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Abstract 

A district heating network has generally more than one production unit, and then there are different ways to fulfill the energy 

demand of the network. This paper deals with the planning problem which is a problem of optimization under constraints. The 

production units are modeled using MINLP (mixed integer non-linear programming), in particular the following technical aspects 

are considered: storage capacity (for municipal wastes and biomass), allowable operating range, allowable variation of power 

over time, partial load performances, minimum working time when a unit runs, and minimum waiting time when it is in stand-by 

mode. The environmental constraint is the annual share of renewable energies in the global energy mix (for example, at least 50 

% over a year). The model aims to minimize the operating cost of the network. The problem cannot be solved by a one-shot 

optimization, so the paper proposes a sequential approach: first, a target of renewable share is calculated for each month of the 

year; secondly, the planning production is determined each day according to the calculated target. The results of a case study 

show that the planning strategy that only aims to minimize the operating cost violates the environmental constraint. Using the 

developed planning model raises a little bit the cost (4.5%) but fulfills the heat demand and environmental constraint at the same 

time. Considering a reduced VAT eligible in France when the constraint on renewable share is met, the proposed planning is 

even better in term of the total cost (10 % lower).  
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1. Introduction

District heating networks (DHN) play an important role in heating delivery in urban areas; it may provide heat at 
a lower cost and with lower environmental impacts compared to using individual heating systems (Pirouti et al., 

2013)(Li et al., 2016). One of the common problems in monitoring is the planning problem. A network has generally 

more than one production system, and then there are different ways to fulfill the energy demand of the network. 

The planning problem of DHN is not a new problem. (Sameti and Haghighat, 2017) have discussed different 

types of optimization, constraints and techniques as well as the optimization tools used in DHN. (Stange et al., 2018) 

have combined the existing methods for operational optimization and the demand forecasting algorithm. (Talebi et 

al., 2016) have made a review of the different modeling approaches and the optimization methods to reduce the 

operating cost. (Schweiger et al., 2017) have provided a method based on dynamic optimization and the language 

Modelica.  

Almost the available methods focus only on optimizing the cost, but do not take into account CO2 emission when 

setting up the operational planning. And yet, CO2 emission is playing a more and more important role nowadays, 

because it has impacts not only on the environmental aspect, but also on the economic one. For example, in France, 

there is a reduced VAT (value added taxes) for a district heating station once its renewable share in the global heat 

production is high enough (over 50% for a whole year). Considering CO2 emission when setting up the operational 
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planning is not a trivial, because the horizon of the corresponding optimization problem is quite long (e.g. 1 year). In 

this context, the paper proposes a planning method which aims to optimize the operating cost while considering the 

constraint of renewable share. The method takes into account the main characters of the production units, such as 

storage capacity, allowable operating range, allowable variation of power over time, partial load performances, 

minimum working time when a production unit runs, and minimum waiting time when it is in stand-by mode. 

2. Methodology 

The method includes two models: prediction model and optimization model. The prediction model will predict 

the heat demand of the clients during a day depending on the weather forecast (temperature) and some other 

characters of the day (whether it is weekend or holiday). The optimization model aims to determine the planning (i.e. 

the production units to be used and their heating powers) which fulfills the heat demand while optimizing the cost 

and satisfying different operating constraints and renewable share criteria. In what follows these models will be 

described. 

2.1. Heat demand prediction model 

Regression model has been chosen considering its reasonable computing time and its appropriateness for daily 

use. More specifically, the ARMAX (AutoRegressive-Moving-Average model with eXogenous inputs) model is 

used, because it is well-known that the model gives an acceptable precision (Fang and Lahdelma, 2016). Basically, 

an ARMAX model is made up of three parts: one auto-regressive part, one part depending on the exterior data, and 

the third part is the error: 
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where:  t: time t 

y: heat demand 

x: vector of independent variables (e.g.: outdoor temperature, time...) 

e: error of the model 

ϕ, η: parameters of the model 

p, q: orders of the model 

 

The heat demand at time t depends not only on the independent variables, but also on its values at t-1, t-2 ... For 

each pair of model orders (p, q), the parameters (ϕ, η) are determined using the least squares method with the 

historical data of the network, in other words the parameters are looked for to minimize the sum of the squares of the 

error e. 

