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referred to as the fine scale. However, upscaling and multiscale methods differ when it comes to the treatment of the fine scale. Upscaling techniques, once they have averaged the flow properties, produce an upscaled equivalent model and deal with it at the large-scale. On the other hand, multiscale methods are designed to keep the fine scale information as they consider that a good accuracy cannot be achieved without it. Then, they will couple scales thanks to upgridding and downgridding steps.

For the methods that are in use in this study, the Darcy-to-Field scale upscaling will be considered. The generalized Darcy's law is considered as the fine scale model. This will give us the reference solution. Multiscale algorithms have been extensively studied, starting from the works of Hou and Wu on multiscale finite elements [START_REF] Hou | A multiscale finite element method for elliptic problems in composite materials and porous media[END_REF] for Darcy-like equations.

On the one hand, the finite elements methods have known important developments with multiscale finite element methods (MsFEM) [START_REF] Arbogast | Mixed finite element methods on nonmatching multiblock grids[END_REF], numerical subgrid methods [START_REF] Arbogast | Implementation of a locally conservative numerical subgrid upscaling scheme for two-phase Darcy flow[END_REF][START_REF] Arbogast | A multiscale mortar mixed finite element method[END_REF]) and more recently generalized multiscale finite element methods (GMsFEM) [START_REF] Efendiev | Generalized multiscale fini te element methods (gmsfem)[END_REF]). These rely on the construction of local basis function that fits the underlying heterogeneities. Numerical subgrid methods are rather solving for averaged pressure values on the coarse scale and for its variation on subgrid scale.

On the other hand, the multiscale finite volume methods [MsFv [START_REF] Jenny | Multi-scale finite-volume method for elliptic problems in subsurface flow simulation[END_REF]] have been derived and designed to be locally and globally conservative. This work has been extended by introducing iterative algorithm to smooth multiscale approximate solutions (Hajibeygi et al. 2008). Later works have introduced other features to model density driven flows or flows with capillary forces by using correction functions (Lunati and Lee 2009;Lunati and Jenny 2006a;Hajibeygi and Jenny 2008;[START_REF] Jenny | Modeling complex wells with the multi-scale finite-volume method[END_REF]. More recently, an algebraic formulation of the method has been developed [START_REF] Wang | Algebraic multiscale solver for flow in heterogeneous porous media[END_REF][START_REF] Lee | Adaptive multiscale finite-volume method for nonlinear multiphase transport in heterogeneous formations[END_REF][START_REF] Zhou | Two-stage algebraic multiscale linear solver for highly heterogeneous reservoir models[END_REF]. Its use as a preconditioner for Krylov-type iterative solvers has been investigated [START_REF] Castelletto | Multiscale finite-element method for linear elastic geomechan ics[END_REF][START_REF] Lunati | An iterative multiscale finite volume algorithm converging to the exact solution[END_REF][START_REF] Manea | Parallel multiscale linear solver for highly detailed reservoir models[END_REF]). On another branch, the multiscale restriction smoothed basis [MsRSB [START_REF] Møyner | A multiscale restriction-smoothed basis method for high contrast porous media represented on unstructured grids[END_REF]] has been developed. It takes its inspiration from extensive studies of MsFv algorithm and algebraic multigrid solvers [START_REF] Vaněk | Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems[END_REF] introducing multiple time Jacobi smoothing on overlapping supports to construct its basis functions. An alternative method, finite volume multiscale hybrid mixed method [FV-MHMM [START_REF] Franc | Fv-mhmm method for reservoir modeling[END_REF]] has been proposed. It is based on the family of multiscale hybrid mixed finite element methods introduced in [START_REF] Harder | A family of multiscale hybrid-mixed finite element methods for the Darcy equation with rough coefficients[END_REF] which has been adapted to finite volume formulation.

This paper intends to cross-compare the above-mentioned finite volume multiscale methods, i.e., the multiscale finite volume method (MsFv), the multiscale restriction smoothed basis method (MsRSB) and the finite volume multiscale hybrid mixed method (FV-MHMM). The first section will give more details about the considered three methods. In a second section, the performance of each method on 2D layers of the 10th SPE [START_REF] Christie | Tenth spe comparative solution project: a comparison of upscaling techniques[END_REF]) test case will be compared. As a last test case, a slanted permeability field will be considered.

Methods Description

In this section, we describe briefly the three finite volume methods used to study multiscale problems for fluid flow in heterogeneous media. For single-phase incompressible flows, pressure field equation over the domain follows the Darcy's equation:

∇ • (K (x)∇ p) = -f in , ( 1 
)
where K (x) stands for the permeability field which is heterogeneously distributed over , and f a general source term. Boundary conditions are needed and are defined according to the following equations.

