeable features appear in the highly permeable channels. As confirmed



Fig. 5 Log-penneability field on the 13th and 84th layers 

Table 1 Simulation conditions 
for SPE 10th test case Physics dim. 

Fine grid 
Coarse grids 
Boundary cdt 

-· -:, -. 
Il .. -

J 

.r 

·11 

·12 

-13 

·14 

·15 

·16 

·17 

-18 

1200 ft X 2200 ft 
60 x 220cells 
(5, 10) x 11 cells 
t:,p = 1 Pa 

by the L2-norm error report in Table 2b, MsRSB produces the most accurate result on that 

facies with five times lower error level. 
Repeating these tests on several Jayers along the 10th SPE test case, EL2 measures are 

represented in Fig. 7, white statistical report per facies is reported on Table 3. The same 

observation can be generalized. MsRSB is the most accurate method for channelized media, 

as it can benefit from the overlapping definitions in its basis functions construction. It includes 

more effects from the highly connected paths, whereas FV-MHMM, which has independently 

constructed basis functions, is then lirnited by its definition of effective boundary condition to 

apply to its local problem lambda and local problem source. Indeed, the space A1 is spanned 

by P1(a) on each coarse face a E FH, independently from the fine scale information, 

hence, the introduction of weighting scheme for the space A1. In order to better fit the 

heterogeneous media, we can modify the native version of each algorithrn. MsFv can malœ 

the use of smoothing steps in order to converge to the desired fine scale solution. Based on 

the native MsFv, the neglected fluxes from the localization assumption can be estimated from 

the residual. 
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Fig. 6 Native methods: normalized error E 1 (x) for the 13th and 84th SPE layer 
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Table 2 Native methods: 
L2-norm error report for native 
methods (i.e., single stage MsFv 
or MsRSB and Fv-MHMM 
without weighing scheme). NC 
stands for non-converged solution 

MsFv MsRSB Native Fv-MHMM 

(a) Native methods: EL
2 

error report for 13th layer

Mesh 10 X 11 0.0216 0.0209 0.00249 

Mesh 5 X 11 0.0236 0.0220 0.00226 

(b) Native methods: EL
2 

error report for 84th layer

Mesh 10 x 11 NC 0.0111 0.0322 

Mesh 5 X 11 0.0390 0.0124 0.0585 

4.2 lmproved lmplementations Versions of the Multiscale Algorithms 

In Fig. 8 is reported Et (x) for MsRSB and MsFv with 25 cycles and 100 cycles of smoother

multiscale solution. The EJ (x) levels for transmissivity weighted (tw) and multiscale two 

point flux approximation (mstpfa) FV-MHMM are also reported. 

On the 13th layer (Fig. 8a), the smoothing cycles significantly improved the accuracy 

of the solution. Similarly, noticing the scales, we can verify that tw and mstpfa weighting 
schemes have positive impact on the accuracy. This result is supported by the report on L2-

norm error synthesized in Table 4a. A hundred cycles drop the error levels by two orders of 

magnitude, while weighting scheme produces between one and half to two times less error. 
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Table 3 Native methods: 
L2-norrn statistics per facies 

MsFv 
MsRSB 
Native F v -MHMM 

Top layers 

0.0246 (0.0128) 

0.0242 (0.0125) 

2.03 (0.41) X J0-3 

Values are presented as mean (standard deviation) 

MsFv

MsRSB

Fv-MHMM native -

Bottom layers 

0.150 (0.196) 

0.0246 (0.0138) 

0.0520 (0.0166) 

On the 84th layer (Fig. 8b), MsFv and MsRSB efficiently smooth out their errors, while 

weighting schemes for FV-MHMM allow to reduce the error in better representing the flow 

at the boundaries when computing basis functions. Looking at the report on Table 4b, the 

cycles significantly improve the accuracy of the multiscale approximation, especially for 

MsFv. Regarding, the weighting schemes effects, it can be noticed that mstpfa scheme is more 

efficient on 5 x 11 coarse discretization than on 10 x 11 discretization. It can be explained 

by the fact that it includes more details of the flow by considering Jarger neighboring coarse 

cells in its computation. 