 

The performance of the model depends on the independent variables taken into consideration and on the orders 

(p, q). Four types of model are built up:  

• Model «T»: only the outdoor temperature is considered as independent variable 

• Model «T72»: in addition of the outdoor temperature, 72 variables are used to represent the hours of a day: 

24 variables for Sunday, 24 variables for Saturday and 24 variables for weekday (from Monday to Friday) 

• Model « T72w»: similar to the model « T72 » but Wednesday is considered as Sunday (in fact, schools are 

closed on Wednesday in some regions in France, so that the housing energy consumption on Wednesday is 

closed to the one on Sunday).  

• Model « T72h»: similar to the model « T72 » with an additional variable to indicate if a day is in a holiday 

period. 

 

For each of these types, 21 combinations of the order (p,q) are considered, where p’s value is between 0 and 6 and 

q’s value is between 0 and p-1. 
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In order to quantify the accuracy of the models, the average mean absolute percentage error is used: 
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where:   �: real heat demand 

    ŷ : heat demand calculated by the prediction model 

    �: time t 

    �: the number of time steps during the evaluation period 

2.2. Optimization model 

Because the renewable share must be calculated over a long period (1 year), it is not possible to solve the problem 

by a one-shoot optimization. For this reason, the method uses a sequential approach, so that the optimization model 

includes two sub-models, daily model and monthly model. While the monthly model determines a target of 

renewable share for each month of the year, the daily model aims to give the best planning solution during a day by 

following the determined targets. Both models use the MINLP (mixed integer nonlinear programming) and the 

multi-period approach. More specifically, continuous variables are used to represent the heating powers, binary 

variables to represent the status of the production units (on/off) and nonlinear equations to consider different 

constraints. For a given optimization horizon (e.g. 1 day), the problem is split into a number of periods with a step of 

time of 1 hour. The objective functions of both models are the operating cost calculated for the whole optimization 

horizon.     

2.2.1. Monthly model 

This model aims to determine the renewable share for each month of the year. The following constraints are 

considered:  

• Lower limit and upper limit of the operating range of the production units 

• Partial load performances 

• Annual renewable share should be higher or equal than a threshold value (e.g. 50%) 

 

To limit the calculation time, each month of the year is represented by one typical day of which the heat demand 

is known (using historical data of the network).    

2.2.2. Daily model 

The daily model aims to determine the daily planning. The following constraints are considered for all the 

production units: 

• Lower limit and upper limit of the operating range of the production units 

• Upper limit of the variation of power over time 

• Minimum waiting time in the stand-by mode when a production unit is turned off; 

• Minimum working time when a unit is turned on; 

• Combustible storage capacity (for biomass and waste incinerators) 

• Daily renewable share should be equal to the target fixed by the monthly model 

 

The whole process of the method is shown in Fig. 1. On the first day of each month, the monthly model is run to 

identify a target of renewable share for that month. Note that the monthly model takes into account the actual energy 

production mix of the months prior to that day. Each day, the prediction model is run to calculate the heat demand, 

and then the daily model is used to determine the production planning.  
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The propose method aims to optimize the rate of heat production, and does not consider the supply temperature of 

DHN. In other words, the method is appropriate to be used when the network operating cost depends only on the 

heating powers provided by the production units, and not on the supply temperature (that is true for a number of 

production systems such as gas boiler, waste or biomass incinerators).  

 

Fig. 1. Proposed planning method 

3. Case study 

The presented method is implemented in Python, using Pyomo package (Hart et al., 2017) for the optimization 

part. It is tested on a case study inspired from a real DHN in Paris.  