(K (x)∇ p) • n ∂ = g on ∂ N , p = p g on ∂ D ,
where n ∂ stands for the unit normal vector to the boundary ∂ outward to , and Herein, we focus on the finite volume methods available and we briefly recall the systems of equations to be solved in each of them.

∂ D ∪ ∂ N = ∂ , ∂ D ∩ ∂ N = ∅.

FV-MHMM

Let M H be the set of coarse cells K partitioning the domain , F H be the set of coarse faces, and ∂ K denote the boundary of a coarse cell K with its unit normal vector n K oriented outward to K .

Starting from the primal hybrid formulation of Raviart and Thomas (1977a, b), [START_REF] Harder | A family of multiscale hybrid-mixed finite element methods for the Darcy equation with rough coefficients[END_REF][START_REF] Harder | On a multiscale hybrid-mixed method for advective-reactive dominated problems with heterogeneous coefficients[END_REF] explain how to construct a multiscale method sharing the same idea that flux continuity between cells (here coarse scale cells) can be enforced weakly using Lagrange multipliers λ. It is formulated as: find ( p, λ) ∈ V × such that:

K (x)∇ p • ∇qdx + K ∈M H ∂ K λn • n K q| K dσ + K ∈M H ∂ K μn • n K p| K dσ for all (q, μ) ∈ V × , = f vdx + ∂ μ p g dσ (2)
where V is the broken Sobolev space H 1 (M H ) defined as:

H 1 (M H ) = {v ∈ L 2 ( ) : v| K ∈ H 1 (K ), K ∈ M H }, (3) 
stands for the following Lagrange multipliers space

:= ⎧ ⎨ ⎩ μ ∈ K ∈M H H -1 2 (∂ K ) : ∃σ ∈ H div ( ) s.t. μ| ∂ K = σ • n| ∂ K , K ∈ M H ⎫ ⎬ ⎭ , (4)
∇v is the broken gradient equal to ∇v| K on each coarse cell K ∈ M H , and

H -1 2 (∂ K ) is the dual space of the space H 1 2 (∂ K ) spanned by the traces on ∂ K of functions in H 1 (K ).
Let then split the space V orthogonally as:

V = V 0 ⊕ Π K ∈M H W K ,
where V 0 is the space of piecewise constant functions on each coarse cell K ∈ M H and W K is the subset of null mean function over H 1 (K ). This definition introduces the two-scale modeling scheme.

At fixed Lagrange multiplier λ, the fine scale solution in W K defined by Eq. ( 2) decouples. It is obtained by superposition of the solutions of two local problems, a local lambda problem for Lagrange multipliers-driven effects and a local source problem for source-driven effects. They, respectively, read:

Find pK ∈ W K such that:

K K (x)∇ pK • ∇ qK dx + ∂ K λn • n K qK dσ = 0 for all ṽK ∈ W K , (5) 
Find pK ∈ W K such that:

K K (x)∇ pK • ∇ qK dx = K f qK dx for all ṽK ∈ W K , ( 6 
)
setting pK = T K λ and pK = TK f . The coupling of the local fine scale solutions is obtained using Eq. ( 2) with test functions in V 0 × to compute the Lagrange multiplier λ and the mean values in the coarse cells. It is formulated as follows using the previous solutions of the local problems T K λ and TK f for all coarse cells K ∈ M H :

Find

p 0,K ∈ R, K ∈ M H and λ ∈ such that: ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ K ∈M H ∂ K λn • n K dσ = K f dx for all K ∈ M H , K ∈M H ∂ K μn • n K p 0,K + T K λ + TK f dσ = ∂ μu g for all μ ∈ . (7)
This multiscale algorithm is here implemented using a TPFA scheme for the local problems on each coarse cell K and by replacing the space by a subspace H . In the following test cases, the vector space H will be typically defined as the vector space of polynomials P l (σ ) of degree l on each coarse face σ ∈ F H . These choices of H will be denoted by l , l = 0, 1, 2 in the following sections. These polynomial spaces can also be weighted using harmonic averaging of the permeability field on each fine face of F H as described in the following section. Readers can refer to [START_REF] Franc | Fv-mhmm method for reservoir modeling[END_REF] for further details.

As an illustration, a typical basis function is reported, respectively, in Fig. 3a. Once these basis functions are computed and the global system Eq. ( 7) solved, the approximate fine scale pressure p fv-mhmm (x) is interpolated as a linear combination of the coarse cell pressures as follows:

p(x) ≈ p fv-mhmm (x) = K ∈M H ⎡ ⎣ p 0,K + σ ∈F H ,K T K λ + TK f ⎤ ⎦ (8)
Now, we will briefly recall the MsFv method.