From the summary plot Fig. 9 and statistical report Table 5, we can observe that on the top 

Jayers, the smoother-multiscale solution cycles for MsFv and MsRSB result in error Jevels 

one order of magnitude smaller than what can be achieved with tw and mstpfa FV-MHMM. 

On the channelized medium, MsRSB cycled and weighted formulations achieved to reach 

the same accuracy, when comparing their norm-L2 error Jevels. 

5 The Slanted Case Study 

The second test case is a bottom to top cross-flow performed on a 75 by 5 ft slanted permeabil
ity field (see Table 6). The main feature of this case is the stripes of Jow and high permeable 
regions which are non aligned with the cartesian grids. Ten realizations have been drawn 
with the two non-dimensional correlation Jengths À J = 0.5 and À2 = 0.02. The variance of 

K is set such as a(log(k)) = 3.0. An example of such a realization is given on Fig. 10. 

As before, error Jevels are reported in terms of mean and standard deviations in Table 7. 

From these data, the reader can observe that on native formulations, both MsFv and MsRSB 
have their error Jevel reduce when considering a refined coarse discretization. Switching to 

the improved version of algorithm, it can be noticed that too fine coarse mesh for MsFv 

deteriorates the accuracy as it includes Jess details about the surrounding flows. Apart from 
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Fig. 8 Improved melhods: nonnalized error EJ (x) for the 13th and 84th SPE layer 

tw Fv•MHMM 

mstpfa Fv-MHMM 

tw Fv-MHMM 

mstpfa Fv-MHMM 

0.2 

0,15 

0.1 

0.05 

0.12 

0.1 

0.08 

0.06 

0.04 

0.02 

Table4 Improved methods: L2-norm error report for improved methods (i.e., 100 smoother-multiscale solu
tion cycles for MsFv or MsRSB and FV-MHMM wilh tw and mstpfa weighting schemes) 

MsFv MsRSB 

(a) lmprovedmethods: L2-11orm error report/or 13th layer

Mesb 10 X 11 3.21 X 10-5 2.55 X 10-5 

Mesh 5 X 11 2.11 X 10-4 1.58 X 10-4 

(b) lmproved methods: L2-11orm error report for 84th layer

Mesh 10 X 11 NC 4.72 x 10-4 

Mesh 5 X 11 8.55 X 10-4 1.11 X 10-3 

NC stands for non�onverged solution 

tw FV-MHMM 

1.14 X 10-3

1.46 X 10-3 

3.25 X 10-3

4.73 X 10-3 

mstpfa FV-MHMM 

9.30 X 10-4

8.53 X 10-4 

3.24 X 10-3

3.67 X 10-3 
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Fig. 9 Improved rnethods: relative norrn-L2 errors for ail the SPE layers 

Table 5 Improved rnethods: L2-norrn statistics per facies 

MsFv 
MsRSB 
twFv-MHMM 

rnstpfa Fv-MHMM 

Top layers 

1.82 (1.02) X 10-4

2.35 (1.47) X 10-4

2.03 (0.47) X 10-3 

9.30(4.17) X 10-4

Values are presented as rnean (standard deviation) 

Table 6 Simulation conditions for the slanted test case 

Physical dimensions of the slanted test case 
Fine grid: number of cells (x, y)

Coarse grid: number of cells (x, y)

Pressure drop irnposed in y-direction 

Bonorn layers 

0.255 (0.347) 
6.78 (7.82) X 10-3 

6.56 (2.68) X 10-3 

7.56(6.28) X 10-3 

75ft X 5ft 
256 x 64cells 
32 x 16 cells/8 x 4 cells 
llp = 1Pa 

Fig. 1 O Exarnple of a Iog-perrneability field rnap in the slanted case 

that, the cycles are once again efficient in dropping the error Jevel up to two orders of 

magnitude. On the FV-MHMM side, weighting schemes are counterproductive. The slanted 

heterogeneous features induce a corner flow which is badly estimates by both schemes. lt 
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Table 7 L2-norm statistics on slanted realizations