3.1. Description of the case study 

The DHN has four production units: two gas boilers, one Circulating Fluidized Bed (CFB) using biomass and one 

municipal waste incinerator. The gas boilers are considered as non-renewable source, while the CFB and incinerator 

as renewable energies. Each machine has different characteristics, which are given by the network operator and 

listed in Table 1. 

 

Table 1. Characteristics of the production units 

Gas1 Gas2 CFB Incinerator 

Minimum heating power (MW) 0.01 0.01 2 2 

Maximum heating power (MW) 20 20 25 15 

Maximum variation of power over time when power increases (MW/hour) 20 20 7 3 

Maximum variation of power over time when power decreases (MW/hour) 20 20 10 5 

Cost (€/MWh) 90 91 150 1 

Minimum waiting (working) time (hour) 0 0 6 24 

Start

First day of a month?
Run the monthly model

� Target of monthly renewable share 

Run the prediction model

� Predicted daily heat demand

Run the daily model

� Daily planning

Last day of the year? End

Move to the 

next day

Yes

No

YesNo
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In the real life, the 2 gas boilers Gas1 and Gas2 are exactly the same, but a little difference for the cost for 

producing the heat is set, only to force to use only one gas boiler if its power is enough to satisfy the demand. That 

technique also allows to reduce the calculation time required by the solver. Indeed, if the 2 boilers have exactly the 

same cost, there are a number of equivalent planning solutions which have the same network operating cost and the 

solver may take time to differentiate them. For the incinerator machine, since it uses garbage as the source for 

producing heat, there is actually no cost for buying the combustible. As the capacity of the storage room is limited, 

garbage has to be sometimes burned even if it is not necessary to produce heat, because there is no place to stock the 

coming garbage. In that case, the total heat produced by the network will be higher than the demand required by the 

end-users, the difference is released to the atmosphere via a cooling tower. In order to avoid wasting the heat 

produced by the incinerator, a small cost is set for the machine. In this case study, the minimum renewable share of a 

whole year is set to 50%. 

 

To quantify the performance of the proposed method of planning, 3 test scenarios are set up: 

• Scenario 1: the full presented method is applied to plan the network 

• Scenario 2: the unique constraint on the renewable share (50%) is set for every day of the year. In this 

scenario, the monthly model is not used, only the daily one is.  

• Scenario 3: the constraint on the renewable share is not considered at all, and the model only aims to 

optimize the cost 

3.2. Results 

3.2.1. Performances of the prediction models 

 

84 prediction models are tested (21 combinations of order for each of four types of model). It is found that for 

summer, the model « T72v » with the order (4,2) is the best one and for winter, the model « T72v » with the order 

(2,1) is the best. The value of AMAPE during the year is 0.048, in other words, there is a 4.8% difference between 

the real demand and the predicted demand. With the average annual heat demand equals to 30.6 MW, the annual 

average difference between the real and predicted demands is 1.46 MW. As example, Fig. 2 shows the performance 

of the selected prediction model during a day. The predicted demand follows the same trend with the real demand, 

even though there is sometime significant difference between these 2 quantities.  

Fig. 2. Comparison between the predicted heat demand and the actual one 
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3.2.2.  Performances of the optimization model 

 

When simulating the HEN during a whole year, the planning determined by the optimization model is adjusted 

continuously in order to meet exactly the heat demand of the end-users. That is because there is always a difference 

between the real demand and the predicted one. When the real demand is higher than the predicted one, the planned 

heating powers are increased by preferring the cheapest production units first. On another side, when the real 

demand is lower than the predicted one, the planned heating powers are decreased by preferring the most expensive 

production units first. In both cases, the change of power is only allowable if it satisfies the technical constraints (i.e. 

operating range, limited variation of power over time, minimum working or waiting time). The planning is 

considered as failed when it is not possible to satisfy the technical constraints and fulfil the real demand at the same 

time. 