MsFv

The multiscale method multiscale finite volume (MsFv) [START_REF] Jenny | Multi-scale finite-volume method for elliptic problems in subsurface flow simulation[END_REF]) is constructed using two different meshes. A primal coarse grid is defined by partitioning a fine grid as usual in multiscale methods (solid line on Fig. 1). Then, a dual coarse grid is constructed, joining the cell centers of the primal grid (dashed lines in Fig. 1). The basis functions will be evaluated on this staggered dual grid. Those basis functions are useful to calculate equivalent -
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transmissivities (see Fig. 3b). Those meshes are superimposed to a fine mesh grid, capturing the details of the fine scale properties.

We now briefly recall the first three steps of the construction regarding the calculation of the coarse pressure. A remaining step deals with conservative fine scale velocity field reconstruction which is required to couple the flow with a transport equation.

Let us consider a primat coarse grid denoted by M H with coarse cells K E M H of cell center XK. At each vertex X f of the primai grid, a dual coarse cell denoted by K is built joining the neighboring cell centers XK, K E Mf, where MK denote the set of primai coarse cells sharing the vertex X f , This defines the dual coarse grid M H as the set of dual coarse ce Ils K E M H. Let us also de note by x K, K E M K the vertices of the cell K.

The first step is to build the basis functions <Î> r K e M K (Fig. 3b) on each dual coarse cell K. The second step is the computation of the correction functions <i>! for ail K E M H.

Both sets of basis functions are used to interpolate the pressure as a linear combination of the primai coarse cell pressures pK , K E M H. This allows to express the fluxes on the primai coarse cell faces as linear combinations of the primai coarse cell pressures. Then, in the third step, the linear system for the primai coarse cell pressures is obtained from the conservation equations written on the primai coarse cells.

For each K E M H , the basis functions <l>r K E M ï{ are solutions of the following equations set on ,!!ie dual coarse cell K with value ôK,L at the vertices XL, L E M ï{ of the dual coarse cell K:

I V•K(x)V<I>� = 0 V ! . K(x)V<I>� = 0 <l>f (x L) = ôK,L, inK, on aK, LEM ï{ , ( 9 
)
The addition of a second kind of basis functions, correction basis functions, is set to model inhomogeneous part of the multiscale approximation of the fine scale pressure, introducing <I>f whose definition reads:

⎧ ⎪ ⎨ ⎪ ⎩ ∇•K(x)∇ K * = f in K , ∇ ⊥ • K(x)∇ ˜ K * = 0 on ∂ K , K * (x L ) = 0, L ∈ M K . ( 10 
)
It has to be noted that the correction functions are no more in use among the MsFv community nowadays ( Ţene et al. 2015), but are presented as originally part of the method. Once these basis functions are computed, the approximate fine scale pressure p msfv (x) is interpolated as a linear combination of the primal coarse cell pressures as follows:

p(x) ≈ p msfv (x) = K ∈M H pK ⎡ ⎣ K ∈ M K K K (x) ⎤ ⎦ + K ∈ M H K * (x) (11)
and the primal coarse cell pressures pK , K ∈ M H are obtained from the conservation equations in each primal coarse cell K defining the set of linear coarse scale equations.

If one would like to add, sink terms, gravity or capillary effects, new basis functions have to be defined, denoted as correction functions in the system of basis functions calculations [see [START_REF] Lunati | Multiscale finite-volume method for density-driven flow in porous media[END_REF] or [START_REF] Jenny | Modeling complex wells with the multi-scale finite-volume method[END_REF]]. An iterative scheme can also be applied in order to reduce the error which happened at dual coarse cells' boundaries. For multiphase flow, a conservative fine scale velocity field is required and an extra step is then needed to ensure that p msfv fulfills this requirement (Lunati and Jenny 2006b).

As a last method, we choose to report one of the most recent multiscale method MsRSB.

MsRSB

MsRSB method is inspired from the work on AMG solver [START_REF] Vaněk | Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems[END_REF]. It takes advantages of overlapping areas between coarse cells to compute the needed basis functions (see Fig. 2). However, a particular treatment has to be done during smoothing iterative process for the fine cells included in these overlapping regions. This will enforce the partition of unity, and it will allow to build a conservative operator (see Fig. 3c). Let us define three different areas for defining the basis functions computation associated with a given coarse cell K ∈ M H : I K the overlap support, the overlap's boundary B K and the global boundary inside the overlap region G ∩ I K introducing G as the superposition of all the overlaps' boundaries, G = K B K (see Fig. 2).