8 × 4 32 × 16

(a) Native methods

MsFv 0.0576 (0.0224) 0.0526 (0.0202)

MsRSB 0.0365 (0.00457) 0.0180 (0.00257)

Native FV-MHMM 0.0164 (0.00325) 5.73(1.51) × 10−3

(b) Improved methods

MsFv 3.62 (1.31) × 10−3 4.42 (1.12) × 10−2

MsRSB 4.10 (1.37) × 10−3 9.24 (3.97) × 10−5

tw FV-MHMM 2.15 (0.167) × 10−2 1.79 (0.156) × 10−2

mstpfa FV-MHMM 8.39 (2.09) × 10−3 8.75 (0.625) × 10−3

Values are presented as mean (standard deviation)

results in less accurate solution. Considering this analysis of the results on the slanted case,
an alternative approach for the FV-MHMM method (different of tw or mstpfa approaches)
will be needed to obtain results comparable to other methods. For example, a possibility
we are exploring is to build an adaptive formulation of the FV-MHMM formulation, in the
same vein as adaptive finite elements, which could be combined with tw or mstpfa weighting
schemes approaches.

6 Conclusion

In this paper, three different multiscale methods FV-MHMM, MsFv and MsRSB have been
tested using several different configurations. The MsFv and MsRSB methods are currently
the most widely used in the reservoir simulation community (Moyner et al. 2015; Lunati
et al. 2009). Their performances have been cross-compared on 2D cases considering the
number of iterations they use solving the system, as a raw indicator of their numerical
efficiency. On log-normally distributed facies of the 10th SPE test case, MsFv and MsRSB
share the same accuracy which is improved by two order of magnitude after few smoother-
multiscale solution cycles. FV-MHMM has in-between performance in terms of accuracy
and can improve slightly its results by the use of weighting schemes (tw or mstpfa). The
channelized type of medium challenges more the multiscale methods tested. MsFv has to
work with a coarse enough mesh to be sure to find a solution on all layers as already mentioned
in Wang et al. (2014), Møyner and Lie (2016). Considered as a single stage multiscale solver,
MsRSB finds solution with one order of magnitude lower error than the native form of FV-
MHMM. If fewer cycles for MsRSB and weighting scheme for FV-MHMM are used, the
error levels are lowered by one order of magnitude.

In a last part, a slanted permeability case was studied: with this type of heterogeneity, the
FV-MHMM struggles to correctly reproduce fine scale fluxes. On the other hand, MsRSB
and MsFv, respectively, in their cycled version, correctly reproduce the fine scale details, as
their solutions converge to the fine scale solution. This slanted permeability test highlights a
limitation of FV-MHMM, which has to do with the proper definition of effective boundary
conditions for its basis functions. Indeed, either MsFv by its dual-primal mesh definition
which leads to a multiple point coarse stencil, or MsRSB by its definition of overlapping
areas, include more details of the surrounding flow when computing their basis functions.
The construction of the weighting schemes for the FV-MHMM aims at enhancing this bound-



ary condition to better fit the surrounding flow. In the slanted test case, since the weighting
schemes do not improve the solution accuracy, another idea would be to develop an adap-
tive formulation of the FV-MHMM by analogy with adaptive finite elements. This work is
ongoing.

On the other hand, MsRSB and MsFv methods have been enriched by many improvements.
They have already been used to treat 3D cases with more elaborate fluid models (Møyner
et al. 2017; Hilden et al. 2016). For instance, capillary and gravity effects, black oil model
and fractured medium, have all been implemented (Møyner et al. 2016; Bosma et al. 2017;
Shah et al. 2016; Lunati and Jenny 2008). MsRSB is also adapted to unstructured meshes
(Møyner 2014). Furthermore, after having been reformulated as algebraic solvers, MsRSB
and MsFv are now considered in the most recent works as a non-symmetric preconditioner
for the fine scale problem using GMRES solvers (Møyner 2014; Manea et al. 2016). Once
formulated in its algebraic form, FV-MHMM could be used as a preconditioning technique,
in the same fashion as in the work of (Lunati and Lee 2009). This will be a forthcoming line
of research.
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A Complexity Comparison

Following the steps which are written in Jenny et al. (2003) for complexity analysis of MsFv
multiscale algorithm, we remind here the results for FV-MHMM (Franc et al. 2017) and
proposed the same kind of analysis for MsRSB. The notations introduced are presented in
Table 8.