 

Table 2 presents the results of the three tested scenarios. By definition, the failure rate is the time, in percentage, 

when the network fails to satisfy 100 % of the real heat demand. The results show that the demand is fulfilled in all 

the time in the scenario 2, the failure rates of the scenarios 1 and 3 are negligible (0.19 % and 0.27 %, respectively). 

Then, it can be concluded that all three scenarios ensure the thermal comfort of the clients.     

 

In the scenario 3 where the model optimizes only the cost without considering the constraint of renewable share, 

the planning is unacceptable because the annual renewable share does not meet the criteria of 50 %. The scenario 2, 

that sets the target of renewable share to 50 % everyday, shows the highest cost. Note that the annual renewable 

share overpasses the target. Indeed, the renewable share of the periods of low demand exceeds what is required, 

because only the incinerator is enough to fulfil the heat demand. In the scenario 1 that corresponds to the proposed 

method of planning, the daily target varies month by month, and that allows the DHN to have an annual renewable 

share very close to the desired value (50 %). The corresponding cost is lower than the one of the scenario 2 (about 

6.2 %), but higher than the scenario 3 (about 4.5 %). However, the expected gain thanks to the reduced TVA1 is 14.5 

%, and that makes the scenario 1 the most attractive scenario in term of the cost (about 10 % less than the scenario 

3). 

Table 2. Results of the planning model 

Scenario  Annual cost (M€) Annual renewable share Failure rate 

1 16.10 50.1% 0.19 % 

2 17.16 56.6% 0 

3 15.40 45.9% 0.27 % 

 

As example, Fig. 3 shows the heating powers of the four production units during 10 days (results from the 

scenario 1). The waste incinerator usually runs at its maximal power, because it is not only a renewable source but 

also the cheapest production unit. From time to time, its power is reduced when the demand is low, and that allows 

to store garbage for further use. The gas boiler 1 is used almost all the time because gas is the second cheapest 

combustible. The second gas boiler 2 is used only when the first one reaches its maximum power. The CFB is less 

used since it is the most expensive unit; it is used in order to satisfy the constraint on the renewable share. 

 

                                                           
1 In France, the normal TVA is 20 %, while the reduced one is 5.5 % 
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(a) (b) 

(c) (d) 

 

Fig. 3. Heating power (in MW): (a) gas boiler 1; (b) gas boiler 2; (c) CFB; (d) incinerator 

4. Conclusion 

This paper has built a model for planning the operation of a DHN composed of various production units. The 

model aims to minimize the operating cost, but the annual renewable share in the energy production mix has to 

satisfy a local regulation (at least 50 % in the case study). The model considers a number of technical constraints on 

the production units such as allowable operating range, allowable variation of heating power over time and minimum 

working (waiting) time. The proposed method of planning uses a sequential approach and is composed of two 

MINLP sub-models. The monthly model aims to determine the daily target of renewable share and the daily model 

identify the daily planning.  

 

The case study is inspired from a DHN in Paris. The results show that the proposed method of planning allows to 

keep the annual renewable share to the desired value (50 %). The operating cost is higher than the case where only 

the cost is optimized without considering the constraint of renewable share. However, taking into account the 

reduced TVA, the planning provided by the method is in fact the most attractive one in term of the total cost (10 % 

lower). This result indicates a tax subsidy may really encourage the operators of DHN to use more and more 

renewable energies.  

 

The corresponding cost is also 6.2 % lower than the case where a unique target of renewable share is set for 

everyday. Then, it can be concluded that using the monthly model to determine the target month by month helps 

optimizing the cost while maintaining the annual renewable share under control.  
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In the further work, the supply temperature of the network will be considered, allowing the method to be applied 

in the cases where the performance of the production units highly depends on the temperature, such as geothermal or 

heat pump. 
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