Let F denote the set of fine cells. For convenience, we identify in the following the domains K , I K , B K and G with their corresponding subsets of fine cells. Starting from the prolongation operator defined for all fine cells i ∈ F as P 1 i,K = 1, i ∈ K and P 1 i,K = 0, i / ∈ K and smoothing it using n relaxed Jacobi iterations, the algorithm then reads for ν = 1, n:

Starting from the prolongation operator defined for all fine cells i ∈ F as P 1 i,K = 1, i ∈ K and P 1 i,K = 0, i / ∈ K and smoothing it using n relaxed Jacobi iterations, the algorithm then reads for ν = 1, n:

1. Compute the relaxed Jacobi update with ω = 2 /3 optimal value for Poisson-like equation for I K , for each area

K di,K = -ω j∈F (D -1 (A -D)) i, j P ν j,K (12) 
with A the fine grid operator and D its diagonal.
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and the coarse scale system is obtained from the conservation equations in each coarse cell K ∈ M H .

Methods Improvement

Dealing with highly heterogeneous permeability fields exhibiting higly connected path is problematic for such methods. Both MsFv and MsRSB methods have known significant improvements since they were derived (Hajibeygi et al. 2008[START_REF] Hajibeygi | Error estimate and control in the msfv method for multiphase flow in porous media[END_REF][START_REF] Hajibeygi | Adaptive iterative multiscale finite volume method[END_REF][START_REF] Lunati | Multiscale finite-volume method for density-driven flow in porous media[END_REF][START_REF] Wang | Algebraic multiscale solver for flow in heterogeneous porous media[END_REF]. One of the most notable is to use several cycles successively smoothing and solving via multiscale methods to converge to the fine scale results.

The FV-MHMM does not implement such a technique. But two types of weighting schemes are proposed in this section in order to enhance its solution accuracy.

Let p ms denote the approximation of the fine scale pressure and p c be the coarse scale solution obtained by the multiscale method (without mention of the multiscale method). Let us introduce the operator notation of Eq. ( 1) as

Ap = b (14) A c p c = Rb. ( 15 
)
With P the prolongation operator based on the basis function computed in MsFv or MsRSB and R the restriction operator as described in [START_REF] Møyner | A multiscale restriction-smoothed basis method for high contrast porous media represented on unstructured grids[END_REF]. The coarse scale operator A c is then related to the fine scale operator A, in such a way as:

R(Ap ms ) = R A(Pp c ) = A c p c . ( 16 
)
Using this multigrid formulation, an iterative form of these two methods can be written.

MsFv and MsRSB iterative formulation

Both MsFv and MsRSB can be used in smoother-multiscale cycle as mentioned in Algorithm 1.

Let us denote the multiscale residuals R ν-1 ms = b-Ap ν-1 ms , which measures the discrepancy from the reconstructed multiscale solution p ms to the finite volume solution A -1 b.

with f smooth (z) implementing either a Jacobi smoother or an ILU 0 factorization with 0 level of fill-in. The use of different smoothing functions leads both MsFv and MsRSB to different convergence behavior. The optimal number of smoothing iterations n smooth has been reported to be approximatively the number of coarsening ratio ( ¸Tene et al. 2015[START_REF] Shah | The multiscale restriction smoothed basis method for fractured porous media (f-msrsb)[END_REF]. The cases reported in Fig. 4 are simulations over the two type of facies found in the layers in 10th SPE case. They are performed setting a tolerance stopping criteria on the residuals to 10 -12 and a 10 × 11 coarses cells onto the 60 × 220 fine cells discretization.

In Fig. 4a, for the log-normally distributed facies, the convergence of the Jacobi and ILU 0 smoothers is comparable but allows lower error reduction with respect to the number of iterations.

In Fig. 4b, it can be seen, as reported in [START_REF] Møyner | A multiscale restriction-smoothed basis method for high contrast porous media represented on unstructured grids[END_REF], [START_REF] Wang | Algebraic multiscale solver for flow in heterogeneous porous media[END_REF], that the MsFv methods can struggle to find a solution on such channelized medium. It can be corrected choosing larger blocks to fit more heterogeneous features into the coarse blocks. Switching to a 5 × 11 coarse discretization allows to find a converged MsFv solution but implies a lower accuracy for the MsRSB solution. This configuration is reported in Fig. 4c. ... Jacobi is then limited as the fine scale operator has important off-diagonal coefficients. As in [START_REF] Møyner | A multiscale restriction-smoothed basis method for high contrast porous media represented on unstructured grids[END_REF], [START_REF] Wang | Algebraic multiscale solver for flow in heterogeneous porous media[END_REF], the I LU 0 smoother will be chosen when operating smoother-multiscale solution cycles with these methods.
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FV-MHMM Weighting Schemes

The definition of a weighting schemes is crucial for the FV-MHMM as previously described in [START_REF] Franc | Fv-mhmm method for reservoir modeling[END_REF]. This is particularly important where the permeability field has both high contrast in the values in a short distance range and long correlated features whose characteristic lengths are larger than the size of a coarse cell. Two of them are described in the following subsections.