Assuming that t1(n) ∼ ctmnα where tm is the time spent for one multiplication, c and α

are constants depending on the solvers. This complexity analysis neglects time spent in the
reconstruction of the pressure and the fluxes. For MsFv, reproducing the analysis of Jenny
et al. (2003), it leads to:

Table 8 Parameters

nv Number of volumes in the fine grid

Nv Number of volumes in the coarse grid

Nn Number of nodes in the coarse grid

Nf Number of faces in the coarse grid

γ Coarsening ratio ∼ nv/Nv

an Number of coarse volumes adjacent to a coarse node

av Number of coarse volumes adjacent to a coarse volume

nit Number of iterations spent in smoothing basis function for MsRSB

t1(n) Time to invert a linear system with n unknowns

Nv nv γ d av av Nn nit

9 3600 400 2 8 4 12 100



tMsFv1 ≈ Nnanctmγ α,

tMsFv2 ≈ Nv(av + 1)ctmγ α,

tMsFv3 ≈ ctm Nα
v

with the step MsFv1, the time spent in constructing the basis function on the dual grid;
MsFv2, the time spent building coarse scale equivalent transmissivities on the coarse grid
and MsFv3, the time needed to invert the coarse system.

In the same manner, FV-MHMM can be cast into three main steps:

tLLP ≈ 2d(l + 1)Nvctmγ α,

tLSP ≈ Nvctmγ α,

tGP ≈ ctm[Nv + (l + 1)Nf ]α

where d is the dimension number, l the order of the polynomial space used to approximate

�H and considering an average number of faces as Nf ≈ d(N 1/d
v +1)

d−1∏
i=1

N 1/d
v . The LLP step

denotes the time spent in the construction of Lagrange multipliers-related basis functions;
LSP, the time spent in the construction of source term-related basis functions and GP the
time spent inverting the global problem.

For the MsRSB, it has to be noted that its basis functions computations do not require
inverting any operator. Indeed, in the Jacobi smoother formulation, only diagonal precondi-
tioner D−1 is required, which is trivially inverted. It left us with:

tMsRSB1 ≈ nit(γoverlap + γ )Nvtm

tMsRSB2 ≈ nitγoverlapNvtm

tMsRSB3 ≈ ctm Nα
v

with the step MsRSB1 stands for the time spent in smoothing the basis functions on the
overlapping supports; MsRSB2 represents the time spent restricting the spreading of the basis
functions to ensure mass conservation and, as in MsFv, MsRSB3, the time needed to invert
the coarse system. Estimating the overlap size is done counting nodes nun, edges nue and
faces nuf of a coarse cell depending on d (see Table 9). To define γoverlap, let us introduce
nc the mean number of fine cells per dimension embedded in a coarse cell, that is do say
nc ≈ γ 1/d .Then, the overlapping area is counted as:

γoverlap = nufnc(d−1)

(
nc

2

)

+ nuenc(d−2)

(
nc

2

)2

+ nun

(
nc

2

)d

Table 9 Counting for MsRSB
overlap

d = 1 d = 2 d = 3

nuf 2 4 6

nue 0 0 12

nun 0 4 8
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Fig. 11 Complexity plot for Table 8 parameters. From left to right, the first region stands for MsFv, the second 
for FV-MHMM, the third for MsRSB. The right most region represents the total amount of computational 
time spent for each method 

Moreover, the step MsFv 1 and step MsFv2 are reported to be parallelizable for the MsFv 

method (Jenny et al. 2003). As for the FV-MHMM, all the local problems lambda (LLP) and 

local problems source (LSP) are independent from each others and therefore can be treated 

in parallel. Moreover, the TPFA matrix for a selected coarse cell has to be generated only 

one time and can be used for solving both LLP and LSP associated with this coarse cell (see 

Fig. 11). 
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