Transmissivity Weighting (tw) Scheme

For the FV-MHMM, according to [START_REF] Franc | Fv-mhmm method for reservoir modeling[END_REF], we can weight the functions of P l (σ ) to produce a new space that is piecewisely adapted to the neighbor transmissivities of the selected coarse face. Let us define the transmissivity weighting scheme (tw) for σ ∈ F H :

-F h,σ denotes the set of fine faces of σ -T e denote the transmissivity of the fine face e ∈ F h,σ .

Let the function λ σ be defined on σ such that

λ σ (x) = T e e∈F h,σ T e
for all x ∈ e, e ∈ F h,σ .

Then, the weighted space l is spanned on each coarse faceσ by λ σ P l (σ ).

MultiScale Two Point Flux Approximation (mstpfa) Scheme

Another adaptation can be inspired from Møyner and Lie (2014), [START_REF] Aarnes | On the use of a mixed multiscale fini te element method for greaterflexibility and increased speed or improved accuracy in reservoir simulation[END_REF]. Performing a local simulation of an imposed flux through the coarse face, the heterogeneous fine scale fluxes along the coarse face can be used to build a weighting scheme. Let us define a multiscale two point flux approximation weighting scheme (mstpfa) for σ ∈ F H , F H ∩ ∂ = ∅:

-F h,σ denotes the set of fine faces of σ φ e denote the flux of the fine face e ∈ F h,σ .

Let the function λ σ be defined on σ such that

λ σ (x) = φ e e∈F h,σ φ e
for all x ∈ e, e ∈ F h,σ .

Then, the weighted space l is spanned on each coarse faceσ by λ σ P l (σ ).

In the next section, a focus will be done on the accuracy of each method compared to different facies. As an indicator, we will compare the fine scale solution to the multiscale ones. The accuracy with respect to the fine grid finite volume solution will be assessed using the following error measures:

L 2 = || p ms -p re f || 2 || p ref || 2 (17) 1 (x) = | p ms (x) -p ref (x)| p max ref -p min ref , x ∈ . ( 18 
)
The first indicates the overall level of error, while the second plotted in colormap mode will allow us to correlate the errors with the mesh and/or the permeability field features. Whether use of weighted version or native of FV-MHMM, quadratic polynomial space will be used to approximate H (i.e., use of 2 ). An I LU 0 smoother will be used when dealing with smoother-multiscale methods cycle implementation, denoted as improved version for MsFv and MsRSB. In the next section, MRST2016 Toolbox (Lie 2014) will be used when considering tests for both MsFv and MsRSB methods.

The 10th SPE Case

The first test involves 2D layers of the 3D heterogeneous permeability field that has been generated for the 10th SPE benchmark [see [START_REF] Christie | Tenth spe comparative solution project: a comparison of upscaling techniques[END_REF]]. It is a well-known test case that produces two main facies characteristics. On the 35 first layers, Tarbert formation types have been generated. Those layers are characterized by correlated log-normally distributed permeability values with high contrasts but moderate correlation lengths with respect to the size of the domain. On the remaining 50 layers, a fluvial Upper-Ness type has been generated. Those are channelized, i.e., the correlation length is of the size of the global domain extent. It produces very challenging permeability fields to perform upscaling on, as the scale separation assumption is not fulfilled. In a first step, native version of each multiscale method will be tested on different layers. In a second step, some improvement techniques will be taken into account and the error levels reported.

The two layers we select to perform this study are the 13th layer, for the top layers, and 84th layer, for the bottom layers. Once again they are chosen because they correspond, respectively, to two different permeability backgrounds, with different correlation lengths. Their log-permeability maps are reported in Fig. 5.

Dealing with the channelized typed layers, MsFv struggles to converge as explained in [START_REF] Møyner | A multiscale restriction-smoothed basis method for high contrast porous media represented on unstructured grids[END_REF], [START_REF] Wang | Algebraic multiscale solver for flow in heterogeneous porous media[END_REF]. Nonetheless, a converged result can be obtained coarsening the coarse mesh, including more heterogeneous features in the same coarse cell. It is then decided to run tests with a 5 × 11 and 10 × 11 coarse meshes. Such a coarsening will result in a loss of accuracy for both MsFv and FV-MHMM. The coarse discretization 5 × 11 is chosen when reporting 1 (x) as colormap.

For the numerical test cases, we define the following conditions reported in Table 1.

Native Versions of Multiscale Solvers

In this section, all the methods are used as direct solver. That is to say, with considering only the first stage of Algorithm 1 for MsFv and MsRSB. For FV-MHMM, it excludes any weighting schemes. From Fig. 6a, the reader can notice that all methods localized their error peaks in the impermeable area at the top of the layer. From the L 2 -norm error reported in Table 2a, it can be observed that the FV-MHMM in this configuration produces one order of magnitude lower error.

Switching to the channelized 84th layer, as the MsFv produces locally 1 (x) error measures greater than 1, the scale is limited to the second largest value (which is obtained for FV-MHMM). From Fig. 6b, it can be observed that each methods produces their maximum errors, where impermeable features appear in the highly permeable channels. As confirmed 
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lmproved lmplementations Versions of the Multiscale Algorithms

In Fig. 8 is reported Et (x) for MsRSB and MsFv with 25 cycles and 100 cycles of smoother multiscale solution. The EJ (x) levels for transmissivity weighted (tw) and multiscale two point flux approximation (mstpfa) FV-MHMM are also reported.

On the 13th layer (Fig. 8a), the smoothing cycles significantly improved the accuracy of the solution. Similarly, noticing the scales, we can verify that tw and mstpfa weighting schemes have positive impact on the accuracy. This result is supported by the report on L2norm error synthesized in Ta ble 4a. A hundred cycles drop the error levels by two orders of magnitude, while weighting scheme produces between one and half to two times less error.
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Slioe number of the SPE 10th slice On the 84th layer (Fig. 8b), MsFv and MsRSB efficiently smooth out their errors, while weighting schemes for FV-MHMM allow to reduce the error in better representing the flow at the boundaries when computing basis functions. Looking at the report on Table 4b, the cycles significantly improve the accuracy of the multiscale approximation, especially for MsFv. Regarding, the weighting schemes effects, it can be noticed that mstpfa scheme is more efficient on 5 x 11 coarse discretization than on 10 x 11 discretization. It can be explained by the fact that it includes more details of the flow by considering Jarger neighboring coarse cells in its computation.

From the summary plot Fig. 9 and statistical report Table 5, we can observe that on the top Jayers, the smoother-multiscale solution cycles for MsFv and MsRSB result in error Jevels one order of magnitude smaller than what can be achieved with tw and mstpfa FV-MHMM. On the channelized medium, MsRSB cycled and weighted formulations achieved to reach the same accuracy, when comparing their norm-L2 error Jevels.

The Slanted Case Study

The second test case is a bottom to top cross-flow performed on a 75 by 5 ft slanted permeabil ity fi eld (see Table 6). The main feature of this case is the stripes of Jow and high permeable regions which are non aligned with the cartesian grids. Ten realizations have been drawn with the two non-dimensional correlation Jengths À J = 0.5 and À2 = 0.02. The variance of K is set such as a(log(k)) = 3.0. An example of such a realization is given on Fig. 10.

As before, error Jevels are reported in terms of mean and standard deviations in Table 7. From these data, the reader can observe that on native formulations, both MsFv and MsRSB have their error Jevel reduce when considering a refi ned coarse discretization. Switching to the improved version of algorithm, it can be noticed that too fine coarse mesh for MsFv deteriorates the accuracy as it includes Jess details about the surrounding flows. Apart from Values are presented as mean (standard deviation) results in less accurate solution. Considering this analysis of the results on the slanted case, an alternative approach for the FV-MHMM method (different of tw or mstpfa approaches) will be needed to obtain results comparable to other methods. For example, a possibility we are exploring is to build an adaptive formulation of the FV-MHMM formulation, in the same vein as adaptive finite elements, which could be combined with tw or mstpfa weighting schemes approaches.

Conclusion

In this paper, three different multiscale methods FV-MHMM, MsFv and MsRSB have been tested using several different configurations. The MsFv and MsRSB methods are currently the most widely used in the reservoir simulation community [START_REF] Moyner | A multiscale restriction-smoothed basis method for compressible black-oil models[END_REF]Lunati et al. 2009). Their performances have been cross-compared on 2D cases considering the number of iterations they use solving the system, as a raw indicator of their numerical efficiency. On log-normally distributed facies of the 10th SPE test case, MsFv and MsRSB share the same accuracy which is improved by two order of magnitude after few smoothermultiscale solution cycles. FV-MHMM has in-between performance in terms of accuracy and can improve slightly its results by the use of weighting schemes (tw or mstpfa). The channelized type of medium challenges more the multiscale methods tested. MsFv has to work with a coarse enough mesh to be sure to find a solution on all layers as already mentioned in [START_REF] Wang | Algebraic multiscale solver for flow in heterogeneous porous media[END_REF], [START_REF] Møyner | A multiscale restriction-smoothed basis method for high contrast porous media represented on unstructured grids[END_REF]. Considered as a single stage multiscale solver, MsRSB finds solution with one order of magnitude lower error than the native form of FV-MHMM. If fewer cycles for MsRSB and weighting scheme for FV-MHMM are used, the error levels are lowered by one order of magnitude. In a last part, a slanted permeability case was studied: with this type of heterogeneity, the FV-MHMM struggles to correctly reproduce fine scale fluxes. On the other hand, MsRSB and MsFv, respectively, in their cycled version, correctly reproduce the fine scale details, as their solutions converge to the fine scale solution. This slanted permeability test highlights a limitation of FV-MHMM, which has to do with the proper definition of effective boundary conditions for its basis functions. Indeed, either MsFv by its dual-primal mesh definition which leads to a multiple point coarse stencil, or MsRSB by its definition of overlapping areas, include more details of the surrounding flow when computing their basis functions. The construction of the weighting schemes for the FV-MHMM aims at enhancing this bound-ary condition to better fit the surrounding flow. In the slanted test case, since the weighting schemes do not improve the solution accuracy, another idea would be to develop an adaptive formulation of the FV-MHMM by analogy with adaptive finite elements. This work is ongoing.

On the other hand, MsRSB and MsFv methods have been enriched by many improvements. They have already been used to treat 3D cases with more elaborate fluid models [START_REF] Møyner | A multiscale restriction-smoothed basis method for compositional models[END_REF][START_REF] Hilden | Multiscale simulation of polymer flooding with shear effects[END_REF]. For instance, capillary and gravity effects, black oil model and fractured medium, have all been implemented [START_REF] Møyner | A multiscale restriction-smoothed basis method for high contrast porous media represented on unstructured grids[END_REF][START_REF] Bosma | Multiscale finite volume method for discrete fracture modeling on unstructured grids (ms-dfm)[END_REF][START_REF] Shah | The multiscale restriction smoothed basis method for fractured porous media (f-msrsb)[END_REF][START_REF] Lunati | Multiscale finite-volume method for density-driven flow in porous media[END_REF]. MsRSB is also adapted to unstructured meshes [START_REF] Møyner | Construction of multiscale preconditioners on stratigraphic grids[END_REF]. Furthermore, after having been reformulated as algebraic solvers, MsRSB and MsFv are now considered in the most recent works as a non-symmetric preconditioner for the fine scale problem using GMRES solvers [START_REF] Møyner | Construction of multiscale preconditioners on stratigraphic grids[END_REF][START_REF] Manea | Parallel multiscale linear solver for highly detailed reservoir models[END_REF]. Once formulated in its algebraic form, FV-MHMM could be used as a preconditioning technique, in the same fashion as in the work of (Lunati and Lee 2009). This will be a forthcoming line of research.

A Complexity Comparison

Following the steps which are written in [START_REF] Jenny | Multi-scale finite-volume method for elliptic problems in subsurface flow simulation[END_REF] for complexity analysis of MsFv multiscale algorithm, we remind here the results for FV-MHMM [START_REF] Franc | Fv-mhmm method for reservoir modeling[END_REF]) and proposed the same kind of analysis for MsRSB. The notations introduced are presented in Table 8.

Assuming that t 1 (n) ∼ ct m n α where t m is the time spent for one multiplication, c and α are constants depending on the solvers. This complexity analysis neglects time spent in the reconstruction of the pressure and the fluxes. For MsFv, reproducing the analysis of [START_REF] Jenny | Multi-scale finite-volume method for elliptic problems in subsurface flow simulation[END_REF], it leads to: with the step MsFv1, the time spent in constructing the basis function on the dual grid; MsFv2, the time spent building coarse scale equivalent transmissivities on the coarse grid and MsFv3, the time needed to invert the coarse system.

In the same manner, FV-MHMM can be cast into three main steps:

t LLP ≈ 2d(l + 1)N v ct m γ α , t LSP ≈ N v ct m γ α , t GP ≈ ct m [N v + (l + 1)N f ] α
where d is the dimension number, l the order of the polynomial space used to approximate For the MsRSB, it has to be noted that its basis functions computations do not require inverting any operator. Indeed, in the Jacobi smoother formulation, only diagonal preconditioner D -1 is required, which is trivially inverted. It left us with:

t MsRSB1 ≈ n it (γ overlap + γ )N v t m t MsRSB2 ≈ n it γ overlap N v t m t MsRSB3 ≈ ct m N α v
with the step MsRSB1 stands for the time spent in smoothing the basis functions on the overlapping supports; MsRSB2 represents the time spent restricting the spreading of the basis functions to ensure mass conservation and, as in MsFv, MsRSB3, the time needed to invert the coarse system. Estimating the overlap size is done counting nodes nu n , edges nu e and faces nu f of a coarse cell depending on d (see Table 9). To define γ overlap , let us introduce nc the mean number of fine cells per dimension embedded in a coarse cell, that is do say nc ≈ γ 1/d .Then, the overlapping area is counted as: γ overlap = nu f nc (d-1) nc 2

+ nu e nc (d-2) nc 2 Moreover, the step MsFv 1 and step MsFv2 are reported to be parallelizable for the MsFv method [START_REF] Jenny | Multi-scale finite-volume method for elliptic problems in subsurface flow simulation[END_REF]. As for the FV-MHMM, all the local problems lambda (LLP) and local problems source (LSP) are independent from each others and therefore can be treated in parallel. Moreover, the TPFA matrix for a selected coarse cell has to be generated only one time and can be used for solving both LLP and LSP associated with this coarse cell (see Fig. 11).
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Algorithm 1

 1 Smoother-multiscale solution cycle description Let be fc21(z) = P(A;;-1 R z) and /smooth(Z) . 1. Construct a first multiscale approximation of the fine scale pressure using: update p:;, 5 by solving such as, P� = P� 1 + fc2f ( R:;,-;')
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 4 Fig. 4 Convergence behavior considering Jacobi or/ LUo smoother. Dotted lines stand for MsRSB method; solid lines are for MsFv method. Behavior a for the 13th SPElO test case with a 10 x 11 coarse mesh, b for the 84th SPEJO test case with a 10 x 11 coarse mesh and c for a S x 11 coarse mesh. Blue lines represent for each multiscale methods, the error level, as if they are considered as a single stage multiscale sol ver (corresponding to step 1 in Algorithm 1)
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 5 Fig. 5 Log-penneability field on the 13th and 84th layers
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  Fig. 6 Native methods: normalized error E 1 (x) for the 13th and 84th SPE layer
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 7 Fig. 7 Native methods: relative norm -Lz errors for ail the SPE Iayers

Fig. 1 O

 1 Fig. 8 Improved melhods: nonnalized error EJ (x) for the 13th and 84th SPE layer
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  and considering an average number of faces as N f ≈ d(N LLP step denotes the time spent in the construction of Lagrange multipliers-related basis functions; LSP, the time spent in the construction of source term-related basis functions and GP the time spent inverting the global problem.
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 11 Fig. 11 Complexity plot for Table 8 parameters. From left to right, the first region stands for MsFv, the second for FV-MHMM, the third for MsRSB. The right most region represents the total amount of computational time spent for each method

  The first equation is a classical Neumann boundary condition with prescribed flux g on ∂ N , whereas the second one is a Dirichlet boundary condition with imposed pressure p g on ∂ D .

Table 1 Simulation conditions for SPE 10th test case Physics dim. Fine grid Coarse grids Boundary cdt

 1 

	Il	.. -

-• -:, -.

Table 2 Native methods: L2-norm error report for native methods (i.e., single stage MsFv or MsRSB and Fv-MHMM without weighing scheme). NC stands for non-converged solution MsFv MsRSB Native Fv-MHMM (a) Native methods: EL 2 error report for 13th layer Mesh 10 X 11

 2 

		0.0216	0.0209	0.00249
	Mesh 5 X 11	0.0236	0.0220	0.00226
	(b)			

Native methods: EL 2 error report for 84th layer

  

	Mesh 10 x 11	NC	0.0111	0.0322
	Mesh 5 X 11	0.0390	0.0124	0.0585

Table 7 L

 7 2 -norm statistics on slanted realizations

		8 × 4	3 2 × 16
	(a) Native methods		
	MsFv	0.0576 (0.0224)	0.0526 (0.0202)
	MsRSB	0.0365 (0.00457)	0.0180 (0.00257)
	Native FV-MHMM	0.0164 (0.00325)	5.73(1.51) × 10 -3
	(b) Improved methods		
	MsFv	3.62 (1.31) × 10 -3	4.42 (1.12) × 10 -2
	MsRSB	4.10 (1.37) × 10 -3	9.24 (3.97) × 10 -5
	tw FV-MHMM	2.15 (0.167) × 10 -2	1.79 (0.156) × 10 -2
	mstpfa FV-MHMM	8.39 (2.09) × 10 -3	8.75 (0.625) × 10 -3

Table 8

 8 Parametersn v Number of volumes in the fine grid MsFv1 ≈ N n a n ct m γ α , t MsFv2 ≈ N v (a v + 1)ct m γ α , t MsFv3 ≈ ct m N α

	N v			Number of volumes in the coarse grid		
	N n			Number of nodes in the coarse grid		
	N f			Number of faces in the coarse grid		
	γ			Coarsening ratio ∼ n v /N v			
	a n			Number of coarse volumes adjacent to a coarse node	
	a v			Number of coarse volumes adjacent to a coarse volume	
	n it			Number of iterations spent in smoothing basis function for MsRSB
	t 1 (n)			Time to invert a linear system with n unknowns		
	N v	n v	γ	d	a v	a v	N n	n it
	9	3600	400	2	8	4	12	100
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